JP6666346B2 - Organic substance processing method and processing apparatus - Google Patents

Organic substance processing method and processing apparatus Download PDF

Info

Publication number
JP6666346B2
JP6666346B2 JP2017529519A JP2017529519A JP6666346B2 JP 6666346 B2 JP6666346 B2 JP 6666346B2 JP 2017529519 A JP2017529519 A JP 2017529519A JP 2017529519 A JP2017529519 A JP 2017529519A JP 6666346 B2 JP6666346 B2 JP 6666346B2
Authority
JP
Japan
Prior art keywords
sludge
tank
anaerobic
aeration
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017529519A
Other languages
Japanese (ja)
Other versions
JPWO2017014004A1 (en
Inventor
智之 森田
智之 森田
真司 植田
真司 植田
江理 大塚
江理 大塚
良和 岩根
良和 岩根
直明 片岡
直明 片岡
萩野 隆生
隆生 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Publication of JPWO2017014004A1 publication Critical patent/JPWO2017014004A1/en
Priority to JP2020000237A priority Critical patent/JP6909878B2/en
Application granted granted Critical
Publication of JP6666346B2 publication Critical patent/JP6666346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、有機物の処理方法及び処理装置に関し、特に有機物の嫌気性処理方法及び処理装置に関する。   The present invention relates to a method and apparatus for treating organic matter, and more particularly, to a method and apparatus for anaerobic treatment of organic matter.

メタン発酵は、嫌気性処理、嫌気性消化とも呼ばれている。本願明細書及び特許請求の範囲において「嫌気性処理」とはメタン発酵及び嫌気性消化を含み、有機物を嫌気性処理した汚泥を「嫌気性処理汚泥」と称する。   Methane fermentation is also called anaerobic treatment or anaerobic digestion. In the present specification and claims, “anaerobic treatment” includes methane fermentation and anaerobic digestion, and sludge obtained by anaerobic treatment of organic matter is referred to as “anaerobic treated sludge”.

食品残渣、食品製造残渣、生ごみ、各種汚泥などの有機物を対象としたメタン発酵は、有機物を嫌気性処理し、廃棄物を減量化するとともに、廃棄物からメタンガスを発生させ、エネルギーを回収できる技術であり、環境負荷を低減できる技術として注目されている。しかし、発生する嫌気性処理汚泥は、難脱水性汚泥であることが多く、嫌気性処理後の汚泥脱水処理では、凝集剤を多量に必要とし、脱水ケーキの含水率も高い。また、発生する嫌気性処理汚泥は、高価なアミジン系高分子凝集剤でしか凝集させることができない場合があり、運転コストが高いという問題がある。   Methane fermentation for organic substances such as food residues, food production residues, garbage, and various types of sludge enables anaerobic treatment of organic substances, reduces waste, generates methane gas from waste, and recovers energy. It is a technology that has attracted attention as a technology that can reduce environmental load. However, the generated anaerobic sludge is often a hardly dewaterable sludge, and in the sludge dewatering treatment after the anaerobic treatment, a large amount of a flocculant is required, and the water content of the dewatered cake is high. In addition, the generated anaerobic sludge can be coagulated only with an expensive amidine-based polymer coagulant, and there is a problem that the operation cost is high.

このため、低廉な運転コストで、メタン発酵でメタンガスを効率的に回収するとともに、発生する嫌気性処理汚泥を効率的に脱水する技術が必要とされている。   For this reason, there is a need for a technique for efficiently recovering methane gas by methane fermentation at a low operating cost and efficiently dewatering the generated anaerobic sludge.

嫌気性処理汚泥の脱水性を改善する方法に関連する技術として、下記のような先行技術が知られている。   The following prior art is known as a technique related to a method for improving the dewaterability of anaerobic treated sludge.

特許文献1には、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程を含むことを特徴とする、発酵残液およびその他の嫌気性有機化合物含有液の処理方法が記載されている。   Patent Document 1 discloses that a fermentation residue obtained by subjecting organic waste to methane fermentation and a solution containing other anaerobic organic compounds to a pH of 5.5 or less and a liquid treatment step of contacting with an oxidizing agent. A method for treating a fermentation residue and a liquid containing other anaerobic organic compounds, which is a feature, is described.

特許文献2には、下水汚泥、厨芥などメタン発酵が可能な有機性廃棄物を嫌気性消化処理し、消化残物を酸素含有ガスで曝気処理したのち機械脱水し、該脱水ケーキを、前記有機性廃棄物の発生源である有機性排水の生物処理工程の曝気槽へ空気を供給する曝気ブロアの吐出空気と直接接触させ、その保有熱によって乾燥することを特徴とする有機性廃棄物の処理方法が記載されている。   Patent Document 2 discloses an anaerobic digestion treatment of methane fermentable organic waste such as sewage sludge and kitchen waste, a digestion residue is aerated with an oxygen-containing gas, and then mechanically dewatered. Treatment of organic waste, characterized in that it is brought into direct contact with the air discharged from an aeration blower that supplies air to the aeration tank in the biological treatment process of organic wastewater, which is the source of organic waste, and is dried by the retained heat A method is described.

特許文献3には、嫌気性消化汚泥に曝気を行った後、余剰汚泥を混合し、得られた混合汚泥に金属塩を添加し、次いで両性有機高分子凝集剤を添加して凝集処理し、凝集汚泥を脱水機で脱水することを特徴とする嫌気性消化汚泥の脱水方法が記載されている。   Patent Document 3 discloses that after performing aeration on anaerobic digested sludge, excess sludge is mixed, a metal salt is added to the obtained mixed sludge, and then an amphoteric organic polymer flocculant is added to perform coagulation treatment, A method for dewatering anaerobic digested sludge, which comprises dewatering coagulated sludge with a dehydrator, is described.

特開2005−334713号公報JP 2005-334713 A 特開昭60−38099号公報JP-A-60-38099 特開平8−206699号公報JP-A-8-206699

本発明は、有機物を効率的に嫌気性処理するとともに、嫌気性処理汚泥を効率的に凝集させることができる有機物の処理方法及び処理装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for treating organic matter, which can efficiently anaerobic treat organic matter and efficiently coagulate anaerobic treated sludge.

本発明は、有機物の嫌気性処理において、嫌気性処理工程の前、もしくは嫌気性処理工程において鉄化合物を注入し、鉄化合物を含有する嫌気性処理汚泥を形成させ、次いで鉄化合物を含有する嫌気性処理汚泥に酸素含有気体を接触させて鉄(II)が酸化された鉄(III)を含有する曝気処理汚泥を形成させ、次いで鉄(III)を含有する曝気処理汚泥に凝集剤を注入して凝集させた後、脱水処理することを特徴とする。   The present invention relates to an anaerobic treatment of an organic substance, in which an iron compound is injected before or in an anaerobic treatment step to form an anaerobic treated sludge containing an iron compound, and then an anaerobic treatment containing an iron compound. The oxygen-containing gas is brought into contact with the oxidized sludge to form an aerated sludge containing iron (III) in which iron (II) is oxidized, and then a coagulant is injected into the aerated sludge containing iron (III). And then dehydrated after coagulation.

具体体には下記態様が本発明によって提供される。
[1]有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理工程と、
嫌気性処理汚泥に酸素含有気体を接触させ、曝気処理汚泥を形成させる曝気処理工程と、
曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集工程を有し、
前記嫌気性処理工程の前、もしくは前記嫌気性処理工程において、前記有機物に鉄化合物を注入し、
前記曝気処理工程において、前記曝気処理汚泥の酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)を−100mV以下に制御し、鉄化合物を含有する嫌気性処理汚泥と酸素含有気体とを接触させることにより、嫌気性処理汚泥に含まれる鉄(II)を酸化させ、
前記凝集工程で酸化された鉄(III)を凝集剤として利用することを特徴とする有機物の処理方法。
[2]前記嫌気性処理工程において鉄を注入した後の汚泥に含まれる鉄の濃度は、鉄換算で100mg/L以上であることを特徴とする[1]に記載の有機物の処理方法。
[3]前記曝気処理工程において、前記曝気処理汚泥の溶存酸素濃度を1.0mg/L以下に制御することを特徴とする[1]又は[2]に記載の有機物の処理方法。
[4]前記脱水工程からの脱水分離液に含まれるアンモニアを硝化する硝化工程をさらに含み、
当該硝化工程からの排気ガスを前記曝気処理工程における酸素含有気体として再利用することを特徴とする[1]〜[3]のいずれか1に記載の有機物の処理方法。
[5]前記嫌気性処理汚泥は、25g/L以上のTS濃度と、当該TS濃度よりも5g/L以上低いSS濃度と、を有することを特徴とする[1]〜[4]のいずれか1に記載の有機物の処理方法。
[6]有機物に鉄化合物を注入する鉄化合物注入手段と、
鉄(II)の共存下で有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理槽と、
酸化還元電位測定装置を有し、当該嫌気性処理汚泥に酸素含有気体を接触させ、鉄(II)を鉄(III)に酸化させて、鉄(III)を含む曝気処理汚泥を形成させる曝気槽と、
当該曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集槽と、
当該凝集汚泥を脱水する脱水装置と、
当該脱水装置からの脱水分離液に含まれるアンモニアを硝化する硝化槽と、
当該硝化槽からの排気ガスを当該曝気槽に供給する酸素含有気体供給配管を具備することを特徴とする、[1]〜[5]のいずれか1に記載の有機物の処理方法を実施する処理装置。
[7]前記鉄化合物注入手段は、前記嫌気性処理槽、又は前記嫌気性処理槽の前段に設けられている有機物貯槽、可溶化槽及び可溶化物貯槽から選択される少なくとも1の槽、又は当該少なくとも1の槽と前記嫌気性処理槽を連結する配管、又は当該有機物貯槽、可溶化槽及び可溶化物貯槽の少なくとも2の槽の間を連結する配管のいずれかもしくは2以上に設けられていることを特徴とする[6]に記載の処理装置。
Specifically, the following aspects are provided by the present invention.
[1] an anaerobic treatment step of anaerobically treating organic matter to form anaerobic treated sludge;
An aeration treatment step of contacting the oxygen-containing gas with the anaerobic treatment sludge to form an aeration treatment sludge;
Injecting a flocculant into the aeration-treated sludge, having a flocculation step to form a flocculated sludge,
Before the anaerobic treatment step, or in the anaerobic treatment step, inject an iron compound into the organic matter,
In the aeration treatment step, the oxidation-reduction potential (oxidation-reduction potential based on a silver / silver chloride electrode) of the aeration-treated sludge is controlled to -100 mV or less, and the anaerobic treatment sludge containing an iron compound and the oxygen-containing gas are mixed. Oxidizes iron (II) contained in the anaerobic treated sludge by contacting
A method for treating an organic substance, wherein iron (III) oxidized in the aggregation step is used as an aggregation agent.
[2] The method for treating organic matter according to [1], wherein the concentration of iron contained in the sludge after iron is injected in the anaerobic treatment step is 100 mg / L or more in terms of iron.
[3] The method for treating organic matter according to [1] or [2], wherein in the aeration treatment step, the dissolved oxygen concentration of the aeration treatment sludge is controlled to 1.0 mg / L or less.
[4] The method further comprises a nitrification step of nitrifying ammonia contained in the dehydration separation liquid from the dehydration step,
The method for treating organic matter according to any one of [1] to [3], wherein the exhaust gas from the nitrification step is reused as an oxygen-containing gas in the aeration treatment step.
[5] The anaerobic treated sludge has a TS concentration of 25 g / L or more, and an SS concentration of 5 g / L or more lower than the TS concentration, [1] to [4]. 2. The method for treating an organic substance according to 1.
[6] iron compound injection means for injecting an iron compound into an organic substance,
An anaerobic treatment tank for anaerobic treatment of organic matter in the presence of iron (II) to form anaerobic treatment sludge;
An aeration tank having an oxidation-reduction potential measuring device, and bringing an oxygen-containing gas into contact with the anaerobic treated sludge to oxidize iron (II) to iron (III) to form an aerated treated sludge containing iron (III) When,
Injecting a coagulant into the aerated sludge, a coagulation tank to form coagulated sludge,
A dehydration device for dehydrating the coagulated sludge,
A nitrification tank for nitrifying ammonia contained in the dehydration separation liquid from the dehydration device,
A process for carrying out the method for treating an organic substance according to any one of [1] to [5], comprising an oxygen-containing gas supply pipe for supplying exhaust gas from the nitrification tank to the aeration tank. apparatus.
[7] The iron compound injection means is the anaerobic treatment tank, or at least one tank selected from an organic matter storage tank, a solubilization tank, and a solubilized matter storage tank provided in a preceding stage of the anaerobic treatment tank, or A pipe connecting the at least one tank and the anaerobic treatment tank, or a pipe connecting the at least two tanks of the organic matter storage tank, the solubilization tank, and the solubilized matter storage tank is provided in any one or more of the pipes. The processing device according to [6], wherein:

本発明により、有機物を効率的に嫌気性処理するとともに、嫌気性処理汚泥を効率的に凝集させることができる。また、副次的な効果として、排水処理、脱硫処理、脱臭処理への負荷を低減できる。より詳しくは下記のような効果がある。
(1)鉄化合物が注入された有機物を嫌気性処理することにより、有機物の安定的な嫌気性処理が可能となり、減容化率の増加及びメタンガス発生量の増加が可能となる。
(2)鉄化合物が注入された有機物を嫌気処理することにより、有機物に含まれる硫黄分と鉄が結合して、硫化水素の発生を抑制することができ、後段の脱硫処理や脱臭処理における負荷を低減することが可能となる。
(3)曝気処理工程で嫌気性処理汚泥と酸素を接触させることにより、嫌気性処理汚泥中に含まれる鉄を酸化させ、凝集剤として利用することにより、後段の凝集工程における凝集剤の注入量を削減することが可能となる。
(4)曝気処理工程において嫌気性処理汚泥に含有されている凝集阻害物質(例えば、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの高分子物質)を分解させるので、高価なアミジン系高分子凝集剤でしか凝集させることができない嫌気性処理汚泥に対して、安価な非アミジン系高分子凝集剤又はアミジン系高分子凝集剤に安価な非アミジン系高分子凝集剤を混合したブレンド品を凝集工程で使用でき、凝集コストを低減することが可能となる。
(5)曝気処理工程において嫌気性処理汚泥と酸素を接触させることにより、嫌気性処理汚泥に含有される凝集阻害物質(例えば、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの高分子物質)の分解が可能となり、後段の凝集工程における凝集剤の注入量を削減でき、さらに後段の脱水工程により得られる脱水ケーキの含水率を低減することが可能となる。
(6)曝気処理工程において嫌気性処理汚泥と酸素を接触させることにより、嫌気性処理汚泥に溶存している炭酸ガスを除去し、後段の凝集工程で凝集剤を注入した際の発泡現象を抑制することが可能となる。
(7)後段の脱水工程において分離した脱水分離液を排水処理する場合、曝気処理工程において有機物成分(BOD成分、COD成分など)の一部が分解されているので、脱水分離液の排水処理における有機物負荷を低減することが可能となる。
(8)脱水工程からの脱水分離液に含まれるアンモニアを硝化する硝化工程からの排気ガスを曝気処理工程における酸素含有気体として再利用する場合には、硝化工程からの排出ガス量を削減することが可能となると共に、処理施設全体のエネルギー損失を削減することができる。
ADVANTAGE OF THE INVENTION According to this invention, while anaerobic treatment of organic matter is efficiently performed, anaerobic treatment sludge can be efficiently aggregated. As a secondary effect, the load on the wastewater treatment, desulfurization treatment, and deodorization treatment can be reduced. More specifically, the following effects are obtained.
(1) By performing an anaerobic treatment on an organic substance into which an iron compound has been injected, a stable anaerobic treatment of the organic substance can be performed, and the volume reduction rate and the amount of methane gas generated can be increased.
(2) By performing anaerobic treatment on an organic substance into which an iron compound is injected, sulfur contained in the organic substance is combined with iron to suppress generation of hydrogen sulfide, and the load in the subsequent desulfurization processing and deodorization processing is reduced. Can be reduced.
(3) The amount of coagulant injected in the subsequent coagulation step by contacting oxygen with the anaerobic treatment sludge in the aeration treatment step to oxidize iron contained in the anaerobic treatment sludge and using it as a coagulant Can be reduced.
(4) Aggregation inhibitors (eg, high molecular substances such as polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids) contained in the anaerobic treated sludge are decomposed in the aeration treatment step, which is expensive. For anaerobic treated sludge that can only be agglomerated with amidine-based polymer flocculants, inexpensive non-amidine-based polymer flocculants or inexpensive non-amidine-based polymer flocculants mixed with amidine-based polymer flocculants The blended product can be used in the aggregation step, and the aggregation cost can be reduced.
(5) In the aeration treatment step, the anaerobic treatment sludge is brought into contact with oxygen, whereby the aggregation inhibitory substances (eg, polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, humic acids, etc.) contained in the anaerobic treatment sludge are contacted. (Polymeric substance) can be decomposed, the amount of coagulant injected in the subsequent aggregation step can be reduced, and the water content of the dewatered cake obtained in the subsequent dehydration step can be reduced.
(6) The carbon dioxide gas dissolved in the anaerobic treated sludge is removed by bringing oxygen into contact with the anaerobic treated sludge in the aeration treatment step, and the foaming phenomenon when the coagulant is injected in the subsequent coagulation step is suppressed. It is possible to do.
(7) When the dewatered separated liquid separated in the subsequent dewatering step is subjected to drainage treatment, since a part of the organic components (BOD component, COD component, and the like) is decomposed in the aeration treatment step, The organic substance load can be reduced.
(8) When the exhaust gas from the nitrification step for nitrifying ammonia contained in the dehydration separation liquid from the dehydration step is reused as the oxygen-containing gas in the aeration step, the amount of exhaust gas from the nitrification step should be reduced. And energy loss in the entire treatment facility can be reduced.

本発明の有機物の処理方法における処理工程の流れを装置構成と共に示す概略説明図である。FIG. 2 is a schematic explanatory view showing a flow of a processing step in the method for processing an organic substance of the present invention together with an apparatus configuration. 図1に示す処理工程において、凝集工程後の脱水処理工程をさらに含む処理の流れを装置構成と共に示す概略説明図である。FIG. 2 is a schematic explanatory diagram showing a processing flow further including a dehydration processing step after the aggregation step in the processing step shown in FIG. 1 together with the apparatus configuration. 図1に示す処理工程において、凝集槽を2個以上設けた場合の処理工程の流れを装置構成と共に示す概略説明図である。FIG. 2 is a schematic explanatory view showing a flow of a processing step together with an apparatus configuration when two or more coagulation tanks are provided in the processing step shown in FIG. 1. 図1に示す処理工程において、凝集工程後の脱水処理工程をさらに含み、凝集工程が脱水装置で実施される場合の処理の流れを装置構成と共に示す概略説明図である。FIG. 2 is a schematic explanatory diagram showing, together with the apparatus configuration, a processing flow in a case where the processing step shown in FIG. 1 further includes a dehydration processing step after an aggregation step, and the aggregation step is performed by a dehydration apparatus. 図2に示す処理工程において、脱水処理後の硝化工程をさらに含む処理の流れを装置構成と共に示す概略説明図である。FIG. 3 is a schematic explanatory view showing a processing flow further including a nitrification step after a dehydration processing together with the apparatus configuration in the processing step shown in FIG. 2. 有機物が嫌気性処理槽に導入される前の配管にて有機物に鉄化合物を注入する態様を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an embodiment in which an iron compound is injected into an organic substance through a pipe before the organic substance is introduced into an anaerobic treatment tank. 嫌気性処理槽の前段に設けられている可溶化槽にて有機物に鉄化合物を注入する態様を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an embodiment in which an iron compound is injected into organic matter in a solubilization tank provided in a stage preceding the anaerobic treatment tank. 嫌気性処理槽の前段に設けられている可溶化貯槽にて有機物に鉄化合物を注入する態様を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an embodiment in which an iron compound is injected into organic matter in a solubilization storage tank provided in a stage preceding the anaerobic treatment tank. 可溶化槽が複数設けられ、可溶化槽にて可溶化された可溶化物を1の貯槽に貯蔵する際に鉄化合物を注入する態様を示す概略説明図である。FIG. 4 is a schematic explanatory view showing a mode in which a plurality of solubilization tanks are provided and an iron compound is injected when a solubilized material solubilized in the solubilization tank is stored in one storage tank. 実施例2及び3における処理結果を曝気時間とケーキ含水率との関係で示すグラフである。It is a graph which shows the processing result in Examples 2 and 3 by the relationship between aeration time and cake moisture content.

好ましい実施形態Preferred embodiment

以下、添付図面を参照しながら本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

本発明の処理方法は、嫌気性処理工程において処理される有機物には鉄化合物が注入されており、鉄(II)の共存下で有機物を嫌気性処理し、形成される嫌気性処理汚泥は鉄(II)を含有し、続く曝気処理工程において、曝気処理汚泥の酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)を−100mV以下に制御し、鉄化合物を含有する嫌気性処理汚泥と酸素含有気体とを接触させることにより、嫌気性処理汚泥に含まれる鉄(II)を酸化させ、後段の凝集工程で酸化された鉄(III)を凝集剤として利用することを特徴とする。   In the treatment method of the present invention, an iron compound is injected into the organic matter to be treated in the anaerobic treatment step, and the organic matter is anaerobically treated in the presence of iron (II). In the subsequent aeration treatment step containing (II), the oxidation-reduction potential (oxidation-reduction potential based on a silver / silver chloride electrode) of the aeration-treated sludge is controlled to -100 mV or less, and an anaerobic treatment containing an iron compound is performed. By contacting sludge with an oxygen-containing gas, iron (II) contained in anaerobic treated sludge is oxidized, and iron (III) oxidized in a subsequent coagulation step is used as a coagulant. .

図1〜図5は、嫌気性処理工程において有機物に鉄化合物を注入する態様を示し、図6〜図9は、嫌気性処理工程の前段である配管、可溶化槽、又は可溶化貯槽において有機物に鉄化合物を注入する態様を示す。   FIGS. 1 to 5 show an embodiment in which an iron compound is injected into an organic substance in an anaerobic treatment step, and FIGS. 6 to 9 show organic substances in a pipe, a solubilization tank, or a solubilization storage tank which is a former stage of the anaerobic treatment step. Shows an embodiment in which an iron compound is injected.

まず、図1〜図5に基づいて本発明の有機物の処理方法を説明する。図1及び図3に示すように、
(1)有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理工程と、
(2)嫌気性処理汚泥に酸素含有気体を接触させ、曝気処理汚泥を形成させる曝気処理工程と、
(3)曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集工程を有し、
前記嫌気性処理工程において有機物に鉄化合物を注入し、
前記曝気処理工程において、前記曝気処理汚泥の酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)を−100mV以下に制御し、鉄化合物を含有する嫌気性処理汚泥と酸素含有気体とを接触させることにより、嫌気性処理汚泥に含まれる鉄(II)を酸化させ、前記凝集工程で酸化された鉄(III)を凝集剤として利用する。
First, a method for treating an organic substance according to the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 3,
(1) an anaerobic treatment step of anaerobically treating organic matter to form anaerobic treated sludge;
(2) an aeration treatment step of forming an aeration treatment sludge by bringing an oxygen-containing gas into contact with the anaerobic treatment sludge;
(3) a flocculating step of injecting a flocculant into the aerated sludge to form a flocculated sludge;
Injecting an iron compound into organic matter in the anaerobic treatment step,
In the aeration treatment step, the oxidation-reduction potential (oxidation-reduction potential based on a silver / silver chloride electrode) of the aeration-treated sludge is controlled to -100 mV or less, and the anaerobic treatment sludge containing an iron compound and the oxygen-containing gas are mixed. The iron (II) contained in the anaerobic treated sludge is oxidized by contacting with iron and the iron (III) oxidized in the coagulation step is used as a coagulant.

図2、図4及び図5に示すように、凝集工程後に脱水処理工程を含み、さらに脱水処理工程後の硝化工程を含み得る。   As shown in FIGS. 2, 4 and 5, a dehydration step may be included after the aggregation step, and a nitrification step after the dehydration step may be included.

次に、図6〜図9に基づいて有機物への鉄化合物の注入時点を説明する。図6は嫌気性処理工程の前段の配管にて有機物に鉄化合物を注入する態様であり、図7は嫌気性処理工程の前段の可溶化工程にて有機物に鉄化合物を注入する態様であり、図8及び図9は可溶化工程後で嫌気性処理工程前に可溶化物を貯蔵する工程にて有機物に鉄化合物を注入する態様である。鉄化合物の注入時点を除いて、図6〜図9の態様に図1〜図4に示す凝集工程及び脱水工程を任意に組み合わせることができる。   Next, the injection point of the iron compound into the organic matter will be described with reference to FIGS. FIG. 6 shows an embodiment in which an iron compound is injected into an organic substance through a pipe in a stage before an anaerobic treatment step, and FIG. 7 shows an embodiment in which an iron compound is injected into an organic substance in a solubilization step in a stage before the anaerobic treatment step. 8 and 9 show an embodiment in which the iron compound is injected into the organic matter in the step of storing the solubilized substance after the solubilizing step and before the anaerobic treatment step. Except at the point of injection of the iron compound, the embodiment of FIGS. 6 to 9 can be arbitrarily combined with the aggregation step and the dehydration step shown in FIGS.

以下、各工程について説明する。   Hereinafter, each step will be described.

(1)鉄化合物注入工程
嫌気性処理工程又は嫌気性処理工程の前に、有機物に鉄化合物を注入し、嫌気性処理工程にて鉄(II)の共存下で有機物を嫌気性処理することができるように準備する。有機物への鉄化合物の注入は、嫌気性処理工程又は嫌気性処理工程の前になされていれば特に制限されず、嫌気性処理槽に供給される前の有機物又は有機物貯槽に貯蔵されている有機物に鉄化合物を直接注入してもよく、嫌気性処理槽において有機物に鉄化合物を注入してもよく(図1)、嫌気性処理槽に有機物を供給する配管に鉄化合物を注入してもよく(図6)、嫌気性処理槽の前段である可溶化槽(図7)又は可溶化貯槽(図8及び図9)に鉄化合物を注入してもよい。
(1) Iron compound injection step Before the anaerobic treatment step or the anaerobic treatment step, an iron compound is injected into an organic substance, and the organic substance is subjected to anaerobic treatment in the presence of iron (II) in the anaerobic treatment step. Prepare to be able to. The injection of the iron compound into the organic matter is not particularly limited as long as it is performed before the anaerobic treatment step or the anaerobic treatment step, and the organic matter before being supplied to the anaerobic treatment tank or the organic matter stored in the organic matter storage tank The iron compound may be directly injected into the anaerobic treatment tank, the iron compound may be injected into the organic matter in the anaerobic treatment tank (FIG. 1), or the iron compound may be injected into a pipe for supplying the organic substance to the anaerobic treatment tank. (FIG. 6), an iron compound may be injected into a solubilization tank (FIG. 7) or a solubilization storage tank (FIGS. 8 and 9) which is a stage preceding the anaerobic treatment tank.

可溶化処理を行う可溶化工程は、嫌気性環境下、反応温度25〜70℃、pH3〜6、水理学的滞留時間(HRT)0.5日〜5日で、完全混合型発酵装置で行うことが好ましい。特に、有機物の種類によっては固形物の可溶化段階が反応律速となりやすいことから、反応温度を35〜70℃の高温反応でHRTを3日〜5日で行うことが好ましい。高温反応による熱処理と好熱性生物による可溶化が同時に達成される。さらに、HRT制御することによって、通常は高い増殖速度能を有する嫌気性微生物を優占化することができ、嫌気的可溶化処理が可能となる。また、反応温度が35〜70℃の高温反応にて可溶化処理を行うことで、TS濃度10〜15%の高濃度有機性廃棄物に対しても比較的低粘度条件で容易に混合撹拌が可能となる。可溶化処理工程において、通常、有機物の可溶化物は速やかに加水分解されたり酸発酵したりするので、乳酸発酵や酸発酵を主体とする嫌気性発酵がほぼ同時に進行することになる。したがって、可溶化処理工程では可溶化菌と酸発酵菌とが優占的に共存する発酵環境となる。   The solubilization step in which the solubilization treatment is performed is performed in an anaerobic environment at a reaction temperature of 25 to 70 ° C., pH of 3 to 6, and a hydraulic retention time (HRT) of 0.5 to 5 days using a complete mixing fermenter. Is preferred. In particular, depending on the type of organic substance, the solubilization step of the solid substance tends to be rate-limiting, and therefore, it is preferable to perform HRT in a high temperature reaction of 35 to 70 ° C. for 3 to 5 days. Heat treatment by a high-temperature reaction and solubilization by a thermophilic organism are achieved simultaneously. Furthermore, by performing HRT control, anaerobic microorganisms that usually have high growth rate ability can be dominant, and anaerobic solubilization treatment becomes possible. In addition, by performing the solubilization treatment in a high-temperature reaction at a reaction temperature of 35 to 70 ° C., mixing and stirring can be easily performed under a relatively low viscosity condition even for a high concentration organic waste having a TS concentration of 10 to 15%. It becomes possible. In the solubilization treatment step, usually, the solubilized organic matter is rapidly hydrolyzed or acid-fermented, so that anaerobic fermentation mainly comprising lactic acid fermentation and acid fermentation proceeds almost simultaneously. Therefore, the fermentation environment in which the solubilized bacteria and the acid-fermenting bacteria coexist predominantly in the solubilization treatment step.

可溶化処理された可溶化物は嫌気性処理前に貯蔵されることが多い。可溶化物貯槽に貯蔵されている可溶化物に鉄化合物を注入することで、可溶化物である有機物中に鉄化合物を均一に分散させることができる。   The solubilized material after solubilization is often stored before anaerobic treatment. By injecting the iron compound into the solubilized substance stored in the solubilized substance storage tank, the iron compound can be uniformly dispersed in the organic substance as the solubilized substance.

有機物を直接、又は上記の可溶化槽もしくは可溶化物貯槽から嫌気性処理槽に供給するための配管、あるいは嫌気性処理槽に、鉄化合物を注入してもよい。これらの配管又は嫌気性処理槽に鉄化合物を注入する場合には、嫌気性処理汚泥に含まれる鉄濃度を直接的に制御することができる。   The iron compound may be injected directly into the anaerobic treatment tank or a pipe for supplying the organic substance directly or from the solubilization tank or the solubilized substance storage tank to the anaerobic treatment tank. When an iron compound is injected into these pipes or anaerobic treatment tanks, the iron concentration contained in the anaerobic treatment sludge can be directly controlled.

有機物に対する鉄化合物の注入量は、嫌気性処理工程で処理される汚泥に含まれる鉄の濃度を鉄換算で100mg/L以上、好ましくは100〜600mg/L、より好ましくは150〜500mg/L、特に好ましくは150〜450mg/Lとなるように調整する。嫌気性処理工程の前に有機物に鉄化合物を注入することにより、有機物の嫌気性処理が促進され、減容化率が増加するとともに、メタンガス回収率が向上する。   The injection amount of the iron compound with respect to the organic matter is such that the concentration of iron contained in the sludge treated in the anaerobic treatment step is 100 mg / L or more in terms of iron, preferably 100 to 600 mg / L, more preferably 150 to 500 mg / L, It is particularly preferably adjusted to be 150 to 450 mg / L. By injecting the iron compound into the organic matter before the anaerobic treatment step, the anaerobic treatment of the organic matter is promoted, the volume reduction rate increases, and the methane gas recovery rate improves.

本発明において嫌気性処理工程又は嫌気性処理工程の前に有機物に注入する鉄化合物としては、塩化第二鉄、塩化第一鉄、硫酸第二鉄、硫酸第一鉄、ポリ硫酸第二鉄、ポリ硫酸第一鉄などが挙げられる。   In the present invention, as the iron compound to be injected into the organic matter before the anaerobic treatment step or the anaerobic treatment step, ferric chloride, ferrous chloride, ferric sulfate, ferrous sulfate, ferric polysulfate, And ferrous polysulfate.

(2)嫌気性処理工程
嫌気性処理工程では、有機物を嫌気性処理し、嫌気性微生物の働きにより有機物を嫌気性処理汚泥にして減容化するとともに、メタンガスを発生させる。本発明において、嫌気性処理工程において処理される有機物には鉄化合物が注入されており、鉄(II)の共存下で有機物を嫌気性処理し、形成される嫌気性処理汚泥は鉄(II)を含有するものとなる。
(2) Anaerobic treatment step In the anaerobic treatment step, organic substances are anaerobically treated, the organic substances are converted into anaerobic sludge by the action of anaerobic microorganisms, the volume is reduced, and methane gas is generated. In the present invention, an organic compound to be treated in the anaerobic treatment step is injected with an iron compound. The organic matter is anaerobically treated in the presence of iron (II), and the anaerobic treated sludge formed is iron (II). Will be contained.

嫌気性処理工程の運転条件は、処理温度30〜60℃、滞留日数(HRT)12〜40日が一般的である。嫌気性処理には、完全混合型(液状物を撹拌しながら嫌気性処理する)や乾式メタン発酵(半固形物を撹拌しながら嫌気性処理する)などがあるが、処理形態は特に限定されない。   The operating conditions of the anaerobic treatment process are generally a treatment temperature of 30 to 60 ° C. and a residence time (HRT) of 12 to 40 days. The anaerobic treatment includes a completely mixed type (anaerobic treatment while stirring a liquid substance) and dry methane fermentation (anaerobic treatment while stirring a semi-solid substance), but the treatment form is not particularly limited.

嫌気性処理で処理対象となる有機物としては、食品残渣、食品製造残渣、生ごみ、各種汚泥などが挙げられる。各種汚泥としては、下水汚泥(初沈汚泥、余剰汚泥、混合生汚泥)、農業集落排水汚泥、し尿汚泥(生し尿、浄化槽汚泥)、各種排水処理から発生する汚泥などが挙げられる。また、上記の有機物を酸処理、アルカリ処理、熱処理、酸発酵処理などにより可溶化した可溶化物も嫌気性処理の処理対象とすることができる。   Organic substances to be treated in the anaerobic treatment include food residues, food production residues, garbage, various sludges, and the like. Examples of various sludges include sewage sludge (primary sludge, surplus sludge, mixed raw sludge), agricultural settlement drainage sludge, human waste sludge (raw human waste, septic tank sludge), and sludge generated from various wastewater treatments. In addition, the solubilized product obtained by solubilizing the above organic substance by an acid treatment, an alkali treatment, a heat treatment, an acid fermentation treatment, or the like can also be subjected to the anaerobic treatment.

嫌気性処理工程で形成される嫌気性処理汚泥は、25g/L以上のTS濃度と、該TS濃度よりも5g/L以上低いSS濃度と、を有することが好ましい。より好ましくは、TS濃度が25〜60g/L、さらにより好ましくは、TS濃度が30〜45g/Lを有する嫌気性処理汚泥である。また、より好ましくは、TS濃よりも10g/L以上低いSS濃度を有する嫌気性処理汚泥である。さらにより好ましくは、TS濃度よりも15g/L以上低いSS濃度を有する嫌気性処理汚泥である。また、嫌気性処理工程で形成される嫌気性処理汚泥の粘度は、好ましくは200〜1500mPa・sであり、より好ましくは300〜1000mPa・sである。なお、TS、SSは、それぞれ全蒸発残留物、懸濁物質を意味し、TS及びSSの分析はJIS K−0102に準拠した。また、粘度は、B型回転粘度計を使用し、35℃、60rpmで測定した値である。   The anaerobic treatment sludge formed in the anaerobic treatment step preferably has a TS concentration of 25 g / L or more and an SS concentration of 5 g / L or less than the TS concentration. More preferably, it is an anaerobic treated sludge having a TS concentration of 25 to 60 g / L, and even more preferably a TS concentration of 30 to 45 g / L. Further, more preferably, the anaerobic treated sludge having an SS concentration 10 g / L or more lower than the TS concentration. Even more preferably, it is an anaerobic treated sludge having an SS concentration 15 g / L or more lower than the TS concentration. Further, the viscosity of the anaerobic treated sludge formed in the anaerobic treatment step is preferably 200 to 1500 mPa · s, and more preferably 300 to 1000 mPa · s. Note that TS and SS mean the total evaporation residue and suspended matter, respectively, and the analysis of TS and SS was based on JIS K-0102. The viscosity is a value measured at 35 ° C. and 60 rpm using a B-type rotational viscometer.

(3)曝気処理工程
本発明によれば、嫌気性処理工程において、鉄化合物を含有する嫌気性処理汚泥が形成される。曝気処理工程では、鉄化合物を含有する嫌気性処理汚泥を酸素含有気体で曝気処理し、汚泥中に存在する鉄(II)を鉄(III)に酸化させるとともに、汚泥中に溶解している炭酸ガスを除去する。本発明における曝気処理工程は、一般的な好気処理に必要とされる程度の溶存酸素量又は酸化還元電位を達成するものではなく、酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)を−100mV以下に制御するため、好気性処理とは異なる。また、曝気処理工程では、汚泥中に存在する凝集阻害成分を生物的あるいは化学的に分解させる。凝集阻害成分としては、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などが挙げられる。
(3) Aeration Treatment Step According to the present invention, an anaerobic treatment sludge containing an iron compound is formed in the anaerobic treatment step. In the aeration process, the anaerobic sludge containing an iron compound is aerated with an oxygen-containing gas to oxidize iron (II) present in the sludge into iron (III) and to remove carbonic acid dissolved in the sludge. Remove the gas. The aeration treatment step in the present invention does not achieve the dissolved oxygen amount or the oxidation-reduction potential to the extent required for general aerobic treatment, but does not achieve the oxidation-reduction potential (oxidation reduction based on the silver / silver chloride electrode). The potential is controlled to -100 mV or less, which is different from the aerobic treatment. In the aeration process, the coagulation inhibiting component present in the sludge is biologically or chemically decomposed. Aggregation inhibiting components include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, humic acids and the like.

曝気処理により酸化された鉄(III)は、後段の凝集処理工程で凝集剤として利用できる。嫌気性処理汚泥中の鉄は、還元雰囲気下にあるので、鉄(II)として存在する。曝気処理により鉄(II)は鉄(III)に酸化される。一般的に、鉄(III)の凝集剤としての能力は、鉄(II)と比較して著しく高いため、曝気処理によって鉄(II)が鉄(III)に酸化されることにより、後段の凝集工程で必要な凝集剤の注入量を削減できる。   The iron (III) oxidized by the aeration treatment can be used as a flocculant in a subsequent flocculation treatment step. Iron in the anaerobic sludge is present as iron (II) because it is under a reducing atmosphere. Iron (II) is oxidized to iron (III) by the aeration treatment. Generally, the ability of iron (III) as an aggregating agent is significantly higher than that of iron (II). The amount of coagulant required for the process can be reduced.

また、曝気処理により汚泥中の炭酸ガスを除去し、後段の凝集工程での発泡を抑制することができる。一般的に嫌気性処理では、メタンガスとともに炭酸ガスが発生し、汚泥中に多量の炭酸ガスが溶解している。嫌気性処理汚泥に凝集剤を注入すると、溶解していた炭酸ガスが脱気され、凝集汚泥が発泡してしまい、凝集阻害や凝集槽から凝集汚泥が溢れるなどのトラブルが発生する。発泡トラブルは特に無機凝集剤を注入した際に顕著で、無機凝集剤を使用できないこともある。曝気処理により溶存炭酸ガスは脱気されるので、後段の凝集工程で発泡トラブルを回避することができる。   Moreover, the carbon dioxide gas in the sludge can be removed by aeration treatment, and foaming in the subsequent aggregation step can be suppressed. Generally, in anaerobic treatment, carbon dioxide gas is generated together with methane gas, and a large amount of carbon dioxide gas is dissolved in sludge. When the coagulant is injected into the anaerobic treated sludge, the dissolved carbon dioxide gas is degassed and the coagulated sludge foams, causing troubles such as coagulation inhibition and coagulation sludge overflow from the coagulation tank. The foaming trouble is particularly remarkable when an inorganic coagulant is injected, and sometimes the inorganic coagulant cannot be used. Since the dissolved carbon dioxide gas is degassed by the aeration treatment, foaming trouble can be avoided in the subsequent aggregation step.

また、曝気処理により汚泥中に存在する凝集阻害成分を生物的あるいは化学的に分解させ、後段の凝集工程で必要な凝集剤の注入量を削減することができ、さらに後段の脱水工程でケーキ含水率を低減することができる。一般的に嫌気性処理汚泥には、凝集阻害成分として、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの高分子物質が含まれている。これら凝集阻害成分には、嫌気性処理の最中に微生物により産生された成分や原料の有機物由来の成分などがある。また、凝集阻害成分のうち、高分子量の高分子物質が分解されることにより汚泥の粘度が低減するため、後段の凝集工程で汚泥と凝集剤の混合が容易になり、凝集剤を効率的に利用でき、凝集剤の注入量を低減することが可能となる。   In addition, the agglomeration treatment can be used to biologically or chemically decompose the coagulation-inhibiting components present in the sludge, thereby reducing the amount of coagulant required in the subsequent coagulation step, and further reducing the water content of the cake in the subsequent dehydration step. Rate can be reduced. Generally, anaerobic treated sludge contains high molecular substances such as polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids as coagulation inhibiting components. These aggregation-inhibiting components include components produced by microorganisms during anaerobic treatment and components derived from organic materials as raw materials. In addition, since the viscosity of sludge is reduced by decomposing a high molecular weight polymer substance among the coagulation inhibiting components, the mixing of the sludge and the coagulant in the subsequent coagulation step is facilitated, and the coagulant is efficiently removed. It can be used, and the injection amount of the flocculant can be reduced.

曝気処理工程は、10〜50℃の温度範囲、好ましくは20〜45℃、より好ましくは25〜40℃の温度範囲で行うことが望ましい。   It is desirable that the aeration process is performed in a temperature range of 10 to 50 ° C, preferably 20 to 45 ° C, more preferably 25 to 40 ° C.

曝気処理工程において、嫌気性処理汚泥のpHを6.5〜8.5の範囲、好ましくは7.0〜8.5、より好ましくは7.0〜8.0の範囲に調整することが望ましい。pH範囲の調整は、後段の凝集工程における凝集作用を向上させ、脱水ケーキの含水率を低下させる。   In the aeration treatment step, it is desirable to adjust the pH of the anaerobic treated sludge to a range of 6.5 to 8.5, preferably 7.0 to 8.5, and more preferably 7.0 to 8.0. . Adjustment of the pH range improves the coagulation action in the subsequent coagulation step and lowers the water content of the dehydrated cake.

曝気処理工程の曝気風量は0.1〜0.5m−Air/(m−汚泥・min)の範囲とすることが望ましく、曝気処理工程の曝気時間は3〜48時間の範囲とすることが望ましい。曝気槽内の汚泥量(m)に対する単位時間(min)当たりの空気量(m)である曝気風量が0.1m−Air/(m−汚泥・min)未満では、汚泥粘度が高い場合には汚泥全体に曝気することが困難であり、汚泥全体を曝気処理するための時間が長時間必要となる。一方、曝気風量が0.5m−Air/(m−汚泥・min)より大きい場合には、曝気するために大型のブロアが必要になり、また発泡のリスクが高まる。曝気風量や曝気時間が過大となると、汚泥中の凝集阻害成分だけでなく、汚泥自体の分解が進行し、後段の凝集工程や脱水工程に悪影響を及ぼす。一方、曝気風量や曝気時間が十分でない場合、曝気処理に要する時間が長くなり、巨大な曝気槽を必要とするため、経済的ではない。It is desirable that the amount of aeration air in the aeration process is in the range of 0.1 to 0.5 m 3 -Air / (m 3 -sludge · min), and the aeration time in the aeration process is in the range of 3 to 48 hours. Is desirable. If the amount of aeration air, which is the amount of air (m 3 ) per unit time (min) with respect to the amount of sludge (m 3 ) in the aeration tank, is less than 0.1 m 3 -Air / (m 3 -sludge · min), the sludge viscosity is lower. When it is high, it is difficult to aerate the entire sludge, and a long time is required for performing aeration treatment on the entire sludge. On the other hand, aeration amount 0.5 m 3 -Air / - if (m 3 sludge · min) is greater than the large blower is required to aeration, also increases the risk of foaming. When the aeration air volume and the aeration time are excessive, not only the coagulation inhibiting component in the sludge but also the sludge itself is decomposed, which adversely affects the subsequent coagulation step and dehydration step. On the other hand, when the aeration air volume and the aeration time are not sufficient, the time required for the aeration treatment becomes long and a huge aeration tank is required, which is not economical.

曝気処理工程の汚泥の溶存酸素濃度(DO)は1.0mg/L以下、好ましくは0.5mg/L以下、より好ましくは0.2mg/L以下とすることが望ましい。鉄(II)から鉄(III)への酸化反応は、溶存酸素濃度が1.0mg/L以下で十分進む。また、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの凝集阻害成分は、溶存酸素濃度が1.0mg/L以下でも生物的あるいは化学的に分解される。つまり、強い好気条件にしなくとも鉄の酸化反応や凝集阻害成分の分解は進行する。   It is desirable that the dissolved oxygen concentration (DO) of the sludge in the aeration treatment step is 1.0 mg / L or less, preferably 0.5 mg / L or less, more preferably 0.2 mg / L or less. The oxidation reaction from iron (II) to iron (III) proceeds sufficiently when the dissolved oxygen concentration is 1.0 mg / L or less. Aggregation inhibiting components such as polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids are biologically or chemically degraded even when the dissolved oxygen concentration is 1.0 mg / L or less. In other words, the oxidation reaction of iron and the decomposition of the coagulation-inhibiting component proceed even without strong aerobic conditions.

曝気処理工程における嫌気性処理汚泥の酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)は、−100mV以下、望ましくは−400〜−100mV、好ましくは−350〜−100mV、より好ましくは−350〜−150mVである。鉄(II)から鉄(III)への酸化反応は、銀/塩化銀電極を基準とした酸化還元電位が−100mV以下で十分進む。また、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの凝集阻害成分は、銀/塩化銀電極を基準とした酸化還元電位が−100mV以下であれば生物的あるいは化学的に分解される。つまり、強い酸化条件にしなくても鉄の酸化反応や凝集阻害成分の分解は進む。   The oxidation-reduction potential of the anaerobic treated sludge in the aeration treatment step (oxidation-reduction potential based on a silver / silver chloride electrode) is -100 mV or less, desirably -400 to -100 mV, preferably -350 to -100 mV, and more preferably. Is -350 to -150 mV. The oxidation reaction from iron (II) to iron (III) proceeds sufficiently when the oxidation-reduction potential based on the silver / silver chloride electrode is -100 mV or less. Aggregation inhibiting components such as polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids are biologically or chemically degraded if the oxidation-reduction potential with respect to the silver / silver chloride electrode is -100 mV or less. Is done. In other words, the oxidation reaction of iron and the decomposition of the coagulation-inhibiting component proceed even without strong oxidation conditions.

曝気処理工程で用いる酸素含有気体としては、酸素ガスを含む気体であれば問題なく、嫌気性処理を行う施設の内外の空気、嫌気性処理を行う施設内のごみ受入ピットやごみ選別設備などから発生する悪臭成分を含む低濃度系及び高濃度系の臭気ガス、汚水の活性汚泥処理設備から発生する曝気排ガスなどを用いることができる。脱水処理工程の後段に脱水分離液の硝化工程を含む場合には、硝化工程からの排気ガスを酸素含有気体として再利用することができる。硝化工程からの排気ガスは、通常の空気よりも酸素含有量は低いが、嫌気性処理汚泥への曝気用の気体として十分な酸素を含む。   As the oxygen-containing gas used in the aeration process, there is no problem as long as it contains oxygen gas, from the air inside and outside the facility that performs anaerobic treatment, from the waste receiving pit and the waste sorting facility inside the facility that performs anaerobic treatment, etc. Low-concentration and high-concentration odor gases containing malodorous components generated, and aerated exhaust gas generated from activated sludge treatment equipment for wastewater can be used. In the case where the dehydration treatment step includes a nitrification step of the dehydrated separated liquid after the dehydration treatment step, the exhaust gas from the nitrification step can be reused as an oxygen-containing gas. The exhaust gas from the nitrification process has a lower oxygen content than ordinary air, but contains sufficient oxygen as a gas for aerating the anaerobic treated sludge.

曝気処理工程において形成される曝気処理汚泥は、高分子物質が分解されるため、粘度が低下し、B型回転粘度計を使用し、汚泥pH7.5〜9.5、温度35℃、ロータの回転速度60min−1の条件で測定した場合の粘度は200mPa・s以下、好ましくは150mPa・s以下、より好ましくは120mPa・s以下となる。The aerated sludge formed in the aeration process has a reduced viscosity because the polymer substance is decomposed, and using a B-type rotational viscometer, the sludge pH is 7.5 to 9.5, the temperature is 35 ° C, and the rotor The viscosity measured under the condition of a rotation speed of 60 min −1 is 200 mPa · s or less, preferably 150 mPa · s or less, more preferably 120 mPa · s or less.

なお、曝気処理工程は、連続式でも回分式でもよい。   The aeration process may be a continuous type or a batch type.

(4)凝集工程
次いで、鉄(III)を含有する曝気処理汚泥は、凝集工程において凝集剤が注入され、凝集汚泥が形成される。凝集汚泥はフロックとも呼ばれる。
(4) Coagulation Step Next, the coagulant is injected into the aeration-treated sludge containing iron (III) in the coagulation step to form coagulated sludge. Coagulated sludge is also called floc.

凝集剤としては、特に限定されないが、無機凝集剤、高分子凝集剤が用いられる。無機凝集剤としては、ポリ塩化アルミニウム、硫酸バンド、塩化アルミニウム、塩化第一鉄、塩化第二鉄、ポリ硫酸第一鉄、ポリ硫酸第二鉄などが挙げられる。高分子凝集剤としては、カチオン性高分子凝集剤、両性高分子凝集剤、アニオン性高分子凝集剤、ノニオン性高分子凝集剤など挙げられる。   The flocculant is not particularly limited, but an inorganic flocculant and a polymer flocculant are used. Examples of the inorganic coagulant include polyaluminum chloride, a sulfate band, aluminum chloride, ferrous chloride, ferric chloride, ferrous polysulfate, and ferric polysulfate. Examples of the polymer flocculant include a cationic polymer flocculant, an amphoteric polymer flocculant, an anionic polymer flocculant, and a nonionic polymer flocculant.

カチオン性高分子凝集剤としては、カチオン性モノマの重合体、カチオン性モノマとノニオン性モノマとの共重合体、アミジン単位を有するアミジン系高分子凝集剤、アミジン系高分子凝集剤と上記の非アミジン系高分子凝集剤を混合した高分子凝集剤などが挙げられる。カチオン性モノマとしては、ジアルキルアミノアルキル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレートの3級塩、ジアルキルアミノアルキル(メタ)アクリレートの4級塩などが挙げられ、例えば、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートの3級塩、ジメチルアミノエチル(メタ)アクリレートの4級塩などが挙げられる。なお、アクリレート又はメタクリレートを(メタ)アクリレートと表す。また、アクリル酸又はメタクリル酸を(メタ)アクリル酸と表す。また、アクリルアミド又はメタクリルアミドを(メタ)アクリルアミドと表す。   Examples of the cationic polymer flocculant include a polymer of a cationic monomer, a copolymer of a cationic monomer and a nonionic monomer, an amidine-based polymer flocculant having an amidine unit, an amidine-based polymer flocculant and A polymer coagulant mixed with an amidine-based polymer coagulant is exemplified. Examples of the cationic monomer include dialkylaminoalkyl (meth) acrylates, tertiary salts of dialkylaminoalkyl (meth) acrylates, and quaternary salts of dialkylaminoalkyl (meth) acrylates. For example, dimethylaminoethyl (meth) Acrylates, tertiary salts of dimethylaminoethyl (meth) acrylate, quaternary salts of dimethylaminoethyl (meth) acrylate and the like can be mentioned. Note that acrylate or methacrylate is referred to as (meth) acrylate. Also, acrylic acid or methacrylic acid is referred to as (meth) acrylic acid. Acrylamide or methacrylamide is referred to as (meth) acrylamide.

アニオン性高分子凝集剤としては、アニオン性モノマの重合体、アニオン性モノマとノニオン性モノマとの共重合体などが挙げられる。アニオン性モノマとしては、(メタ)アクリル酸、(メタ)アクリル酸ナトリウムなどが挙げられる。ノニオン性モノマとしては、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミドなどが挙げられる。   Examples of the anionic polymer coagulant include a polymer of an anionic monomer and a copolymer of an anionic monomer and a nonionic monomer. Examples of the anionic monomer include (meth) acrylic acid and sodium (meth) acrylate. Examples of the nonionic monomer include (meth) acrylamide and N, N-dimethyl (meth) acrylamide.

両性高分子凝集剤としては、上述のカチオン性モノマとアニオン性モノマとの共重合体、カチオン性モノマとアニオン性モノマとノニオン性モノマとの共重合体などが挙げられる。   Examples of the amphoteric polymer flocculant include a copolymer of the above-described cationic monomer and anionic monomer, and a copolymer of a cationic monomer, an anionic monomer, and a nonionic monomer.

高分子凝集剤の注入率は、汚泥のTS濃度に対して1〜7質量%がよく、好ましくは2〜5質量%であるが、従来の嫌気性処理汚泥の凝集方法における注入量と比較して10〜30%の削減を達成できる。ここで、TSとは全蒸発残留物のことである。TSの分析方法は下水道試験法に準拠した。フロックは、直径、すなわちフロック径が数ミリ程度であり、沈降分離性が高いことが好ましい。   The injection rate of the polymer flocculant is preferably 1 to 7% by mass, and more preferably 2 to 5% by mass with respect to the TS concentration of the sludge, but compared with the injection amount in the conventional anaerobic treatment sludge coagulation method. 10 to 30% reduction can be achieved. Here, TS is the total evaporation residue. The analysis method of TS was based on the sewer test method. The floc preferably has a diameter, that is, a floc diameter of about several millimeters, and has high sedimentation and separability.

凝集の前に、曝気処理汚泥を希釈してもよく、凝集剤注入率をさらに低減することができる。希釈液としては、凝集反応に影響を与えない性状であればよく、例えば、溶解性分濃度が低い水が好ましい。例えば、水道水、飲料水、工業用水、生物処理水、生物処理水のろ過水、生物脱臭装置廃液の生物処理水などが挙げられる。希釈することによって、曝気処理汚泥の粘度が低下するとともに溶存塩類濃度が低下し、凝集剤の分散性がさらに向上する。希釈された曝気処理汚泥のM−アルカリ度は、4000mg/L以下が好ましく、2500mg/L以下がさらに好ましい。希釈された消化汚泥の電気伝導度は1200mS/m以下に調整することが好ましく、750mS/m以下に調整することがさらに好ましい。   Before the coagulation, the aerated sludge may be diluted, and the coagulant injection rate can be further reduced. The diluent may have any properties that do not affect the agglutination reaction. For example, water having a low soluble component concentration is preferable. For example, tap water, drinking water, industrial water, biologically treated water, filtered water of biologically treated water, biologically treated water of biological deodorizer waste liquid, and the like can be mentioned. By diluting, the viscosity of the aerated sludge decreases, and the concentration of dissolved salts decreases, and the dispersibility of the flocculant further improves. The M-alkalinity of the diluted aerated sludge is preferably 4000 mg / L or less, more preferably 2500 mg / L or less. The electric conductivity of the diluted digested sludge is preferably adjusted to 1200 mS / m or less, more preferably 750 mS / m or less.

(5)脱水工程
脱水工程では、凝集汚泥を脱水ケーキと脱水分離液とに固液分離する。脱水前に濃縮処理して得た濃縮汚泥を脱水ケーキと脱水分離液とに固液分離してもよい。本発明の処理方法により得られる脱水ケーキの含水率は85%以下と低含水率であるため、コンポスト、炭、燃料などの再資源化が可能である。
(5) Dehydration Step In the dehydration step, the coagulated sludge is solid-liquid separated into a dewatered cake and a dewatered separation liquid. The concentrated sludge obtained by the concentration treatment before the dehydration may be subjected to solid-liquid separation into a dehydrated cake and a dehydrated separation liquid. Since the water content of the dehydrated cake obtained by the treatment method of the present invention is as low as 85% or less, it is possible to recycle compost, charcoal, fuel and the like.

(6)濃縮工程
凝集により形成された凝集汚泥を固液分離により濃縮してから脱水してもよい。濃縮により濃縮汚泥と濃縮分離液とに固液分離される。TS濃度が5〜15質量%に濃縮された汚泥は、脱水工程においてより効率的に脱水することができる。
(6) Concentration Step The coagulated sludge formed by coagulation may be concentrated by solid-liquid separation and then dewatered. By the concentration, solid-liquid separation into a concentrated sludge and a concentrated separated liquid is performed. Sludge having a TS concentration of 5 to 15% by mass can be dewatered more efficiently in the dewatering step.

次に、本発明の有機物の処理方法を実施する装置について説明する。   Next, an apparatus for carrying out the method for treating organic matter according to the present invention will be described.

本発明の有機物の処理装置は、有機物に鉄化合物を注入する鉄化合物注入手段と、
鉄化合物を注入する配管を有し、鉄(II)の共存下で有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理槽と、
酸化還元電位測定装置を有し、当該嫌気性処理汚泥に酸素含有気体を接触させ、鉄(II)を鉄(III)に酸化させて、鉄(III)を含む曝気処理汚泥を形成させる曝気槽と、
当該曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集槽と、
当該凝集汚泥を脱水する脱水装置と、
当該脱水装置からの脱水分離液に含まれるアンモニアを硝化する硝化槽と、
当該硝化槽からの排気ガスを当該曝気槽に添加する酸素含有気体供給配管と、
を具備する。
The organic material treatment apparatus of the present invention, an iron compound injection means for injecting an iron compound into the organic material,
An anaerobic treatment tank having a pipe for injecting an iron compound, anaerobically treating organic matter in the presence of iron (II) to form anaerobic treated sludge,
An aeration tank having an oxidation-reduction potential measuring device, and bringing an oxygen-containing gas into contact with the anaerobic treated sludge to oxidize iron (II) to iron (III) to form an aerated treated sludge containing iron (III) When,
Injecting a coagulant into the aerated sludge, a coagulation tank to form coagulated sludge,
A dehydration device for dehydrating the coagulated sludge,
A nitrification tank for nitrifying ammonia contained in the dehydration separation liquid from the dehydration device,
An oxygen-containing gas supply pipe for adding exhaust gas from the nitrification tank to the aeration tank,
Is provided.

有機物に鉄化合物を注入する鉄化合物注入手段は、有機物貯槽、可溶化槽、可溶化物貯槽、有機物又は可溶化槽で処理された可溶化物を各槽に搬送する配管、又は嫌気性処理槽の少なくとも1に設けることができる。   An iron compound injection means for injecting an iron compound into an organic substance is an organic substance storage tank, a solubilization tank, a solubilized substance storage tank, a pipe for transporting the organic substance or the solubilized substance treated in the solubilization tank to each tank, or an anaerobic treatment tank. At least one of the following.

曝気槽と凝集槽には曝気槽内の汚泥の粘度に応じて酸素含有気体の曝気風量を調整する制御装置が電気的に連結されていてもよく、曝気槽内の汚泥の粘度を計測する粘度計を設置することが好ましい。   The aeration tank and the coagulation tank may be electrically connected to a controller for adjusting the amount of aeration air of the oxygen-containing gas according to the viscosity of the sludge in the aeration tank, and the viscosity for measuring the viscosity of the sludge in the aeration tank. It is preferable to install a meter.

以下、各槽について説明する。   Hereinafter, each tank will be described.

(A)可溶化槽
鉄化合物を注入する手段を具備する以外は、有機物を可溶化処理するために一般に用いられる可溶化槽を制限なく用いることができる。
(A) Solubilization tank A solubilization tank generally used for solubilizing organic substances can be used without limitation, except that a means for injecting an iron compound is provided.

(B)可溶化物貯槽
鉄化合物を注入する手段を具備する以外は、有機物を可溶化処理した後の可溶化物を嫌気性処理するまでの間、貯蔵するために一般に用いられる可溶化物貯槽を制限なく用いることができる。
(B) Solubilized matter storage tank Except for having a means for injecting an iron compound, a solubilized matter tank generally used for storing a solubilized substance after solubilizing an organic substance until anaerobic processing. Can be used without limitation.

(C)配管
鉄化合物を注入する手段を具備する以外は、有機物又は可溶化物を各槽に搬送するために一般に用いられる配管を制限なく用いることができる。
(C) Piping A pipe generally used for transporting an organic substance or a solubilized substance to each tank can be used without limitation, except that a means for injecting an iron compound is provided.

(D)嫌気性処理槽
廃棄物系バイオマス処理設備や下水処理施設などで一般に用いられる完全混合型嫌気性処理槽や乾式メタン発酵槽など、公知の嫌気性処理槽を制限なく用いることができる。
(D) Anaerobic treatment tank Known anaerobic treatment tanks such as a completely mixed anaerobic treatment tank and a dry methane fermentation tank generally used in waste biomass treatment facilities and sewage treatment facilities can be used without limitation.

(E)曝気槽
水処理施設などで一般に用いられる曝気槽を制限なく用いることができる。曝気槽には、嫌気性処理汚泥を供給する手段、酸素含有気体を曝気槽に供給するための曝気手段、曝気処理汚泥の引き抜き手段を備える。曝気手段としては、散気式、機械撹拌式、散気式と機械撹拌式の併用式などが挙げられる。散気式の曝気装置は、散気装置とブロアから構成される。散気装置としては、散気板、散気管、多孔管、スパージャなどが挙げられる。曝気手段は、曝気槽底部から曝気槽内の汚泥に気泡を供給できるように設けることが好ましい。また、曝気槽には、運転管理する計測機器としてpH計、DO計、ORP計、粘度計を備えることが好ましい。また、曝気槽の汚泥のpHを制御するため、酸注入手段やアルカリ注入手段を備えることが好ましい。
(E) Aeration tank An aeration tank generally used in a water treatment facility or the like can be used without limitation. The aeration tank is provided with means for supplying anaerobic treated sludge, aeration means for supplying oxygen-containing gas to the aeration tank, and means for extracting aerated sludge. Examples of the aeration means include an aeration type, a mechanical stirring type, and a combination type of an aeration type and a mechanical stirring type. A diffuser-type aerator is composed of a diffuser and a blower. Examples of the diffuser include a diffuser plate, a diffuser tube, a perforated tube, and a sparger. The aeration means is preferably provided so that air bubbles can be supplied from the bottom of the aeration tank to the sludge in the aeration tank. The aeration tank preferably includes a pH meter, a DO meter, an ORP meter, and a viscometer as measuring devices for operation management. Further, in order to control the pH of the sludge in the aeration tank, it is preferable to provide an acid injection unit or an alkali injection unit.

(F)凝集槽
水処理施設などで一般に用いられる凝集槽を制限なく用いることができ、曝気処理した曝気処理汚泥を供給する手段、凝集剤を注入する手段、曝気処理汚泥と凝集剤を混合する手段、凝集汚泥の引き抜き手段を備える。
(F) Coagulation tank A coagulation tank generally used in water treatment facilities and the like can be used without limitation, and a means for supplying aerated aerated sludge, a means for injecting a coagulant, and mixing the aerated sludge and a coagulant. And a means for extracting coagulated sludge.

また、2つ以上の凝集槽を設けて、凝集剤を分割注入してもよい。例えば、凝集槽を2つ以上設ける場合、第1の凝集槽では無機凝集剤を注入し、第2以降の凝集槽では高分子凝集剤を注入し、凝集汚泥を形成してもよいし、第1の凝集槽でも高分子凝集剤を注入し、第2以降の凝集槽でも高分子凝集剤を注入してもよい。また、凝集槽を3つ以上設ける場合、第1の凝集槽に無機凝集剤を分割注入し、第2の凝集槽及び第3以降の凝集槽に高分子凝集剤を分割注入してもよい。凝集剤の注入量及び注入回数は、処理すべき汚泥の性状及び凝集槽の数に応じて適宜設定することができる。   Further, two or more coagulation tanks may be provided, and the coagulant may be dividedly injected. For example, when two or more coagulation tanks are provided, an inorganic coagulant may be injected in the first coagulation tank, and a polymer coagulant may be injected in the second and subsequent coagulation tanks to form coagulated sludge. The polymer flocculant may be injected into the first flocculation tank, and the polymer flocculant may be injected into the second and subsequent flocculation tanks. When three or more coagulation tanks are provided, the inorganic coagulant may be dividedly injected into the first coagulation tank, and the polymer coagulant may be dividedly injected into the second coagulation tank and the third and subsequent coagulation tanks. The injection amount and the number of injections of the coagulant can be appropriately set according to the properties of the sludge to be treated and the number of coagulation tanks.

また、凝集槽は脱水装置に設けられていてもよい。このような脱水装置としては、一部の遠心脱水機が挙げられ、このような遠心脱水機は、内部に凝集槽に相当する領域を備えており、遠心力により汚泥と凝集剤を混合し、凝集汚泥を形成する。   Further, the coagulation tank may be provided in a dehydrator. Examples of such a dehydrator include some centrifugal dehydrators, and such a centrifugal dehydrator has an area corresponding to a flocculation tank therein, and mixes sludge and a flocculant by centrifugal force, Form coagulated sludge.

(G)脱水装置
凝集槽で調整された凝集汚泥又は濃縮機で濃縮された濃縮汚泥を脱水する脱水装置を備える。脱水装置としては特に限定されず、凝集汚泥又は濃縮汚泥へ圧力を付与する手段と、固形物と脱水分離液とに分離する手段を具備することが好ましい。脱水装置としては、ベルトプレス、スクリュープレス、遠心脱水機、フィルタープレス、多重円板型脱水機、多重円盤型スクリュープレス、ロータリープレスなどが挙げられる。
(G) Dewatering device A dewatering device is provided to dewater coagulated sludge adjusted in the coagulation tank or concentrated sludge concentrated in the concentrator. The dewatering apparatus is not particularly limited, and preferably includes a means for applying pressure to the coagulated sludge or the concentrated sludge, and a means for separating the solid matter and the dewatered separation liquid. Examples of the dehydrating apparatus include a belt press, a screw press, a centrifugal dehydrator, a filter press, a multiple disk type dehydrator, a multiple disk type screw press, a rotary press, and the like.

(H)硝化槽
脱水装置からの脱水分離液に含まれるアンモニアを硝化する硝化槽は、硝化槽からの排気ガスを曝気装置に送る酸素含有気体供給管を具備する点を除いて、水処理施設などで一般に用いられる硝化槽を制限なく用いることができる。
(H) Nitrification tank The nitrification tank for nitrifying ammonia contained in the dewatered separation liquid from the dehydration apparatus is a water treatment facility except that it has an oxygen-containing gas supply pipe for sending exhaust gas from the nitrification tank to the aeration apparatus. For example, a nitrification tank generally used can be used without limitation.

(I)粘度計
曝気槽と凝集槽には曝気槽内の汚泥の粘度に応じて酸素含有気体の曝気風量を調整する制御装置が電気的に連結されていてもよい。通常、曝気槽内の汚泥の粘度の計測は、試料を採取して粘度計で計測するため、自動連続計測を行うことができない。本発明では、凝集槽の撹拌機の撹拌速度に基づいて、凝集槽内の嫌気性処理汚泥の粘度を推測し、曝気処理中の嫌気性処理汚泥の粘度を推測して、曝気風量を調整してもよい。具体的には、たとえば、凝集槽の撹拌装置に電流検出部を設け、検出された電流から撹拌速度、すなわち撹拌抵抗を求め、曝気槽内の嫌気性処理汚泥の粘度変動を推定して、所定の曝気風量に調整する。
(I) Viscometer The aeration tank and the coagulation tank may be electrically connected to a control device that adjusts the amount of oxygen-containing gas to be aerated according to the viscosity of the sludge in the aeration tank. Normally, the viscosity of sludge in an aeration tank is measured by a viscometer after a sample is taken, so that automatic continuous measurement cannot be performed. In the present invention, based on the stirring speed of the stirrer of the flocculation tank, the viscosity of the anaerobic treated sludge in the flocculation tank is estimated, the viscosity of the anaerobic treated sludge during the aeration treatment is estimated, and the amount of aeration air is adjusted. You may. Specifically, for example, a current detection unit is provided in the agitation device of the flocculation tank, a stirring speed, that is, a stirring resistance is determined from the detected current, and a viscosity change of the anaerobic sludge in the aeration tank is estimated. Adjust the aeration air volume.

(J)濃縮装置
凝集槽で形成された凝集汚泥を固液分離して濃縮汚泥を形成する固液分離装置を備えていてもよい。固液分離装置としては、特に限定されず、重力濃縮法が適用される単なる槽、遠心濃縮法が適用される遠心分離機、浮上濃縮法が適用される分離機、スクリーンを用いた分離機等が挙げられる。中でも、濃縮分離液を通過させる多数のスリットを形成したスクリーンと、スリットに配置され、スリットの目詰まりを除去するとともに、濃縮汚泥を濃縮機の流入側から排出側に搬送する多数の楕円板とを備える楕円板型濃縮機が好ましい。楕円板型濃縮機は、例えば、スクリーンで受け止められた凝集汚泥は、出口方向に回転する多数の楕円板によってスクリーン上を搬送され、この過程でスリットと楕円板との隙間から濃縮分離液が落下してろ過され、凝集汚泥中の固体成分は分離捕集される。さらに、スクリーン上の凝集汚泥を圧搾する加圧板がスクリーン上部に配置された機械構造も好ましく用いることができる。
(J) Concentrating Device A solid-liquid separating device that forms a concentrated sludge by subjecting the coagulated sludge formed in the coagulation tank to solid-liquid separation may be provided. The solid-liquid separation device is not particularly limited, and a simple tank to which gravity concentration is applied, a centrifuge to which centrifugal concentration is applied, a separator to which flotation concentration is applied, a separator using a screen, and the like. Is mentioned. Among them, a screen having a large number of slits through which the concentrated separated liquid passes, and a large number of elliptical plates arranged in the slit to remove clogging of the slit and transport the concentrated sludge from the inflow side to the discharge side of the thickener. An elliptic plate type concentrator provided with is preferred. In the elliptic plate type concentrator, for example, the flocculated sludge received by the screen is conveyed on the screen by a number of elliptical plates rotating in the exit direction, and in this process, the concentrated separated liquid falls from the gap between the slit and the elliptical plate. The solid component in the coagulated sludge is separated and collected. Further, a mechanical structure in which a pressurizing plate for squeezing coagulated sludge on the screen is arranged at the upper part of the screen can be preferably used.

次に、実施例及び比較例により、本発明を具体的に説明する。   Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

[実施例1]
鉄化合物の注入により、嫌気性処理が効率化されることを確認するために、鉄化合物を異なる濃度で注入し、有機物の嫌気性処理を行った。処理原料の有機物として、種々の食品製造廃棄物の混合物を使用した。鉄化合物として、ポリ硫酸第二鉄を使用した。試験方法は以下の通りである。
[Example 1]
In order to confirm that the injection of the iron compound improves the efficiency of the anaerobic treatment, the iron compound was injected at different concentrations, and the anaerobic treatment of the organic matter was performed. A mixture of various food production wastes was used as the organic material of the processing raw material. Ferric polysulfate was used as the iron compound. The test method is as follows.

実際に稼働しているメタン発酵処理施設(施設F1)にて、800mの嫌気性処理槽にHRT30日で原料を投入し、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が下記表1に示す濃度となるように鉄化合物を注入し、温度35℃で嫌気性処理し、ガス発生量と有機酸濃度を測定した。ガス発生量の測定は膜式ガスメーターを用いて行った。有機酸濃度の測定は、高速液体クロマトグラフィー(検出器:RI、分離カラム:Shodex RSpak KC-811、カラム温度60℃、移動相:0.1%リン酸水溶液)を用いて行った。In a methane fermentation treatment facility (facility F1) which is actually operating, raw materials are charged into an anaerobic treatment tank of 800 m 3 for 30 days in HRT, and the iron concentration in the anaerobic treated sludge after the injection of the iron compound is shown in Table 1 below. An iron compound was injected so as to have a concentration as shown in Table 2, and subjected to anaerobic treatment at a temperature of 35 ° C, and the amount of generated gas and the concentration of organic acid were measured. The gas generation amount was measured using a membrane gas meter. The measurement of the organic acid concentration was performed using high performance liquid chromatography (detector: RI, separation column: Shodex RSpak KC-811, column temperature: 60 ° C., mobile phase: 0.1% phosphoric acid aqueous solution).

表1に試験結果を示す。これらの試験結果から、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が鉄換算で100mg/L以上であれば、ガス発生量が大きく、有機酸の蓄積が少なく、嫌気性処理が効率化、安定化できることが確認できた。   Table 1 shows the test results. From these test results, when the iron concentration in the anaerobic treated sludge after the injection of the iron compound is 100 mg / L or more in terms of iron, the amount of generated gas is large, the accumulation of organic acids is small, and the anaerobic treatment is more efficient. It was confirmed that it could be stabilized.

Figure 0006666346
Figure 0006666346

[実施例2]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、嫌気性処理が効率化されること、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。
[Example 2]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following test was conducted to confirm that the anaerobic treatment was made more efficient, the coagulation was made more efficient, and the dehydration was made more efficient by forming the coagulated sludge and finally dewatering the coagulated sludge. went.

実施例1と同じメタン発酵処理施設(施設F1)にて、種々の食品製造廃棄物の混合物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が63mg/L(鉄換算)もしくは297mg/L(鉄換算)になるように鉄化合物を注入し、嫌気性処理を行った。次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.3m‐Air/(m‐汚泥・min)で、24時間、曝気処理した。次に、サンプリングした曝気処理汚泥をアミジン系高分子凝集剤で凝集させ、ベルトプレス脱水機で脱水した。表2に試験結果を示す。In the same methane fermentation treatment facility (facility F1) as in Example 1, a mixture of various food production wastes was used as a raw material, and the iron concentration in the anaerobic treated sludge after the injection of the iron compound was 63 mg / L (iron equivalent) or An anaerobic treatment was performed by injecting an iron compound so as to be 297 mg / L (in terms of iron). Next, 10 L of the anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.3 m 3 -Air / (m 3 -sludge · min) for 24 hours. Next, the sampled aerated sludge was agglomerated with an amidine-based polymer flocculant and dehydrated with a belt press dehydrator. Table 2 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が100mg/L(鉄換算)以上になるように鉄化合物を注入することによって、嫌気性処理を効率化できるとともに、ケーキ含水率を低減できることが確認できた。曝気処理槽内の汚泥のDOは、0.0〜0.2mg/L、ORP(銀/塩化銀電極を基準としたORP)は−240〜−350mVであった。   From these test results, the anaerobic treatment can be made more efficient by injecting the iron compound so that the iron concentration in the anaerobic treated sludge after the injection of the iron compound becomes 100 mg / L (iron conversion) or more. It was confirmed that the water content could be reduced. The DO of the sludge in the aeration treatment tank was 0.0 to 0.2 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was -240 to -350 mV.

[実施例3]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、嫌気性処理が効率化されること、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。
[Example 3]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following test was conducted to confirm that the anaerobic treatment was made more efficient, the coagulation was made more efficient, and the dehydration was made more efficient by forming the coagulated sludge and finally dewatering the coagulated sludge. went.

実施例1及び2とは異なるメタン発酵処理施設(施設F2)にて、1000mの嫌気性処理槽にHRT30日で原料を投入し、温度35℃で嫌気性処理した。種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、可溶化物貯槽に鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が50mg/L(鉄換算)もしくは200mg/L(鉄換算)になるように鉄化合物を注入し、嫌気性処理を行った。鉄化合物として、ポリ硫酸第二鉄を使用した。In a methane fermentation treatment facility (facility F2) different from those in Examples 1 and 2, the raw material was charged into an anaerobic treatment tank of 1000 m 3 for 30 days at HRT, and subjected to anaerobic treatment at a temperature of 35 ° C. Using a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes as a raw material, the iron concentration in the anaerobic treated sludge after injecting the iron compound into the solubilized material storage tank is 50 mg / L (iron equivalent) or 200 mg / L. An anaerobic treatment was performed by injecting an iron compound so as to obtain (in terms of iron). Ferric polysulfate was used as the iron compound.

次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.3m‐Air/(m‐汚泥・min)で、24時間、曝気処理した。次に、サンプリングした曝気処理汚泥をアミジン系高分子凝集剤で凝集させ、ベルトプレス脱水機で脱水した。表3に試験結果を示す。Next, 10 L of the anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.3 m 3 -Air / (m 3 -sludge · min) for 24 hours. Next, the sampled aerated sludge was agglomerated with an amidine-based polymer flocculant and dehydrated with a belt press dehydrator. Table 3 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が100mg/L(鉄換算)以上になるように鉄化合物を注入することによって、嫌気性処理を効率化できるとともに、ケーキ含水率を低減できることが確認できた。曝気処理槽内の汚泥のDOは、0.0〜0.2mg/L、ORP(銀/塩化銀電極を基準としたORP)は−210〜−330mVであった。   From these test results, the anaerobic treatment can be made more efficient by injecting the iron compound so that the iron concentration in the anaerobic treated sludge after the injection of the iron compound becomes 100 mg / L (iron conversion) or more. It was confirmed that the water content could be reduced. The DO of the sludge in the aeration treatment tank was 0.0 to 0.2 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was −210 to −330 mV.

[実施例4]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。試験方法は以下の通りである。
[Example 4]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. The test method is as follows.

実施例3と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化貯槽に鉄化合物を注入し、嫌気性処理を行った。鉄化合物として、ポリ硫酸第二鉄を使用した。   In the same methane fermentation treatment facility (facility F2) as in Example 3, the iron concentration in the anaerobic treated sludge after injection of the iron compound was determined using the solubilized material obtained by solubilizing a mixture of various food manufacturing wastes as a raw material. An iron compound was injected into the solubilization storage tank so that the concentration became 200 mg / L (in terms of iron), and anaerobic treatment was performed. Ferric polysulfate was used as the iron compound.

次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.3m‐Air/(m‐汚泥・min)で曝気処理した。曝気処理汚泥は所定の曝気時間経過後にサンプリングした。次に、サンプリングした曝気処理汚泥にアミジン系高分子凝集剤を注入して凝集させた後、ベルトプレスで脱水した。表4に試験結果を示す。Next, 10 L of the anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.3 m 3 -Air / (m 3 -sludge · min). The aerated sludge was sampled after a predetermined aeration time. Next, the sampled aerated sludge was injected with an amidine-based polymer flocculant to cause flocculation, and then dewatered by a belt press. Table 4 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、曝気処理をしない嫌気性処理汚泥(曝気時間0h)に対して、曝気処理汚泥は、ケーキ含水率を低減できること、凝集剤注入率を低減できること、及び曝気処理汚泥の凝集時の発泡現象が起こらなかったことが確認できる。曝気時間が3〜48時間でケーキ含水率を低減でき、最終的にはケーキ含水率を82%以下まで低減できた。曝気処理を行わない嫌気性処理汚泥は黒色であったが、3時間以上の曝気時間で嫌気性処理汚泥は褐色に変化し、曝気処理により鉄(II)が鉄(III)に酸化されたことを確認した。曝気処理槽内の汚泥のDOは、0.0〜0.2mg/L、銀/塩化銀電極を基準とした酸化還元電位(ORP)は−170〜−320mVであった。   From these test results, it can be seen that the aerated sludge can reduce the water content of the cake, the coagulant injection rate can be reduced, and the agglomeration of the aerated sludge with respect to the anaerobic treated sludge without aeration (aeration time 0 h). It can be confirmed that the foaming phenomenon did not occur. The aeration time was 3 to 48 hours, and the water content of the cake could be reduced, and finally the water content of the cake could be reduced to 82% or less. The anaerobic sludge without aeration was black, but the anaerobic sludge turned brown after 3 hours of aeration, and iron (II) was oxidized to iron (III) by the aeration. It was confirmed. The DO of the sludge in the aeration treatment tank was 0.0 to 0.2 mg / L, and the oxidation-reduction potential (ORP) based on the silver / silver chloride electrode was -170 to -320 mV.

[実施例5]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。実施例4とは、曝気風量を変更した。試験方法は以下の通りである。
[Example 5]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. Example 4 was different from Example 4 in the amount of aeration air. The test method is as follows.

実施例3及び4と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化物貯槽に鉄化合物を注入し、嫌気性処理を行った。次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.1m‐Air/(m‐汚泥・min)で曝気処理した。曝気処理汚泥は所定の曝気時間経過後にサンプリングした。次に、サンプリングした曝気処理汚泥にアミジン系高分子凝集剤を注入して凝集させ、ベルトプレス脱水機で脱水した。表5に試験結果を示す。In the same methane fermentation treatment facility (facility F2) as in Examples 3 and 4, a solubilized material obtained by solubilizing a mixture of various food production wastes was used as a raw material, and iron in the anaerobic treated sludge after injection of an iron compound was used. An anaerobic treatment was performed by injecting an iron compound into the solubilized substance storage tank so that the concentration was 200 mg / L (in terms of iron). Next, 10 L of anaerobic treated sludge was charged into a 20 L aeration tank and aerated at a temperature of 35 ° C. and an aeration air flow of 0.1 m 3 -Air / (m 3 -sludge · min). The aerated sludge was sampled after a predetermined aeration time. Next, an amidine-based polymer flocculant was injected into the sampled aerated sludge to cause coagulation, and dewatered by a belt press dehydrator. Table 5 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、曝気処理をしない嫌気性処理汚泥(0h)に対して、曝気処理汚泥は、ケーキ含水率を低減できること、凝集剤注入率を低減できること、及び曝気処理汚泥の凝集時の発泡現象が起こらなかったことが確認できる。曝気時間が3〜48時間でケーキ含水率を低減でき、最終的にはケーキ含水率を82%以下まで低減できた。曝気処理を行わない嫌気性処理汚泥は黒色であったが、3時間以上の曝気時間で嫌気性処理汚泥は褐色に変化し、曝気処理により鉄(II)が鉄(III)に酸化されたことを確認した。曝気処理槽内の汚泥のDOは、0.0〜0.1mg/L、ORP(銀/塩化銀電極を基準としたORP)は−240〜−310mVであった。   From these test results, it can be seen that the aeration-treated sludge can reduce the water content of the cake, the coagulant injection rate can be reduced, and the foaming of the aeration-treated sludge at the time of coagulation with respect to the anaerobic treatment sludge (0h) without the aeration treatment. It can be confirmed that no phenomenon occurred. The aeration time was 3 to 48 hours, and the water content of the cake was reduced, and finally the water content of the cake was reduced to 82% or less. The anaerobic sludge without aeration was black, but the anaerobic sludge turned brown after 3 hours of aeration, and iron (II) was oxidized to iron (III) by the aeration. It was confirmed. The DO of the sludge in the aeration tank was 0.0 to 0.1 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was -240 to -310 mV.

実施例4及び5の結果を図10に示す。図10から、同じ凝集剤注入率であっても、曝気風量が多いほど、脱水ケーキの含水率が低下していることがわかる。   The results of Examples 4 and 5 are shown in FIG. From FIG. 10, it can be seen that, even with the same coagulant injection rate, the water content of the dehydrated cake decreases as the amount of aerated air increases.

[実施例6]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。実施例3〜5では曝気処理は回分式で実施したが、実施例6では曝気処理を連続式で実施した。試験方法は以下の通りである。
[Example 6]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. In Examples 3 to 5, the aeration process was performed in a batch system, but in Example 6, the aeration process was performed in a continuous system. The test method is as follows.

実施例3〜5と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化貯槽に鉄化合物を注入し、嫌気性処理を行った。鉄化合物としてポリ硫酸第二鉄を使用した。   In the same methane fermentation treatment facility (facility F2) as in Examples 3 to 5, a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes was used as a raw material, and iron in the anaerobic treated sludge after injection of an iron compound was used. An iron compound was injected into the solubilization storage tank so that the concentration became 200 mg / L (in terms of iron), and anaerobic treatment was performed. Ferric polysulfate was used as the iron compound.

次に、60mの曝気処理槽に嫌気性処理汚泥を4m/hで供給し、曝気処理汚泥を4m/hで曝気処理槽から引き抜き、凝集槽に供給した。曝気風量は0.3m‐Air/(m‐汚泥・min)とした。曝気処理槽内の汚泥に硫酸を注入し、汚泥のpHを8.0〜8.2に制御した。凝集槽では、曝気処理汚泥とアミジン系高分子凝集剤を混合し、凝集汚泥を形成した。凝集汚泥はスクリュープレス脱水機で脱水した。Next, the anaerobic treated sludge was supplied to the 60 m 3 aeration treatment tank at 4 m 3 / h, and the aeration treatment sludge was pulled out from the aeration treatment tank at 4 m 3 / h and supplied to the coagulation tank. Aeration air volume 0.3m 3 -Air / - was (m 3 sludge · min). Sulfuric acid was injected into the sludge in the aeration tank, and the pH of the sludge was controlled to 8.0 to 8.2. In the flocculation tank, the aerated sludge and the amidine-based polymer flocculant were mixed to form flocculated sludge. The coagulated sludge was dehydrated with a screw press dehydrator.

比較例として、曝気処理をしない嫌気性処理汚泥も同様な方法で凝集、脱水を行った。表6に試験結果を示す。   As a comparative example, anaerobic treated sludge without aeration treatment was coagulated and dehydrated in the same manner. Table 6 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、曝気処理をしない嫌気性処理汚泥に対して、曝気処理汚泥では、ケーキ含水率を低減できること、凝集剤注入率を低減できること、及び曝気処理汚泥の凝集時の発泡現象が起こらなかったことが確認できる。曝気処理を行わない嫌気性処理汚泥は黒色であった。曝気処理汚泥は褐色であり、曝気処理により鉄(II)が鉄(III)に酸化されたことを確認した。曝気処理槽内の汚泥の温度は24〜38℃、DOは0.0〜0.1mg/L、ORP(銀/塩化銀電極を基準としたORP)は−170〜−380mVであった。   From these test results, it can be seen that the aerated sludge can reduce the water content of the cake, the coagulant injection rate can be reduced, and the bubbling phenomenon during the agglomeration of the aerated sludge with respect to the anaerobic sludge without aeration. You can confirm that there was no. The anaerobic treated sludge without aeration treatment was black. The aerated sludge was brown, and it was confirmed that iron (II) was oxidized to iron (III) by the aeration. The temperature of the sludge in the aeration treatment tank was 24-38 ° C., the DO was 0.0-0.1 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was −170 to −380 mV.

[実施例7]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。本実施例では、曝気処理汚泥のpHを変更し、脱水が効率化されることを確認した。
[Example 7]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. In the present example, it was confirmed that the pH of the aerated sludge was changed to improve the efficiency of dehydration.

実施例3〜6と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化物貯槽に鉄化合物を注入し、嫌気性処理を行った。次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.1m‐Air/(m‐汚泥・min)で、9時間、曝気処理した。次に、曝気処理汚泥に硫酸を注入し、pHを調整した。アミジン系高分子凝集剤でサンプリングした曝気処理汚泥を凝集させ、ベルトプレス脱水機で脱水した。In the same methane fermentation treatment facility (facility F2) as in Examples 3 to 6, a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes was used as a raw material, and iron in anaerobic treated sludge after injection of an iron compound was used. An anaerobic treatment was performed by injecting an iron compound into the solubilized substance storage tank so that the concentration was 200 mg / L (in terms of iron). Next, 10 L of anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.1 m 3 -Air / (m 3 -sludge · min) for 9 hours. Next, sulfuric acid was injected into the aerated sludge to adjust the pH. The aerated sludge sampled with an amidine-based polymer flocculant was flocculated and dewatered with a belt press dehydrator.

比較例として、曝気処理汚泥のpHを調整しない汚泥に対しても、同様に試験を行った。pHを調整しない汚泥のpHは8.6であった。表7に試験結果を示す。   As a comparative example, the same test was performed on sludge whose pH was not adjusted. The pH of the sludge without pH adjustment was 8.6. Table 7 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、曝気処理汚泥のpHを調整することにより、ケーキ含水率を低減できることが確認できた。曝気処理槽内の汚泥のDOは、0.0〜0.1mg/L、ORP(銀/塩化銀電極を基準としたORP)は−240〜−310mVであった。   From these test results, it was confirmed that the moisture content of the cake can be reduced by adjusting the pH of the aerated sludge. The DO of the sludge in the aeration tank was 0.0 to 0.1 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was -240 to -310 mV.

[実施例8]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。本実施例では、非アミジン系高分子凝集剤である、ジメチルアミノエチルアクリレートの4級塩とアクリルアミドの共重合体(アクリレート系高分子凝集剤)を使用した。
Example 8
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. In this example, a non-amidine polymer flocculant, a quaternary salt of dimethylaminoethyl acrylate and acrylamide (acrylate polymer flocculant) was used.

実施例3〜7と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化物貯槽に鉄化合物を注入し、嫌気性処理を行った。次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.3m‐Air/(m‐汚泥・min)で、24時間、曝気処理した。次に、アクリレート系高分子凝集剤でサンプリングした曝気処理汚泥を凝集させ、ベルトプレス脱水機で脱水した。In the same methane fermentation treatment facility (facility F2) as in Examples 3 to 7, a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes was used as a raw material, and iron in anaerobic treated sludge after injection of an iron compound was used. An anaerobic treatment was performed by injecting an iron compound into the solubilized substance storage tank so that the concentration was 200 mg / L (in terms of iron). Next, 10 L of the anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.3 m 3 -Air / (m 3 -sludge · min) for 24 hours. Next, the aerated sludge sampled with the acrylate polymer flocculant was flocculated and dewatered with a belt press dehydrator.

比較例として、曝気処理をしない汚泥に対しても、同様に試験を行った。表8に試験結果を示す。   As a comparative example, a similar test was performed on sludge not subjected to aeration treatment. Table 8 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、アクリレート系高分子凝集剤で曝気処理汚泥を凝集させることによって、ケーキ含水率を低減できることが確認できた。曝気処理を行わない嫌気性処理汚泥は黒色であったが、24時間以上の曝気時間で嫌気性処理汚泥は褐色に変化し、曝気処理により鉄(II)が鉄(III)に酸化されたことを確認した。曝気処理槽内の汚泥のDOは、0.0〜0.1mg/L、ORP(銀/塩化銀電極を基準としたORP)は−250〜−330mVであった。   From these test results, it was confirmed that the water content of the cake can be reduced by coagulating the aerated sludge with the acrylate polymer coagulant. Anaerobic sludge without aeration was black, but after 24 hours of aeration, the anaerobic sludge turned brown, and iron (II) was oxidized to iron (III) by aeration. It was confirmed. The DO of the sludge in the aeration treatment tank was 0.0 to 0.1 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was -250 to -330 mV.

[実施例9]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。本実施例では、非アミジン系高分子凝集剤である、ジメチルアミノエチルメタクリレートの4級塩の重合体(メタクリレート系高分子凝集剤)を使用した。
[Example 9]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. In this example, a polymer of a quaternary salt of dimethylaminoethyl methacrylate (methacrylate polymer flocculant), which is a non-amidine polymer flocculant, was used.

実施例3〜8と同じメタン発酵処理施設(施設F2)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物注入後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化物貯槽に鉄化合物を注入し、嫌気性処理を行った。次に、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃、曝気風量0.3m‐Air/(m‐汚泥・min)で、24時間、曝気処理した。次に、メタクリレート系高分子凝集剤でサンプリングした曝気処理汚泥を凝集させ、ベルトプレス脱水機で脱水した。In the same methane fermentation treatment facility (facility F2) as in Examples 3 to 8, a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes was used as a raw material, and iron in the anaerobic treated sludge after injection of an iron compound was used. An anaerobic treatment was performed by injecting an iron compound into the solubilized substance storage tank so that the concentration was 200 mg / L (in terms of iron). Next, 10 L of the anaerobic treated sludge was charged into a 20 L aeration tank, and aerated at a temperature of 35 ° C. and an aeration air flow of 0.3 m 3 -Air / (m 3 -sludge · min) for 24 hours. Next, the aerated sludge sampled with a methacrylate polymer flocculant was flocculated and dewatered with a belt press dewatering machine.

比較例として、曝気処理をしない汚泥に対しても、同様に試験を行った。表9に試験結果を示す。   As a comparative example, a similar test was performed on sludge not subjected to aeration treatment. Table 9 shows the test results.

Figure 0006666346
Figure 0006666346

これらの試験結果から、メタクリレート系高分子凝集剤で曝気処理汚泥を凝集させることによって、ケーキ含水率を低減できることが確認できた。曝気処理を行わない嫌気性処理汚泥は黒色であったが、24時間の曝気時間で嫌気性処理汚泥は褐色に変化し、曝気処理により鉄(II)が鉄(III)に酸化されたことを確認した。曝気処理槽内の汚泥のDOは、0.0〜0.1mg/L、ORP(銀/塩化銀電極を基準としたORP)は−250〜−330mVであった。   From these test results, it was confirmed that the water content of the cake can be reduced by coagulating the aerated sludge with a methacrylate polymer coagulant. The anaerobic sludge without aeration was black, but the anaerobic sludge turned brown in 24 hours of aeration, indicating that iron (II) was oxidized to iron (III) by the aeration. confirmed. The DO of the sludge in the aeration treatment tank was 0.0 to 0.1 mg / L, and the ORP (ORP based on the silver / silver chloride electrode) was -250 to -330 mV.

[実施例10]
鉄化合物を注入して嫌気性処理を行い、嫌気性処理汚泥を形成させ、次に嫌気性処理汚泥を曝気処理し、曝気処理汚泥を形成させ、次に凝集剤で曝気処理汚泥を凝集させ、凝集汚泥を形成させ、最後に凝集汚泥を脱水することにより、凝集が効率化されること、脱水が効率化されることを確認するため、以下の試験を行った。試験方法は以下の通りである。
[Example 10]
Perform anaerobic treatment by injecting an iron compound to form anaerobic treated sludge, then aerobically treat the anaerobic treated sludge, form an aerated treated sludge, and then coagulate the aerated treated sludge with a flocculant, The following tests were performed to confirm that the coagulation sludge was formed, and finally, the coagulation sludge was dehydrated to improve coagulation efficiency and dehydration efficiency. The test method is as follows.

実施例1及び実施例2と同じメタン発酵処理施設(施設F1)にて、種々の食品製造廃棄物の混合物を可溶化処理した可溶化物を原料とし、鉄化合物を注入した後の嫌気性処理汚泥中の鉄濃度が200mg/L(鉄換算)になるように可溶化貯槽に鉄化合物を注入し、嫌気性処理を行った。鉄化合物として、ポリ硫酸第二鉄を使用した。実施例3と同じメタン発酵処理施設(施設F2)でも同様に嫌気性処理を行った。   In the same methane fermentation treatment facility (facility F1) as in Example 1 and Example 2, anaerobic treatment after injecting an iron compound with a solubilized material obtained by solubilizing a mixture of various food manufacturing wastes as a raw material An anaerobic treatment was performed by injecting an iron compound into the solubilization storage tank so that the iron concentration in the sludge was 200 mg / L (in terms of iron). Ferric polysulfate was used as the iron compound. Anaerobic treatment was performed in the same methane fermentation treatment facility (facility F2) as in Example 3.

曝気処理には、メタン発酵処理施設F1で採取した嫌気性処理汚泥(汚泥A)、メタン発酵処理施設F2で異なる日時に採取した複数の嫌気性処理汚泥(汚泥B、汚泥C、汚泥D)を使用した。また、比較例として、下水処理場S1から採取した嫌気性処理汚泥(汚泥E)、下水処理場S2から採取した嫌気性処理汚泥(汚泥F)を使用した。   For the aeration treatment, anaerobic treated sludge (sludge A) collected at the methane fermentation treatment facility F1 and a plurality of anaerobic treatment sludges (sludge B, sludge C, and sludge D) collected at different dates and times at the methane fermentation treatment facility F2 are used. used. As comparative examples, anaerobic treated sludge (sludge E) collected from sewage treatment plant S1 and anaerobic treated sludge (sludge F) collected from sewage treatment plant S2 were used.

曝気処理では、20Lの曝気処理槽に10Lの嫌気性処理汚泥を投入し、温度35℃で曝気した。曝気処理汚泥をサンプリングし、高分子凝集剤を注入して凝集させた後、ベルトプレス脱水機で脱水した。   In the aeration treatment, 10 L of anaerobic treated sludge was charged into a 20 L aeration tank and aerated at a temperature of 35 ° C. The aerated sludge was sampled, polymer coagulant was injected and coagulated, and then dewatered with a belt press dewatering machine.

各汚泥の性状、曝気処理条件、脱水条件及びケーキ含水率を表10に示す。TS及びSSの分析はJIS K−0102に準拠し、粘度はB型回転粘度計を使用し、35℃、60rpmで測定した。   Table 10 shows the properties of each sludge, aeration conditions, dehydration conditions, and cake moisture content. The analysis of TS and SS was based on JIS K-0102, and the viscosity was measured at 35 ° C. and 60 rpm using a B-type rotational viscometer.

Figure 0006666346
Figure 0006666346

これらの結果から、TS濃度が25g/L以上のTSと、該TS濃度よりも5g/L以上低いSS濃度とを有する嫌気性処理汚泥を曝気処理することにより、ケーキ含水率を低減できることを確認した。
From these results, it was confirmed that the water content of the cake can be reduced by aerating the anaerobic treated sludge having a TS concentration of 25 g / L or more and an SS concentration of 5 g / L or less than the TS concentration. did.

Claims (4)

有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理工程と、
嫌気性処理汚泥に酸素含有気体を接触させ、曝気処理汚泥を形成させる曝気処理工程と、
曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集工程と、
凝集汚泥を脱水する脱水工程と、
前記脱水工程からの脱水分離液に含まれるアンモニアを硝化する硝化工程と、を有し、
前記嫌気性処理工程の前もしくは嫌気性処理工程において、前記有機物に鉄化合物を注入し、
前記曝気処理工程において、前記曝気処理汚泥の酸化還元電位(銀/塩化銀電極を基準とした酸化還元電位)を−100mV以下に制御し、鉄化合物を含有する嫌気性処理汚泥と酸素含有気体とを接触させることにより、嫌気性処理汚泥に含まれる鉄(II)を酸化させ、前記凝集工程で酸化された鉄(III)を凝集剤として利用し、
前記硝化工程からの排気ガスを前記曝気処理工程における酸素含有気体として再利用することを特徴とする有機物の処理方法。
An anaerobic treatment step of anaerobically treating organic matter to form anaerobic treated sludge;
An aeration treatment step of contacting the oxygen-containing gas with the anaerobic treatment sludge to form an aeration treatment sludge;
A flocculating step of injecting a flocculant into the aerated sludge to form a flocculated sludge;
A dewatering step of dewatering the coagulated sludge;
A nitrification step of nitrifying ammonia contained in the dehydration separation liquid from the dehydration step,
Before the anaerobic treatment step or in the anaerobic treatment step, inject an iron compound into the organic matter,
In the aeration treatment step, the oxidation-reduction potential (oxidation-reduction potential based on a silver / silver chloride electrode) of the aeration-treated sludge is controlled to -100 mV or less, and the anaerobic treatment sludge containing an iron compound and the oxygen-containing gas are mixed. By contacting, the iron (II) contained in the anaerobic treated sludge is oxidized, and the iron (III) oxidized in the coagulation step is used as a coagulant,
An organic matter processing method, wherein exhaust gas from the nitrification step is reused as an oxygen-containing gas in the aeration step.
前記嫌気性処理汚泥は、25g/L以上のTS濃度と、当該TS濃度よりも5g/L以上低いSS濃度と、を有することを特徴とする請求項1に記載の有機物の処理方法。 The method for treating organic matter according to claim 1, wherein the anaerobic treated sludge has a TS concentration of 25 g / L or more and an SS concentration of 5 g / L or less lower than the TS concentration. 有機物に鉄化合物を注入する鉄化合物注入手段と、
鉄(II)の共存下で有機物を嫌気性処理し、嫌気性処理汚泥を形成させる嫌気性処理槽と、
酸化還元電位測定装置を有し、当該嫌気性処理汚泥に酸素含有気体を接触させ、鉄(II)を鉄(III)に酸化させて、鉄(III)を含む曝気処理汚泥を形成させる曝気槽と、
当該曝気処理汚泥に凝集剤を注入し、凝集汚泥を形成させる凝集槽と、
当該凝集汚泥を脱水する脱水装置と、
当該脱水装置からの脱水分離液に含まれるアンモニアを硝化する硝化槽と、
当該硝化槽からの排気ガスを当該曝気槽に供給する酸素含有気体供給配管を具備することを特徴とする、請求項1又は2に記載の有機物の処理方法を実施する処理装置。
Iron compound injection means for injecting an iron compound into the organic matter,
An anaerobic treatment tank for anaerobic treatment of organic matter in the presence of iron (II) to form anaerobic treatment sludge;
An aeration tank having an oxidation-reduction potential measuring device, and bringing an oxygen-containing gas into contact with the anaerobic treated sludge to oxidize iron (II) to iron (III) to form an aerated treated sludge containing iron (III) When,
Injecting a coagulant into the aerated sludge, a coagulation tank to form coagulated sludge,
A dehydration device for dehydrating the coagulated sludge,
A nitrification tank for nitrifying ammonia contained in the dehydration separation liquid from the dehydration device,
3. The processing apparatus according to claim 1, further comprising an oxygen-containing gas supply pipe that supplies exhaust gas from the nitrification tank to the aeration tank. 4.
前記鉄化合物注入手段は、前記嫌気性処理槽、又は前記嫌気性処理槽の前段に設けられている有機物貯槽、可溶化槽及び可溶化物貯槽から選択される少なくとも1の槽、又は当該少なくとも1の槽と前記嫌気性処理槽とを連結する配管、又は当該有機物貯槽、可溶化槽及び可溶化物貯槽の少なくとも2の槽の間を連結する配管のいずれかもしくは2以上に設けられていることを特徴とする請求項3に記載の処理装置。 The iron compound injecting means is the anaerobic treatment tank, or at least one tank selected from an organic matter storage tank, a solubilization tank, and a solubilized matter storage tank provided in a preceding stage of the anaerobic treatment tank, or at least one of the at least one tank. That is provided in any one or two or more of pipes connecting between the tank and the anaerobic treatment tank, or pipes connecting between at least two tanks of the organic matter storage tank, the solubilization tank, and the solubilized matter storage tank. The processing apparatus according to claim 3, wherein:
JP2017529519A 2015-07-21 2016-06-27 Organic substance processing method and processing apparatus Active JP6666346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000237A JP6909878B2 (en) 2015-07-21 2020-01-06 Organic matter processing method and processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015143695 2015-07-21
JP2015143695 2015-07-21
PCT/JP2016/068961 WO2017014004A1 (en) 2015-07-21 2016-06-27 Method for processing and device for processing organic matter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020000237A Division JP6909878B2 (en) 2015-07-21 2020-01-06 Organic matter processing method and processing equipment

Publications (2)

Publication Number Publication Date
JPWO2017014004A1 JPWO2017014004A1 (en) 2018-04-26
JP6666346B2 true JP6666346B2 (en) 2020-03-13

Family

ID=57835088

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017529519A Active JP6666346B2 (en) 2015-07-21 2016-06-27 Organic substance processing method and processing apparatus
JP2020000237A Active JP6909878B2 (en) 2015-07-21 2020-01-06 Organic matter processing method and processing equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020000237A Active JP6909878B2 (en) 2015-07-21 2020-01-06 Organic matter processing method and processing equipment

Country Status (2)

Country Link
JP (2) JP6666346B2 (en)
WO (1) WO2017014004A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109153964B (en) 2016-03-01 2023-06-13 芬德集团公司 Filamentous fungus biological mats, methods of producing and using the same
JP7254580B2 (en) * 2019-03-27 2023-04-10 日立セメント株式会社 Method and apparatus for treating organic sludge
TWI700254B (en) * 2019-07-30 2020-08-01 牧陽能控股份有限公司 Rapid fermentation apparatus and operating method thereof
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438197A (en) * 1987-07-31 1989-02-08 Nishihara Env San Res Co Ltd Treatment of sewage
JP2002035787A (en) * 2000-07-26 2002-02-05 Hideken Sekkei:Kk Treatment apparatus and method for organic wastewater by anaerobic aerobic filter bed method
JP2003275726A (en) * 2002-03-26 2003-09-30 Sumitomo Heavy Ind Ltd Method and system for treating organic waste
JP2005000844A (en) * 2003-06-13 2005-01-06 Kubota Corp Phosphorus removing apparatus
JP2005111420A (en) * 2003-10-10 2005-04-28 Kubota Corp Method and equipment for anaerobic treatment of organic waste
JP6121165B2 (en) * 2010-12-10 2017-04-26 水ing株式会社 Anaerobic treatment method and apparatus

Also Published As

Publication number Publication date
WO2017014004A1 (en) 2017-01-26
JPWO2017014004A1 (en) 2018-04-26
JP2020075249A (en) 2020-05-21
JP6909878B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6909878B2 (en) Organic matter processing method and processing equipment
JP6868679B2 (en) Organic sludge treatment method and treatment equipment
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP4655974B2 (en) Waste water treatment method and treatment apparatus
JP7254580B2 (en) Method and apparatus for treating organic sludge
JP6670192B2 (en) Organic sludge processing method and processing apparatus
CN112209577A (en) Kitchen wastewater treatment method
JP7105136B2 (en) ORGANIC WASTE TREATMENT METHOD AND ORGANIC WASTE TREATMENT SYSTEM
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
JP2007061773A (en) Organic sludge treatment method and apparatus
JP2005193146A (en) Method for treating organic waste and the treating system
JP6633943B2 (en) Sludge treatment system and sludge treatment method
JP6359489B2 (en) Sewage treatment method and sewage treatment system
JP6437794B2 (en) Waste water treatment apparatus and waste water treatment method
JP6359490B2 (en) Sewage treatment system and sewage treatment method
JP7015893B2 (en) Swill methane fermentation processing system
JP6164878B2 (en) Organic wastewater treatment method
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
CN213680324U (en) Sewage treatment sludge dewatering system
JP2003260435A (en) Apparatus and method for treating nitrogen-containing organic waste
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JP6781660B2 (en) Garbage methane fermentation processing system
JP4288975B2 (en) Organic waste liquid digester
JP6154250B2 (en) Organic waste treatment method and organic waste treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R150 Certificate of patent or registration of utility model

Ref document number: 6666346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250