JP6616964B2 - State display method and apparatus of rolling bearing in machine tool - Google Patents

State display method and apparatus of rolling bearing in machine tool Download PDF

Info

Publication number
JP6616964B2
JP6616964B2 JP2015110350A JP2015110350A JP6616964B2 JP 6616964 B2 JP6616964 B2 JP 6616964B2 JP 2015110350 A JP2015110350 A JP 2015110350A JP 2015110350 A JP2015110350 A JP 2015110350A JP 6616964 B2 JP6616964 B2 JP 6616964B2
Authority
JP
Japan
Prior art keywords
bearing
state
rolling bearing
time
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015110350A
Other languages
Japanese (ja)
Other versions
JP2016223906A (en
Inventor
知治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2015110350A priority Critical patent/JP6616964B2/en
Publication of JP2016223906A publication Critical patent/JP2016223906A/en
Application granted granted Critical
Publication of JP6616964B2 publication Critical patent/JP6616964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械において主軸等を支持する転がり軸受の状態を表示する方法及び装置に関するものである。   The present invention relates to a method and an apparatus for displaying the state of a rolling bearing that supports a spindle or the like in a machine tool.

工作機械の主軸に用いられている転がり軸受(以下、「軸受」と略記する。)の異常診断は、従来から振動を利用した方法が主に用いられている。
例えば特許文献1では、軸受の異常を検知する方法として、回転機器または軸受に固定して設置した加速度センサを用いて振動加速度を検出し、その強度に基づいて軸受の損傷度合いや余寿命を判定している。
特許文献2では、軸受の寿命を実際の軸受寿命に則した的確な寿命予測を行っている。すなわち、軸受の諸元情報から動等価荷重を算出し、次いで使用する潤滑剤に応じた潤滑パラメータを算出し、さらに材料係数を考慮して汚染度係数を決定し、前記諸元情報に基づいて疲労限度荷重を算出し、これらをもとに寿命補正係数算出用マップを参照して寿命補正係数を算出し、軸受寿命を補正している。
特許文献3では、予めゴミや水の混入による潤滑油の劣化状態を、各軸受の型番、メーカ名等の軸受諸元毎に加速度センサの共振周波数帯や高周波帯の信号を用いて基礎データの測定を行っておき、この基礎データを用いて、軸受のゴミ混入状態と潤滑油の劣化状態を推定して、軸受の余寿命を算出している。
Conventionally, an abnormality diagnosis of a rolling bearing (hereinafter abbreviated as “bearing”) used for a main shaft of a machine tool has been mainly used a method using vibration.
For example, in Patent Document 1, as a method for detecting a bearing abnormality, vibration acceleration is detected using an acceleration sensor fixed to a rotating device or a bearing, and the degree of damage or remaining life of the bearing is determined based on the strength. doing.
In Patent Document 2, the life of the bearing is accurately predicted based on the actual life of the bearing. That is, the dynamic equivalent load is calculated from the specification information of the bearing, and then the lubrication parameter corresponding to the lubricant to be used is calculated. Further, the contamination coefficient is determined in consideration of the material coefficient, and based on the specification information. The fatigue limit load is calculated, and based on these, the life correction coefficient is calculated with reference to the life correction coefficient calculation map to correct the bearing life.
In Patent Document 3, the deterioration state of the lubricating oil due to mixing of dust and water is preliminarily determined based on the basic data using the resonance frequency band and high frequency band signals of the acceleration sensor for each bearing specification such as the model number and manufacturer name of each bearing. Measurements are made, and the basic data is used to estimate the dust contamination state of the bearing and the deterioration state of the lubricating oil to calculate the remaining life of the bearing.

特公平2−59420号公報Japanese Examined Patent Publication No. 2-59420 特開2002−148148号公報JP 2002-148148 A 特開2010−190901号公報JP 2010-190901 A

上記特許文献1の技術では、軸受の損傷が振動や音響に現れるレベルで検出している。しかし、工作機械の主軸は、数ミクロンという高い回転精度が要求されるため、このような高い回転精度を有する工作機械において当該技術を適用しても、振動や音響に現れたときにはすでに回転精度が悪化している場合があり、不向きである。
特許文献2に開示されている技術では、異物等の侵入や軸受から出た磨耗粉などによる潤滑油の汚染状態から余寿命を正確に予測する技術が示されている。しかし、工作機械の主軸においては、主軸とワークの衝突で軸受を損傷させてしまうことがあるが、このような場合は潤滑油の汚染では判断できない。
特許文献3に開示されている技術は、潤滑油への異物等の侵入や潤滑油の劣化と軸受振動を結び付けている。しかし、工作機械の主軸において、オイルエア潤滑が採用されている場合は、常に新しく清浄な潤滑油が軸受に供給されている。また、上記で述べたように、潤滑油に汚染によらずに主軸とワークとの衝突で軸受が損傷する場合もある。従って、潤滑油の状態が変わるケースが少ない工作機械では、潤滑油の状態を変えて調査した軸受振動だけでは寿命の判断がつかない可能性がある。
In the technique of Patent Document 1, damage to the bearing is detected at a level that appears in vibration and sound. However, since the spindle of a machine tool is required to have a high rotational accuracy of several microns, even if this technology is applied to a machine tool having such a high rotational accuracy, the rotational accuracy is already present when it appears in vibration or sound. May be worse and unsuitable.
In the technique disclosed in Patent Document 2, a technique for accurately predicting the remaining life from the contamination state of the lubricating oil due to the intrusion of foreign matter or the like or wear powder from the bearing is shown. However, in the main spindle of a machine tool, the bearing may be damaged due to the collision between the main spindle and a workpiece. In such a case, it cannot be determined by contamination of the lubricating oil.
The technique disclosed in Patent Document 3 combines the penetration of foreign matter into the lubricating oil, the deterioration of the lubricating oil, and the bearing vibration. However, when oil-air lubrication is adopted in the spindle of the machine tool, new and clean lubricating oil is always supplied to the bearing. In addition, as described above, the bearing may be damaged by the collision between the main shaft and the workpiece without being contaminated by the lubricating oil. Therefore, in a machine tool in which the state of the lubricating oil is rarely changed, there is a possibility that the life cannot be judged only by the bearing vibration investigated by changing the state of the lubricating oil.

そこで、本発明は、高い回転精度を有して潤滑油に関係なく軸受が損傷する可能性がある工作機械であっても、軸受の状態を的確に判定して作業者に報知することができる転がり軸受の状態表示方法及び装置を提供することを目的としたものである。   Therefore, the present invention can accurately determine the state of the bearing and notify the operator even if the machine tool has high rotational accuracy and the bearing may be damaged regardless of the lubricating oil. An object of the present invention is to provide a state display method and apparatus for a rolling bearing.

上記目的を達成するために、請求項1に記載の発明は、転がり軸受で支持される回転軸又は直線軸を備え、工具又はワークを回転させて前記ワークの加工を行う工作機械において、前記転がり軸受の状態を表示する方法であって、
前記転がり軸受の稼働に伴う軸受状態を検出する軸受状態検出ステップと、
前記転がり軸受の累積稼働時間を算出する稼働情報算出ステップと、
検出した前記転がり軸受の所定の軸受状態を、その時点における前記累積稼働時間と併せて取得する情報取得ステップと、
前記転がり軸受の寿命時間を算出する寿命算出ステップと、
各前記累積稼働時間における前記所定の軸受状態と、当該軸受状態を異常と判断する閾値と、前記転がり軸受の寿命時間と、現時点の当該軸受状態とを、前記所定の軸受状態を縦軸、前記累積稼働時間を横軸としたグラフを作成し、前記閾値と前記寿命時間とで前記グラフ内を所定の領域に区分けした状態で表示する表示ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記軸受状態検出ステップでは、前記転がり軸受の稼働に伴う振動を検出して前記振動を解析し、所定の周波数の振動値を前記転がり軸受の稼働に伴う軸受状態として検出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記稼働情報算出ステップでは前記転がり軸受の平均回転速度も算出し、前記情報取得ステップでは前記平均回転速度も併せて取得して、前記寿命算出ステップでは、前記平均回転速度も用いて前記転がり軸受の寿命時間を算出することを特徴とする。
上記目的を達成するために、請求項4に記載の発明は、転がり軸受で支持される回転軸又は直線軸を備え、工具又はワークを回転させて前記ワークの加工を行う工作機械において、前記転がり軸受の状態を表示する装置であって、
前記転がり軸受の稼働に伴う軸受状態を検出する軸受状態検出手段と、
前記転がり軸受の累積稼働時間を算出する稼働情報算出手段と、
所定の軸受状態を、その時点における前記累積稼働時間と併せて取得する情報取得手段と、
前記転がり軸受の寿命時間を算出する寿命算出手段と、
各前記累積稼働時間における前記所定の軸受状態と、当該軸受状態を異常と判断する閾値と、前記転がり軸受の寿命時間と、現時点の当該軸受状態とを、前記所定の軸受状態を縦軸、前記累積稼働時間を横軸としたグラフを作成し、前記閾値と前記寿命時間とで前記グラフ内を所定の領域に区分けした状態で表示する表示手段と、を備えることを特徴とする。
請求項5に記載の発明は、請求項4の構成において、前記軸受状態検出手段は前記転がり軸受の振動を検出するものであって、検出された前記振動を周波数とそれに対応する振動値との関係に解析する振動解析手段を備え、前記情報取得手段は、解析された前記周波数及び振動値の関係のうちの所定の周波数の振動値を、その時点における前記累積稼働時間と併せて取得することを特徴とする。
請求項6に記載の発明は、請求項4又は5の構成において、前記稼働情報算出手段は前記転がり軸受の平均回転速度も算出し、前記情報取得手段は前記平均回転速度も併せて取得して、前記寿命算出手段は、前記平均回転速度も用いて前記転がり軸受の寿命時間を算出することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a machine tool including a rotating shaft or a linear shaft supported by a rolling bearing, and processing the workpiece by rotating a tool or a workpiece. A method for displaying the state of a bearing,
A bearing state detection step for detecting a bearing state associated with the operation of the rolling bearing;
An operation information calculation step for calculating the cumulative operation time of the rolling bearing;
An information acquisition step of acquiring a predetermined bearing state of the detected rolling bearing together with the accumulated operating time at that time point;
A life calculating step for calculating a life time of the rolling bearing;
The predetermined bearing state in each cumulative operating time, a threshold value for determining the bearing state as abnormal, a life time of the rolling bearing, and the current bearing state at present, the predetermined bearing state as the vertical axis, A display step of creating a graph with the accumulated operation time as a horizontal axis and displaying the graph in a state where the graph is divided into predetermined regions by the threshold value and the life time is executed.
According to a second aspect of the present invention, in the configuration of the first aspect, in the bearing state detecting step, vibrations associated with operation of the rolling bearing are detected to analyze the vibrations, and a vibration value having a predetermined frequency is determined as the rolling value. It is detected as a bearing state accompanying the operation of the bearing.
According to a third aspect of the present invention, in the configuration of the first or second aspect, the operation information calculation step calculates an average rotation speed of the rolling bearing, and the information acquisition step also acquires the average rotation speed. In the life calculation step, the life time of the rolling bearing is also calculated using the average rotational speed.
In order to achieve the above object, the invention according to claim 4 is a machine tool comprising a rotating shaft or a linear shaft supported by a rolling bearing, and processing the workpiece by rotating a tool or a workpiece. A device for displaying the state of a bearing,
Bearing state detecting means for detecting a bearing state associated with operation of the rolling bearing;
Operating information calculating means for calculating the cumulative operating time of the rolling bearing;
Information acquisition means for acquiring a predetermined bearing state together with the cumulative operating time at that time;
A life calculating means for calculating a life time of the rolling bearing;
The predetermined bearing state at each of the cumulative operating times, a threshold value for determining the bearing state as abnormal, a life time of the rolling bearing, and the current bearing state at present, the predetermined bearing state on the vertical axis, And a display unit that creates a graph with the accumulated operation time as a horizontal axis and displays the graph in a state where the graph is divided into predetermined regions by the threshold value and the life time.
According to a fifth aspect of the present invention, in the configuration of the fourth aspect, the bearing state detecting means detects vibrations of the rolling bearing, and the detected vibrations are expressed as a frequency and a vibration value corresponding to the frequency. Vibration analysis means for analyzing the relationship, and the information acquisition means acquires a vibration value of a predetermined frequency of the analyzed relationship between the frequency and the vibration value together with the accumulated operation time at that time. It is characterized by.
According to a sixth aspect of the present invention, in the configuration of the fourth or fifth aspect, the operation information calculation unit calculates an average rotation speed of the rolling bearing, and the information acquisition unit acquires the average rotation speed together. The life calculation means calculates the life time of the rolling bearing also using the average rotation speed.

本発明によれば、軸受の計算寿命と軸受状態を同時に把握することができる。計算寿命だけでは、真の寿命に対して十分余裕があるにもかかわらず、軸受を早期に交換してしまう可能性がある。一方で、軸受状態のみで判断した場合、目だって増加し始めたタイミングでは、既に軸受寿命の末期である可能性がある。これらの値を併せて表示することで、工作機械のように高い回転精度を有して潤滑油に関係なく軸受が損傷する可能性がある機械であっても、軸受の状態を的確に判定して作業者に報知することができる。
よって、最終的な判断を人に委ねることで寿命診断の精度を向上させることができ、保守計画を立てやすくして、急な故障による生産停止を無くすことができる。また、軸受状態で判定することができるため、保守費用を削減する効果もある。
According to the present invention, the calculation life and the bearing state of the bearing can be grasped simultaneously. There is a possibility that the bearing will be replaced at an early stage in spite of the fact that the calculated life alone is sufficient for the true life. On the other hand, if it is determined only by the bearing state, there is a possibility that the bearing life is already at the end when the timing starts to increase. By displaying these values together, it is possible to accurately determine the state of the bearing even in a machine with high rotational accuracy such as a machine tool that may damage the bearing regardless of the lubricant. The operator can be notified.
Therefore, it is possible to improve the accuracy of the life diagnosis by entrusting the final judgment to a person, making it easier to make a maintenance plan, and eliminating production stop due to a sudden failure. Further, since the determination can be made based on the bearing state, there is an effect of reducing the maintenance cost.

転がり軸受の状態表示装置を備えた工作機械のNC装置のブロック構成図である。It is a block block diagram of NC apparatus of the machine tool provided with the status display apparatus of the rolling bearing. 主軸ハウジングの側面図である。It is a side view of a spindle housing. 主軸ハウジングの正面図(底面図)である。It is a front view (bottom view) of a spindle housing. 振動情報の記録制御のフローチャートである。It is a flowchart of recording control of vibration information. 累積稼働時間の算出制御のフローチャートである。It is a flowchart of calculation control of accumulated operation time. 記録された軸受状態のデータの説明図である。It is explanatory drawing of the data of the recorded bearing state. モニタの表示画面を示す説明図である。It is explanatory drawing which shows the display screen of a monitor.

以下、本発明を工作機械の主軸軸受に、軸受状態として振動値を用いて実施した形態を図面に基づいて説明する。
図1は、工作機械において、主軸の軸受の状態表示装置を備えたNC装置の一例を示すブロック構成図、図2は、工作機械の主軸ハウジングの側面図、図3は、主軸ハウジングの正面図(軸方向下側から示した図)である。
1は、工作機械において主軸3を有する主軸ハウジングで、主軸3に保持させた工具を回転させて下方のテーブル上に載置したワークを加工する。この主軸ハウジング1には、C軸回りで回転可能に備えられた主軸3に生じる時間領域の振動(時間軸上の振動)を検出する軸受状態検出手段として、加速度センサである振動センサ2a〜2cが備えられている。振動センサ2a〜2cは、互いに直角となる方向における振動情報を検出すべく、互いに直交するX軸、Y軸、Z軸方向での時間領域の振動情報を検出可能な状態で、主軸ハウジング1に取り付けられている。
Hereinafter, embodiments in which the present invention is applied to a spindle bearing of a machine tool using a vibration value as a bearing state will be described with reference to the drawings.
FIG. 1 is a block configuration diagram showing an example of an NC device provided with a spindle bearing state display device in a machine tool, FIG. 2 is a side view of the spindle housing of the machine tool, and FIG. 3 is a front view of the spindle housing. It is the figure shown from the axial direction lower side.
Reference numeral 1 denotes a spindle housing having a spindle 3 in a machine tool, which processes a workpiece placed on a lower table by rotating a tool held by the spindle 3. The main shaft housing 1 includes vibration sensors 2a to 2c, which are acceleration sensors, as bearing state detection means for detecting time domain vibration (vibration on the time axis) generated in the main shaft 3 rotatably provided around the C axis. Is provided. The vibration sensors 2a to 2c are arranged in the spindle housing 1 in a state in which vibration information in the time domain in the X-axis, Y-axis, and Z-axis directions orthogonal to each other can be detected so as to detect vibration information in directions perpendicular to each other. It is attached.

状態表示装置10は、振動センサ2a〜2cにより検出された振動を基にフーリエ解析を行うFFT演算装置11(振動解析手段)と、NC装置12とにより構成される。NC装置12は、主軸3の回転速度を主軸ハウジング1に設けられた主軸回転検出器13により検出すると共に、送り軸の回転速度を送り軸のサーボモータに設けられた送り軸回転検出器14により検出する回転検出部15と、回転検出部15から得られる検出タイミングから稼働時間を算出して累積記録すると共に、平均主軸回転速度を算出する累積稼働時間記録部16(稼働情報算出手段)と、累積稼働時間記録部16で記録された累積稼働時間と平均主軸回転速度とから軸受寿命を算出する寿命算出部17(寿命算出手段)と、FFT演算装置11から得られる解析データを元に振動周波数及び振動値を算出すると共に、回転検出部15から得られる切削実行情報によって機械が切削中か否かを判定し、非切削中であれば、累積稼働時間記録部16から累積稼働時間及び平均主軸回転速度を、寿命算出部17から計算軸受寿命を取得する記録判定部18(情報取得手段)と、記録判定部18で取得した情報を記録して所定のグラフを作成する軸受状態記録部19と、軸受状態記録部19で記録されたデータをグラフ表示するモニタ20と、を備える。軸受状態記録部19とモニタ20とが表示手段となる。ここでは主軸3の回転により得られる振動や累積稼働時間、平均回転速度をそれぞれ主軸3の軸受の振動や累積稼働時間、平均回転速度とみなして状態表示を行う。   The state display device 10 includes an FFT calculation device 11 (vibration analysis means) that performs Fourier analysis based on vibrations detected by the vibration sensors 2a to 2c, and an NC device 12. The NC device 12 detects the rotation speed of the main shaft 3 by a main shaft rotation detector 13 provided in the main shaft housing 1, and the rotation speed of the feed shaft by a feed shaft rotation detector 14 provided in a servo motor of the feed shaft. A rotation detection unit 15 to detect, an operation time is calculated from the detection timing obtained from the rotation detection unit 15 and accumulated and recorded, and an accumulated operation time recording unit 16 (operation information calculation means) for calculating an average spindle rotation speed; Based on the analysis data obtained from the life calculation unit 17 (life calculation means) for calculating the bearing life from the cumulative operation time and the average spindle rotation speed recorded by the cumulative operation time recording unit 16 and the analysis data obtained from the FFT arithmetic unit 11 And the vibration value are calculated, and it is determined whether or not the machine is cutting based on the cutting execution information obtained from the rotation detection unit 15. A record determination unit 18 (information acquisition unit) that acquires the cumulative operating time and average spindle rotational speed from the recording unit 16 and a calculated bearing life from the life calculation unit 17, and the information acquired by the record determination unit 18 are recorded. A bearing state recording unit 19 that creates a graph and a monitor 20 that displays the data recorded by the bearing state recording unit 19 in a graph are provided. The bearing state recording unit 19 and the monitor 20 serve as display means. Here, the state display is performed by regarding the vibration, accumulated operation time, and average rotation speed obtained by the rotation of the main shaft 3 as the vibration, accumulated operation time, and average rotation speed of the bearing of the main shaft 3, respectively.

記録判定部18では、メーカが設定した軸受諸元から記録すべき周波数帯域を計算し、求めた周波数帯の振動値を記録する。一般的に、外輪傷、内輪傷、転動体傷は以下の式1のように知られており、この周波数を記録判定部18で求めるようにしている。なお、転動体の数や直径、ピッチ円直径、接触角は予め記録判定部18に入力されている。
[式1]
内輪傷: Zfi=fr・(1+Da・cosα/dm)・Z/2
外輪傷: Zfc=fr・(1−Da・cosα/dm)・Z/2
転動体傷: 2fb=fr・(1−Da・cosα/dm)・dm/Da
Z:転動体の数
fr:内輪回転周波数[Hz]
fc:保持器回転周波数[Hz]
fi:fr−fc
fb:転動体自転周波数[Hz]
dm:ピッチ円直径(PCD)[mm]
Da:転動体直径[mm]
α:接触角[°]
The recording determination unit 18 calculates a frequency band to be recorded from bearing specifications set by the manufacturer, and records a vibration value in the obtained frequency band. Generally, an outer ring wound, an inner ring wound, and a rolling element wound are known as in the following Expression 1, and this frequency is obtained by the recording determination unit 18. The number, diameter, pitch circle diameter, and contact angle of the rolling elements are input to the recording determination unit 18 in advance.
[Formula 1]
Inner ring wound: Zfi = fr · (1 + Da · cos α / dm) · Z / 2
Outer ring wound: Zfc = fr · (1−Da · cos α / dm) · Z / 2
Rolling body wound: 2fb = fr · (1-Da 2 · cos 2 α / dm 2 ) · dm / Da
Z: Number of rolling elements fr: Inner ring rotation frequency [Hz]
fc: Cage rotation frequency [Hz]
fi: fr-fc
fb: rolling element rotation frequency [Hz]
dm: Pitch circle diameter (PCD) [mm]
Da: Rolling element diameter [mm]
α: Contact angle [°]

また、寿命算出部17で算出される計算軸受寿命は、基本定格寿命の計算式を利用する。基本定格寿命L[Hour]は、以下の式2のように表される。
[式2]
L=(10/60n)・(C/P)
C:転がり軸受の基本動定格荷重[N]
P:軸受に作用する動等価荷重[N]
A:荷重指数(玉軸受の場合3、ころ軸受の場合10/3)
n:平均回転速度[min−1]
The calculated bearing life calculated by the life calculation unit 17 uses a formula for calculating the basic rated life. The basic rated life L [Hour] is expressed by the following formula 2.
[Formula 2]
L = (10 6 / 60n) · (C / P) A
C: Basic dynamic load rating of rolling bearing [N]
P: Dynamic equivalent load acting on the bearing [N]
A: Load index (3 for ball bearings, 10/3 for roller bearings)
n: Average rotational speed [min −1 ]

続いて、記録判定部18で振動情報を取得記録するまでの手順を、図4のフローチャートに基づいて説明する。
まず、FFT演算装置11では、振動センサ2a〜2cにより検出された振動を周波数及び振動値の関係にフーリエ解析して記録判定部18へ出力している(信号検出ステップ)。
記録判定部18では、回転検出部15から得られる主軸回転速度が変化したかどうかを判定する(S11)。ここで変化した場合、機械が切削中かどうかを送り速度で判定(S12)する。送り速度が0で非切削中と判断した場合はS13に進む。S11で主軸速度が変化していない場合と、S12で切削中と判断した場合、再びS11に戻る。
そして、S13で、取得時刻、累積稼働時間、平均主軸回転速度、振動取得時の主軸回転速度、計算軸受寿命を、回転検出部15、累積稼働時間記録部16、寿命算出部17からそれぞれ取得する(寿命算出ステップ)と共に、FFT演算装置11からの解析データから所定の周波数の振動値を取得する(情報取得ステップ)。S14で、これら取得した情報を軸受状態記録部19に記録する。こうして軸受状態記録部19では、図6に示すようなデータが記録される。
Next, a procedure until the recording determination unit 18 acquires and records vibration information will be described based on the flowchart of FIG.
First, in the FFT arithmetic unit 11, the vibration detected by the vibration sensors 2a to 2c is Fourier-analyzed to the relationship between the frequency and the vibration value and is output to the recording determination unit 18 (signal detection step).
The recording determination unit 18 determines whether the spindle rotation speed obtained from the rotation detection unit 15 has changed (S11). When it changes here, it is determined by a feed rate whether the machine is cutting (S12). If the feed rate is 0 and it is determined that cutting is not in progress, the process proceeds to S13. If the spindle speed has not changed in S11 and if it is determined in S12 that cutting is in progress, the process returns to S11 again.
In S13, the acquisition time, the accumulated operation time, the average spindle rotation speed, the spindle rotation speed at the time of vibration acquisition, and the calculated bearing life are acquired from the rotation detection unit 15, the accumulated operation time recording unit 16, and the life calculation unit 17, respectively. Along with (life calculation step), a vibration value of a predetermined frequency is acquired from the analysis data from the FFT arithmetic unit 11 (information acquisition step). In S14, the acquired information is recorded in the bearing state recording unit 19. In this way, the bearing state recording unit 19 records data as shown in FIG.

ここで、累積稼働時間記録部16において主軸3の累積稼働時間と平均主軸回転速度とを算出するまでの手順(稼働情報算出ステップ)を、図5のフローチャートに基づいて説明する。
まず、主軸3がある回転速度で運転を開始した時刻Sと、運転を終了した時刻Eを取得するためのフラグfを初期化する(S21)。S22で主軸3の回転速度が変化したがどうかを判断し、変化していない場合は再びS22に戻り、変化した場合、S23でフラグf=0かどうかを判断する。ここでf=0の場合、ある回転速度で主軸3が運転を開始したと判断してS24でその時刻Sを取得する。そして、主軸回転速度をS26で取得し、S27でフラグを=1にセットし、S22に戻る。
一方、S23でf=0でない場合、すでに時刻Sは取得済みで、主軸3がある回転速度から異なる回転速度へ変化したと判断する。この時の時刻EをS25で取得する。時刻Sと時刻Eからある回転速度での運転時間を求めることができ、過去の運転時間とその際の回転速度を記録して加算していくことで、累積稼働時間と平均主軸回転速度を算出する(S28)。S29でフラグを初期化し、S30で主軸3が停止していると判断すれば終了し、運転中であればS22に戻る。
Here, the procedure (operation information calculation step) until the accumulated operation time recording unit 16 calculates the accumulated operation time of the spindle 3 and the average spindle rotation speed will be described based on the flowchart of FIG.
First, the flag f for acquiring the time S at which the operation is started at a certain rotational speed and the time E at which the operation is ended is initialized (S21). In S22, it is determined whether or not the rotational speed of the main shaft 3 has changed. If not, the process returns to S22 again. If it has changed, it is determined in S23 whether or not the flag f = 0. If f = 0, it is determined that the spindle 3 has started operation at a certain rotational speed, and the time S is acquired in S24. Then, the spindle rotational speed is acquired in S26, the flag is set to 1 in S27, and the process returns to S22.
On the other hand, if it is not f = 0 in S23, it is determined that the time S has already been acquired and the main shaft 3 has changed from a certain rotational speed to a different rotational speed. The time E at this time is acquired in S25. The operation time at a certain rotation speed can be obtained from the time S and the time E, and the accumulated operation time and the average spindle rotation speed are calculated by recording and adding the past operation time and the rotation speed at that time. (S28). If the flag is initialized in S29, and if it is determined in S30 that the main spindle 3 is stopped, the process ends. If it is in operation, the process returns to S22.

そして、軸受状態記録部19は、図6のように記録されたデータ1、データ2・・・の累積稼働時間を横軸に、振動値の最大値を縦軸としてモニタ20に表示する(表示ステップ)。この際に、主軸3の最高回転速度に近い回転速度で取得した振動値と、それ以外の条件で取得した振動値が区別のつくように色を変えて図7に示すようにグラフ表示する。これは、回転速度が高い方が振動値が大きく現れ、転がり軸受の状態を良く表す信頼性の高いデータであることを示すためである。
次に、計算軸受寿命の値(寿命計算値)と、メーカで設定した正常振動の上限値(正常値)とを閾値として線引き表示する。これにより、グラフ内を丸数字1〜丸数字4の4つの領域に分けることができる。丸数字1は危険ゾーン1で、振動が大きく加工精度に影響を与えていることも考えられるので、交換を必要としている状態である。丸数字2は危険ゾーン2で、丸数字1よりも交換の緊急性が高いことを示す。丸数字3は安全ゾーンで、引き続き使用することが可能である。丸数字4は注意ゾーンで、加工に異常がなければこのまま注意しながら使用を続け、次回のメンテナンスのタイミングで軸受交換を行う。
この状態で最終データを「○」で示し、この「○」がどの領域にあるかで作業者は現在の軸受状態を判断することができる。ここでは危険ゾーン2にあるため、すぐに交換が必要であることがわかる。なお、グラフの下方に、現在の状態(どのゾーンに位置するか等)を文字で表すコメントを付してもよい。
Then, the bearing state recording unit 19 displays on the monitor 20 the accumulated operating time of the data 1, data 2... Recorded as shown in FIG. Step). At this time, the vibration value acquired at a rotation speed close to the maximum rotation speed of the main shaft 3 and the vibration value acquired under other conditions are changed in color so as to be displayed in a graph as shown in FIG. This is because the higher the rotational speed, the larger the vibration value appears, indicating that the data is highly reliable and well represents the state of the rolling bearing.
Next, the calculated bearing life value (life calculation value) and the upper limit value (normal value) of normal vibration set by the manufacturer are drawn as a threshold value. Thereby, the inside of a graph can be divided into four areas of circle numbers 1 to 4. The circled number 1 is a danger zone 1 and is in a state that requires replacement because vibrations may greatly affect the machining accuracy. Circle number 2 indicates danger zone 2 and indicates that the urgency of replacement is higher than circle number 1. The circled number 3 is a safety zone and can be used continuously. The circled number 4 is a caution zone. If there is no abnormality in the machining, use it with caution, and replace the bearing at the next maintenance timing.
In this state, the final data is indicated by “◯”, and the operator can determine the current bearing state depending on which region “◯” is in. Since it is in danger zone 2 here, it turns out that replacement | exchange is required immediately. In addition, you may attach | subject the comment which shows the present state (it is located in which zone etc.) in the character below a graph.

このように、上記形態の軸受の状態表示装置10によれば、非切削中に主軸3の軸受の稼働に伴う振動を検出し、検出された振動を周波数とそれに対応する振動値との関係に解析し、非切削中の軸受の累積稼働時間及び平均回転速度を算出し、解析された周波数及び振動の関係のうちの所定の周波数の振動値を、その時点における累積稼働時間及び平均回転速度と併せて取得し、軸受の寿命を平均回転速度を用いて算出して、モニタ20には、各累積稼働時間における所定の周波数の振動値を縦軸、累積稼働時間を横軸としたグラフを作成し、振動値を異常と判断する閾値(正常値)と軸受の寿命時間(寿命計算値)とでグラフ内を所定の領域に区分けした状態で現時点の振動値を併せて表示するようにしたことで、軸受の計算寿命と実際の振動状態を同時に把握することができる。計算寿命だけでは、真の寿命に対して十分余裕があるにもかかわらず、軸受を早期に交換してしまう可能性がある。一方で、振動値のみで判断した場合、目だって増加し始めたタイミングでは、既に軸受寿命の末期である可能性がある。これらの値を併せて表示することで、工作機械のように高い回転精度を有して潤滑油に関係なく軸受が損傷する可能性がある機械であっても、軸受の状態を的確に判定して作業者に報知することができる。
よって、最終的な判断を人に委ねることで寿命診断の精度を向上させることができ、保守計画を立てやすくして、急な故障による生産停止を無くすことができる。また、軸受状態で判定することができるため、保守費用を削減する効果もある。
Thus, according to the bearing state display device 10 of the above-described form, the vibration accompanying the operation of the bearing of the main shaft 3 is detected during non-cutting, and the detected vibration is related to the relationship between the frequency and the corresponding vibration value. Analyzing and calculating the cumulative operating time and average rotational speed of the bearing during non-cutting, and calculating the vibration value at a predetermined frequency of the analyzed frequency and vibration relationship with the cumulative operating time and average rotational speed at that time In addition, the bearing life is calculated using the average rotational speed, and the monitor 20 creates a graph with the vibration value of a predetermined frequency in each cumulative operating time as the vertical axis and the cumulative operating time as the horizontal axis. In addition, the current vibration value is displayed together with the threshold value (normal value) for determining the vibration value as abnormal and the bearing life time (life calculation value) divided into a predetermined area in the graph. The actual life of the bearing and the actual It is possible to grasp the dynamic state at the same time. There is a possibility that the bearing will be replaced at an early stage in spite of the fact that the calculated life alone is sufficient for the true life. On the other hand, when judging only by the vibration value, there is a possibility that the bearing life is already at the end when it starts to increase. By displaying these values together, it is possible to accurately determine the state of the bearing even in a machine with high rotational accuracy such as a machine tool that may damage the bearing regardless of the lubricant. The operator can be notified.
Therefore, it is possible to improve the accuracy of the life diagnosis by entrusting the final judgment to a person, making it easier to make a maintenance plan, and eliminating production stop due to a sudden failure. Further, since the determination can be made based on the bearing state, there is an effect of reducing the maintenance cost.

なお、上記形態では、主軸の軸受について状態表示を行っているが、送り軸(直線軸)の転がり案内で実現してもよい。この場合は、主軸が非回転中の場合を非切削中と判断すればよい。また、主軸の振動や回転速度を軸受のそれとみなして状態表示を行っているが、軸受にセンサや検出器を設けて振動や回転速度を直接検出して状態表示を行うことは勿論可能である。
さらに、軸受状態検出手段として、振動センサやマイク、位置・回転検出器、主軸・送り軸モータの電流を用いることもできる。一方で、軸受状態検出手段としては、振動値だけでなく、モータのトルクや電流を検出してそのまま使用してもよい。
加えて、転がり軸受の寿命時間は、主軸等の平均回転速度以外を用いずに、単に稼働時間のみから算出したり、主軸等に加わる負荷トルクなど他の情報に基づいて算出されるものであってもよい。さらに、軸受状態の表示を切削時に行うようにしても良く、この場合には切削による振動を加工プログラム中の加工条件などに基づいて推定して検出された振動をフィルタリングするなどの手法が考えられる。
In addition, in the said form, although the state display is performed about the bearing of the main axis | shaft, you may implement | achieve by the rolling guide of a feed shaft (linear axis). In this case, the case where the main shaft is not rotating may be determined as non-cutting. Although the status display is performed by regarding the vibration and rotation speed of the main shaft as that of the bearing, it is of course possible to display the status by directly detecting the vibration and rotation speed by providing a sensor or detector on the bearing. .
Furthermore, the current of the vibration sensor, microphone, position / rotation detector, main shaft / feed shaft motor can be used as the bearing state detecting means. On the other hand, as the bearing state detection means, not only the vibration value but also the torque and current of the motor may be detected and used as they are.
In addition, the life time of rolling bearings is calculated based on other information such as load torque applied to the spindle, etc., based solely on the operating time without using anything other than the average rotational speed of the spindle, etc. May be. Further, the bearing state may be displayed at the time of cutting. In this case, a method of filtering the detected vibration by estimating the vibration due to the cutting based on the processing conditions in the processing program, etc. can be considered. .

そして、モニタで軸受状態を表示する手法として、4つの領域に分けた例を説明したが、振動値を正常、注意、警告などと複数のレベルに分けて領域を増やしてもよい。この領域ごとに色を付けて、分かりやすく表示することもできる。また、グラフによらず、文字のみで軸受の状態を表示することも可能である。
その他、上記形態では、主軸に取り付けた工具を回転させてワークを加工する工作機械で説明しているが、回転軸に取り付けたワークを回転させて工具を直線軸で送り制御してワークを加工する複合加工機等であっても本発明は適用可能である。
The example in which the bearing state is displayed on the monitor has been described as being divided into four regions. However, the region may be increased by dividing the vibration value into a plurality of levels such as normal, caution, and warning. Each area can be colored and displayed in an easy-to-understand manner. Moreover, it is also possible to display the state of a bearing only with a letter irrespective of a graph.
In addition, in the above embodiment, a machine tool that processes a workpiece by rotating a tool attached to the main shaft is described, but the workpiece attached to the rotating shaft is rotated and feed control is performed on the linear axis to process the workpiece. The present invention can also be applied to a combined processing machine or the like.

1・・工具ハウジング、2a〜2c・・振動センサ、3・・主軸、10・・状態表示装置、11・・FFT演算装置、12・・NC装置、13・・主軸回転検出器、14・・送り軸回転検出器、15・・回転検出部、16・・累積稼働時間記録部、17・・寿命算出部、18・・記録判定部、19・・軸受状態記録部、20・・モニタ。   1 ·· Tool housing, 2a to 2c ·· Vibration sensor, 3 ·· Main shaft, 10 ·· Status display device, 11 ·· FFT operation device, 12 ·· NC device, 13 ·· Main shaft rotation detector, 14 ·· Feed shaft rotation detector, 15 .... rotation detection unit, 16 .... cumulative operating time recording unit, 17 .... life calculation unit, 18 .... recording determination unit, 19 .... bearing state recording unit, 20 .... monitor.

Claims (6)

転がり軸受で支持される回転軸又は直線軸を備え、工具又はワークを回転させて前記ワークの加工を行う工作機械において、前記転がり軸受の状態を表示する方法であって、
前記転がり軸受の稼働に伴う軸受状態を検出する軸受状態検出ステップと、
前記転がり軸受の累積稼働時間を算出する稼働情報算出ステップと、
検出した前記転がり軸受の所定の軸受状態を、その時点における前記累積稼働時間と併せて取得する情報取得ステップと、
前記転がり軸受の寿命時間を算出する寿命算出ステップと、
各前記累積稼働時間における前記所定の軸受状態と、当該軸受状態を異常と判断する閾値と、前記転がり軸受の寿命時間と、現時点の当該軸受状態とを、前記所定の軸受状態を縦軸、前記累積稼働時間を横軸としたグラフを作成し、前記閾値と前記寿命時間とで前記グラフ内を所定の領域に区分けした状態で表示する軸受状態表示ステップと、を実行することを特徴とする工作機械における転がり軸受の状態表示方法。
In a machine tool having a rotating shaft or a linear shaft supported by a rolling bearing, and processing the workpiece by rotating a tool or a workpiece, a method for displaying the state of the rolling bearing,
A bearing state detection step for detecting a bearing state associated with the operation of the rolling bearing ;
An operation information calculation step for calculating the cumulative operation time of the rolling bearing;
An information acquisition step of acquiring a predetermined bearing state of the detected rolling bearing together with the accumulated operating time at that time point;
A life calculating step for calculating a life time of the rolling bearing;
The predetermined bearing state in each cumulative operating time, a threshold value for determining the bearing state as abnormal, a life time of the rolling bearing, and the current bearing state at present , the predetermined bearing state as the vertical axis, A bearing state display step of creating a graph with the cumulative operating time as a horizontal axis, and displaying the graph in a state where the graph is divided into predetermined regions by the threshold value and the life time. How to display the state of rolling bearings in machinery.
前記軸受状態検出ステップでは、前記転がり軸受の稼働に伴う振動を検出して前記振動を解析し、所定の周波数の振動値を前記転がり軸受の稼働に伴う軸受状態として検出することを特徴とする請求項1に記載の工作機械における転がり軸受の状態表示方法。 In the bearing state detection step, vibration associated with the operation of the rolling bearing is detected, the vibration is analyzed, and a vibration value at a predetermined frequency is detected as a bearing state associated with the operation of the rolling bearing. The state display method of the rolling bearing in the machine tool of claim | item 1. 前記稼働情報算出ステップでは前記転がり軸受の平均回転速度も算出し、
前記情報取得ステップでは前記平均回転速度も併せて取得して、
前記寿命算出ステップでは、前記平均回転速度も用いて前記転がり軸受の寿命時間を算出することを特徴とする請求項1又は2に記載の工作機械における転がり軸受の状態表示方法。
In the operation information calculation step, the average rotational speed of the rolling bearing is also calculated,
In the information acquisition step, the average rotation speed is also acquired,
The lifetime in the calculation step, the state display method of the rolling bearing in the machine tool according to claim 1 or 2, characterized in that to calculate the lifetime of the rolling bearing the average rotational speed be used.
転がり軸受で支持される回転軸又は直線軸を備え、工具又はワークを回転させて前記ワークの加工を行う工作機械において、前記転がり軸受の状態を表示する装置であって、
前記転がり軸受の稼働に伴う軸受状態を検出する軸受状態検出手段と、
前記転がり軸受の累積稼働時間を算出する稼働情報算出手段と、
所定の軸受状態を、その時点における前記累積稼働時間と併せて取得する情報取得手段と、
前記転がり軸受の寿命時間を算出する寿命算出手段と、
各前記累積稼働時間における前記所定の軸受状態と、当該軸受状態を異常と判断する閾値と、前記転がり軸受の寿命時間と、現時点の当該軸受状態とを、前記所定の軸受状態を縦軸、前記累積稼働時間を横軸としたグラフを作成し、前記閾値と前記寿命時間とで前記グラフ内を所定の領域に区分けした状態で表示する表示手段と、
を備えることを特徴とする工作機械における転がり軸受の状態表示装置。
In a machine tool having a rotary shaft or a linear shaft supported by a rolling bearing, and processing the workpiece by rotating a tool or a workpiece, the device displays the state of the rolling bearing,
Bearing state detecting means for detecting a bearing state associated with operation of the rolling bearing;
Operating information calculating means for calculating the cumulative operating time of the rolling bearing;
Information acquisition means for acquiring a predetermined bearing state together with the cumulative operating time at that time;
A life calculating means for calculating a life time of the rolling bearing;
The predetermined bearing state in each cumulative operating time, a threshold value for determining the bearing state as abnormal, a life time of the rolling bearing, and the current bearing state at present , the predetermined bearing state as the vertical axis, A display means for creating a graph with the cumulative operating time as a horizontal axis, and displaying the graph in a state where the inside of the graph is divided into predetermined areas by the threshold value and the life time ,
A state display device for a rolling bearing in a machine tool.
前記軸受状態検出手段は前記転がり軸受の振動を検出するものであって、
検出された前記振動を周波数とそれに対応する振動値との関係に解析する振動解析手段を備え、
前記情報取得手段は、解析された前記周波数及び振動値の関係のうちの所定の周波数の振動値を、その時点における前記累積稼働時間と併せて取得することを特徴とする請求項に記載の工作機械における転がり軸受の状態表示装置。
The bearing state detection means detects vibration of the rolling bearing,
Comprising vibration analysis means for analyzing the detected vibration into a relationship between a frequency and a vibration value corresponding to the frequency;
Said information obtaining means, according to claim 4, characterized in that the vibration value of the predetermined frequency of the relationship between the analyzed frequency and vibration values, acquires together with the cumulative operating time at that time Status display device for rolling bearings in machine tools.
前記稼働情報算出手段は前記転がり軸受の平均回転速度も算出し、
前記情報取得手段は前記平均回転速度も併せて取得して、
前記寿命算出手段は、前記平均回転速度も用いて前記転がり軸受の寿命時間を算出することを特徴とする請求項4又は5に記載の工作機械における転がり軸受の状態算出装置。
The operation information calculation means also calculates an average rotational speed of the rolling bearing,
The information acquisition means also acquires the average rotation speed together,
6. The state calculating device for a rolling bearing in a machine tool according to claim 4 , wherein the life calculating means calculates a life time of the rolling bearing using the average rotational speed.
JP2015110350A 2015-05-29 2015-05-29 State display method and apparatus of rolling bearing in machine tool Active JP6616964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110350A JP6616964B2 (en) 2015-05-29 2015-05-29 State display method and apparatus of rolling bearing in machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110350A JP6616964B2 (en) 2015-05-29 2015-05-29 State display method and apparatus of rolling bearing in machine tool

Publications (2)

Publication Number Publication Date
JP2016223906A JP2016223906A (en) 2016-12-28
JP6616964B2 true JP6616964B2 (en) 2019-12-04

Family

ID=57748085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110350A Active JP6616964B2 (en) 2015-05-29 2015-05-29 State display method and apparatus of rolling bearing in machine tool

Country Status (1)

Country Link
JP (1) JP6616964B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875927B2 (en) * 2017-05-15 2021-05-26 株式会社アマダ Die press device and die pressing method
JP7101952B2 (en) 2017-06-07 2022-07-19 中村留精密工業株式会社 Multi-tasking machine with failure prediction function
JP7051460B2 (en) * 2018-01-22 2022-04-11 Thk株式会社 Data acquisition device and method for linear guide
JP2019132773A (en) * 2018-02-01 2019-08-08 オークマ株式会社 Diagnosis device of rotating shaft device
CN108762192A (en) * 2018-05-04 2018-11-06 中国神华能源股份有限公司 The control method and device of the mechanical equipment running status of rotation
JP6806737B2 (en) 2018-06-15 2021-01-06 ファナック株式会社 Synchronizer, synchronization method and synchronization program
JP7313001B2 (en) * 2019-03-12 2023-07-24 富山県 Tool life detection device and tool life detection method
JP7416374B2 (en) * 2019-09-13 2024-01-17 株式会社牧野フライス製作所 Rotational run-out control method of rotating spindle and spindle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307312D0 (en) * 2003-03-28 2003-05-07 Univ Brunel Acoustic emission parameters based on inter-arrival times of acoustic emission events
JP4188959B2 (en) * 2005-09-26 2008-12-03 西島株式会社 Machine tool spindle bearing damage prediction device.
JP5608036B2 (en) * 2010-10-13 2014-10-15 オークマ株式会社 Operation history management method and operation history management device
JP5644374B2 (en) * 2010-10-27 2014-12-24 株式会社ジェイテクト Machine tool spindle state detection device
JP5734131B2 (en) * 2011-08-18 2015-06-10 オークマ株式会社 Rotational speed display device
JP2013231673A (en) * 2012-04-27 2013-11-14 Hitachi Constr Mach Co Ltd Life prediction system of speed reducer gear of dump truck

Also Published As

Publication number Publication date
JP2016223906A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP6616964B2 (en) State display method and apparatus of rolling bearing in machine tool
CN106168534B (en) Abnormality detection device and abnormality detection method having abnormality detection function for machine tool
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP6499946B2 (en) Machine tool bearing diagnostic device
US20180043492A1 (en) Bearing diagnostic device
CN109839270B (en) Method and device for diagnosing abnormality of feed shaft
WO2009096551A1 (en) Diagnostic system for bearing
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
JP4710455B2 (en) Abnormality diagnosis device for axle support device of railway vehicle
JP6735183B2 (en) Machine tool with rotating shaft
KR102120753B1 (en) Prognostic method of tool life using vibration properties analysis
JP2017032520A (en) State monitoring device and state monitoring method
JP5640635B2 (en) Bearing device, spindle device of machine tool, and machine tool
JP7017094B2 (en) A ball screw device and mechanical equipment equipped with the ball screw device.
JP2005074545A (en) Condition monitoring device for machine tool
JP2019132773A (en) Diagnosis device of rotating shaft device
JPWO2016133100A1 (en) Abnormality diagnosis system
US11493404B2 (en) Method and system for estimating the wear of a rotating machine including a bearing
JP6966497B2 (en) Bearing diagnostic equipment, bearing diagnostic method, and escalator
JP4101714B2 (en) Rotating equipment state diagnosis support apparatus and program thereof, recording medium storing the program, and state diagnosis support method
JP2021085694A (en) Ball screw condition monitoring device and condition monitoring method
JP2018040456A (en) Rotary shaft device and abnormality diagnostic method of bearing on rotary shaft device
JP2018040594A (en) Rotary shaft device and method of determining presence/absence of bearing anomaly in the same
JP7267585B2 (en) Gear processing equipment
JP2021096102A (en) Method and device for monitoring state of rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6616964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150