JP6634577B2 - Manufacturing method of silicon crystal - Google Patents

Manufacturing method of silicon crystal Download PDF

Info

Publication number
JP6634577B2
JP6634577B2 JP2017009804A JP2017009804A JP6634577B2 JP 6634577 B2 JP6634577 B2 JP 6634577B2 JP 2017009804 A JP2017009804 A JP 2017009804A JP 2017009804 A JP2017009804 A JP 2017009804A JP 6634577 B2 JP6634577 B2 JP 6634577B2
Authority
JP
Japan
Prior art keywords
silicon
single crystal
raw material
solar cell
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017009804A
Other languages
Japanese (ja)
Other versions
JP2018108912A (en
Inventor
山瀬 英夫
英夫 山瀬
蒲池 豊
豊 蒲池
Original Assignee
蒲池 豊
豊 蒲池
山瀬 英夫
英夫 山瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒲池 豊, 豊 蒲池, 山瀬 英夫, 英夫 山瀬 filed Critical 蒲池 豊
Priority to JP2017009804A priority Critical patent/JP6634577B2/en
Publication of JP2018108912A publication Critical patent/JP2018108912A/en
Application granted granted Critical
Publication of JP6634577B2 publication Critical patent/JP6634577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、太陽電池用シリコン結晶の製造方法に関し、さらに詳しくはシリコン結晶のなかでもFZ法単結晶を、太陽電池用として使用する目的に限定して行う太陽電池用FZ単結晶の製造方法に関する。  The present invention relates to a method for producing a silicon crystal for a solar cell, and more particularly, to a method for producing an FZ single crystal for a solar cell, in which an FZ method single crystal among silicon crystals is used only for the purpose of use for a solar cell. .

太陽電池用原料としては、現在世界で約80%強がシリコンを使用している。しかしながらこの原料シリコンの製造は、殆どのものが高コストのシーメンス法により行われている。しかもこのシーメンス法による多結晶シリコン製造プロセスは、基本的には半導体用として確立されたものである為、品質最優先の堅牢・複雑なプロセスとなり、その製品は約8〜10倍程度と格段に高価なものとなっている。  At present, about 80% or more of the world uses silicon as a raw material for solar cells. However, most of the production of this raw material silicon is performed by a high-cost Siemens method. In addition, since the polycrystalline silicon manufacturing process by the Siemens method is basically established for semiconductors, it is a robust and complex process in which quality is the highest priority, and the product is about 8 to 10 times as much. It is expensive.

このように原料費用が高価となるため、少ない原料シリコンで多くの発電量を確保するために、太陽電池として、より安価で大量生産可能であり、高い光電変換効率が得られる太陽電池用シリコン結晶の開発が求められている。  Since the raw material cost is high in this way, in order to secure a large amount of power generation with a small amount of raw silicon, a silicon crystal for a solar cell that can be mass-produced inexpensively and has high photoelectric conversion efficiency is obtained as a solar cell. Development is required.

発明が解決しようとする課題Problems to be solved by the invention

太陽電池で高い光電変換効率を得るためには、アモルファス→多結晶→CZ単結晶と進展してきた太陽電池セル用シリコン結晶を、更にFZ単結晶を採用することにより、安価で高効率である太陽光発電システムを確立し、民生用としての最終的な目的を達成することが出来る。しかしながらFZ単結晶は製造方法の違いにより、CZ単結晶と比較して格段に高価なものとの認識が一般的である。その為に現在の太陽電池には殆ど使用されていない。本発明は、太陽電池用に特化してコストを削減したFZ単結晶を提供するものである。  In order to obtain high photoelectric conversion efficiency in a solar cell, a silicon crystal for a solar cell that has been developed from amorphous to polycrystalline to CZ single crystal, and furthermore, by adopting an FZ single crystal, a low-cost and highly efficient solar Establish a photovoltaic power generation system and achieve the ultimate purpose for consumer use. However, it is generally recognized that FZ single crystals are significantly more expensive than CZ single crystals due to differences in manufacturing methods. Therefore, they are hardly used in current solar cells. SUMMARY OF THE INVENTION The present invention provides an FZ single crystal which is specialized for a solar cell and has a reduced cost.

太陽電池用基盤材料に特化したライフタイムの長い太陽電池用FZ単結晶の製造技術を提供する。  Provided is a technology for manufacturing an FZ single crystal for a solar cell having a long lifetime, which is specialized for a solar cell base material.

本法により工業的に製造された太陽電池用FZ単結晶はこれまでのソーラー用CZ単結晶と異なりシリコン中に含まれる所謂俗称ライフタイムキラーと称されるFe、Cu、等重金属、Al、に代表される軽金属、シリコンと同族のC、並びにO2等を極端に減らすことを目的とする。  FZ single crystals for solar cells industrially manufactured by this method are different from conventional CZ single crystals for solar cells, in which so-called “lifetime killers” contained in silicon, so-called Fe, Cu, heavy metals, Al, etc. It is intended to extremely reduce typical light metals, C in the same family as silicon, and O2.

課題を解決するための手段Means for solving the problem

上記課題を解決するため、本願で特許請求される発明は以下の通りである。
(1)チャージ用原料シリコン多結晶原料ロッドは、通常その直径をミクロン単位でグラインド制御される必要があるが、原料加熱用プレヒーテイング・コイルをレーザー直径検知装置の出力により制御することを特徴とするFZ単結晶の製造方法。
The invention claimed in the present application to solve the above problems is as follows.
(1) Normally, the diameter of the silicon raw material rod for charging needs to be grind-controlled in micron units, but the preheating coil for heating the raw material is controlled by the output of the laser diameter detector. A method for producing an FZ single crystal.

発明の効果The invention's effect

従来品に対して、ライフタイムの長い安価な太陽電池用FZ単結晶が得られることになり、このことは従来品の中で最も光電変換効率が高いCZ単結晶に対して、はるかに光電変換効率が高いFZ単結晶を、ひいては、光電変換効率を近い将来、25%→30%→35%→45%と改善する事を現在技術の線上で工業的に可能とするタンデム型、シリコン量子ドット型等の工業化を容易とする太陽電池用原料として供給できることとなる。  An inexpensive FZ single crystal for a solar cell with a longer lifetime can be obtained compared to a conventional product, which means that the CZ single crystal, which has the highest photoelectric conversion efficiency among conventional products, is far more photoelectrically converted. A tandem-type, silicon quantum dot that is capable of industrially improving the efficiency of FZ single crystals, and thus the photoelectric conversion efficiency from 25% to 30% to 35% to 45% in the near future, in line with the current technology. It can be supplied as a raw material for solar cells that facilitates industrialization of molds and the like.

上記のことは、クリーンエネルギーとして将来性のある太陽電池事業が、その原料であるシリコン原料の不足の解消に大きく寄与し、太陽電池の利用拡大に大きく作用し、社会・環境の改善に貢献すること大である。  The above suggests that the solar cell business, which has future potential as clean energy, will greatly contribute to resolving the shortage of silicon raw material that is a raw material for it, and will greatly affect the expansion of use of solar cells, contributing to the improvement of society and the environment. It is big.

上記〔0006〕項に、具体的に記したが、これにより本発明により製造されるFZ単結晶は、半導体に通常要求される結晶の完全性(リネージ、スワール、双晶、その他微小欠陥等諸欠陥フリー)は求めないが、ライフタイムは600μ秒程度以上がキープされる事を主眼とする事を特徴とする。又、本発明により製造されるFZ単結晶は、これまでの太陽電池用CZ単結晶と異なり、シリコン中に含まれる所謂ライフタイムキラーと称されるFe、Cu、等の重金属、Al、に代表される軽金属及びシリコンと同族のC等を極端に減らすことが出来る。勿論O2含有量は、CZに比べ極端に少ないことは周知の通りである。  As specifically described in the above section [0006], the FZ single crystal produced by the present invention thereby provides the crystal integrity (lineage, swirl, twin, other small defects such as fine defects) generally required for semiconductors. Defect free) is not required, but the feature is that the life time is maintained for about 600 μsec or more. Further, the FZ single crystal manufactured by the present invention is different from the conventional CZ single crystal for a solar cell, and is typically represented by heavy metals such as Fe, Cu, etc., which are so-called lifetime killers, and Al contained in silicon. It is possible to significantly reduce the amount of C and the like, which are the same as light metals and silicon. Of course, it is well known that the O2 content is extremely small as compared with CZ.

図1は、本発明装置の実施例を示す説明図である。
高周波印加ワーキングコイル1により種用単結晶(シード)4を溶かしつつ、あらかじめ原料加熱用プレヒーティング・コイル6によりチャージ用原料シリコン多結晶原料ロッド2を高周波印加ワーキングコイル1によって溶解温度までその底面を溶解させる。然る後種用単結晶(シード)4を高周波印加ワーキングコイル1を貫通させてチャージ用原料シリコン多結晶原料ロッド2に接触させ、高周波印加ワーキングコイル1の供給電力を調整しつつ種用単結晶(シード)4を下方向に引き下げる。この時チャージ用原料シリコン多結晶原料ロッド2の軸に対し、種用単結晶(シード)4の軸が偏心的に配置設定され、チャージ用原料シリコン多結晶原料ロッド2より溶解されたシリコン原料を偏心的に供給することにより、製品FZ単結晶の生成を行う。
FIG. 1 is an explanatory view showing an embodiment of the device of the present invention.
While the seed single crystal (seed) 4 is melted by the high-frequency application working coil 1, the raw material silicon polycrystalline material rod 2 is previously heated to the melting temperature by the high-frequency application working coil 1 by the high-frequency application working coil 1. Is dissolved. After that, the seed single crystal (seed) 4 is made to penetrate the high frequency application working coil 1 and is brought into contact with the charging material polycrystalline silicon raw material rod 2 to adjust the power supplied to the high frequency application working coil 1 while the seed single crystal is adjusted. (Seed) 4 is pulled down. At this time, the axis of the seed single crystal (seed) 4 is set eccentrically with respect to the axis of the charge raw material silicon polycrystalline raw material rod 2, and the silicon raw material dissolved from the charge raw silicon polycrystalline raw material rod 2 is supplied. The product FZ single crystal is produced by eccentric supply.

結晶成長の全体図Overall view of crystal growth

1・・・高周波印加ワーキングコイル
2・・・チャージ用原料シリコン多結晶原料ロッド
3・・・製品FZ単結晶
4・・・種用単結晶(シード)
5・・・アフターヒーテイング・コイル
6・・・原料加熱用プレヒーテイング・コイル
7・・・レーザー直径検知装置
8・・・製品単結晶支えリング
DESCRIPTION OF SYMBOLS 1 ... High frequency application working coil 2 ... Silicon raw material rod for charge 3 ... Product FZ single crystal 4 ... Single crystal for seed (seed)
5 After-heating coil 6 Preheating coil 7 for heating raw material 7 Laser diameter detector 8 Product support ring for single crystal

Claims (1)

シリコン多結晶原料ロッド加熱用プレヒーテイング・コイルをレーザー直径検知装置の出力により制御することを特徴とするFZ単結晶の製造方法。A method for producing an FZ single crystal, characterized in that a preheating coil for heating a rod of silicon polycrystalline material is controlled by an output of a laser diameter detector.
JP2017009804A 2017-01-05 2017-01-05 Manufacturing method of silicon crystal Active JP6634577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009804A JP6634577B2 (en) 2017-01-05 2017-01-05 Manufacturing method of silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009804A JP6634577B2 (en) 2017-01-05 2017-01-05 Manufacturing method of silicon crystal

Publications (2)

Publication Number Publication Date
JP2018108912A JP2018108912A (en) 2018-07-12
JP6634577B2 true JP6634577B2 (en) 2020-01-22

Family

ID=62844094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009804A Active JP6634577B2 (en) 2017-01-05 2017-01-05 Manufacturing method of silicon crystal

Country Status (1)

Country Link
JP (1) JP6634577B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535470B2 (en) * 1992-01-21 1996-09-18 信越半導体株式会社 Semiconductor crystal rod support device
DE19538020A1 (en) * 1995-10-12 1997-04-17 Wacker Siltronic Halbleitermat Large diameter single crystal silicon rod growth
JP3644227B2 (en) * 1997-12-22 2005-04-27 信越半導体株式会社 Method and apparatus for producing silicon single crystal
JP2013103874A (en) * 2011-11-11 2013-05-30 Yutaka Kamaike Silicon and method for manufacturing the same
JP6064675B2 (en) * 2013-02-28 2017-01-25 信越半導体株式会社 Manufacturing method of semiconductor single crystal rod

Also Published As

Publication number Publication date
JP2018108912A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
Jiang et al. Silicon prepared by electro-reduction in molten salts as new energy materials
CN102936747B (en) Method for casting ingot of pseudo-single crystal through large-sized crucible
WO2016082525A1 (en) Device for moving small heat insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
CN103469293A (en) Preparation method of polycrystalline silicon
CN103668450B (en) The thin brilliant casting ingot process produced in polycrystalline silicon ingot casting can be reduced
KR20130059272A (en) Crystalline silicon ingot and method of fabricating the same
JP2009051720A (en) PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
CN102260900A (en) Device for improving consistency of longitudinal resistivity of single crystal silicon and treatment process thereof
JP6634577B2 (en) Manufacturing method of silicon crystal
CN103074669A (en) Polycrystalline silicon ingot, preparation method thereof and polycrystalline silicon chip
CN102560627B (en) N-type czochralski silicon with uniform doping resistivity and preparation method thereof
CN103469302A (en) Polycrystalline silicon ingoting process for shortening corner crystal growth time
Hu et al. Higher quality composite silicon ingot with monocrystalline and multicrystalline bricks
JP4748187B2 (en) Method for producing Si crystal ingot
CN106206841B (en) Gallium arsenide substrate material preparation method
JP2017039634A (en) Production method of silicon crystal
CN201634792U (en) Straight-pull single crystal furnace
CN103882518B (en) A kind of equally distributed polycrystalline silicon casting ingot process of boron element
CN103436957A (en) Polycrystalline silicon ingot casting process with double-mode control on melting and heat insulation
CN103014838A (en) Czochralski preparation method of ultrathin monocrystalline silicon wafer
WO2022001037A1 (en) Method for preparing monocrystalline silicon material by means of high-temperature electrodeposition of molten salt
CN102877125A (en) Polycrystal ingot furnace and method for growing mono-like silicon ingot by using the polycrystal ingot furnace
KR101336712B1 (en) Manufacturing method of high purity silicon nanofiber by electrolytic refining
CN102424388B (en) Method for removing metallic impurities in solar-grade polysilicon
CN104389017A (en) Internal inlet gas gas-cooling device of coagulation enhancing block of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6634577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250