JP6672203B2 - Power supply path evaluation device, power supply path evaluation method, and program - Google Patents

Power supply path evaluation device, power supply path evaluation method, and program Download PDF

Info

Publication number
JP6672203B2
JP6672203B2 JP2017047790A JP2017047790A JP6672203B2 JP 6672203 B2 JP6672203 B2 JP 6672203B2 JP 2017047790 A JP2017047790 A JP 2017047790A JP 2017047790 A JP2017047790 A JP 2017047790A JP 6672203 B2 JP6672203 B2 JP 6672203B2
Authority
JP
Japan
Prior art keywords
power supply
power
supply path
transmission line
selection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047790A
Other languages
Japanese (ja)
Other versions
JP2018153004A (en
Inventor
鳥羽 廣次
廣次 鳥羽
正博 戸原
正博 戸原
照久 松井
照久 松井
容子 坂内
容子 坂内
道彦 犬飼
道彦 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017047790A priority Critical patent/JP6672203B2/en
Publication of JP2018153004A publication Critical patent/JP2018153004A/en
Application granted granted Critical
Publication of JP6672203B2 publication Critical patent/JP6672203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明の実施形態は、電力供給経路評価装置、電力供給経路評価方法、およびプログラムに関する。   An embodiment of the present invention relates to a power supply path evaluation device, a power supply path evaluation method, and a program.

電力を送配電する送配電系統は、様々な電力流通設備で構成されている。これらの設備は、使用状態や使用年数などに応じて計画的に更新していく必要がある。これに関連し、合理的に設備の更新計画を立てるために、電力系統の複数の系統構成の供給信頼度を評価する技術が知られている。しかしながら、従来の技術では、効率良く電力設備の更新計画を立てることができない場合があった。   A power transmission and distribution system that transmits and distributes power includes various power distribution facilities. It is necessary to update these facilities systematically according to the use conditions and the years of use. In this connection, there is known a technique for evaluating the supply reliability of a plurality of system configurations of a power system in order to rationally plan a facility update. However, in the related art, there are cases where it is not possible to efficiently make a plan for updating power equipment.

特開2004−242411号公報JP 2004-242411 A

本発明が解決しようとする課題は、電力設備の更新計画を効率良く立てることができる電力供給経路評価装置、電力供給経路評価方法、およびプログラムを提供することである。   The problem to be solved by the present invention is to provide a power supply path evaluation device, a power supply path evaluation method, and a program that can efficiently make an update plan for power equipment.

実施形態の電力供給経路評価装置は、第1選択部と、導出部と、第2選択部とを持つ。第1選択部は、電力系統を構成する複数の電力供給経路の中から、所定期間において生じた停電の回数に基づく指標値が閾値以下となる一以上の電力供給経路を選択する。導出部は、第1選択部により選択された電力供給経路の電気的な状態を導出する。第2選択部は、導出部により導出された電気的な状態に基づいて、第1選択部により選択された一以上の電力供給経路の中から、所定条件を満たす電力供給経路を選択する。   The power supply path evaluation device according to the embodiment has a first selection unit, a derivation unit, and a second selection unit. The first selection unit selects one or more power supply paths from among a plurality of power supply paths configuring the power system, in which an index value based on the number of power failures occurring in a predetermined period is equal to or less than a threshold. The deriving unit derives an electrical state of the power supply path selected by the first selecting unit. The second selection unit selects a power supply path that satisfies a predetermined condition from one or more power supply paths selected by the first selection unit based on the electrical state derived by the derivation unit.

実施形態における電力供給経路評価装置100の構成の一例を示す図。FIG. 1 is a diagram illustrating an example of a configuration of a power supply path evaluation device 100 according to an embodiment. 電力系統構成情報132が示す電力系統を模式的に示す図。The figure which shows typically the electric power system which the electric power system configuration information 132 shows. 実施形態における制御部110による一連の処理の流れの一例を示すフローチャート。5 is a flowchart illustrating an example of a flow of a series of processes performed by a control unit 110 according to the embodiment. 連結確率Pa算出時に利用する2分決定グラフのグラフ構造の一例を示す図。The figure which shows an example of the graph structure of the binary decision graph used at the time of connection probability Pa calculation. 送電線ごとの故障発生回数の一例を示す図。The figure which shows an example of the frequency | count of failure occurrence for every transmission line. 図5に例示した送電線PLごとの故障発生回数を基に算出された電力供給経路PSの連結確率Paの一例を示す図。The figure which shows an example of the connection probability Pa of the electric power supply path | route PS calculated based on the frequency | count of failure occurrence for every transmission line PL illustrated in FIG. SAIFI算出時に利用する2分決定グラフのグラフ構造の一例を示す図。The figure which shows an example of the graph structure of the binary decision graph used at the time of SAIFI calculation. 各負荷ノードNDと電気的に接続された需要家設備の総数の一例を示す図。The figure which shows an example of the total number of customer facilities electrically connected with each load node ND. 各電力供給経路PSのSAIFIの一例を示す図。The figure which shows an example of SAIFI of each electric power supply path | route PS. 送電線PL1を停止させる場合に負荷条件Aを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition A is given when stopping the transmission line PL1. 送電線PL1を停止させる場合に負荷条件Bを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition B is given when stopping the transmission line PL1. 送電線PL1を停止させる場合に負荷条件Cを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition C is given when stopping the transmission line PL1. 電線PL3を停止させる場合に負荷条件Aを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition A is given when stopping the electric wire PL3. 送電線PL3を停止させる場合に負荷条件Bを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition B is given when stopping the transmission line PL3. 送電線PL3を停止させる場合に負荷条件Cを与えたときの潮流計算結果の一例を示す図。The figure which shows an example of the power flow calculation result when the load condition C is given when stopping the transmission line PL3. 送電線PL1を停止させるときの各負荷条件における電気的諸量の一例を示す図。The figure which shows an example of various electrical quantities in each load condition when stopping the transmission line PL1. 送電線PL3を停止させるときの各負荷条件における電気的諸量の一例を示す図。The figure which shows an example of various electrical quantities in each load condition when stopping the transmission line PL3.

以下、実施形態の電力供給経路評価装置、電力供給経路評価方法、およびプログラムを、図面を参照して説明する。実施形態における電力供給経路評価装置は、電力系統に含まれる複数の電力供給経路のそれぞれを評価して、電力系統に含まれる各種電力設備を更新する際に、どの電力供給経路に対する電力供給を停止させるのが最も合理的であるのかを評価する装置である。   Hereinafter, a power supply path evaluation device, a power supply path evaluation method, and a program according to an embodiment will be described with reference to the drawings. The power supply path evaluation device in the embodiment evaluates each of a plurality of power supply paths included in the power system and stops power supply to which power supply path when updating various power facilities included in the power system. It is a device that evaluates whether it is most reasonable to make it.

図1は、実施形態における電力供給経路評価装置100の構成の一例を示す図である。本実施形態の電力供給経路評価装置100は、例えば、制御部110と、記憶部130とを備える。   FIG. 1 is a diagram illustrating an example of a configuration of a power supply path evaluation device 100 according to the embodiment. The power supply path evaluation device 100 of the present embodiment includes, for example, a control unit 110 and a storage unit 130.

制御部110は、例えば、停止設備候補選択部112と、連結確率算出部114と、第1系統構成選択部116と、供給信頼度算出部118と、第2系統構成選択部120と、系統状態導出部122と、第3系統構成選択部124とを備える。第1系統構成選択部116は、「第3選択部」の一例であり、第2系統構成選択部120は、「第1選択部」の一例であり、第3系統構成選択部124は、「第2選択部」の一例である。また、供給信頼度算出部118は、「指標値算出部」の一例である。   The control unit 110 includes, for example, a stopped facility candidate selection unit 112, a connection probability calculation unit 114, a first system configuration selection unit 116, a supply reliability calculation unit 118, a second system configuration selection unit 120, a system state, A deriving unit 122 and a third system configuration selecting unit 124 are provided. The first system configuration selection unit 116 is an example of a “third selection unit”, the second system configuration selection unit 120 is an example of a “first selection unit”, and the third system configuration selection unit 124 is This is an example of the “second selection unit”. The supply reliability calculation unit 118 is an example of an “index value calculation unit”.

制御部110の構成要素の一部または全部は、CPU(Central Processing Unit)等のプロセッサが記憶部130に記憶されたプログラムを実行することにより実現されてよい。また、制御部110の構成要素の一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。   Some or all of the components of the control unit 110 may be realized by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 130. Some or all of the components of the control unit 110 may be realized by hardware such as an LSI (Large Scale Integration), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). It may be realized by cooperation of software and hardware.

記憶部130は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)、SDカード、MRAM(Magnetoresistive Random Access Memory)、RAM(Random Access Memory)、レジスタ等によって実現されてよい。記憶部130は、制御部110のプロセッサが実行するプログラムを格納する他、電力系統構成情報132等を記憶する。   The storage unit 130 may be realized by, for example, a ROM (Read Only Memory), a flash memory, a HDD (Hard Disk Drive), an SD card, an MRAM (Magnetoresistive Random Access Memory), a RAM (Random Access Memory), a register, and the like. The storage unit 130 stores a program executed by the processor of the control unit 110, and also stores power system configuration information 132 and the like.

図2は、電力系統構成情報132が示す電力系統を模式的に示す図である。電力系統構成情報132は、電力系統に含まれる各種電力設備および送電線(電力線)の数や、種類、接続経路などを表す情報である。本実施形態における電力系統は、送電系統や配電系統を含む。送電系統は、例えば、発電所などの電源設備や、超超高圧や超高圧などの電力を送電する送電線、発電された電力を変圧する変電所などを含む。配電系統は、例えば、送電系統を介して供給された電力を変圧する変電所や、高圧電力を送電(配電)する送電線(配電線)、柱上変圧器などを含む。   FIG. 2 is a diagram schematically illustrating the power system indicated by the power system configuration information 132. The power system configuration information 132 is information indicating the number, types, connection paths, and the like of various power facilities and transmission lines (power lines) included in the power system. The power system in the present embodiment includes a transmission system and a distribution system. The power transmission system includes, for example, a power supply facility such as a power plant, a power transmission line that transmits power of an ultra-high voltage or an ultra-high voltage, a substation that transforms generated power, and the like. The power distribution system includes, for example, a substation that transforms power supplied via a power transmission system, a transmission line (distribution line) that transmits (distributes) high-voltage power, a pole transformer, and the like.

図中Pは、例えば、送電系統における電源設備を表していてもよいし、配電系統において、送電系統から受電する電力設備(例えば変電所など)を表していてもよい。また、図中ND0からND4は、電力系統における各電力設備(例えば変電所や柱上変圧器など)を表している。以下、ND0からND4として表す電力設備を「負荷ノード」と称して説明する。また、図中PL1からPL6は、電力系統における送電線を表している。電力系統構成情報132は、例えば、図示のように、負荷ノードND0が、負荷ノードND1と送電線PL1を介して接続されていると共に、負荷ノードND2と送電線PL2を介して接続されていることを表している。また、電力系統構成情報132は、負荷ノードND1および負荷ノードND2が同じ送電線PL3を介して互いに接続されていることを表している。また、電力系統構成情報132は、負荷ノードND1が、負荷ノードND3と送電線PL4を介して接続されていると共に、負荷ノードND2が負荷ノードND4と送電線PL5を介して接続されていることを表している。また、電力系統構成情報132は、負荷ノードND3および負荷ノードND4が同じ送電線PL6を介して互いに接続されていることを表している。   P in the figure may represent, for example, a power supply facility in a power transmission system, or may represent a power facility (for example, a substation) that receives power from the power transmission system in a distribution system. In the figure, ND0 to ND4 represent respective power facilities (for example, substations and pole transformers) in the power system. Hereinafter, power facilities represented as ND0 to ND4 will be described as "load nodes". Also, PL1 to PL6 in the figure represent transmission lines in the power system. The power system configuration information 132 indicates, for example, that the load node ND0 is connected to the load node ND1 via the transmission line PL1 and is connected to the load node ND2 via the transmission line PL2, as shown in the drawing. Is represented. The power system configuration information 132 indicates that the load node ND1 and the load node ND2 are connected to each other via the same transmission line PL3. The power system configuration information 132 indicates that the load node ND1 is connected to the load node ND3 via the transmission line PL4, and that the load node ND2 is connected to the load node ND4 via the transmission line PL5. Represents. The power system configuration information 132 indicates that the load node ND3 and the load node ND4 are connected to each other via the same transmission line PL6.

なお、図に例示した電力系統では、負荷ノードがND0からND4までの5つと、送電線がPL1からPL6の6つを含むものとして説明したがこれに限られず、更に多くの負荷ノードおよび送電線が追加されてもよいし、例示した負荷ノードおよび送電線のいずれか一つまたは複数が省略されてもよい。   In the power system illustrated in the figure, the description has been given assuming that the number of load nodes includes five from ND0 to ND4 and the number of transmission lines includes six from PL1 to PL6. May be added, and one or more of the illustrated load nodes and transmission lines may be omitted.

以下、フローチャートを参照して、制御部110による処理について説明する。図3は、実施形態における制御部110による一連の処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。   Hereinafter, the process performed by the control unit 110 will be described with reference to a flowchart. FIG. 3 is a flowchart illustrating an example of a flow of a series of processes performed by the control unit 110 according to the embodiment. The processing of this flowchart may be repeatedly performed at a predetermined cycle, for example.

まず、停止設備候補選択部112は、電力系統構成情報132が示す電力系統において、電力系統内に存在する一つ以上の電力設備(送電線)の中から、設備更新のために運転を停止させる電力設備の候補(以下、停止設備候補と称する)を一つ以上選択する(ステップS100)。例えば、停止設備候補選択部112は、上述した図2において、送電線PL1からPL6のそれぞれを、停止設備候補として選択する。   First, in the power system indicated by the power system configuration information 132, the stopped facility candidate selection unit 112 stops the operation for updating the equipment from one or more power facilities (transmission lines) existing in the power system. One or more power equipment candidates (hereinafter, referred to as stop equipment candidates) are selected (step S100). For example, the stop facility candidate selection unit 112 selects each of the transmission lines PL1 to PL6 in FIG. 2 described above as a stop facility candidate.

次に、連結確率算出部114は、停止設備候補選択部112により選択された停止設備候補を停止させたときを想定して、電力系統において、停止設備候補である負荷ノードNDを除く他の負荷ノードNDのそれぞれに至る電力供給経路PSの連結確率Paを算出する(ステップS102)。連結確率Paは、各電力供給経路PSに接続された負荷ノードNDが停電しない確率を表している。   Next, on the assumption that the stopped facility candidate selected by the stopped facility candidate selecting unit 112 has been stopped, the connection probability calculating unit 114 sets other loads except for the load node ND which is the stopped facility candidate in the power system. The connection probability Pa of the power supply path PS reaching each of the nodes ND is calculated (step S102). The connection probability Pa represents the probability that the load node ND connected to each power supply path PS will not lose power.

例えば、停止設備候補選択部112により、送電線PL1からPL6のそれぞれが停止設備候補として選択された場合、連結確率算出部114は、以下の電力供給経路PSの連結確率Paを算出する。
(1)送電線PL1を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
(2)送電線PL2を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
(3)送電線PL3を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
(4)送電線PL4を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
(5)送電線PL5を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
(6)送電線PL6を停止させたときに、負荷ノードND1からND4のそれぞれに電力供給がなされる電力供給経路PSの連結確率。
For example, when each of the transmission lines PL1 to PL6 is selected as a stop facility candidate by the stop facility candidate selection unit 112, the connection probability calculation unit 114 calculates the connection probability Pa of the following power supply path PS.
(1) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL1 is stopped.
(2) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL2 is stopped.
(3) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL3 is stopped.
(4) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL4 is stopped.
(5) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL5 is stopped.
(6) The connection probability of the power supply path PS for supplying power to each of the load nodes ND1 to ND4 when the transmission line PL6 is stopped.

連結確率算出部114は、各電力供給経路PSの連結確率Paを、グラフ理論を用いて算出する。例えば、連結確率算出部114は、グラフ理論に基づいた手法として、2分決定グラフを用いて各電力供給経路PSの連結確率Paを算出する。   The connection probability calculation unit 114 calculates the connection probability Pa of each power supply path PS using graph theory. For example, the connection probability calculation unit 114 calculates the connection probability Pa of each power supply path PS using a binary decision diagram as a method based on graph theory.

図4は、連結確率Pa算出時に利用する2分決定グラフのグラフ構造の一例を示す図である。本実施形態における2分決定グラフは、環状構造を持たないツリー構造の有向グラフで表現される。2分決定グラフにおいて、各決定ノードは、電力系統に存在する各送電線PLnを表し、決定ノード同士を接続する2分岐のエッジは、送電線PLn同士の接続の有無を表している。図示の例の2分決定グラフは、上記(1)の場合(送電線PL1を停止させた場合)に参照されるグラフである。   FIG. 4 is a diagram illustrating an example of a graph structure of the binary decision graph used when calculating the connection probability Pa. The binary decision diagram in the present embodiment is represented by a tree-structured directed graph having no ring structure. In the binary decision graph, each decision node represents each transmission line PLn existing in the power system, and the two-branch edge connecting the decision nodes represents the presence or absence of connection between the transmission lines PLn. The binary decision graph of the illustrated example is a graph referred to in the case of the above (1) (when the transmission line PL1 is stopped).

2分決定グラフにおいて、例えば、決定ノードである送電線PL同士が、負荷ノードNDを介して互いに接続されている場合、決定ノード間のエッジは“1”となり、送電線PL同士が接続されていない場合、決定ノード間のエッジは“0”となる。例えば、図中の電力供給経路PS5は、送電線PL2とPL3が接続され、送電線PL3とPL4が接続され、送電線PL4とPL5が接続されず、送電線PL5とPL6が接続された経路である。このような各電力供給経路PSにおいて、最も深い階層の決定ノード(始点とする開始ノードから辿るエッジ数が最も多い決定ノード)を親とした子ノード(以下、終端ノードと称する)の値が“0”または“1”であるのかに応じて、その電力供給経路PSに含まれるいずれか一つ以上の負荷ノードNDに対して電力が供給されるのか否かが判断される。終端ノードの値が“0”であることは、いずれか一つ以上の負荷ノードNDに対して電力が供給されないことを表し、終端ノードの値が“1”であることは、全ての負荷ノードNDに対して電力が供給されることを表している。   In the binary decision graph, for example, when the transmission lines PL that are the decision nodes are connected to each other via the load node ND, the edge between the decision nodes is “1”, and the transmission lines PL are connected. If not, the edge between the decision nodes is “0”. For example, the power supply path PS5 in the figure is a path in which the transmission lines PL2 and PL3 are connected, the transmission lines PL3 and PL4 are connected, the transmission lines PL4 and PL5 are not connected, and the transmission lines PL5 and PL6 are connected. is there. In each of the power supply paths PS, the value of a child node (hereinafter, referred to as an end node) whose parent is the decision node of the deepest hierarchy (the decision node having the largest number of edges to be traced from the start node as the start point) is “ It is determined whether power is supplied to one or more load nodes ND included in the power supply path PS according to whether the power supply path is “0” or “1”. When the value of the terminal node is “0”, it means that power is not supplied to any one or more load nodes ND. When the value of the terminal node is “1”, it means that all the load nodes ND are not supplied. This indicates that power is supplied to the ND.

例えば、連結確率算出部114は、電力系統構成情報132を参照して、図4に例示するようなグラフ構造の2分決定グラフを生成する。例えば、連結確率算出部114は、開始ノードから下層の決定ノードへと移っていったときに現われる変数の順序が(どの経路でも)同じになるような順序付き二分決定グラフを生成する。   For example, the connection probability calculation unit 114 generates a binary decision graph having a graph structure as illustrated in FIG. 4 with reference to the power system configuration information 132. For example, the connection probability calculation unit 114 generates an ordered BDD so that the order of variables appearing when moving from the start node to the lower-level decision node becomes the same (any path).

連結確率算出部114は、生成した2分決定グラフの終端ノードの値を参照することで、各送電線PLnを停止したときに全ての負荷ノードNDに電力が供給される電力供給経路PSを抽出する。図4の例の場合、全ての負荷ノードNDに電力が供給される電力供給経路PSとして、PS1〜PS3、PS5、PS8が抽出される。   The connection probability calculating unit 114 refers to the value of the terminal node of the generated binary decision graph to extract the power supply path PS in which power is supplied to all the load nodes ND when each transmission line PLn is stopped. I do. In the case of the example in FIG. 4, PS1 to PS3, PS5, and PS8 are extracted as the power supply path PS to which power is supplied to all the load nodes ND.

そして、連結確率算出部114は、抽出した電力供給経路PSを構成する各送電線PLnの故障発生回数に基づき、電力供給経路PSの連結確率Paを算出する。   Then, the connection probability calculation unit 114 calculates the connection probability Pa of the power supply path PS based on the number of times of occurrence of failure of each of the transmission lines PLn constituting the extracted power supply path PS.

図5は、送電線ごとの故障発生回数の一例を示す図である。例えば、ある過去の時点において、送電線PL1の年間の故障発生回数が10回であった場合、一時間当たりの故障発生確率は0.00114回となる。連結確率算出部114は、図5に例示されるような各送電線PLnの1時間当たりの故障発生回数を確率(以下、非連結確率pbと称する)に置き換え、1から非連結確率pbを減算した値を、各送電線PLnの連結確率paとして算出する。 FIG. 5 is a diagram illustrating an example of the number of failure occurrences for each transmission line. For example, if the annual number of failure occurrences of the transmission line PL1 is 10 at a certain point in the past, the failure occurrence probability per hour is 0.00114. Connection probability calculation unit 114, the probability of failure occurrence frequency per hour of each transmission line PLn as illustrated in FIG. 5 replaced by (hereinafter, unconsolidated called probability pb n), unbound from 1 probability pb n the value obtained by subtracting the calculated as linking probability pa n of each transmission line PLn.

例えば、図5に例示した送電線ごとの故障発生回数を基に、送電線PLnごとに算出される連結確率paは、以下のようになる。
・送電線PL1の連結確率pa=(1−pb)=0.99886
・送電線PL2の連結確率pa=(1−pb)=0.99943
・送電線PL3の連結確率pa=(1−pb)=0.99372
・送電線PL4の連結確率pa=(1−pb)=0.99658
・送電線PL5の連結確率pa=(1−pb)=0.99772
・送電線PL6の連結確率pa=(1−pb)=0.99543
For example, based on the failure occurrence count for each exemplified transmission lines in Figure 5, coupling probability pa n calculated for each transmission line PLn is as follows.
Consolidated power lines PL1 probability pa 1 = (1-pb 1 ) = 0.99886
Consolidated power lines PL2 probability pa 2 = (1-pb 2 ) = 0.99943
Consolidated power lines PL3 probability pa 3 = (1-pb 3 ) = 0.99372
- connection of the transmission line PL4 probability pa 4 = (1-pb 4 ) = 0.99658
Consolidated the power line PL5 probability pa 5 = (1-pb 5 ) = 0.99772
Consolidated power lines PL6 probability pa 6 = (1-pb 6 ) = 0.99543

連結確率算出部114は、各送電線PLnの連結確率paを算出した後、抽出した電力供給経路PSのそれぞれに関して、電力供給経路PSに含まれる送電線PLnの連結確率paを乗算する。例えば、連結確率算出部114は、全ての負荷ノードNDに電力が供給される電力供給経路PSとして、PS1〜PS3、PS5、PS8の経路を抽出した場合、まず、電力供給経路PS1に含まれる送電線PL2からPL6のそれぞれの連結確率paを乗算する。 Connection probability calculation unit 114, after calculating the connection probabilities pa n of each transmission line PLn, for each of the extracted power supply path PS, multiplying the connection probability pa n of the transmission line PLn included in the power supply path PS. For example, when the connection probability calculation unit 114 extracts the paths of PS1 to PS3, PS5, and PS8 as the power supply path PS to which power is supplied to all the load nodes ND, first, the connection included in the power supply path PS1 multiplying each of the connection probability pa n from wire PL2 PL6.

例えば、連結確率算出部114は、電力供給経路PS1に関しては、pa×pa×pa×pa×paを計算し、電力供給経路PS2に関しては、pa×pa×pa×pa×(1−pa)を計算する。また、連結確率算出部114は、電力供給経路PS3に関しては、pa×pa×pa×(1−pa)×paを計算し、電力供給経路PS5に関しては、pa×pa×pa×(1−pa)×paを計算する。また、連結確率算出部114は、電力供給経路PS8に関しては、pa×(1−pa)×pa×pa×paを計算する。 For example, connecting probability calculation unit 114, with respect to the power supply path PS1, it calculates the pa 2 × pa 3 × pa 4 × pa 5 × pa 6, with respect to the power supply path PS2, pa 2 × pa 3 × pa 4 × pa 5 calculates the × (1-pa 6). The coupling probability calculation unit 114, with respect to the power supply path PS3, calculates the pa 2 × pa 3 × pa 4 × (1-pa 5) × pa 6, with respect to the power supply path PS5, pa 2 × pa 3 × pa 4 × (1-pa 5 ) × pa 6 is calculated. The coupling probability calculation unit 114, with respect to the power supply path PS8, calculates the pa 2 × (1-pa 3 ) × pa 4 × pa 5 × pa 6.

そして、連結確率算出部114は、電力供給経路PSごとに乗算した各送電線PLnの連結確率paを加算することで、電力供給経路PS全体の連結確率Paを算出する。上述した数値例の場合、電力供給経路PS全体の連結確率Paは、(pa×pa×pa×pa×pa)+(pa×pa×pa×pa×(1−pa))+(pa×pa×pa×(1−pa)×pa)+(pa×pa×pa×(1−pa)×pa)+(pa×(1−pa)×pa×pa×pa)=0.99933となる。 The connection probability calculation unit 114, by adding the connection probability pa n of each transmission line PLn multiplied for each power supply path PS, calculates the connection probability Pa of the entire power supply path PS. In the case of the above numerical example, the connection probability Pa of the entire power supply path PS is (pa 2 × pa 3 × pa 4 × pa 5 × pa 6 ) + (pa 2 × pa 3 × pa 4 × pa 5 × (1 −pa 6 )) + (pa 2 × pa 3 × pa 4 × (1-pa 5 ) × pa 6 ) + (pa 2 × pa 3 × pa 4 × (1-pa 5 ) × pa 6 ) + (pa the 2 × (1-pa 3) × pa 4 × pa 5 × pa 6) = 0.99933.

また、連結確率算出部114は、送電線PL1を停止させたときに各負荷ノードNDに電力が供給される電力供給経路PSの連結確率Paを算出したのと同様に、停止設備候補選択部112により選択された停止設備候補のうち、送電線PL1以外の他の送電線PLのそれぞれを停止させたときに各負荷ノードNDに電力が供給される電力供給経路PSの連結確率Paを算出する。上述した例の場合、停止設備候補選択部112により、送電線PL1からPL6のそれぞれが停止設備候補として選択されたため、連結確率算出部114は、送電線PL2を停止させたときの一つまたは複数の電力供給経路PSの連結確率Paと、送電線PL3を停止させたときの一つまたは複数の電力供給経路PSの連結確率Paと、送電線PL4を停止させたときの一つまたは複数の電力供給経路PSの連結確率Paと、送電線PL5を停止させたときの一つまたは複数の電力供給経路PSの連結確率Paと、送電線PL6を停止させたときの一つまたは複数の電力供給経路PSの連結確率Paとを、上述した2分決定グラフを用いて算出する。このように、連結確率算出部114が2分決定グラフを用いて電力供給経路PS全体の連結確率Paを算出するため、グラフ構造を既約しながら効率的に電力供給経路PSを探索することができる。   In addition, the connection probability calculation unit 114 calculates the connection probability Pa of the power supply path PS to which power is supplied to each load node ND when the transmission line PL1 is stopped, similarly to the stop equipment candidate selection unit 112. The connection probability Pa of the power supply path PS to which power is supplied to each load node ND when each of the transmission lines PL other than the transmission line PL1 is stopped among the stop equipment candidates selected by (1) is calculated. In the case of the above-described example, since each of the transmission lines PL1 to PL6 is selected as a stop facility candidate by the stop facility candidate selection unit 112, the connection probability calculation unit 114 determines whether one or more of the transmission lines PL2 has been stopped. Of the power supply path PS, the connection probability Pa of one or more power supply paths PS when the transmission line PL3 is stopped, and the one or more electric powers when the transmission line PL4 is stopped. The connection probability Pa of the supply path PS, the connection probability Pa of one or more power supply paths PS when the transmission line PL5 is stopped, and the one or more power supply paths when the transmission line PL6 is stopped. The PS connection probability Pa is calculated using the above-described binary decision graph. As described above, since the connection probability calculation unit 114 calculates the connection probability Pa of the entire power supply path PS using the binary decision graph, it is possible to efficiently search for the power supply path PS while reducing the graph structure. it can.

図6は、図5に例示した送電線PLごとの故障発生回数を基に算出された電力供給経路PSの連結確率Paの一例を示す図である。送電線PL1を停止させたときの電力供給経路PSの連結確率Paは、上述したように0.99933となっている。   FIG. 6 is a diagram illustrating an example of the connection probability Pa of the power supply path PS calculated based on the number of failure occurrences for each transmission line PL illustrated in FIG. The connection probability Pa of the power supply path PS when the transmission line PL1 is stopped is 0.99933 as described above.

次に、第1系統構成選択部116は、連結確率算出部114により連結確率Paが算出された電力供給経路PSの中から、連結確率Paがある閾値(以下、連結確率閾値Pthと称する)以上の電力供給経路PSを選択する(ステップS104)。   Next, the first system configuration selection unit 116 selects, from the power supply paths PS for which the connection probability Pa has been calculated by the connection probability calculation unit 114, a connection probability Pa equal to or greater than a threshold (hereinafter, referred to as a connection probability threshold Pth). Is selected (step S104).

例えば、連結確率閾値Pthが0.995であるときに、電力供給経路PSの連結確率Paが上述した図6に例示する数値例の場合、第1系統構成選択部116は、連結確率Paが連結確率閾値Pth以上となる電力供給経路PSとして、送電線PL1を停止させたときの電力供給経路PS(Pa=0.99933)、送電線PL2を停止させたときの電力供給経路PS(Pa=0.99876)、送電線PL3を停止させたときの電力供給経路PS(Pa=0.99995)を選択する。   For example, when the connection probability Pa is 0.995 and the connection probability Pa of the power supply path PS is the numerical example illustrated in FIG. 6 described above, the first system configuration selection unit 116 determines that the connection probability Pa is The power supply path PS when the transmission line PL1 is stopped (Pa = 0.99933) and the power supply path PS when the transmission line PL2 is stopped (Pa = 0) are the power supply paths PS that are equal to or higher than the probability threshold Pth. .99876), and the power supply path PS (Pa = 0.99995) when the transmission line PL3 is stopped is selected.

次に、供給信頼度算出部118は、第1系統構成選択部116により選択された電力供給経路PSのそれぞれについて、その電力供給経路PSに電力を供給した時の信頼性を表す指標値(以下、供給信頼度と称する)を算出する(ステップS106)。供給信頼度は、例えば、各負荷ノードNDから電力を受電する需要家の電力設備が、所定期間(例えば一年間)に停電する平均回数(SAIFI:System Average Interruption Frequency Index)として表される。例えば、SAIFI(例えば単位は[回/年])は、以下の数式(1)に基づき算出される。   Next, the supply reliability calculating unit 118 calculates, for each of the power supply paths PS selected by the first system configuration selection unit 116, an index value (hereinafter referred to as an index value) indicating the reliability when power is supplied to the power supply path PS. , And supply reliability) (step S106). The supply reliability is represented, for example, as an average number of times (SAIFI: System Average Interruption Frequency Index) that a power facility of a consumer who receives power from each load node ND has a power outage during a predetermined period (for example, one year). For example, SAIFI (for example, the unit is [times / year]) is calculated based on the following equation (1).

Figure 0006672203
Figure 0006672203

数式(1)の分子は、送電線PLnの非連結確率pbと、停電する総需要家設備数との積の総和を表している。すなわち、数式(1)の分子は、一つ以上の送電線PLnを含む、ある電力供給経路PS全体の非連結確率Pbと、その電力供給経路PSに含まれる各負荷ノードNDに接続された需要家設備のうちの停電する需要家設備の総数との積を、全ての電力供給経路PSについて足し合わせたものである。例えば、供給信頼度算出部118は、SAIFI算出式の分子(以下、需要家停電回数Xnと称する)を、上述した2分決定グラフを用いて算出する。 The numerator of Equation (1) represents the unconsolidated probability pb n of the transmission line PLn, the sum of the product of the total number of customers equipment for power failure. That is, the numerator of the equation (1) is a probability of disconnection Pb of a whole power supply path PS including one or more transmission lines PLn, and a demand connected to each load node ND included in the power supply path PS. The product of the total number of the customer facilities out of the house facilities and the power outage is added for all the power supply paths PS. For example, the supply reliability calculation unit 118 calculates the numerator of the SAIFI calculation formula (hereinafter, referred to as the number of power outages Xn) using the above-described binary decision graph.

図7は、SAIFI算出時に利用する2分決定グラフのグラフ構造の一例を示す図である。図示の例は、送電線PL1を停止させたときに参照されるグラフ構造を表している。例えば、供給信頼度算出部118は、連結確率算出部114により生成された2分決定グラフの終端ノードの値を参照することで、各送電線PLnを停止したときにいずれか一つ以上の負荷ノードNDに電力が供給されない電力供給経路PS(終端ノードの値が“0”である経路)を抽出する。図7の例の場合、いずれか一つ以上の負荷ノードNDに電力が供給されない電力供給経路PSとして、PS4、PS6、PS7、PS9〜PS14が抽出される。なお、供給信頼度算出部118は、連結確率算出部114により生成された2分決定グラフを参照する代わりに、電力系統構成情報132を参照することで2分決定グラフを生成してもよい。   FIG. 7 is a diagram illustrating an example of a graph structure of a binary decision graph used when calculating SAIFI. The illustrated example shows a graph structure referred to when the transmission line PL1 is stopped. For example, the supply reliability calculation unit 118 refers to the value of the terminal node of the binary decision graph generated by the connection probability calculation unit 114, and when one of the transmission lines PLn is stopped, one or more loads The power supply path PS to which power is not supplied to the node ND (path in which the value of the terminal node is “0”) is extracted. In the example of FIG. 7, PS4, PS6, PS7, and PS9 to PS14 are extracted as power supply paths PS to which power is not supplied to any one or more load nodes ND. Note that the supply reliability calculation unit 118 may generate the binary decision graph by referring to the power system configuration information 132 instead of referring to the binary decision graph generated by the connection probability calculation unit 114.

そして、供給信頼度算出部118は、抽出した電力供給経路PSを構成する各送電線PLnの故障発生回数に基づき、電力供給経路PS全体の非連結確率Pbを算出する。   Then, the supply reliability calculation unit 118 calculates the non-connection probability Pb of the entire power supply path PS based on the number of failure occurrences of each of the transmission lines PLn constituting the extracted power supply path PS.

例えば、各送電線PLnの故障発生回数が、上述した図5に例示する数値である場合、供給信頼度算出部118は、抽出した電力供給経路PSのそれぞれに関して、電力供給経路PSに含まれる各送電線PLnの非連結確率pbを乗算することで、各電力供給経路PSの非連結確率Pbを算出する。例えば、供給信頼度算出部118は、いずれか一つ以上の負荷ノードNDに電力が供給されない電力供給経路PSとして、PS4、PS6、PS7、PS9〜PS14の経路を抽出した場合、これらの各電力供給経路PSに含まれる送電線PLnのそれぞれの非連結確率pbを乗算する。 For example, when the number of failure occurrences of each transmission line PLn is the numerical value illustrated in FIG. 5 described above, the supply reliability calculating unit 118 determines, for each of the extracted power supply paths PS, each of the power supply paths PS by multiplying the unconsolidated probability pb n of the transmission line PLn, calculates an unbound probability Pb of the power supply path PS. For example, when the supply reliability calculation unit 118 extracts the paths of PS4, PS6, PS7, and PS9 to PS14 as the power supply path PS to which power is not supplied to any one or more load nodes ND, multiplying each of unconsolidated probability pb n of the transmission line PLn included in the supply path PS.

例えば、供給信頼度算出部118は、以下を計算することで、各電力供給経路PSの非連結確率Pbを算出する。
・PS4のPb
=(1−pb)×(1−pb)×(1−pb)×pb×pb
=(1−0.00057078)×(1−0.00627854)×(1−0.00342466)×0.00228311×0.00456621
=0.00001032
・PS6のPb
=(1−pb)×(1−pb)×pb×(1−pb)×pb
=(1−0.00057078)×(1−0.00627854)×0.00342466×(1−0.00228311)×0.00456621
=0.00001550
・PS7のPb
=(1−pb)×(1−pb)×pb×pb
=(1−0.00057078)×(1−0.00627854)×0.00342466×0.00228311
=0.00000777
・PS9のPb
=(1−pb)×pb×(1−pb)×(1−pb)×pb
=(1−0.00057078)×0.00627854×(1−0.00342466)×(1−0.00228311)×0.00456621
=0.00002849
・PS10のPb
=(1−pb)×pb×(1−pb)×pb
=(1−0.00057078)×0.00627854×(1−0.00342466)×0.00228311
=0.00001428
・PS11のPb
=(1−pb)×pb×pb×(1−pb)×(1−pb
=(1−0.00057078)×0.00627854×0.00342466×(1−0.00228311)×(1−0.00456621)
=0.00002134
・PS12のPb
=(1−pb)×pb×pb×(1−pb)×pb
=(1−0.00057078)×0.00627854×0.00342466×(1−0.00228311)×0.00456621
=0.00000010
・PS13のPb
=(1−pb)×pb×pb×pb
=(1−0.00057078)×0.00627854×0.00342466×0.00228311
=0.00000005
・PS14のPb=pb=0.00057078
For example, the supply reliability calculation unit 118 calculates the non-connection probability Pb of each power supply path PS by calculating the following.
・ Pb of PS4
= (1-pb 2 ) × (1-pb 3 ) × (1-pb 4 ) × pb 5 × pb 6
= (1-0.00057078) × (1-0.00627854) × (1-0.00342466) × 0.0022828311 × 0.00456621
= 0.00001032
・ Pb of PS6
= (1-pb 2 ) × (1-pb 3 ) × pb 4 × (1-pb 5 ) × pb 6
= (1-0.00057078) × (1-0.00627854) × 0.00342466 × (1-0.0022828311) × 0.00456621
= 0.00001550
・ Pb of PS7
= (1-pb 2 ) × (1-pb 3 ) × pb 4 × pb 5
= (1-0.00057078) x (1-0.00627854) x 0.00342466 x 0.002283111
= 0.00000777
・ Pb of PS9
= (1-pb 2 ) × pb 3 × (1-pb 4 ) × (1-pb 5 ) × pb 6
= (1-0.00057078) × 0.00627854 × (1-0.00342466) × (1-0.0022828311) × 0.00456621
= 0.00002849
・ Pb of PS10
= (1-pb 2 ) × pb 3 × (1-pb 4 ) × pb 5
= (1-0.00057078) × 0.00627854 × (1-0.00342466) × 0.0022828311
= 0.00001428
・ Pb of PS11
= (1-pb 2 ) × pb 3 × pb 4 × (1-pb 5 ) × (1-pb 6 )
= (1-0.00057078) × 0.00627854 × 0.00342466 × (1-0.00228311) × (1-0.00456621)
= 0.00002134
・ Pb of PS12
= (1-pb 2) × pb 3 × pb 4 × (1-pb 5) × pb 6
= (1−0.00057078) × 0.00627854 × 0.00342466 × (1−0.00228311) × 0.00456621
= 0.00000010
・ Pb of PS13
= (1-pb 2 ) × pb 3 × pb 4 × pb 5
= (1-0.00057078) × 0.00627854 × 0.00342466 × 0.0022828311
= 0.00000005
Pb of PS14 = pb 2 = 0.00057078

そして、供給信頼度算出部118は、電力供給経路PSごとの非連結確率Pbに対して、その電力供給経路PSに含まれる各負荷ノードNDに電気的に接続された需要家設備の総数を乗算することで、上記数式(1)における分子を算出する。   Then, the supply reliability calculation unit 118 multiplies the disconnection probability Pb for each power supply path PS by the total number of customer facilities electrically connected to each load node ND included in the power supply path PS. Then, the numerator in the above equation (1) is calculated.

図8は、各負荷ノードNDと電気的に接続された需要家設備の総数の一例を示す図である。図示の例では、各負荷ノードNDに接続された総需要家数は、いずれも35000軒となっている。例えば、図2に例示した電力系統において、送電線PLnの故障発生回数が上述した図5に例示する数値であり、各負荷ノードNDと電気的に接続された需要家設備の総数が図8に例示する値である場合、供給信頼度算出部118は、以下を計算する。
・PS4の需要家停電回数X4
=(PS4のPb)×(ND4に接続された需要家設備の総数)
=0.00001032×35000
=0.36114[回/時間]
・PS6の需要家停電回数X6
=(PS6のPb)×(ND3に接続された需要家設備の総数)
=0.00001550×35000
=0.54233[回/時間]
・PS7の需要家停電回数X7
=(PS7のPb)×(ND3、ND4に接続された需要家設備の総数)
=0.00000777×(35000+35000)
=0.54357[回/時間]
・PS9の需要家停電回数X9
=(PS9のPb)×(ND1、ND3に接続された需要家設備の総数)
=0.00002849×(35000+35000)
=1.99426[回/時間]
・PS10の需要家停電回数X10
=(PS10のPb)×(ND1、ND3、ND4に接続された需要家設備の総数)
=0.00001428×(35000+35000+35000)
=1.49912[回/時間]
・PS11の需要家停電回数X11
=(PS11のPb)×(ND3に接続された需要家設備の総数)
=0.00002134×35000
=0.74699[回/時間]
・PS12の需要家停電回数X12
=(PS12のPb)×(ND1、ND3に接続された需要家設備の総数)
=0.00000010×(35000+35000)
=0.00685[回/時間]
・PS13の需要家停電回数X13
=(PS13のPb)×(ND1、ND3、ND4に接続された需要家設備の総数)
=0.00000005×(35000+35000+35000)
=0.00515[回/時間]
・PS14の需要家停電回数X14
=(PS14のPb)×(ND1〜ND4に接続された需要家設備の総数)
=0.00057078×(35000+35000+35000+35000)
=79.90868[回/時間]
FIG. 8 is a diagram illustrating an example of the total number of customer facilities electrically connected to each load node ND. In the illustrated example, the total number of customers connected to each load node ND is 35,000. For example, in the power system illustrated in FIG. 2, the number of failure occurrences of the transmission line PLn is the numerical value illustrated in FIG. 5 described above, and the total number of customer facilities electrically connected to each load node ND is illustrated in FIG. 8. If the value is an example, the supply reliability calculation unit 118 calculates the following.
・ Number of power outages of PS4 X4
= (Pb of PS4) x (total number of customer equipment connected to ND4)
= 0.00001032 x 35000
= 0.36114 [times / hour]
・ Number of power outages of PS6 X6
= (Pb of PS6) x (total number of customer equipment connected to ND3)
= 0.00001550 × 35000
= 0.54233 [times / hour]
・ PS7 customer power outage X7
= (Pb of PS7) x (total number of customer equipment connected to ND3, ND4)
= 0.00000777 x (35000 + 35000)
= 0.54357 [times / hour]
・ Number of power outages of PS9 X9
= (Pb of PS9) x (total number of customer equipment connected to ND1, ND3)
= 0.00002849 x (35000 + 35000)
= 1.99426 [times / hour]
・ Number of power outages of PS10 X10
= (Pb of PS10) x (total number of customer facilities connected to ND1, ND3, ND4)
= 0.00001428 x (35000 + 35000 + 35000)
= 1.49912 [times / hour]
・ PS11 customer power outage frequency X11
= (Pb of PS11) x (total number of customer equipment connected to ND3)
= 0.00002134 × 35000
= 0.74699 [times / hour]
・ Number of power outages of PS12 X12
= (Pb of PS12) x (total number of customer equipment connected to ND1, ND3)
= 0.00000010 × (35000 + 35000)
= 0.00685 [times / hour]
・ PS13 customer power outage frequency X13
= (Pb of PS13) x (total number of customer facilities connected to ND1, ND3, ND4)
= 0.00000005 × (35000 + 35000 + 35000)
= 0.00515 [times / hour]
・ Number of power outages of PS14 customers X14
= (Pb of PS14) x (total number of customer equipment connected to ND1 to ND4)
= 0.00057078 × (35000 + 35000 + 35000 + 35000)
= 79.90868 [times / hour]

そして、供給信頼度算出部118は、算出した電力供給経路PS4、PS6、PS7、PS9〜PS14のそれぞれの需要家停電回数Xnを、上述した数式(1)に代入することにより、SAIFIを算出する。例えば、各需要家停電回数Xnが代入された数式(1)は、以下の数式(2)のように表される。   Then, the supply reliability calculating unit 118 calculates the SAIFI by substituting the calculated number of power outages Xn of the power supply paths PS4, PS6, PS7, PS9 to PS14 into the above-described equation (1). . For example, Equation (1) in which each customer power failure frequency Xn is substituted is represented as Equation (2) below.

Figure 0006672203
Figure 0006672203

また、供給信頼度算出部118は、送電線PL1を停止させたときの電力供給経路PSの非連結確率Pbを算出したのと同様に、第1系統構成選択部116により選択された電力供給経路PSのうち、送電線PL1以外の他の送電線PLのそれぞれを停止させたときの各電力供給経路PSの非連結確率Pbを算出する。上述した例の場合、第1系統構成選択部116により、送電線PL1、PL2、PL3のそれぞれが選択されたため、供給信頼度算出部118は、送電線PL2を停止させたときの一つまたは複数の電力供給経路PSの非連結確率Pbと、送電線PL3を停止させたときの一つまたは複数の電力供給経路PSの非連結確率Pbとを、上述した2分決定グラフを用いて算出する。これによって、停止させる候補の送電線PLを変更しながら、その都度、各電力供給経路PSのSAIFIが算出される。この結果、供給信頼度算出部118が2分決定グラフを用いて電力供給経路PS全体の非連結確率Pbを算出するため、効率良くSAIFIが算出される。   In addition, the supply reliability calculation unit 118 calculates the power supply path selected by the first system configuration selection unit 116 in the same manner as calculating the non-connection probability Pb of the power supply path PS when the transmission line PL1 is stopped. The non-connection probability Pb of each power supply path PS when each of the transmission lines PL other than the transmission line PL1 among the PSs is stopped is calculated. In the case of the above-described example, since each of the transmission lines PL1, PL2, and PL3 is selected by the first system configuration selection unit 116, the supply reliability calculation unit 118 determines one or more of the transmission lines PL2 when the transmission line PL2 is stopped. The non-connection probability Pb of the power supply path PS and the non-connection probability Pb of one or more power supply paths PS when the transmission line PL3 is stopped are calculated using the above-described binary decision graph. Thus, the SAIFI of each power supply path PS is calculated each time the transmission line PL of the candidate to be stopped is changed. As a result, since the supply reliability calculation unit 118 calculates the non-connection probability Pb of the entire power supply path PS using the binary decision graph, the SAIFI is calculated efficiently.

供給信頼度算出部118により算出された各電力供給経路PSのSAIFI(供給信頼度の一例)は、例えば、図9に例示する値となる。図9は、各電力供給経路PSのSAIFIの一例を示す図である。図示の例では、第1系統構成選択部116により、送電線PL1を停止させたときの電力供給経路PSのSAIFI(=5.35662)と、送電線PL2を停止させたときの電力供給経路PSのSAIFI(=10.38770)と、送電線PL3を停止させたときの電力供給経路PSのSAIFI(=0.17212)を示している。   The SAIFI (an example of the supply reliability) of each power supply path PS calculated by the supply reliability calculation unit 118 is, for example, a value illustrated in FIG. FIG. 9 is a diagram illustrating an example of the SAIFI of each power supply path PS. In the illustrated example, the first system configuration selection unit 116 uses the SAIFI (= 5.36622) of the power supply path PS when the transmission line PL1 is stopped and the power supply path PS when the transmission line PL2 is stopped. (= 10.38770) and SAIFI (= 0.17212) of the power supply path PS when the transmission line PL3 is stopped.

なお、上述した数式(1)に例示するSAIFIでは、数式内のパラメータを需要家設備の総数としたがこれに限られず、例えば、需要家設備の総消費電力量など置き換えてもよい。また、各需要家設備の消費電力を一定とした場合、需要家設備の総数と需要家設備の総消費電力量は同程度の値と見做してもよい。各負荷ノードNDと電気的に接続された需要家設備は、「負荷」の一例であり、需要家設備の総数や需要家設備の総消費電力量は、「負荷の規模」の一例である。   In the SAIFI exemplified in the above equation (1), the parameter in the equation is the total number of customer facilities. However, the present invention is not limited to this. For example, the total power consumption of the customer facilities may be replaced. Further, when the power consumption of each customer facility is fixed, the total number of customer facilities and the total power consumption of the customer facility may be regarded as substantially the same value. The customer equipment electrically connected to each load node ND is an example of “load”, and the total number of customer equipment and the total power consumption of the customer equipment are examples of “load scale”.

次に、第2系統構成選択部120は、供給信頼度算出部118により供給信頼度としてSAIFIが算出された電力供給経路PSの中から、SAIFIがある閾値(以下、SAIFI閾値Sthと称する)以下の電力供給経路PSを選択する(ステップS108)。   Next, the second system configuration selection unit 120 selects, from the power supply path PS for which SAIFI has been calculated as the supply reliability by the supply reliability calculation unit 118, a SAIFI equal to or less than a certain threshold (hereinafter, referred to as SAIFI threshold Sth). Is selected (step S108).

例えば、SAIFI閾値Sthが10[回/年]であるときに、電力供給経路PSのSAIFIが上述した図9に例示する数値例の場合、第2系統構成選択部120は、SAIFIがSAIFI閾値Sth以下となる電力供給経路PSとして、送電線PL1を停止させたときの電力供給経路PS(SAIFI=5.35662)と、送電線PL3を停止させたときの電力供給経路PS(SAIFI=0.17212)を選択する。   For example, when the SAIFI threshold Sth is 10 [times / year] and the SAIFI of the power supply path PS is the numerical example illustrated in FIG. 9 described above, the second system configuration selection unit 120 determines that the SAIFI is the SAIFI threshold Sth. The following power supply paths PS are the power supply path PS when the transmission line PL1 is stopped (SAIFI = 5.35662) and the power supply path PS when the transmission line PL3 is stopped (SAIFI = 0.17212). ).

次に、系統状態導出部122は、第2系統構成選択部120により選択された電力供給経路PSの電気的な状態を導出する(ステップS110)。電気的な状態とは、例えば、各負荷ノードNDにおける電圧[pu]、各送電線PLを流れる電力量[MVA]、各電力供給経路PSの送電損失[MW]、各送電線PLの送電容量の超過有無などである。   Next, the system state deriving unit 122 derives an electric state of the power supply path PS selected by the second system configuration selecting unit 120 (Step S110). The electrical state includes, for example, the voltage [pu] at each load node ND, the amount of power [MVA] flowing through each transmission line PL, the transmission loss [MW] of each power supply path PS, and the transmission capacity of each transmission line PL. Is exceeded.

例えば、系統状態導出部122は、第2系統構成選択部120により選択された電力供給経路PSの電気的な状態を、潮流計算を用いて導出する。例えば、系統状態導出部122は、電力供給経路PSに対して所定の負荷条件を設定することで潮流計算を行い、電気的な状態を表す諸量を導出する。   For example, the system state deriving unit 122 derives the electrical state of the power supply path PS selected by the second system configuration selecting unit 120 using power flow calculation. For example, the system state deriving unit 122 performs a power flow calculation by setting a predetermined load condition for the power supply path PS, and derives various quantities representing an electric state.

より具体的には、系統状態導出部122は、送電線PL1を停止させたときの電力供給経路PSと、送電線PL3を停止させたときの電力供給経路PSの双方に、仮想的に同一の負荷条件と系統インピーダンスを設定し、ニュートンラフソン法などの解(近似解)を反復計算により求める手法を用いることで潮流計算を行う。例えば、負荷条件および系統インピーダンスは、以下のような数値に設定されてよい。   More specifically, the system state deriving unit 122 virtually provides the same power supply path PS when the transmission line PL1 is stopped and the power supply path PS when the transmission line PL3 is stopped. Load current and system impedance are set, and power flow calculation is performed by using a method of iteratively calculating a solution (approximate solution) such as the Newton-Raphson method. For example, the load condition and the system impedance may be set to the following numerical values.

(負荷条件A)
負荷ノードND1の有効電力P:47.3[MW]、無効電力Q:23.0[MVar]
負荷ノードND2の有効電力P:47.3[MW]、無効電力Q:23.0[MVar]
負荷ノードND3の有効電力P:47.3[MW]、無効電力Q:23.0[MVar]
負荷ノードND4の有効電力P:47.3[MW]、無効電力Q:23.0[MVar]
(負荷条件B)
負荷ノードND1の有効電力P:52.5[MW]、無効電力Q:25.5[MVar]
負荷ノードND2の有効電力P:52.5[MW]、無効電力Q:25.5[MVar]
負荷ノードND3の有効電力P:52.5[MW]、無効電力Q:25.5[MVar]
負荷ノードND4の有効電力P:52.5[MW]、無効電力Q:25.5[MVar]
(負荷条件C)
負荷ノードND1の有効電力P:57.8[MW]、無効電力Q:28.1[MVar]
負荷ノードND2の有効電力P:57.8[MW]、無効電力Q:28.1[MVar]
負荷ノードND3の有効電力P:57.8[MW]、無効電力Q:28.1[MVar]
負荷ノードND4の有効電力P:57.8[MW]、無効電力Q:28.1[MVar]
(系統インピーダンス)
送電線PL2:0.02[pu]+j0.09[pu]
送電線PL3:0.20[pu]+j1.00[pu]
送電線PL4:0.11[pu]+j0.55[pu]
送電線PL5:0.07[pu]+j0.36[pu]
送電線PL6:0.05[pu]+j0.27[pu]
(Load condition A)
Active power P of load node ND1: 47.3 [MW], reactive power Q: 23.0 [MVar]
Active power P of load node ND2: 47.3 [MW], reactive power Q: 23.0 [MVar]
Active power P of load node ND3: 47.3 [MW], reactive power Q: 23.0 [MVar]
Active power P of load node ND4: 47.3 [MW], reactive power Q: 23.0 [MVar]
(Load condition B)
Active power P of load node ND1: 52.5 [MW], reactive power Q: 25.5 [MVar]
Active power P of load node ND2: 52.5 [MW], reactive power Q: 25.5 [MVar]
Active power P of load node ND3: 52.5 [MW], reactive power Q: 25.5 [MVar]
Active power P of load node ND4: 52.5 [MW], reactive power Q: 25.5 [MVar]
(Load condition C)
Active power P of load node ND1: 57.8 [MW], reactive power Q: 28.1 [MVar]
Active power P of load node ND2: 57.8 [MW], reactive power Q: 28.1 [MVar]
Active power P of load node ND3: 57.8 [MW], reactive power Q: 28.1 [MVar]
Active power P of load node ND4: 57.8 [MW], reactive power Q: 28.1 [MVar]
(System impedance)
Transmission line PL2: 0.02 [pu] + j 0.09 [pu]
Transmission line PL3: 0.20 [pu] + j1.00 [pu]
Transmission line PL4: 0.11 [pu] + j 0.55 [pu]
Transmission line PL5: 0.07 [pu] + j0.36 [pu]
Transmission line PL6: 0.05 [pu] + j 0.27 [pu]

各負荷条件による潮流計算結果を以下の図に示す。図10は、送電線PL1を停止させる場合に負荷条件Aを与えたときの潮流計算結果の一例を示す図である。図11は、送電線PL1を停止させる場合に負荷条件Bを与えたときの潮流計算結果の一例を示す図である。図12は、送電線PL1を停止させる場合に負荷条件Cを与えたときの潮流計算結果の一例を示す図である。図13は、送電線PL3を停止させる場合に負荷条件Aを与えたときの潮流計算結果の一例を示す図である。図14は、送電線PL3を停止させる場合に負荷条件Bを与えたときの潮流計算結果の一例を示す図である。図15は、送電線PL3を停止させる場合に負荷条件Cを与えたときの潮流計算結果の一例を示す図である。これらの各図に例示する潮流計算では、各負荷ノードNDを有効電力と無効電力の指定ノードとして扱うものとするがこれに限られず、各負荷ノードNDを、電力系統構成情報132が示す電力系統において実際に負荷ノードNDとして利用されている電力設備の状態に合わせて電圧と有効電力の指定ノードとしてよい。   The following figure shows the result of power flow calculation under each load condition. FIG. 10 is a diagram illustrating an example of a power flow calculation result when a load condition A is given when stopping the transmission line PL1. FIG. 11 is a diagram illustrating an example of a power flow calculation result when a load condition B is given when stopping the transmission line PL1. FIG. 12 is a diagram illustrating an example of a power flow calculation result when the load condition C is given when stopping the transmission line PL1. FIG. 13 is a diagram illustrating an example of a power flow calculation result when a load condition A is given when stopping the transmission line PL3. FIG. 14 is a diagram illustrating an example of a power flow calculation result when the load condition B is given when stopping the transmission line PL3. FIG. 15 is a diagram illustrating an example of a power flow calculation result when a load condition C is given when stopping the transmission line PL3. In the power flow calculation illustrated in each of these drawings, each load node ND is treated as a node designated as active power and reactive power, but is not limited thereto. Each load node ND is regarded as a power system indicated by the power system configuration information 132. May be designated as a voltage and active power designation node in accordance with the state of the power equipment actually used as the load node ND.

例えば、図10において、負荷ノードND0から送電線PL2に供給される有効電力Pは、191.54[MW]であり、無効電力Qは、104.23[MVar]である。また、負荷ノードND0の電圧は、V0(=1.000[pu])として示している。負荷ノードND0から送電線PL2に供給された各種電力は、送電線PL2の内部のインピーダンスにより電圧降下を起こす。送電線PL2内部のインピーダンスが上述した数値例(0.02[pu]+j0.09[pu])である場合、送電線PL2を通電して負荷ノードND2へと供給される有効電力Pは、190.59[MW]となり、無効電力Qは、99.95[MVar]となる。負荷ノードND2に供給された電力は、送電線PL3側と、送電線PL5側と、自身のノードに接続された需要家設備側に分流分圧される。   For example, in FIG. 10, the active power P supplied from the load node ND0 to the transmission line PL2 is 191.54 [MW], and the reactive power Q is 104.23 [MVar]. The voltage of the load node ND0 is shown as V0 (= 1.000 [pu]). Various powers supplied from the load node ND0 to the transmission line PL2 cause a voltage drop due to the impedance inside the transmission line PL2. When the impedance inside the transmission line PL2 is the above-described numerical example (0.02 [pu] + j0.09 [pu]), the active power P supplied to the load node ND2 by energizing the transmission line PL2 is 190. .59 [MW], and the reactive power Q is 99.95 [MVar]. The power supplied to the load node ND2 is divided and divided into the power transmission line PL3 side, the power transmission line PL5 side, and the customer equipment connected to the own node.

負荷ノードND2から送電線PL3に供給される有効電力Pは、47.63[MW]となり、無効電力Qは、25.51[MVar]となる。また、負荷ノードND2から送電線PL5に供給される有効電力Pは、95.68[MW]となり、無効電力Qは、51.51[MVar]となる。また、負荷ノードND2から需要家設備に供給される有効電力Pは、47.25[MW]となり、無効電力Qは、22.95[MVar]となる。送電線PL3を通電して負荷ノードND1へと供給される有効電力Pは、送電線PL3の内部インピーダンスにより電圧降下が生じ、47.03[MW]となり、無効電力Qは、22.51[MVar]となる。負荷ノードND1に供給された電力は、送電線PL4側と、自身のノードに接続された需要家設備側に分流分圧される。   Active power P supplied to transmission line PL3 from load node ND2 is 47.63 [MW], and reactive power Q is 25.51 [MVar]. Also, the active power P supplied from the load node ND2 to the transmission line PL5 is 95.68 [MW], and the reactive power Q is 51.51 [MVar]. Further, the active power P supplied to the customer equipment from the load node ND2 is 47.25 [MW], and the reactive power Q is 22.95 [MVar]. The active power P supplied to the load node ND1 by energizing the transmission line PL3 causes a voltage drop due to the internal impedance of the transmission line PL3, becomes 47.03 [MW], and the reactive power Q becomes 22.51 [MVar. ]. The power supplied to the load node ND1 is divided and divided into the power transmission line PL4 side and the customer equipment connected to the own node.

負荷ノードND1から送電線PL4に供給される有効電力Pは、0.20[MW]となり、無効電力Qは、0.43[MVar]となる。また、負荷ノードND1から需要家設備に供給される有効電力Pは、47.23[MW]となり、無効電力Qは、22.95[MVar]となる。送電線PL4を通電して負荷ノードND3へと供給される有効電力Pは、送電線PL4の内部インピーダンスにより電圧降下が生じ、0.20[MW]となり、無効電力Qは、0.43[MVar]となる。   Active power P supplied to transmission line PL4 from load node ND1 is 0.20 [MW], and reactive power Q is 0.43 [MVar]. Further, the active power P supplied to the customer equipment from the load node ND1 is 47.23 [MW], and the reactive power Q is 22.95 [MVar]. The active power P supplied to the load node ND3 by energizing the transmission line PL4 causes a voltage drop due to the internal impedance of the transmission line PL4, becomes 0.20 [MW], and the reactive power Q becomes 0.43 [MVar]. ].

一方、送電線PL5を通電して負荷ノードND4へと供給される有効電力Pは、送電線PL5の内部インピーダンスにより電圧降下が生じ、94.83[MW]となり、無効電力Qは、47.14[MVar]となる。負荷ノードND4に供給された電力は、送電線PL6側と、自身のノードに接続された需要家設備側に分流分圧される。   On the other hand, the active power P supplied to the load node ND4 by energizing the transmission line PL5 has a voltage drop due to the internal impedance of the transmission line PL5, becomes 94.83 [MW], and the reactive power Q is 47.14. [MVar]. The power supplied to the load node ND4 is divided and divided into the power transmission line PL6 side and the customer equipment side connected to the own node.

負荷ノードND4から送電線PL6に供給される有効電力Pは、47.58[MW]となり、無効電力Qは、24.21[MVar]となる。また、負荷ノードND4から需要家設備に供給される有効電力Pは、47.24[MW]となり、無効電力Qは、22.95[MVar]となる。送電線PL6を通電して負荷ノードND3へと供給される有効電力Pは、送電線PL6の内部インピーダンスにより電圧降下が生じ、47.43[MW]となり、無効電力Qは、23.37[MVar]となる。送電線PL4側から供給された電力と、送電線PL6側から供給された電力は、負荷ノードND3において合成され、負荷ノードND3に接続された需要家設備へと供給される。負荷ノードND3から需要家設備へと供給される有効電力Pは、47.23[MW]となり、無効電力Qは、22.95[MVar]となる。   The active power P supplied from the load node ND4 to the transmission line PL6 is 47.58 [MW], and the reactive power Q is 24.21 [MVar]. Further, the active power P supplied to the customer equipment from the load node ND4 is 47.24 [MW], and the reactive power Q is 22.95 [MVar]. The active power P supplied to the load node ND3 by energizing the transmission line PL6 causes a voltage drop due to the internal impedance of the transmission line PL6, becomes 47.43 [MW], and the reactive power Q becomes 23.37 [MVar]. ]. The power supplied from the transmission line PL4 and the power supplied from the transmission line PL6 are combined at the load node ND3, and supplied to the customer equipment connected to the load node ND3. The active power P supplied from the load node ND3 to the customer equipment is 47.23 [MW], and the reactive power Q is 22.95 [MVar].

このように、系統状態導出部122は、送電線PLのインピーダンスと、負荷ノードNDのインピーダンスと、負荷ノードNDに接続された需要家設備のインピーダンスとを考慮すると共に、送電線PLの接続関係を考慮することで、負荷ノードNDの電圧や送電線PLの入出力時の電力量、送電損失などの電気的な状態諸量を導出する。   As described above, the system state deriving unit 122 considers the impedance of the transmission line PL, the impedance of the load node ND, and the impedance of the customer equipment connected to the load node ND, and determines the connection relationship of the transmission line PL. By taking this into account, various electrical state quantities such as the voltage of the load node ND, the amount of power at the time of input / output of the transmission line PL, and the transmission loss are derived.

図16は、送電線PL1を停止させるときの各負荷条件における電気的諸量の一例を示す図である。また、図17は、送電線PL3を停止させるときの各負荷条件における電気的諸量の一例を示す図である。例えば、送電線PL1を停止させるときにおいて、潮流計算時に負荷条件Aが設定された場合、図16に例示するように、負荷ノードND1の電圧は0.952[pu]となり、負荷ノードND2の電圧は0.987[pu]となり、負荷ノードND3の電圧は0.953[pu]となり、負荷ノードND4の電圧は0.962[pu]となる。また、送電線PL2の電力量(潮流)は218.1[MVA]となり、送電線PL3の電力量(潮流)は54.0[MVA]となり、送電線PL4の電力量(潮流)は0.5[MVA]となり、送電線PL5の電力量(潮流)は108.7[MVA]となり、送電線PL6の電力量(潮流)は53.4[MVA]となる。これらの電力量(潮流)は、各送電線PLの入力時の有効電力Pおよび無効電力Qを用いて導出される。また、送電損失は、2.6[MW]となる。負荷条件BおよびCにおける各送電線PLの電気的諸量は、それぞれ図11と図12に例示する値であってよい。   FIG. 16 is a diagram illustrating an example of various electric quantities under each load condition when the transmission line PL1 is stopped. FIG. 17 is a diagram illustrating an example of various electrical quantities under each load condition when the transmission line PL3 is stopped. For example, when the transmission line PL1 is stopped and the load condition A is set at the time of the power flow calculation, as illustrated in FIG. 16, the voltage of the load node ND1 is 0.952 [pu], and the voltage of the load node ND2. Is 0.987 [pu], the voltage of the load node ND3 is 0.953 [pu], and the voltage of the load node ND4 is 0.962 [pu]. Further, the power amount (tidal flow) of the transmission line PL2 is 218.1 [MVA], the power amount (tidal flow) of the transmission line PL3 is 54.0 [MVA], and the power amount (tidal flow) of the transmission line PL4 is 0.1 MVA. 5 [MVA], the power amount (tidal flow) of the transmission line PL5 is 108.7 [MVA], and the power amount (tidal flow) of the transmission line PL6 is 53.4 [MVA]. These power amounts (tidal currents) are derived using the active power P and the reactive power Q at the time of input of each transmission line PL. The power transmission loss is 2.6 [MW]. The electrical quantities of each transmission line PL under the load conditions B and C may be the values illustrated in FIGS. 11 and 12, respectively.

次に、第3系統構成選択部124は、系統状態導出部122により電力供給経路PSごとに導出された電気的な状態に基づいて、第2系統構成選択部120により選択された一以上の電力供給経路PSの中から、系統として成立する電力供給経路PSを選択する(ステップS112)。   Next, the third system configuration selector 124 selects one or more powers selected by the second system configuration selector 120 based on the electrical state derived for each power supply path PS by the system state derivation unit 122. The power supply path PS established as a system is selected from the supply paths PS (step S112).

例えば、第3系統構成選択部124は、電力供給経路PSごとに導出された電気的諸量が以下の制約条件を満たす場合、その電力供給経路PSを、系統として成立する電力供給経路PSとして選択する。制約条件は、「所定条件」の一例である。   For example, when the electrical quantities derived for each power supply path PS satisfy the following constraint conditions, the third system configuration selection unit 124 selects the power supply path PS as the power supply path PS established as a system. I do. The constraint condition is an example of a “predetermined condition”.

(制約条件)
・各負荷ノードNDの電圧:1[pu]±0.05[pu]
・送電線PL1の送電容量:250[MVA]
・送電線PL2の送電容量:250[MVA]
・送電線PL3の送電容量:100[MVA]
・送電線PL4の送電容量:200[MVA]
・送電線PL5の送電容量:200[MVA]
・送電線PL6の送電容量:100[MVA]
・送電損失上限 :3[MW]
(Constraints)
-Voltage of each load node ND: 1 [pu] ± 0.05 [pu]
-Transmission capacity of transmission line PL1: 250 [MVA]
-Transmission capacity of transmission line PL2: 250 [MVA]
-Transmission capacity of transmission line PL3: 100 [MVA]
-Transmission capacity of transmission line PL4: 200 [MVA]
-Transmission capacity of transmission line PL5: 200 [MVA]
-Transmission capacity of transmission line PL6: 100 [MVA]
・ Transmission loss upper limit: 3 [MW]

上述した制約条件の場合、図16に電気的諸量を例示するように、第2系統構成選択部120により選択された2つの電力供給経路PSのうち、送電線PL1を停止させるときの電力供給経路PSについては制約条件を満たさないため、第3系統構成選択部124は、送電線PL1を停止させるときの電力供給経路PSを、系統として成立する電力供給経路PSとして選択しない。   In the case of the above-described constraints, as illustrated in FIG. 16, the electric power supply when stopping the transmission line PL1 among the two electric power supply paths PS selected by the second system configuration selection unit 120, as illustrated in FIG. Since the path PS does not satisfy the constraint, the third system configuration selection unit 124 does not select the power supply path PS for stopping the transmission line PL1 as the power supply path PS established as a system.

一方、図17に電気的諸量を例示するように、第2系統構成選択部120により選択された2つの電力供給経路PSのうち、送電線PL3を停止させるときの電力供給経路PSについては制約条件を満たすため、第3系統構成選択部124は、送電線PL3を停止させるときの電力供給経路PSを、系統として成立する電力供給経路PSとして選択する。   On the other hand, as illustrated in FIG. 17, among the two power supply paths PS selected by the second system configuration selection unit 120, the power supply path PS when the transmission line PL3 is stopped is restricted. In order to satisfy the condition, the third system configuration selection unit 124 selects the power supply path PS for stopping the transmission line PL3 as the power supply path PS established as a system.

そして、第3系統構成選択部124は、系統として成立する電力供給経路PSとして選択した電力供給経路PSに関する情報を表示装置(不図示)などに出力させる。これによって、例えば、メンテナンスなどを行う作業者は、電力系統構成情報132が示す電力系統において、どの電力供給経路PSから優先して設備更新をしていけばよいのかを効率良く計画することができる。   Then, the third system configuration selection unit 124 causes a display device (not shown) or the like to output information on the power supply path PS selected as the power supply path PS established as a system. Thereby, for example, a worker performing maintenance or the like can efficiently plan which power supply path PS should be prioritized for updating the equipment in the power system indicated by the power system configuration information 132. .

以上説明した実施形態によれば、電力系統を構成する複数の電力供給経路PSの中から、供給信頼度(SAIFI)がSAIFI閾値Sth以下となる一以上の電力供給経路PSを選択する第2系統構成選択部120(第1選択部の一例)と、第2系統構成選択部120により選択された電力供給経路PSの電気的な状態を導出する系統状態導出部122と、系統状態導出部122により導出された電気的な状態に基づいて、第2系統構成選択部120により選択された一以上の電力供給経路PSの中から、制約条件を満たす電力供給経路PSを、系統として成立する電力供給経路PSとして選択する第3系統構成選択部124(第2選択部の一例)とを備えることにより、電力設備の更新計画を効率良く立てることができる。   According to the embodiment described above, the second system that selects one or more power supply paths PS whose supply reliability (SAIFI) is equal to or less than the SAIFI threshold value Sth from the plurality of power supply paths PS configuring the power system. The configuration selection unit 120 (an example of a first selection unit), a system state derivation unit 122 that derives the electrical state of the power supply path PS selected by the second system configuration selection unit 120, and a system state derivation unit 122 A power supply path that satisfies the constraint condition from among the one or more power supply paths PS selected by the second system configuration selection unit 120 based on the derived electrical state. By including the third system configuration selection unit 124 (an example of the second selection unit) that selects the PS, the update plan of the power equipment can be made efficiently.

例えば、送電線PLが100設備存在するような電力系統において1つの送電線PLを停止させる(更新のために一時的に停止させる)場合、2分決定グラフを用いると決定ノードが2100個存在することになる。この場合、その電力系統における電力供給経路PSは、1.3×1030パターン存在することになり、全パターンの電力供給経路PSについて供給信頼度(SAIFI)を算出したり潮流計算を行ったりすると、演算コストが膨大となりやすい。また、潮流計算時にニュートンラフソン法などを用いて近似解を求めることから、電力供給経路PSのパターンが大きければ大きいほど得られる解が発散しやすい。この結果、電力設備の更新計画を立てること自体が困難となる可能性がある。 For example, power line PL (stopped for update temporarily) one of the transmission lines PL is stopped in the power system, such as is present 100 equipment case, used as decision node 2 100 present a binary decision diagram Will do. In this case, the power supply path PS in the power system has 1.3 × 10 30 patterns, and if the supply reliability (SAIFI) is calculated or the power flow is calculated for the power supply paths PS of all the patterns. In addition, the calculation cost tends to be enormous. Further, since an approximate solution is obtained by using the Newton-Raphson method or the like at the time of power flow calculation, the larger the pattern of the power supply path PS, the more easily the obtained solution is divergent. As a result, it may be difficult to make an update plan for the power equipment itself.

これに対して、本実施形態では、停止設備候補を含む全ての電力供給経路PSについて供給信頼度の算出と潮流計算を行うのではなく、一定の連結確率Paが見込まれる電力供給経路PS(連結確率Paが連結確率閾値Pth以上となる電力供給経路PS)についてのみ供給信頼度を算出し、更に、一定の供給信頼度が見込まれる電力供給経路PS(SAIFIがSAIFI閾値Sth以下となる電力供給経路PS)についてのみ潮流計算を実施するため、電力供給経路PSを選択するのに要する演算処理を可能な限り削減しながら演算処理を効率化することができる。この結果、設備更新の対象とする停止設備候補を効率的に選択することができ、電力設備の更新計画を効率良く立てることができる。   On the other hand, in the present embodiment, the supply reliability calculation and the power flow calculation are not performed for all the power supply paths PS including the shutdown facility candidate, but the power supply path PS (connection The supply reliability is calculated only for the power supply path PS whose probability Pa is equal to or more than the connection probability threshold Pth, and further, the power supply path PS (SAIFI is equal to or less than the SAIFI threshold Sth) for which a certain supply reliability is expected Since the power flow calculation is performed only for the power supply path PS, it is possible to increase the efficiency of the calculation processing while reducing the calculation processing required for selecting the power supply path PS as much as possible. As a result, it is possible to efficiently select a stop facility candidate to be subject to facility update, and to efficiently make a plan for updating power equipment.

以上説明した少なくとも一つの実施形態によれば、電力系統を構成する複数の電力供給経路PSの中から、供給信頼度(SAIFI)がSAIFI閾値Sth以下となる一以上の電力供給経路PSを選択する第2系統構成選択部120(第1選択部の一例)と、第2系統構成選択部120により選択された電力供給経路PSの電気的な状態を導出する系統状態導出部122と、系統状態導出部122により導出された電気的な状態に基づいて、第2系統構成選択部120により選択された一以上の電力供給経路PSの中から、制約条件を満たす電力供給経路PSを、系統として成立する電力供給経路PSとして選択する第3系統構成選択部124(第2選択部の一例)とを備えることにより、電力設備の更新計画を効率良く立てることができる。   According to at least one embodiment described above, one or more power supply paths PS whose supply reliability (SAIFI) is equal to or less than the SAIFI threshold Sth are selected from the plurality of power supply paths PS configuring the power system. A second system configuration selection unit 120 (an example of a first selection unit); a system state derivation unit 122 for deriving an electrical state of the power supply path PS selected by the second system configuration selection unit 120; Based on the electrical state derived by the unit 122, a power supply path PS satisfying the constraint condition is established as a system from among the one or more power supply paths PS selected by the second system configuration selection unit 120. By including the third system configuration selection unit 124 (an example of a second selection unit) that selects the power supply path PS, a power equipment update plan can be made efficiently. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are provided by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

100…電力供給経路評価装置、110…制御部、112…停止設備候補選択部、114…連結確率算出部、116…第1系統構成選択部、118…供給信頼度算出部、120…第2系統構成選択部、122…系統状態導出部、124…第3系統構成選択部、130…記憶部、132…電力系統構成情報、PS…電力供給経路、ND…負荷ノード、PL…送電線 Reference Signs List 100: power supply path evaluation device, 110: control unit, 112: stop equipment candidate selection unit, 114: connection probability calculation unit, 116: first system configuration selection unit, 118: supply reliability calculation unit, 120: second system Configuration selecting unit, 122: System status deriving unit, 124: Third system configuration selecting unit, 130: Storage unit, 132: Power system configuration information, PS: Power supply path, ND: Load node, PL: Transmission line

Claims (8)

電力系統を構成する複数の電力供給経路の中から、所定期間において生じた停電の回数に基づく指標値が閾値以下となる一以上の電力供給経路を選択する第1選択部と、
前記第1選択部により選択された電力供給経路の電気的な状態を導出する導出部と、
前記導出部により導出された電気的な状態に基づいて、前記第1選択部により選択された一以上の電力供給経路の中から、所定条件を満たす電力供給経路を選択する第2選択部と、
を備える電力供給経路評価装置。
A first selection unit that selects one or more power supply paths in which an index value based on the number of power outages that occurred during a predetermined period is equal to or less than a threshold, from among the plurality of power supply paths that configure the power system,
A deriving unit that derives an electrical state of the power supply path selected by the first selecting unit;
A second selection unit that selects a power supply path that satisfies a predetermined condition from among the one or more power supply paths selected by the first selection unit based on the electrical state derived by the derivation unit;
A power supply path evaluation device comprising:
前記複数の電力供給経路のそれぞれに接続された負荷が停電しない確率を示す連結確率を、前記電力供給経路ごとに算出する確率算出部と、
前記確率算出部により前記電力供給経路ごとに算出された連結確率に基づいて、前記複数の電力供給経路の中から、一以上の電力供給経路を選択する第3選択部と、を更に備え、
前記第1選択部は、前記第3選択部により選択された一以上の電力供給経路の中から、前記指標値が閾値以下となる電力供給経路を選択する、
請求項1に記載の電力供給経路評価装置。
A probability calculation unit that calculates a connection probability indicating a probability that a load connected to each of the plurality of power supply paths does not lose power, for each of the power supply paths,
A third selection unit that selects one or more power supply routes from the plurality of power supply routes based on the connection probability calculated for each of the power supply routes by the probability calculation unit;
The first selection unit selects a power supply route in which the index value is equal to or less than a threshold from one or more power supply routes selected by the third selection unit.
The power supply path evaluation device according to claim 1.
前記確率算出部は、前記電力系統に含まれる電力線をノードとし、前記電力線の接続の有無を2分岐のエッジとして表現したグラフ構造のデータを用いて、前記電力供給経路を表すノードとエッジとを辿ることで前記連結確率を算出する、
請求項2に記載の電力供給経路評価装置。
The probability calculation unit uses a power line included in the power system as a node, and uses a graph-structured data expressing the presence / absence of connection of the power line as a two-branch edge to determine a node and an edge representing the power supply path. Calculating the connection probability by tracing,
The power supply path evaluation device according to claim 2.
前記第3選択部により選択された電力供給経路ごとの停電が生じる確率を示す非連結確率と、前記第3選択部により選択された電力供給経路に接続された負荷の規模とに基づいて、前記指標値を算出する指標値算出部を更に備え、
前記第1選択部は、前記指標値算出部により算出された前記指標値が閾値以下となる電力供給経路を選択する、
請求項2または3に記載の電力供給経路評価装置。
The non-connection probability indicating the probability of occurrence of a power failure for each power supply path selected by the third selection unit, and the scale of a load connected to the power supply path selected by the third selection unit, An index value calculation unit for calculating an index value is further provided,
The first selection unit selects a power supply path in which the index value calculated by the index value calculation unit is equal to or less than a threshold.
The power supply path evaluation device according to claim 2.
前記指標値算出部は、
前記電力系統に含まれる電力線をノードとし、前記電力線の接続の有無を2分岐のエッジとして表現したグラフ構造のデータを用いて、前記第3選択部により選択された電力供給経路を表すノードとエッジとを辿ることで前記連結確率を算出し、
前記算出した非連結確率と、前記第3選択部により選択された電力供給経路に接続された負荷の規模とに基づいて、前記指標値を算出する、
請求項4に記載の電力供給経路評価装置。
The index value calculation unit,
A node and an edge representing a power supply path selected by the third selection unit by using data of a graph structure in which a power line included in the power system is set as a node, and whether or not the power line is connected is expressed as a two-branch edge. And calculating the connection probability by tracing
Calculating the index value based on the calculated non-connection probability and the scale of the load connected to the power supply path selected by the third selection unit;
The power supply path evaluation device according to claim 4.
前記導出部は、前記第1選択部により選択された電力供給経路に供給される電力の潮流を計算することにより、前記電気的な状態を導出する、
請求項1から5のいずれか1項に記載の電力供給経路評価装置。
The deriving unit derives the electrical state by calculating a power flow of the power supplied to the power supply path selected by the first selecting unit.
The power supply path evaluation device according to claim 1.
コンピュータが、
電力系統を構成する複数の電力供給経路の中から、所定期間において生じた停電の回数に基づく指標値が閾値以下となる一以上の電力供給経路を選択し、
前記選択した電力供給経路の電気的な状態を導出し、
前記導出した電気的な状態に基づいて、前記選択した一以上の電力供給経路の中から、所定条件を満たす電力供給経路を選択する、
電力供給経路評価方法。
Computer
From among a plurality of power supply paths constituting the power system, select one or more power supply paths in which an index value based on the number of power outages that occurred during a predetermined period is equal to or less than a threshold,
Deriving the electrical state of the selected power supply path,
Based on the derived electrical state, from among the selected one or more power supply paths, select a power supply path that satisfies a predetermined condition,
Power supply path evaluation method.
コンピュータに、
電力系統を構成する複数の電力供給経路の中から、所定期間において生じた停電の回数に基づく指標値が閾値以下となる一以上の電力供給経路を選択させ、
前記選択させた電力供給経路の電気的な状態を導出させ、
前記導出させた電気的な状態に基づいて、前記選択させた一以上の電力供給経路の中から、所定条件を満たす電力供給経路を選択させる、
プログラム。
On the computer,
From among a plurality of power supply paths constituting the power system, one or more power supply paths in which an index value based on the number of power outages that occurred during a predetermined period is equal to or less than a threshold value are selected,
Deriving the electrical state of the selected power supply path,
Based on the derived electrical state, from among the one or more selected power supply paths, a power supply path that satisfies a predetermined condition is selected.
program.
JP2017047790A 2017-03-13 2017-03-13 Power supply path evaluation device, power supply path evaluation method, and program Active JP6672203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017047790A JP6672203B2 (en) 2017-03-13 2017-03-13 Power supply path evaluation device, power supply path evaluation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047790A JP6672203B2 (en) 2017-03-13 2017-03-13 Power supply path evaluation device, power supply path evaluation method, and program

Publications (2)

Publication Number Publication Date
JP2018153004A JP2018153004A (en) 2018-09-27
JP6672203B2 true JP6672203B2 (en) 2020-03-25

Family

ID=63681008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047790A Active JP6672203B2 (en) 2017-03-13 2017-03-13 Power supply path evaluation device, power supply path evaluation method, and program

Country Status (1)

Country Link
JP (1) JP6672203B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109583948A (en) * 2018-11-21 2019-04-05 广西电网有限责任公司 A kind of synthesized competitiveness evaluation method of external electric power
JP7399724B2 (en) * 2020-01-21 2023-12-18 東芝エネルギーシステムズ株式会社 Information processing device, information processing method, and program
JP7418286B2 (en) * 2020-05-29 2024-01-19 三菱電機株式会社 Priority calculation device and priority calculation program
JP7496286B2 (en) 2020-10-20 2024-06-06 株式会社日立製作所 A system that supports the creation of power system plans that change the configuration of a power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2931639B2 (en) * 1990-06-22 1999-08-09 九州電力株式会社 Distribution system equipment planning support equipment
JP3436445B2 (en) * 1995-07-25 2003-08-11 株式会社東芝 Power system monitoring system
JP2000004538A (en) * 1998-06-10 2000-01-07 Toshiba Corp Monitoring controller of electric power system
JP2008217541A (en) * 2007-03-06 2008-09-18 Tokyo Electric Power Co Inc:The Calculator for calculating number of distribution line thunder accident, and calculation method of calculating number of distribution line thunder accident
JP4901638B2 (en) * 2007-08-10 2012-03-21 中国電力株式会社 Power transmission and distribution system to prevent power outages due to lightning accidents

Also Published As

Publication number Publication date
JP2018153004A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6672203B2 (en) Power supply path evaluation device, power supply path evaluation method, and program
Zadsar et al. Approach for self‐healing resilient operation of active distribution network with microgrid
Khomami et al. Bi‐level network reconfiguration model to improve the resilience of distribution systems against extreme weather events
Nikoobakht et al. Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised AC SCUC model
Ude et al. A comprehensive state-of-the-art survey on the transmission network expansion planning optimization algorithms
Aydın et al. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search
Amraee et al. An enhanced under-voltage load-shedding scheme to provide voltage stability
US20120232713A1 (en) Restoration Switching Analysis with Modified Genetic Algorithm
Wang et al. A PSO algorithm for constrained redundancy allocation in multi-state systems with bridge topology
Shen Optimizing designs and operations of a single network or multiple interdependent infrastructures under stochastic arc disruption
Ghasemi et al. MILP model for integrated expansion planning of multi‐carrier active energy systems
Liu et al. Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems
Javadi et al. Mixed integer linear formulation for undervoltage load shedding to provide voltage stability
Yosef et al. Allocation and sizing of distribution transformers and feeders for optimal planning of MV/LV distribution networks using optimal integrated biogeography based optimization method
Ghasemi et al. New multi‐stage restoration method for distribution networks with DGs
TWI435553B (en) Apparatus and method for assigning transmission line of electric network
Riahinia et al. Load service restoration in active distribution network based on stochastic approach
Kumar et al. Multi‐objective design of advanced power distribution networks using restricted‐population‐based multi‐objective seeker‐optimisation‐algorithm and fuzzy‐operator
Ghasemi et al. Decision‐making method for critical load restoration by using MGs
Thurner et al. Heuristic optimisation for network restoration and expansion in compliance with the single‐contingency policy
Alizadeh et al. Resiliency‐oriented islanding of distribution network in the presence of charging stations for electric vehicles
Hemmatpour Optimum interconnected islanded microgrids operation with high levels of renewable energy
Shukla et al. Consideration of small signal stability in multi‐objective DS reconfiguration in the presence of distributed generation
Eng et al. Distribution system restoration using spanning tree based on depth first search visual in GUI
Zhang Systematic approach to construct and assess power electronic conversion architectures using graph theory and its application in a fuel cell system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171214

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6672203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150