JP6625907B2 - Wastewater treatment method and wastewater treatment system - Google Patents

Wastewater treatment method and wastewater treatment system Download PDF

Info

Publication number
JP6625907B2
JP6625907B2 JP2016044541A JP2016044541A JP6625907B2 JP 6625907 B2 JP6625907 B2 JP 6625907B2 JP 2016044541 A JP2016044541 A JP 2016044541A JP 2016044541 A JP2016044541 A JP 2016044541A JP 6625907 B2 JP6625907 B2 JP 6625907B2
Authority
JP
Japan
Prior art keywords
wastewater
magnetic
scrubber
treatment
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016044541A
Other languages
Japanese (ja)
Other versions
JP2017159211A (en
JP2017159211A5 (en
Inventor
洋輔 花井
洋輔 花井
栄寿 中田
栄寿 中田
保藏 酒井
保藏 酒井
Original Assignee
富士電機株式会社
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 国立大学法人宇都宮大学 filed Critical 富士電機株式会社
Priority to JP2016044541A priority Critical patent/JP6625907B2/en
Publication of JP2017159211A publication Critical patent/JP2017159211A/en
Publication of JP2017159211A5 publication Critical patent/JP2017159211A5/ja
Application granted granted Critical
Publication of JP6625907B2 publication Critical patent/JP6625907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity

Description

本発明は、排水処理方法および排水処理システムに関する。   The present invention relates to a wastewater treatment method and a wastewater treatment system.
船舶の運航において、スクラバ排水、バラスト排水の2種類が、排水として排出される。それぞれの排水は、その性状の相違から、異なる処理がされてきた。   In the operation of a ship, two types of scrubber drainage and ballast drainage are discharged as drainage. Each wastewater has been treated differently due to the difference in its properties.
スクラバ排水では、排水中に含まれる不純物が、主としてブラックカーボンからなる浮遊粒子である。浮遊粒子は、一般的に、遠心分離法や膜分離法により除去される。スクラバ排水の処理としては、例えば、バラスト水の取水時及び排水時に水質をモニタリングし、磁気分離を含む処理を行い、モニタリング結果に基づいて、再処理または排水を決定する方法が知られている(例えば、特許文献1を参照)。   In scrubber wastewater, impurities contained in the wastewater are suspended particles mainly composed of black carbon. Suspended particles are generally removed by a centrifugation method or a membrane separation method. As the treatment of the scrubber wastewater, for example, a method is known in which the water quality is monitored at the time of ballast water intake and drainage, a treatment including magnetic separation is performed, and reprocessing or wastewater is determined based on the monitoring result ( For example, see Patent Document 1).
一方、バラスト排水中に含まれる主な不純物は微生物である。このため、一般的に、塩素やオゾンによる殺菌法により微生物を除去し、水域に放流されることが行われている。   On the other hand, the main impurities contained in ballast wastewater are microorganisms. For this reason, generally, microorganisms are removed by a sterilization method using chlorine or ozone, and discharged into water.
特許第5238968号公報Patent No. 5238968
このように、従来、船舶には、スクラバ排水、バラスト排水の各排水系統に応じた処理施設を備える必要があり、排水処理のために船舶のスペースを割く必要があった。また、バラスト排水の処理に用いられる残留塩素や残留オゾンは海水中に放出されると生物に悪影響を与えるため、中和、無毒化といった施設も必須であった。   As described above, conventionally, it is necessary for the ship to be provided with a treatment facility corresponding to each drainage system of the scrubber drainage and the ballast drainage, and it is necessary to devote space to the ship for wastewater treatment. In addition, since residual chlorine and ozone used in the treatment of ballast wastewater have an adverse effect on living organisms when released into seawater, facilities for neutralization and detoxification were also essential.
このような課題に対し、複数の処理設備を設けることなく、スクラバ排水及びバラスト排水を同時に、かつ効率的に処理する方法及びシステムが求められる。   To solve such a problem, a method and system for simultaneously and efficiently treating scrubber wastewater and ballast wastewater without providing a plurality of treatment facilities are required.
本発明は、一実施形態によれば、[1]排水処理方法であって、スクラバにおいて排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を、浮遊物質濃度が一定になるように混合する混合工程と、前記混合された排水に磁性粉を添加する処理工程と、前記処理工程で得られた浮遊物質と磁性粉の結合物(磁性フロック)を磁気分離する分離工程とを含む。   According to one embodiment, the present invention provides [1] a wastewater treatment method, wherein ballast wastewater is added to a scrubber wastewater obtained by contacting exhaust gas and scrubber cleaning water in a scrubber so that the concentration of suspended solids is constant. The method includes a mixing step of mixing, a processing step of adding magnetic powder to the mixed wastewater, and a separation step of magnetically separating a combined substance (magnetic floc) of the suspended substance and the magnetic powder obtained in the processing step.
[2] [1]に記載の排水処理方法において、前記混合工程が、前記スクラバ排水中の浮遊物質濃度もしくは前記混合された排水中の浮遊物質濃度を測定する測定工程と、前記測定工程による測定結果に応じて前記バラスト排水とスクラバ排水との混合比を制御する制御工程とを含むことが好ましい。   [2] In the wastewater treatment method according to [1], the mixing step includes a measurement step of measuring a suspended substance concentration in the scrubber wastewater or a suspended substance concentration in the mixed wastewater, and a measurement by the measurement step. It is preferable to include a control step of controlling a mixing ratio of the ballast drainage and the scrubber drainage according to a result.
[3] [1]に記載の排水処理方法において、前記混合工程が、前記スクラバ排水中の濁度もしくは前記混合された排水中の濁度を測定する測定工程と、前記測定工程による測定結果に応じて前記バラスト排水と前記スクラバ排水との混合比を制御する制御工程とを含むことが好ましい。   [3] In the wastewater treatment method according to [1], the mixing step includes a measurement step of measuring turbidity in the scrubber wastewater or a turbidity in the mixed wastewater, and a measurement result of the measurement step. It is preferable that the method further includes a control step of controlling a mixing ratio of the ballast drainage and the scrubber drain in response thereto.
[4] [1]〜[3]のいずれかに記載の排水処理方法において、前記処理工程で得られた磁性フロックに、凝集剤を添加する凝集工程をさらに含み、凝集工程で得られた磁性フロックを磁気分離することが好ましい。   [4] The wastewater treatment method according to any one of [1] to [3], further including a coagulation step of adding a coagulant to the magnetic floc obtained in the treatment step, wherein the magnetic flocculant obtained in the coagulation step is provided. Preferably, the flocs are magnetically separated.
[5] [1]〜[4]のいずれかに記載の排水処理方法において、前記磁性フロックに磁場を印加する磁場印加工程をさらに含むことが好ましい。   [5] The wastewater treatment method according to any one of [1] to [4], preferably further including a magnetic field applying step of applying a magnetic field to the magnetic floc.
[6] [1]〜[5]のいずれかに記載の排水処理方法において、前記分離工程において前記磁性フロックを分離した後の処理済水に殺菌処理を行う殺菌工程をさらに含むことが好ましい。   [6] The wastewater treatment method according to any one of [1] to [5], preferably further including a sterilization step of performing a sterilization treatment on the treated water after separating the magnetic floc in the separation step.
[7] [1]〜[6]のいずれかに記載の排水処理方法において、前記分離工程において前記磁性フロックを分離した後の処理済水を、前記スクラバ排水に循環させる工程をさらに含むことが好ましい。   [7] The wastewater treatment method according to any one of [1] to [6], further comprising a step of circulating the treated water after separating the magnetic floc in the separation step to the scrubber wastewater. preferable.
[8] [1]〜[7]のいずれかに記載の排水処理方法において、前記分離工程において前記磁性フロックを分離した後の処理済水を、前記スクラバ排水を貯留するスクラバ排水槽に返送する工程と、前記スクラバ排水槽の排水を前記スクラバに循環させる工程をさらに含むことが好ましい。   [8] In the wastewater treatment method according to any one of [1] to [7], the treated water from which the magnetic flocs have been separated in the separation step is returned to a scrubber drainage tank that stores the scrubber wastewater. It is preferable that the method further includes a step and a step of circulating waste water from the scrubber drain tank to the scrubber.
本発明は、別の実施形態によれば、[9]排水処理システムであって、スクラバにおいて排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を浮遊物質濃度または濁度が一定になるように混合する混合装置と、前記混合装置で得られた混合排水に磁性粉を添加する磁性粉添加装置と、前記磁性粉添加装置で得られた磁性フロックを磁気分離する磁気分離装置とを備える。   According to another embodiment of the present invention, [9] a wastewater treatment system, wherein a ballast wastewater is made to have a constant suspended substance concentration or turbidity in a scrubber wastewater obtained by contacting exhaust gas and scrubber cleaning water in a scrubber. A mixing device that mixes so as to obtain, a magnetic powder addition device that adds magnetic powder to the mixed wastewater obtained by the mixing device, and a magnetic separation device that magnetically separates the magnetic floe obtained by the magnetic powder addition device. Prepare.
[10] [9]に記載の排水処理システムにおいて、前記混合装置が、前記スクラバ排水中の浮遊物質濃度もしくは前記混合された排水中の浮遊物質濃度または濁度を測定する測定装置と、前記測定装置による測定結果に応じて前記バラスト排水とスクラバ排水との混合比を制御する制御装置とを含むことが好ましい。   [10] In the wastewater treatment system according to [9], the mixing device is configured to measure a suspended substance concentration in the scrubber wastewater or a suspended substance concentration or turbidity in the mixed wastewater, and the measurement is performed. It is preferable to include a control device that controls a mixing ratio between the ballast drainage and the scrubber drainage according to a measurement result by the device.
[11] [9]または[10]に記載の排水処理システムにおいて、前記磁性粉添加装置で得られた磁性フロックに、凝集剤を添加する凝集剤添加装置をさらに備えることが好ましい。   [11] The wastewater treatment system according to [9] or [10], preferably further including a flocculant adding device for adding a flocculant to the magnetic floc obtained by the magnetic powder adding device.
[12] [9]〜[11]のいずれかに記載の排水処理システムにおいて、前記磁性粉添加装置が、磁性粉が添加される処理槽を備え、前記処理槽が撹拌装置を備えることが好ましい。   [12] In the wastewater treatment system according to any one of [9] to [11], it is preferable that the magnetic powder addition device includes a treatment tank to which magnetic powder is added, and the treatment tank includes a stirring device. .
[13] [11]に記載の排水処理システムにおいて、前記磁性粉添加装置が、磁性粉が添加される処理槽を備え、前記凝集剤添加装置が、凝集剤が添加される前記処理槽とは独立した凝集槽を備え、前記処理槽及び/または前記凝集槽が撹拌装置を備えることが好ましい。   [13] In the wastewater treatment system according to [11], the magnetic powder addition device includes a treatment tank to which a magnetic powder is added, and the coagulant addition device is the treatment tank to which a coagulant is added. It is preferable that an independent coagulation tank is provided, and the treatment tank and / or the coagulation tank include a stirring device.
[14] [9]〜[13]のいずれかに記載の排水処理システムにおいて、磁性粉を添加した後の排水に磁場を印加する磁場印加装置をさらに備えることが好ましい。   [14] The wastewater treatment system according to any one of [9] to [13], preferably further includes a magnetic field application device that applies a magnetic field to the wastewater after the addition of the magnetic powder.
[15] [9]〜[14]のいずれかに記載の排水処理システムにおいて、前記磁気分離装置により磁性フロックを分離した後の処理済水に殺菌処理を行う殺菌装置をさらに含むことが好ましい。   [15] In the wastewater treatment system according to any one of [9] to [14], it is preferable that the wastewater treatment system further includes a sterilization device that performs a sterilization process on the treated water after the magnetic floc has been separated by the magnetic separation device.
[16] [9]〜[15]のいずれかに記載の排水処理システムにおいて、前記磁気分離装置により前記磁性フロックを分離した後の処理済水を、前記スクラバに循環させる手段をさらに含むことが好ましい。   [16] The wastewater treatment system according to any one of [9] to [15], further including means for circulating the treated water after separating the magnetic flocs by the magnetic separator into the scrubber. preferable.
本発明の排水処理システムによれば、スクラバ排水、バラスト排水が同一の処理施設で、同時に処理可能となるため、処理施設のコンパクト化を図ることが可能となる。また、浮遊物質量の多いスクラバ排水と浮遊物質量の少ないバラスト水を混合することにより、被処理排水中の濁度を安定化させることが可能となり、被処理排水中の浮遊物質濃度を安定化できる。さらに、従来、処理後に放流されていたバラスト水をスクラバ水として再利用可能なため、スクラバ水となる海水を供給するポンプ容量の小型化も可能となる。   According to the wastewater treatment system of the present invention, scrubber wastewater and ballast wastewater can be treated simultaneously in the same treatment facility, so that the treatment facility can be made compact. In addition, by mixing scrubber wastewater with a large amount of suspended matter and ballast water with a small amount of suspended matter, it is possible to stabilize the turbidity of the treated wastewater and stabilize the concentration of suspended matter in the treated wastewater. it can. Further, since the ballast water that has been discharged after the treatment can be reused as scrubber water, the pump capacity for supplying seawater serving as scrubber water can be reduced in size.
本発明の第1実施形態による排水処理方法及びシステムを示す概念図である。1 is a conceptual diagram illustrating a wastewater treatment method and system according to a first embodiment of the present invention. 本発明の第2実施形態による排水処理方法及びシステムを示す概念図である。FIG. 5 is a conceptual diagram illustrating a wastewater treatment method and system according to a second embodiment of the present invention. 実験例1による、処理時間と試験用排水の濁度の関係を示すグラフである。4 is a graph showing the relationship between the treatment time and the turbidity of test wastewater according to Experimental Example 1. 実験例1による、処理時間と試験用排水の生菌数の関係を示すグラフである。4 is a graph showing the relationship between the treatment time and the number of viable bacteria in test wastewater according to Experimental Example 1. 実験例2による、処理時間と磁性フロックの平均粒子径の関係を示すグラフである。9 is a graph showing a relationship between a processing time and an average particle size of a magnetic floc according to Experimental Example 2.
以下に、図面を参照して本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。また、図面は、本発明を説明するための例示的な概略図であって、本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited by the embodiments described below. The drawings are exemplary schematic diagrams for explaining the present invention, and do not limit the present invention.
[第1実施形態]
本発明は、第1実施形態によれば、排水処理方法であって、スクラバ(集じん装置)において排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を、浮遊物質濃度が一定になるように混合する混合工程と、前記混合された排水に磁性粉を添加する処理工程と、前記処理工程で得られた浮遊物質と磁性粉の結合物(磁性フロック)を磁気分離する分離工程とを含む。
[First Embodiment]
According to the first embodiment, the present invention relates to a wastewater treatment method, wherein ballast wastewater is added to a scrubber wastewater obtained by contacting exhaust gas and scrubber cleaning water in a scrubber (dust collection device), and a suspended substance concentration is kept constant. And a separation step of magnetically separating a combined substance (magnetic floc) of the suspended substance and the magnetic powder obtained in the processing step. including.
図1に、第1実施形態による排水処理方法を実施するための排水処理システムの一例の概念図を示す。図1を参照すると、本実施形態の排水処理システムは、主として、混合装置3と、磁性粉添加装置4と、磁気分離装置5とを備えてなる。また、混合装置3の上流には、スクラバ10に接続したスクラバ排水槽1と、バラスト排水槽2とを備えていてもよい。   FIG. 1 shows a conceptual diagram of an example of a wastewater treatment system for implementing the wastewater treatment method according to the first embodiment. Referring to FIG. 1, the wastewater treatment system according to the present embodiment mainly includes a mixing device 3, a magnetic powder adding device 4, and a magnetic separation device 5. Further, a scrubber drain tank 1 connected to the scrubber 10 and a ballast drain tank 2 may be provided upstream of the mixing device 3.
スクラバ排水は、スクラバ10において、船舶のエンジン排ガスと、スクラバ洗浄水とを接触させることにより得られる排水である。スクラバ洗浄水は、通常、海水をポンプで汲み上げて利用するが、本発明においては、任意選択的に処理済水を循環して用いることもできる。スクラバ排水における主な不純物は、排ガス由来の浮遊物である。浮遊物質濃度は、一般的には、船舶の運航状況により変化する。本実施形態においては、スクラバ10から排出されたスクラバ排水は、配管L10を経てスクラバ排水槽1に貯留され、そのまま処理に使用することができる。   The scrubber wastewater is wastewater obtained by bringing scrubber 10 into contact with engine exhaust gas from a ship and scrubber cleaning water. The scrubber washing water is usually used by pumping seawater with a pump, but in the present invention, the treated water can optionally be circulated and used. The main impurities in the scrubber effluent are suspended matter derived from exhaust gas. In general, suspended solids concentration varies depending on the operating conditions of a ship. In the present embodiment, the scrubber drainage discharged from the scrubber 10 is stored in the scrubber drainage tank 1 via the pipe L10, and can be used for processing as it is.
バラスト水は、船舶の船体制御のために、世界各地の港で取りこまれる水を起源としている。バラスト水は、海水であることも、淡水であることもあるが、バクテリアやプランクトン等の水生生物を含んでいる。その種類は、取水地によってさまざまであり、水質も大きく異なる。バラスト水の量は、船舶の積荷量に依存しており、ほとんど存在しない場合もある。そして、バラスト水が不要になった場合に、微生物を低減する処理をした後に、バラスト排水として排出される。一般的に、バラスト排水における、浮遊物質濃度は低い。本実施形態においては、バラスト排水はバラスト排水槽2に貯留される。本実施形態においては、バラスト排水に、塩素やオゾンなどによる微生物殺菌を実施することなく、そのまま貯留し、処理することができる。   Ballast water originates from water that is taken in ports around the world to control the hull of ships. Ballast water, which may be seawater or freshwater, contains aquatic organisms such as bacteria and plankton. The type varies depending on the intake site, and the water quality also varies greatly. The amount of ballast water depends on the load of the vessel and may be almost nonexistent. Then, when the ballast water becomes unnecessary, the ballast water is discharged as ballast wastewater after performing a treatment for reducing microorganisms. In general, suspended solids concentrations in ballast wastewater are low. In the present embodiment, the ballast drainage is stored in the ballast drainage tank 2. In the present embodiment, the ballast wastewater can be stored and treated as it is without performing microbial sterilization using chlorine, ozone, or the like.
混合工程は、スクラバ排水に、バラスト排水を、浮遊物質濃度または濁度が一定になるように混合する工程である。このとき、混合後の排水(以下、混合排水ともいう)中の浮遊物質濃度または濁度が、所定の基準値以下になるように、スクラバ排水に、バラスト排水を混合することが好ましい。このような浮遊物質濃度または濁度を制御した混合は、混合装置3により実施することができる。混合装置は、例えば、スクラバ排水槽1の吐出口に設けられた流量調節弁31と、バラスト排水槽2の吐出口に設けられた流量調節弁32と、浮遊物質濃度測定装置33と、制御装置34とから構成されていても良い。具体的には、浮遊物質濃度測定装置33の測定値が、所定の濃度基準値を満たすように、制御装置34により、弁31、32の開閉を制御することにより実施することができる。   The mixing step is a step of mixing ballast wastewater with scrubber wastewater so that the concentration of suspended solids or turbidity is constant. At this time, it is preferable to mix the ballast wastewater with the scrubber wastewater so that the concentration of suspended solids or turbidity in the wastewater after mixing (hereinafter also referred to as mixed wastewater) becomes equal to or lower than a predetermined reference value. Such mixing in which the suspended substance concentration or the turbidity is controlled can be performed by the mixing device 3. The mixing device includes, for example, a flow control valve 31 provided at a discharge port of the scrubber drain tank 1, a flow control valve 32 provided at a discharge port of the ballast drain tank 2, a floating substance concentration measuring device 33, and a control device. 34. Specifically, the control can be performed by controlling the opening and closing of the valves 31 and 32 by the control device 34 so that the measured value of the suspended solid concentration measuring device 33 satisfies a predetermined concentration reference value.
浮遊物質濃度測定装置33による浮遊物質濃度は、JISK0102の14.1に準拠した方法などによって測定することができる。浮遊物質濃度の上記所定の基準値は、例えば、100mg/Lとすることができ、50〜70mg/Lとすることもできるが、特定の基準値には限定されない。浮遊物質濃度が100mg/L以下であれば、凝集剤を用いなくても、安定に浮遊物質を除去することができる。しかし、このような基準値は、目的に応じて、当業者が適宜設定することができる。スクラバ排水の浮遊物質濃度が基準値よりも低い場合には、バラスト排水を混合しなくてもよい。   The suspended substance concentration by the suspended substance concentration measuring device 33 can be measured by a method based on JIS K0102 14.1 or the like. The predetermined reference value of the suspended substance concentration can be, for example, 100 mg / L, or can be 50 to 70 mg / L, but is not limited to a specific reference value. If the suspended substance concentration is 100 mg / L or less, the suspended substance can be removed stably without using a flocculant. However, such a reference value can be appropriately set by those skilled in the art according to the purpose. When the suspended solids concentration of the scrubber wastewater is lower than the reference value, it is not necessary to mix the ballast wastewater.
図示しない別の実施形態においては、浮遊物質濃度測定装置に代えて、濁度測定装置を用いてもよい。浮遊物質濃度と濁度には一般的に強い相関関係があり、浮遊物質濃度の指標として、濁度を用いることもできるためである。この場合、排水の濁度は、JISK0101の9.3に準拠した方法などによって測定することができ、濁度が、所定の基準値以下になるように、スクラバ排水に、バラスト排水を混合することが好ましい。濁度の上記所定の基準値は、例えば、150NTUとすることができ、75〜110NTUとすることもできるが、特定の基準値には限定されない。濁度が150NTU以下であれば、凝集剤を用いなくても、次工程で安定に浮遊物質を除去することができる。   In another embodiment (not shown), a turbidity measuring device may be used instead of the suspended solid concentration measuring device. This is because there is generally a strong correlation between the suspended substance concentration and the turbidity, and turbidity can be used as an index of the suspended substance concentration. In this case, the turbidity of the wastewater can be measured by a method in accordance with 9.3 of JIS K0101 or the like, and the ballast wastewater is mixed with the scrubber wastewater so that the turbidity is not more than a predetermined reference value. Is preferred. The predetermined reference value of the turbidity can be, for example, 150 NTU or 75 to 110 NTU, but is not limited to a specific reference value. When the turbidity is 150 NTU or less, suspended substances can be stably removed in the next step without using a flocculant.
なお、混合工程を実施するためには、図示する調節弁31、32に代えて、スクラバ排水を送液するポンプ及びバラスト排水を送液するポンプの出力及び/または流量を、制御装置により、制御することで、混合排水における浮遊物質濃度または濁度を調節することもできる。また、浮遊物質濃度測定装置33または濁度測定装置を、混合排水が流れる配管L3に設置するのに代えて、スクラバ排水槽1の内部もしくは配管L1に設置して、混合前のスクラバ排水の浮遊物質濃度または濁度を測定する態様としてもよい。この場合、例えば、スクラバ排水の浮遊物質濃度または濁度が、船外に排出してよい程度に低い場合には、バラスト排水との混合の前に排出することもできる。バラスト排水における浮遊物質濃度または濁度は、一般的に無視できる程度だからである。本実施形態による混合工程は、例示した具体的な手段には限定されず、浮遊物質濃度または濁度が略一定になるように、スクラバ排水にバラスト排水を混合すればよい。   In order to carry out the mixing step, the output and / or flow rate of the pump for sending scrubber drainage and the pump for sending ballast drainage are controlled by a control device instead of the control valves 31 and 32 shown in the figure. By doing so, the suspended solids concentration or turbidity in the mixed wastewater can also be adjusted. Further, instead of installing the suspended matter concentration measuring device 33 or the turbidity measuring device in the pipe L3 through which the mixed wastewater flows, the floating substance concentration measuring apparatus 33 or the turbidity measuring apparatus is installed in the scrubber drainage tank 1 or in the pipe L1 to float the scrubber wastewater before mixing. A mode in which the substance concentration or turbidity is measured may be adopted. In this case, for example, when the concentration of suspended solids or the turbidity of the scrubber wastewater is low enough to be able to be discharged outboard, it can be discharged before mixing with the ballast wastewater. This is because the suspended solids concentration or turbidity in ballast wastewater is generally negligible. The mixing step according to the present embodiment is not limited to the specific means illustrated, and the ballast wastewater may be mixed with the scrubber wastewater so that the suspended substance concentration or turbidity is substantially constant.
また、任意選択的に、浮遊物質濃度測定装置または濁度測定装置に加え、混合前、あるいは混合後の排水のほかの水質を測定する装置を設けてもよい。例えば、濁度計、pH計、塩濃度計等を、処理槽41の前段に設置することができる。これらの測定は、混合排水が流れる配管L3で実施しても良く、その前段の配管L1、L2や、水槽1、2において実施してもよい。さらに、これらの測定結果に応じて、処理槽41に流入させる前の排水の水質を制御するための装置を備えてもよい。水質を制御するための装置としては、例えば、pH計での測定結果に応じて、酸剤もしくはアルカリ剤を投入するpH調整装置が挙げられる。pH調整装置では、pHを4〜11に調整することが好ましい。   Optionally, in addition to the suspended solids concentration measuring device or the turbidity measuring device, a device for measuring other water quality of the wastewater before or after mixing may be provided. For example, a turbidity meter, a pH meter, a salt concentration meter, and the like can be provided in a stage preceding the treatment tank 41. These measurements may be performed in the pipe L3 through which the mixed wastewater flows, or in the pipes L1 and L2 and the water tanks 1 and 2 at the preceding stage. Further, a device for controlling the water quality of the waste water before flowing into the treatment tank 41 may be provided according to the measurement results. As a device for controlling water quality, for example, a pH adjusting device for introducing an acid agent or an alkali agent in accordance with the measurement result with a pH meter is exemplified. In the pH adjusting device, it is preferable to adjust the pH to 4 to 11.
混合工程に次いで、混合された排水に磁性粉を添加する処理工程を実施する。処理工程は、磁性粉添加装置4にて実施することができる。図1を参照すると、磁性粉添加装置4は、処理槽41と、磁性粉添加ポンプ42と、磁性粉貯留槽43と、撹拌装置44から構成することができる。混合工程で濃度制御された混合排水は、配管L3を通って処理槽41に送られる。処理槽41には、磁性粉添加ポンプ42により、磁性粉貯留槽43に貯留された磁性粉が添加され、撹拌装置44により処理槽内で混合される。   Following the mixing step, a processing step of adding magnetic powder to the mixed wastewater is performed. The processing step can be performed by the magnetic powder addition device 4. Referring to FIG. 1, the magnetic powder adding device 4 can include a processing tank 41, a magnetic powder adding pump 42, a magnetic powder storage tank 43, and a stirring device 44. The mixed wastewater whose concentration has been controlled in the mixing step is sent to the treatment tank 41 through the pipe L3. The magnetic powder stored in the magnetic powder storage tank 43 is added to the processing tank 41 by the magnetic powder addition pump 42, and mixed in the processing tank by the stirring device 44.
磁性粉としては、水処理分野で用いられる通常の磁性粉を使用することができ、常磁性粉あるいは強磁性粉のいずれであってもよく、例えば、四三酸化鉄等の酸化鉄、コバルト、酸化クロム、フェライトなどを用いることができるが、これらには限定されない。磁性粉の粒径は、通常、0.05μm以上10μm以下の範囲のものが好ましく、0.05μm以上5μm以下の範囲のものがより好ましい。また、磁性粉の保磁力としては、通常104/4πA/m以上4×10/4πA/m以下の範囲のものが好ましく、2×10/4πA/m以上3×10/4πA/m以下の範囲のものがより好ましい。 As the magnetic powder, normal magnetic powder used in the field of water treatment can be used, and any of paramagnetic powder or ferromagnetic powder may be used, for example, iron oxide such as triiron tetroxide, cobalt, Chromium oxide, ferrite, or the like can be used, but is not limited thereto. Usually, the particle size of the magnetic powder is preferably in the range of 0.05 μm to 10 μm, more preferably in the range of 0.05 μm to 5 μm. Further, the coercive force of the magnetic powder is preferably in the range of usually 104 / 4πA / m or more and 4 × 10 5 / 4πA / m or more, preferably 2 × 10 5 / 4π A / m or more and 3 × 10 5 / 4π A / m. The following range is more preferable.
磁性粉は、粉末状で添加することもできるし、あるいは水などの分散媒に磁性粉を分散した状態で添加することもできる。磁性粉の添加量としては、浮遊物質質量の1に対して磁性粉質量が0.1〜10となるように添加することが好ましく、0.5〜5となるように添加することがより好ましい。添加量がこの範囲未満であると、磁性フロックを形成する効率が悪くなる傾向となり、この範囲を超えると、磁性粉を不必要に過剰に使用することになりそのコストが上昇する場合がある。本発明においては、磁性粉の添加量は、略一定とし、特段の調整を行わずに実施することができる。前段の混合装置3で浮遊物質濃度を略一定に調節しているためである。しかし、浮遊物質濃度測定装置33または濁度測定装置で測定された排水の浮遊物質濃度または濁度に応じて、調整することもできる。この場合、例えば、磁性粉添加装置4に浮遊物質濃度または濁度の測定値と磁性粉の添加量との関係表を予め格納しておき、それを参照することにより添加量を決定するようにしてもよい。   The magnetic powder can be added in powder form, or can be added in a state where the magnetic powder is dispersed in a dispersion medium such as water. The addition amount of the magnetic powder is preferably such that the mass of the magnetic powder is 0.1 to 10 with respect to 1 of the suspended substance mass, and more preferably 0.5 to 5. . If the amount is less than this range, the efficiency of forming the magnetic floc tends to deteriorate, and if it exceeds this range, the magnetic powder is unnecessarily used excessively and the cost may increase. In the present invention, the amount of the magnetic powder to be added can be made substantially constant, and can be carried out without special adjustment. This is because the concentration of suspended solids is adjusted to be substantially constant by the mixing device 3 in the preceding stage. However, it can also be adjusted according to the suspended solids concentration or turbidity of the wastewater measured by the suspended solids concentration measuring device 33 or the turbidity measuring device. In this case, for example, a relation table between the measured value of the suspended substance concentration or the turbidity and the amount of magnetic powder added is stored in advance in the magnetic powder adding device 4, and the amount to be added is determined by referring to the table. You may.
処理工程においては、磁性粉を混合排水に添加することで、磁性粉と浮遊物質が結合した磁性フロックを形成する。本実施形態による水処理方法によれば、混合工程により、混合排水中の浮遊物質濃度が略一定に制御されているため、処理槽41におけるフロックの濃度変化を少なく抑えることができる。処理工程において、図示はしないが、処理槽41に磁場印加のための磁場印加装置をさらに配設してもよい。処理槽41に磁場を印加することにより、磁性粉が磁気を帯び、磁性粉同士の結合が促進される。すなわち、凝集速度を向上させることが可能となり、磁性フロックの形成を促進することができる。   In the treatment step, the magnetic powder is added to the mixed wastewater to form a magnetic floc in which the magnetic powder and the suspended substance are combined. According to the water treatment method according to the present embodiment, since the concentration of suspended solids in the mixed wastewater is controlled to be substantially constant by the mixing step, a change in the concentration of flocs in the treatment tank 41 can be suppressed to a small level. In the processing step, although not shown, a magnetic field application device for applying a magnetic field may be further provided in the processing tank 41. By applying a magnetic field to the processing tank 41, the magnetic powder becomes magnetic, and the coupling between the magnetic powders is promoted. That is, the aggregation speed can be improved, and the formation of magnetic flocs can be promoted.
処理工程後に、得られた磁性フロックを磁気分離する分離工程を実施する。分離工程は、磁気分離装置5にて実施することができる。処理工程で生成した磁性フロックを含む混合排水は、配管L4を通って磁気分離装置5に送られる。磁気分離装置5では、磁性フロックが塊となったスラッジSが選択的に除去され、処理済水を分離することができる。   After the treatment step, a separation step of magnetically separating the obtained magnetic flocks is performed. The separation step can be performed by the magnetic separation device 5. The mixed wastewater containing the magnetic floc generated in the processing step is sent to the magnetic separation device 5 through the pipe L4. In the magnetic separation device 5, the sludge S in which the magnetic flocs are agglomerated is selectively removed, and the treated water can be separated.
磁気分離装置5としては、水処理分野で用いられる一般的な磁気分離装置を用いることができ、その種類や機構は特には限定されない。磁性フロックを固液分離し、塊となった磁性フロックをスラッジSとして除去し、処理済水を選択的に取り出すことができる構成を持つものであればよい。磁気分離装置5の一例として、下半部が処理槽41から供給される排水に浸かるように配された、磁石が配された回転盤や回転ドラムを備えた磁気分離装置を用いることができる。この場合は、磁気吸引力によって回転盤や回転ドラムの表面に磁性フロックを付着させ、塊となった磁性フロックを回転盤や回転ドラムの表面から、スクレーパーにより掻きとることにより、磁性フロック由来のスラッジと、処理済水とに分離することができる。その他に、インラインミキサを備えた配管に設けた磁気分離装置を用いることもできる。この場合は、配管L4につながる配管の外側面に電磁石を配した構成とすることができる。電磁石をオンにした状態では、磁性フロックが電磁石により引き寄せられ、配管の内側側面に貯留される。磁性フロックが塊となったスラッジは、別途スラッジ排出のための運転モードを設けて、電磁石をオフにしつつ、排水のかわりに清浄な水を流し、スラッジ取出し経路を通じて配管から排出させることができる。   As the magnetic separation device 5, a general magnetic separation device used in the field of water treatment can be used, and its type and mechanism are not particularly limited. Any structure may be used as long as it has a configuration in which the magnetic floc is separated into solid and liquid, the clumped magnetic floc is removed as sludge S, and the treated water can be selectively removed. As an example of the magnetic separation device 5, a magnetic separation device provided with a rotating disk or a rotating drum provided with magnets, the lower half of which is disposed so as to be immersed in the drainage supplied from the processing tank 41, can be used. In this case, magnetic floc is attached to the surface of the rotating disk or rotating drum by magnetic attraction, and the clumped magnetic floc is scraped off from the surface of the rotating disk or rotating drum with a scraper, thereby forming sludge derived from the magnetic floc. And treated water. Alternatively, a magnetic separation device provided in a pipe provided with an inline mixer can be used. In this case, a configuration in which an electromagnet is arranged on the outer surface of the pipe connected to the pipe L4 can be adopted. When the electromagnet is turned on, the magnetic floc is attracted by the electromagnet and stored on the inner side surface of the pipe. The sludge in which the magnetic flocs are agglomerated can be discharged separately from the pipe through a sludge removal path by providing a separate operation mode for sludge discharge, turning off the electromagnet, flowing clean water instead of drainage.
その他にも、処理槽41の底面に電磁石を配した構成として、磁性粉添加装置と磁気分離装置を一体として構成する態様も本実施形態の一部を構成する。すなわち、処理槽41において、処理工程と磁気分離工程との両方を実施する態様とすることもできる。この場合、電磁石をオンにした状態では、磁性フロックが電磁石により引き寄せられ、処理槽41の底面に固定される。磁性フロックが塊となったスラッジは、別途スラッジ排出のための運転モードを設けて、電磁石をオフにしつつ、処理槽41に、排水のかわりに清浄な水を供給し、スラッジ取出すことができる。   In addition, a mode in which an electromagnet is disposed on the bottom surface of the processing tank 41 and the magnetic powder adding device and the magnetic separation device are integrally configured also constitutes a part of the present embodiment. That is, in the processing tank 41, both the processing step and the magnetic separation step may be performed. In this case, when the electromagnet is turned on, the magnetic floc is attracted by the electromagnet and fixed to the bottom surface of the processing tank 41. For the sludge in which the magnetic flocs are agglomerated, a separate operation mode for discharging the sludge is provided, and while the electromagnet is turned off, the processing tank 41 can be supplied with clean water instead of wastewater to remove the sludge.
分離工程においては、浮遊物及び微生物がスラッジSとなって除去される。スラッジが分離された処理済水は、微生物濃度及び浮遊物質濃度が法的基準値以下になっている場合には、配管L6を通って船舶外の水域に放流される。基準をみたさない場合には、配管L7によりスクラバ排水槽1に返送し、場合によりさらに配管L11によりスクラバ10に循環して再利用し、再処理に供することができる。また、任意選択的に、放流前の処理済水に、塩素注入や紫外線殺菌、オゾン殺菌、膜ろ過置等、汎用の殺菌処理を実施してもよく、本実施形態による排水処理システムは、これらの殺菌処理に必要な、塩素注入設備や紫外線殺菌設備、オゾン殺菌設備、膜ろ過装置等の殺菌装置を備えていてもよい。本実施形態においては、処理済水からは、磁気分離装置で概ね微生物が除かれているため、殺菌装置への負荷は小さくなる。さらには、処理済水もまた、配管L7によりスクラバ排水槽1に返送し、配管L11によりスクラバ10に循環させて用いることもできる。処理済水は、スクラバ排水槽1中のスクラバ排水の浮遊物濃度を低減して、スクラバ10に循環することでスクラバ洗浄水として利用することができる。そして、処理済水を循環利用することにより、スクラバ洗浄水を船外からくみ上げるためのポンプ動力を低減させることができるというさらなる利点が得られる。   In the separation step, suspended matter and microorganisms are removed as sludge S. The treated water from which the sludge has been separated is discharged to a water area outside the vessel through the pipe L6 when the concentration of microorganisms and the concentration of suspended solids are below the legal standard values. When the standard is not met, the water can be returned to the scrubber drainage tank 1 via a pipe L7 and, if necessary, circulated to the scrubber 10 via a pipe L11 for reuse and reprocessing. Also, optionally, the treated water before discharge may be subjected to general-purpose sterilization treatment such as chlorine injection, ultraviolet sterilization, ozone sterilization, and membrane filtration. A sterilization device such as a chlorine injection facility, an ultraviolet sterilization facility, an ozone sterilization facility, and a membrane filtration device necessary for the sterilization treatment of the above may be provided. In the present embodiment, since the microorganisms are generally removed from the treated water by the magnetic separation device, the load on the sterilization device is reduced. Further, the treated water can also be returned to the scrubber drainage tank 1 via the pipe L7 and circulated to the scrubber 10 via the pipe L11 for use. The treated water can be used as scrubber cleaning water by reducing the concentration of suspended solids in the scrubber wastewater in the scrubber drainage tank 1 and circulating through the scrubber 10. Further, by circulating and using the treated water, a further advantage is obtained that the pump power for pumping scrubber washing water out of the boat can be reduced.
第1実施形態による排水処理方法及び排水処理システムによれば、スクラバ排水とバラスト排水を一つのシステムで同時に処理することができる。また、混合工程において、磁性粉添加前の混合排水の浮遊物質濃度を略一定とすることができるため、混合排水の性状を略一定に保つことができる。そのため、凝集剤を添加しなくても、安定に磁性フロック形成を実施することができ、後段の磁気分離によって、排水中の浮遊物及び微生物を同時に効率的に除去することができる。   According to the wastewater treatment method and wastewater treatment system according to the first embodiment, the scrubber wastewater and the ballast wastewater can be simultaneously treated by one system. In the mixing step, the concentration of suspended solids in the mixed wastewater before the addition of the magnetic powder can be made substantially constant, so that the properties of the mixed wastewater can be kept substantially constant. Therefore, the formation of the magnetic floc can be stably performed without adding the coagulant, and the suspended matter and the microorganisms in the wastewater can be efficiently removed simultaneously by the subsequent magnetic separation.
[第2実施形態]
本発明は、第2実施形態によれば、排水処理方法であって、スクラバにおいて排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を、浮遊物質濃度が一定になるように混合する混合工程と、前記混合された排水に磁性粉を添加する処理工程と、前記処理工程で得られた磁性フロックに凝集剤を添加する凝集工程と、前記凝集工程で得られた磁性フロックを磁気分離する分離工程とを含む。
[Second embodiment]
The present invention, according to a second embodiment, is a wastewater treatment method, in which a ballast wastewater is mixed with a scrubber wastewater obtained by contacting exhaust gas and scrubber cleaning water in a scrubber so that the concentration of suspended solids is constant. A mixing step, a treatment step of adding a magnetic powder to the mixed wastewater, a flocculation step of adding a flocculant to the magnetic floc obtained in the treatment step, and magnetic separation of the magnetic floc obtained in the flocculation step Separating step.
図2に、第2実施形態による排水処理方法を実施するための排水処理システムの一例の概念図を示す。図2を参照すると、本実施形態の排水処理システムは、主として、混合装置3と、磁性粉添加装置4と、凝集剤添加装置61と、磁気分離装置5とを備えてなる。また、混合装置3の上流には、スクラバ10に接続したスクラバ排水槽1と、バラスト排水槽2とを備えていてもよい。   FIG. 2 shows a conceptual diagram of an example of a wastewater treatment system for performing the wastewater treatment method according to the second embodiment. Referring to FIG. 2, the wastewater treatment system of the present embodiment mainly includes a mixing device 3, a magnetic powder addition device 4, a flocculant addition device 61, and a magnetic separation device 5. Further, a scrubber drain tank 1 connected to the scrubber 10 and a ballast drain tank 2 may be provided upstream of the mixing device 3.
第2実施形態による排水処理方法においても、スクラバ排水、バラスト排水の特性は第1実施形態と同様であり、説明を省略する。また、混合工程、処理工程についても、第1実施形態において例示した装置を用いて、第1実施形態において例示した態様にて実施することができるため、説明を省略する。第2実施形態においては、処理工程後にさらに凝集工程を備え、凝集工程において、任意選択的に、磁場の印加を実施することができる点で第1実施形態と異なっている。   Also in the wastewater treatment method according to the second embodiment, the characteristics of the scrubber wastewater and the ballast wastewater are the same as in the first embodiment, and a description thereof will be omitted. In addition, the mixing step and the processing step can be performed in the mode illustrated in the first embodiment using the apparatus illustrated in the first embodiment, and thus the description is omitted. The second embodiment is different from the first embodiment in that a coagulation step is further provided after the treatment step, and the application of a magnetic field can be optionally performed in the coagulation step.
凝集工程は、処理工程で得られた磁性フロックに凝集剤を添加する工程である。図2を参照すると、凝集工程は、凝集剤添加装置61にて実施することができる。図2を参照すると、凝集剤添加装置61は、典型的には凝集剤添加ポンプであってよく、凝集剤貯留槽62に貯留された凝集剤を処理槽41に添加する。凝集剤の添加は、撹拌装置44で排水を撹拌しながら実施することができる。図示する実施形態においては、磁性粉を添加する処理工程と、凝集剤を添加する凝集工程とを同じ処理槽41で実施することができる。これらの工程は、実質的に同時に行うこともできる。   The coagulation step is a step of adding a coagulant to the magnetic floc obtained in the processing step. Referring to FIG. 2, the aggregating step can be performed by the aggregating agent adding device 61. Referring to FIG. 2, the coagulant addition device 61 may be typically a coagulant addition pump, and adds the coagulant stored in the coagulant storage tank 62 to the treatment tank 41. The addition of the flocculant can be performed while stirring the waste water with the stirring device 44. In the illustrated embodiment, the processing step of adding the magnetic powder and the aggregation step of adding the aggregating agent can be performed in the same processing tank 41. These steps can be performed substantially simultaneously.
凝集剤は、粉末状で添加したり、あるいは水などの分散媒に凝集剤を分散した状態で添加したりすることができる。凝集剤の成分としては、例えば、ポリ塩化アルミニウム(PAC)、ポリ硫酸第二鉄(ポリ鉄)、硫酸アルミニウム(硫酸バンド)、高分子(ノニオン系、カチオン系、アニオン系、両性)などが挙げられ、排水の性状により凝集剤を選定することができる。凝集剤の添加量としては、浮遊物質質量の1に対して凝集剤質量が0.005〜1となるように添加することが好ましく、0.01〜0.5となるように添加することがより好ましい。添加量がこの範囲未満であると、磁性フロックの形成を助ける効率が悪くなる傾向となる場合があり、この範囲を超えると、凝集剤を不必要に過剰に使用することになりそのコストが上昇する場合がある。本実施形態においては、混合工程で浮遊物質濃度を所定の値以下に調整しているため、凝集剤の添加量は、特に調節を要さずに一定とすることができる点で有利である。しかし、任意選択的に、混合工程で測定した浮遊物質濃度または濁度に応じて、凝集剤の添加量を制御してもよい。その際、凝集剤の添加量制御装置に測定値と凝集剤の添加量との関係表を予め格納しておき、それを参照することにより添加量を決定するようにしてもよい。例えば、バラスト水が充分に存在しない場合は浮遊物質濃度を所定の値以下に調整することが不可能であるため、凝集剤の添加量を増やす制御を行うことが好ましい。   The flocculant can be added in powder form, or can be added in a state where the flocculant is dispersed in a dispersion medium such as water. Examples of the component of the flocculant include polyaluminum chloride (PAC), ferric polysulfate (polyiron), aluminum sulfate (sulfate band), and polymers (nonionic, cationic, anionic, amphoteric) and the like. The coagulant can be selected according to the properties of the wastewater. The amount of the coagulant added is preferably such that the mass of the coagulant is 0.005 to 1 relative to 1 of the mass of the suspended substance, and is preferably added so as to be 0.01 to 0.5. More preferred. If the amount is less than this range, the efficiency of helping the formation of the magnetic floc may tend to deteriorate.If the amount exceeds this range, the coagulant is used unnecessarily and the cost increases. May be. In the present embodiment, the suspended substance concentration is adjusted to a predetermined value or less in the mixing step, so that the addition amount of the flocculant is advantageous in that it can be kept constant without any particular adjustment. However, optionally, the amount of coagulant added may be controlled according to the suspended solids concentration or turbidity measured in the mixing step. At this time, a relation table between the measured values and the addition amount of the flocculant may be stored in the coagulant addition amount control device in advance, and the addition amount may be determined by referring to the table. For example, when the ballast water does not sufficiently exist, it is impossible to adjust the suspended substance concentration to a predetermined value or less. Therefore, it is preferable to perform control to increase the addition amount of the flocculant.
第2実施形態において、処理槽41には、磁場を印可する磁場印加装置63が設置されている。磁場印加装置63は、磁性粉に弱磁場を印加することができるものであればよい。処理槽41に磁場を印可することで、磁性粉が磁気を帯び、磁性粉同士の結合が促進される。すなわち、凝集速度を向上させることが可能となり、磁性フロックの形成を促進するためである。なお、磁場印加装置63は、任意選択的な構成要素であり、第2実施形態において、磁場印加装置を備えない場合もある。   In the second embodiment, the processing tank 41 is provided with a magnetic field application device 63 for applying a magnetic field. The magnetic field application device 63 may be any device that can apply a weak magnetic field to the magnetic powder. By applying a magnetic field to the processing tank 41, the magnetic powder becomes magnetic, and the coupling between the magnetic powders is promoted. That is, the aggregation speed can be improved, and the formation of magnetic flocs is promoted. Note that the magnetic field application device 63 is an optional component, and may not include the magnetic field application device in the second embodiment.
図示しない他の実施形態において、処理槽とは別に、処理槽の後段に独立した凝集槽を設けてもよい。この場合、凝集槽は、凝集剤添加装置(ポンプ)と、凝集剤貯留槽と、撹拌装置を備え、任意選択的に磁場印加装置を備えていてもよい。   In another embodiment (not shown), an independent flocculation tank may be provided at a subsequent stage of the processing tank separately from the processing tank. In this case, the coagulation tank includes a coagulant adding device (pump), a coagulant storage tank, and a stirring device, and may optionally include a magnetic field application device.
処理槽41における凝集工程を経た磁性フロックを含む混合排水は、配管L4を通って磁気分離装置5に送られる。磁気分離装置5では、磁性フロックが塊となったスラッジSが選択的に除去され、処理済水を分離することができる。磁気分離装置5の態様は、第1実施形態において説明した各種態様及びその他の任意の態様とすることができる。また、処理槽41もしくは図示しない凝集槽の底面に電磁石を配した構成として、処理槽41もしくは凝集槽と磁気分離装置5を一体として構成する態様も本発明の一部を構成する。   The mixed wastewater containing the magnetic floc that has undergone the coagulation step in the treatment tank 41 is sent to the magnetic separation device 5 through the pipe L4. In the magnetic separation device 5, the sludge S in which the magnetic flocs are agglomerated is selectively removed, and the treated water can be separated. The aspect of the magnetic separation device 5 can be the various aspects described in the first embodiment and other arbitrary aspects. In addition, an embodiment in which the processing tank 41 or the coagulation tank is integrated with the magnetic separation device 5 as an arrangement in which an electromagnet is disposed on the bottom surface of the processing tank 41 or a coagulation tank (not shown) also constitutes a part of the present invention.
第2実施形態においても、分離工程においては、浮遊物及び微生物がスラッジSとなって除去される。スラッジが分離された処理済水は、微生物濃度及び浮遊物質濃度が法的基準値以下になっている場合には、配管L6を通って船舶外の水域に放流することができる。基準をみたさない場合には、あるいは必要に応じて、配管L7によりスクラバ排水槽1に循環して再処理に供することができる。分離工程の後段であって、処理済水が放流される前段には、第1実施形態において説明したのと同様に、殺菌装置を備えて、殺菌工程を実施してもよい。また、処理済水を配管L7によりスクラバ排水槽1に循環して、スクラバ排水の浮遊物濃度を低減し、配管11によりスクラバ10に循環して、スクラバ水として利用することもできる。   Also in the second embodiment, in the separation step, suspended matter and microorganisms are removed as sludge S. The treated water from which the sludge has been separated can be discharged to a water area outside the vessel through the pipe L6 when the concentration of microorganisms and the concentration of suspended solids are below the legal standard values. If the standard is not met, or if necessary, it can be circulated to the scrubber drainage tank 1 via the pipe L7 for reprocessing. A disinfection step may be performed after the separation step and before the treated water is discharged, by providing a disinfection device in the same manner as described in the first embodiment. Further, the treated water can be circulated to the scrubber drainage tank 1 via the pipe L7 to reduce the concentration of suspended solids in the scrubber drainage, and circulated to the scrubber 10 via the pipe 11 to be used as scrubber water.
第2実施形態による排水処理方法及び排水処理システムによれば、凝集剤添加装置をさらに設け、凝集剤を添加する工程を含むことで、スクラバ排水における浮遊物質濃度または濁度の変化がより大きい場合にも、安定した排水処理が可能になる。また、凝集剤を添加する処理槽あるいは凝集槽に磁場印加を可能とすることで、磁性フロックの形成を促進し、処理時間を大幅に短縮することが可能となる。   According to the wastewater treatment method and the wastewater treatment system according to the second embodiment, a coagulant addition device is further provided, and a step of adding a coagulant is included, whereby a change in suspended substance concentration or turbidity in the scrubber wastewater is larger. In addition, stable wastewater treatment becomes possible. Further, by enabling the application of a magnetic field to the treatment tank or coagulation tank to which the coagulant is added, the formation of magnetic flocs is promoted, and the processing time can be greatly reduced.
以下、本発明を、実施例を参照してより詳細に説明する。しかしながら、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[実験例1]
本システムによる、浮遊物質と微生物の除去性能を検証した。スクラバ実排水に、微生物として大腸菌を1000cfuとなるように添加して作成し、静置したものの上澄みを採取し、本発明における混合排水の試験用排水とした。この試験用排水単体、試験用排水に磁性粉とポリ塩化アルミニウム(PAC)を添加して磁気分離を行ったもの、試験用排水に磁性粉とPACを添加した後に高分子凝集剤を添加し、磁気分離を行ったものの3種類で比較した。磁性粉四三酸化鉄)は浮遊物質質量に対して1:1となるように添加し、PACは磁性粉添加後の濁度に対してALT比5となるように添加し、20秒間150rpmで急速撹拌を行った後、10分間20rpmでの緩速攪拌を行った。その後、高分子凝集剤を0.01ppmとなるように添加して5分間20rpmで緩速攪拌を行い、磁性フロックを形成させ、ネオジム磁石上に置き、上澄みの濁度及び生菌数を測定した。それぞれの結果を図3および4に示す。本システムにより、濁質が十分除去でき、生菌数も削減可能であることがわかった。
[Experimental example 1]
The removal performance of suspended solids and microorganisms by this system was verified. Escherichia coli was added to the actual scrubber wastewater so as to have a concentration of 1,000 cfu as a microorganism, and the supernatant was collected after standing, and used as the test wastewater of the mixed wastewater in the present invention. This test wastewater alone, magnetic powder and polyaluminum chloride (PAC) were added to the test wastewater and subjected to magnetic separation, and after adding the magnetic powder and PAC to the test wastewater, a polymer flocculant was added. The magnetic separation was compared between three types. Magnetic powder ( iron sesquioxide) was added so as to be 1: 1 with respect to the mass of the suspended substance, and PAC was added so that the turbidity after the addition of the magnetic powder was at an ALT ratio of 5, and 150 rpm for 20 seconds. And then slowly stirred at 20 rpm for 10 minutes. Thereafter, a polymer flocculant was added to a concentration of 0.01 ppm, and the mixture was gently stirred at 20 rpm for 5 minutes to form a magnetic floc, placed on a neodymium magnet, and the turbidity of the supernatant and the viable cell count were measured. . The respective results are shown in FIGS. It was found that this system could sufficiently remove turbidity and reduce the number of viable bacteria.
[実験例2]
次に、同じ試験用排水を用い、凝集剤のみと凝集剤に磁場印可を組合せた時の磁性フロックの粒径を比較した。凝集剤は、実験例1と同じものを用い、浮遊物質質量に対してPAC、高分子凝集剤ともに実験例1と同量を添加した。この試料に対し、一方は、0.4Tのネオジウム磁石を用いて磁場を印加し、他方は磁場を印加することなく、凝集剤の添加時点を0分として、時間とフロック径の関係を調べた。磁場の印加は、測定中継続した。フロック径は、粒度分布系で測定し、中央値を測定値とした。図5に結果のグラフを示す。凝集剤のみではフロック径が1mm以上となるのに15分程度要していたのに対し、磁場印可を組合せることで5分以内に1mm以上となることがわかり、磁場の印加により、フロック成長の時間を大幅に短縮可能であることがわかった。
[Experimental example 2]
Next, using the same test wastewater, the particle size of the magnetic floc when the magnetic field application was combined with the flocculant alone and the flocculant was compared. The same flocculant as in Experimental Example 1 was used, and the same amount of PAC and polymer flocculant as in Experimental Example 1 was added to the mass of suspended solids. For this sample, one applied a magnetic field using a 0.4 T neodymium magnet, and the other examined the relationship between time and floc diameter without applying a magnetic field, with the addition time of the flocculant being 0 minutes. . The application of the magnetic field was continued during the measurement. The floc diameter was measured using a particle size distribution system, and the median value was used as the measured value. FIG. 5 shows a graph of the result. It took about 15 minutes for the floc diameter to be 1 mm or more with the flocculant alone, but it became clear that the floc diameter could be increased to 1 mm or more within 5 minutes by combining the application of a magnetic field. It has been found that the time for this can be greatly reduced.
1 スクラバ排水
10 スクラバ
2 バラスト排水
3 混合装置
31 調節弁
32 調節弁
33 浮遊物質濃度測定装置
34 制御装置
4 磁性粉添加装置
41 処理槽
42 磁性粉添加ポンプ
43 磁性粉貯留槽
44 撹拌装置
5 磁気分離装置
61 凝集剤添加装置(ポンプ)
62 凝集剤貯留槽
63 磁場印加装置
Reference Signs List 1 Scrubber drainage 10 Scrubber 2 Ballast drainage 3 Mixing device 31 Control valve 32 Control valve 33 Suspended substance concentration measuring device 34 Control device 4 Magnetic powder addition device 41 Processing tank 42 Magnetic powder addition pump 43 Magnetic powder storage tank 44 Stirring device 5 Magnetic separation Equipment 61 Flocculant addition equipment (pump)
62 Coagulant storage tank 63 Magnetic field application device

Claims (16)

  1. スクラバにおいて排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を、浮遊物質濃度または濁度が一定になるように混合する混合工程と、
    前記混合された排水に磁性粉を添加する処理工程と、
    前記処理工程で得られた磁性フロックを磁気分離する分離工程と
    を含む、排水処理方法。
    A mixing step of mixing the ballast wastewater with the scrubber wastewater obtained by contacting the exhaust gas with the scrubber cleaning water in the scrubber so that the concentration of suspended solids or turbidity is constant,
    A treatment step of adding magnetic powder to the mixed wastewater,
    A separation step of magnetically separating the magnetic flocs obtained in the processing step.
  2. 前記混合工程が、前記スクラバ排水中の浮遊物質濃度もしくは前記混合された排水中の浮遊物質濃度を測定する測定工程と、前記測定工程による測定結果に応じて前記バラスト排水とスクラバ排水との混合比を制御する制御工程とを含む、請求項1に記載の排水処理方法。   The mixing step is a measurement step of measuring the suspended solids concentration in the scrubber wastewater or the suspended solids concentration in the mixed wastewater, and a mixing ratio of the ballast wastewater and the scrubber wastewater according to the measurement result of the measurement step. The wastewater treatment method according to claim 1, comprising a control step of controlling the wastewater treatment.
  3. 前記混合工程が、前記スクラバ排水中の濁度もしくは前記混合された排水中の濁度を測定する測定工程と、前記測定工程による測定結果に応じて前記バラスト排水と前記スクラバ排水との混合比を制御する制御工程とを含む、請求項1に記載の排水処理方法。   The mixing step is a measuring step of measuring the turbidity in the scrubber wastewater or the turbidity in the mixed wastewater, and a mixing ratio of the ballast wastewater and the scrubber wastewater according to the measurement result in the measuring step. The wastewater treatment method according to claim 1, comprising a control step of controlling.
  4. 前記処理工程で得られた磁性フロックに、凝集剤を添加する凝集工程をさらに含み、凝集工程で得られた磁性フロックを磁気分離する、請求項1〜3のいずれか1項に記載の排水処理方法。   The wastewater treatment according to any one of claims 1 to 3, further comprising a coagulation step of adding a coagulant to the magnetic floc obtained in the treatment step, wherein the magnetic floc obtained in the coagulation step is magnetically separated. Method.
  5. 前記磁性フロックに磁場を印加する磁場印加工程をさらに含む、請求項1〜4のいずれか1項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 4, further comprising a magnetic field applying step of applying a magnetic field to the magnetic flocks.
  6. 前記分離工程において前記磁性フロックを分離した後の処理済水に殺菌処理を行う殺菌工程をさらに含む、請求項1〜5のいずれか1項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 5, further comprising a sterilization step of performing a sterilization treatment on the treated water after separating the magnetic floc in the separation step.
  7. 前記分離工程において前記磁性フロックを分離した後の処理済水を、前記スクラバ排水に循環させる工程をさらに含む、請求項1〜6のいずれか1項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 6, further comprising a step of circulating the treated water after separating the magnetic flocs in the separation step to the scrubber wastewater.
  8. 前記分離工程において前記磁性フロックを分離した後の処理済水を、前記スクラバ排水を貯留するスクラバ排水槽に返送する工程と、前記スクラバ排水槽の排水を前記スクラバに循環させる工程をさらに含む、請求項1〜7のいずれか1項に記載の排水処理方法。   The method further comprising: returning the treated water after separating the magnetic floc in the separation step to a scrubber drainage tank storing the scrubber drainage, and circulating the wastewater from the scrubber drainage tank to the scrubber. Item 8. The wastewater treatment method according to any one of Items 1 to 7.
  9. スクラバにおいて排ガスとスクラバ洗浄水を接触させてなるスクラバ排水に、バラスト排水を浮遊物質濃度または濁度が一定になるように混合する混合装置と、
    前記混合装置で得られた混合排水に磁性粉を添加する磁性粉添加装置と、
    前記磁性粉添加装置で得られた磁性フロックを磁気分離する磁気分離装置と
    を備える、排水処理システム。
    A mixing device that mixes the ballast wastewater with the scrubber wastewater obtained by contacting the exhaust gas with the scrubber cleaning water in the scrubber so that the concentration of suspended solids or turbidity is constant.
    A magnetic powder addition device for adding magnetic powder to the mixed wastewater obtained by the mixing device,
    A magnetic separation device for magnetically separating the magnetic flocs obtained by the magnetic powder addition device.
  10. 前記混合装置が、前記スクラバ排水中の浮遊物質濃度もしくは前記混合された排水中の浮遊物質濃度または濁度を測定する測定装置と、前記測定装置による測定結果に応じて前記バラスト排水とスクラバ排水との混合比を制御する制御装置とを含む、請求項9に記載の排水処理システム。   The mixing device is a measuring device that measures the suspended solids concentration in the scrubber wastewater or the suspended solids concentration or turbidity in the mixed wastewater, and the ballast wastewater and the scrubber wastewater according to the measurement result by the measuring device. The wastewater treatment system according to claim 9, further comprising: a control device that controls a mixing ratio of the wastewater.
  11. 前記磁性粉添加装置で得られた磁性フロックに、凝集剤を添加する凝集剤添加装置をさらに備える、請求項9または10に記載の排水処理システム。   The wastewater treatment system according to claim 9 or 10, further comprising a flocculant adding device that adds a flocculant to the magnetic floc obtained by the magnetic powder adding device.
  12. 前記磁性粉添加装置が、磁性粉が添加される処理槽を備え、前記処理槽が撹拌装置を備える請求項9〜11のいずれか1項に記載の排水処理システム。   The wastewater treatment system according to any one of claims 9 to 11, wherein the magnetic powder addition device includes a treatment tank to which the magnetic powder is added, and the treatment tank includes a stirrer.
  13. 前記磁性粉添加装置が、磁性粉が添加される処理槽を備え、前記凝集剤添加装置が、凝集剤が添加される前記処理槽とは独立した凝集槽を備え、前記処理槽及び/または前記凝集槽が撹拌装置を備える、請求項11に記載の排水処理システム。   The magnetic powder addition device includes a treatment tank to which magnetic powder is added, and the flocculant addition device includes a coagulation tank independent of the treatment tank to which a coagulant is added, and the treatment tank and / or The wastewater treatment system according to claim 11, wherein the coagulation tank includes a stirring device.
  14. 磁性粉を添加した後の排水に磁場を印加する磁場印加装置をさらに備える、請求項9〜13のいずれか1項に記載の排水処理システム。   The wastewater treatment system according to any one of claims 9 to 13, further comprising a magnetic field application device that applies a magnetic field to wastewater after the addition of the magnetic powder.
  15. 前記磁気分離装置により磁性フロックを分離した後の処理済水に殺菌処理を行う殺菌装置をさらに含む、請求項9〜14のいずれか1項に記載の排水処理システム。 The wastewater treatment system according to any one of claims 9 to 14 , further comprising a sterilization device that performs a sterilization process on the treated water after the magnetic floc has been separated by the magnetic separation device.
  16. 前記磁気分離装置により前記磁性フロックを分離した後の処理済水を、前記スクラバに循環させる手段をさらに含む、請求項9〜15のいずれか1項に記載の排水処理システム。   The wastewater treatment system according to any one of claims 9 to 15, further comprising means for circulating the treated water after separating the magnetic flocs by the magnetic separation device to the scrubber.
JP2016044541A 2016-03-08 2016-03-08 Wastewater treatment method and wastewater treatment system Active JP6625907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044541A JP6625907B2 (en) 2016-03-08 2016-03-08 Wastewater treatment method and wastewater treatment system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016044541A JP6625907B2 (en) 2016-03-08 2016-03-08 Wastewater treatment method and wastewater treatment system
CN201780005495.9A CN108473346A (en) 2016-03-08 2017-03-03 Drainage processing method and disintegrating system in waste pipe
EP17763120.7A EP3421430B1 (en) 2016-03-08 2017-03-03 Wastewater treatment method and wastewater treatment system
KR1020187018177A KR102015090B1 (en) 2016-03-08 2017-03-03 Drainage treatment method and drainage treatment system
PCT/JP2017/008530 WO2017154780A1 (en) 2016-03-08 2017-03-03 Wastewater treatment method and wastewater treatment system
US16/022,297 US10800681B2 (en) 2016-03-08 2018-06-28 Wastewater treatment method and wastewater treatment system

Publications (3)

Publication Number Publication Date
JP2017159211A JP2017159211A (en) 2017-09-14
JP2017159211A5 JP2017159211A5 (en) 2019-05-09
JP6625907B2 true JP6625907B2 (en) 2019-12-25

Family

ID=59789332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044541A Active JP6625907B2 (en) 2016-03-08 2016-03-08 Wastewater treatment method and wastewater treatment system

Country Status (6)

Country Link
US (1) US10800681B2 (en)
EP (1) EP3421430B1 (en)
JP (1) JP6625907B2 (en)
KR (1) KR102015090B1 (en)
CN (1) CN108473346A (en)
WO (1) WO2017154780A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292402B1 (en) * 2019-09-03 2021-08-20 한국산업기술시험원 Water treatment apparatus using ozone bubble
CN112960404A (en) * 2021-02-06 2021-06-15 坎布里奇环保科技(北京)有限公司 Automatic magnetic powder adding system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238968B2 (en) 1972-01-18 1977-10-01
JPS5238968A (en) 1975-09-22 1977-03-25 Mitsubishi Electric Corp Clock device for generating of set time automatic on-off signal
US4505776A (en) * 1982-07-08 1985-03-19 Wescam Services Inc. Composition and method for treating flue gas and methanol containing effluents
US5932112A (en) * 1996-11-27 1999-08-03 Browning Transport Management, Inc. Method and apparatus for killing microorganisms in ship ballast water
US6761123B2 (en) * 2001-05-25 2004-07-13 Mh Systems Infusion of combustion gases into ballast water preferably under less than atmospheric pressure to synergistically kill harmful aquatic nuisance species by simultaneous hypercapnia, hypoxia and acidic ph level
FI113463B (en) * 2001-07-04 2004-04-30 Waertsilae Finland Oy Combined Outboard Gas and Ballast Water Treatment Arrangement and Method for Waterborne Ballast Water Treatment
JP4186523B2 (en) * 2002-06-26 2008-11-26 株式会社日立製作所 Waste water purification device and waste water purification system
IL160384A (en) * 2004-02-12 2007-10-31 Edward Brook-Levinson System and method for treatment of industrial wastewater
JP2009506931A (en) * 2006-05-24 2009-02-19 ディーケー・グループ・エヌ.エー. エヌ.ブイ. Ship with air reservoir
JP2010269200A (en) * 2007-08-09 2010-12-02 Sumitomo Electric Ind Ltd Water treatment apparatus and water treatment method
JP5238968B2 (en) * 2007-11-08 2013-07-17 三菱重工業株式会社 Ship
JP2010269248A (en) * 2009-05-21 2010-12-02 Mitsubishi Heavy Ind Ltd Apparatus for desulfurizing/absorbing flue gas, and method of treating flue gas
KR100967910B1 (en) 2009-11-18 2010-07-06 신강하이텍(주) Ballast water treating method and apparatus with the stack gas from marine engine
JP2012152708A (en) * 2011-01-27 2012-08-16 Hitachi Plant Technologies Ltd Flocculation magnetic separator
US9216376B2 (en) * 2011-03-22 2015-12-22 Keppel Offshore & Marine Technology Centre Pte Ltd Systems and methods for exhaust gas cleaning and/or ballast water treatment
CN102826705B (en) * 2012-09-24 2014-07-09 柳州市环源利环境资源技术开发有限公司 Treatment method for tail slurry of blast furnace dust
KR20140075204A (en) * 2012-12-11 2014-06-19 현대중공업 주식회사 Exhaust gas scrubber sea water pump development
CN104470621B (en) * 2012-12-19 2016-10-19 富士电机株式会社 Emission-control equipment
EP2955345B1 (en) * 2013-01-30 2019-12-18 Fuji Electric Co., Ltd. Marine diesel engine exhaust gas treatment system
CN203715355U (en) * 2014-03-03 2014-07-16 四川环能德美科技股份有限公司 Automatic dosing system for super-magnetic separation water treatment
DE112015002998T5 (en) * 2014-06-25 2017-03-23 Evoqua Water Technologies Llc Secondary flow treatment for overflow
CN112973332A (en) * 2015-03-04 2021-06-18 三星重工业株式会社 Contaminant reduction device and method
WO2016147708A1 (en) * 2015-03-13 2016-09-22 富士電機株式会社 Method for treating scrubber effluent, and apparatus for treating scrubber effluent
JP6543762B2 (en) * 2015-09-10 2019-07-10 サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド Contaminant reduction device

Also Published As

Publication number Publication date
KR20180087368A (en) 2018-08-01
KR102015090B1 (en) 2019-08-27
WO2017154780A1 (en) 2017-09-14
EP3421430A4 (en) 2019-01-02
EP3421430A1 (en) 2019-01-02
US10800681B2 (en) 2020-10-13
EP3421430B1 (en) 2019-12-11
US20180305227A1 (en) 2018-10-25
CN108473346A (en) 2018-08-31
JP2017159211A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6330968B2 (en) Scrubber wastewater treatment method and scrubber wastewater treatment equipment
KR101712331B1 (en) Ship
JP6625907B2 (en) Wastewater treatment method and wastewater treatment system
JP5701325B2 (en) Ballast water treatment system
JP2004290926A (en) Flocculation precipitation apparatus
Kim et al. Implementing chemical precipitation as a pretreatment for phosphorus removal in membrane bioreactor-based municipal wastewater treatment plants
JP4167671B2 (en) Water-based industrial waste liquid filtration activation equipment
KR102021421B1 (en) Wastewater disinfection purification system generated from the treatment of aquatic organisms
Yu et al. Applying Online Image Analysis to Simultaneously Evaluate the Removals of Suspended Solids and Color from Textile Wastewater in Chemical Flocculated Sedimentation.
JP6091039B2 (en) Wastewater treatment method
JP2005238184A (en) Method for treating organoarsenic compound
JP2005137991A (en) Drainage treatment apparatus
JP5945309B2 (en) Ballast water treatment system
JP2016131937A (en) Seawater desalination system and method
Aly et al. In-line coagulation assessment for ultrafiltration fouling reduction to treat secondary effluent for water reuse
KR20190088180A (en) Seawater Desalination Plant and Control Method for the same
Hidayah et al. Combination of solid-liquid separation process to remove grease, oil and organic from food and dairy wastewater
Pascu et al. Industrial waste Fe-Al coagulation agent utilization for wastewater treatment
Mortula et al. Removal of phosphorus and BOD from secondary effluent using coagulation
JPH07256271A (en) Treatment of waste fluid containing marine organisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6625907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150