JP6614443B2 - バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法 - Google Patents

バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法 Download PDF

Info

Publication number
JP6614443B2
JP6614443B2 JP2016013267A JP2016013267A JP6614443B2 JP 6614443 B2 JP6614443 B2 JP 6614443B2 JP 2016013267 A JP2016013267 A JP 2016013267A JP 2016013267 A JP2016013267 A JP 2016013267A JP 6614443 B2 JP6614443 B2 JP 6614443B2
Authority
JP
Japan
Prior art keywords
current
load
voltage
battery
voltage drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013267A
Other languages
English (en)
Other versions
JP2017135834A (ja
Inventor
剛之 白石
将司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016013267A priority Critical patent/JP6614443B2/ja
Priority to DE102017201171.8A priority patent/DE102017201171A1/de
Priority to CN201710060816.7A priority patent/CN107017441B/zh
Priority to US15/415,997 priority patent/US10305299B2/en
Publication of JP2017135834A publication Critical patent/JP2017135834A/ja
Application granted granted Critical
Publication of JP6614443B2 publication Critical patent/JP6614443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本明細書によって開示される技術は、バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法に関する。
例えば、車両に搭載されるスイッチ手段を有する電池ユニットとして、特開平5−205781号公報(下記特許文献1)に記載のものが知られている。この電池ユニットは、車両の負荷が増加して電池の電圧低下が所定時間継続した際にスイッチ手段を開き、電池から車両の負荷を切り離すことで電池の過放電を防止する。
また、一般にこのような電池ユニットには、電池を充電する車両用発電機が負荷と並列して接続されており、スイッチ手段を開くことで、電池が過充電状態になることを防ぐようになっている。
特開平5−205781号公報
ところで、このような電池ユニットの場合、仮にスイッチ手段が故障していると、電池の過放電や過充電など異常状態を防ぐことができなくなってしまうため、スイッチ手段の故障を検出する必要がある。そこで、電圧降下素子をスイッチ手段と並列に接続し、電流遮断装置において電流を遮断しつつ、電圧降下素子による電圧降下を検出することで、電流遮断装置の故障診断を行うことが検討されている。
しかしながら、電流遮断装置において電流の遮断中に、電圧降下素子の最大許容電流を超える大電流が電圧降下素子を流れると、電圧降下素子が破損してしまう。だからといって、最大許容電流が大きい電圧降下素子を使用すると、電圧降下素子の搭載スペースが大きくなると共に、製造コストが高くなってしまう。
本明細書では、最大許容電流が大きい電圧降下素子を使用しなくとも、電圧降下素子が大電流によって破損することを防ぐ技術を開示する。
本明細書によって開示される技術は、負荷に電力を供給する二次電池と、前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断部と、前記電流遮断部に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路と、制御部とを備え、前記制御部は、前記電圧降下素子の最大許容電流を超える電力供給によって稼働する高負荷が動作しない時に、前記電流遮断部を遮断状態に切り替える遮断処理を実行する構成とした。
本明細書によって開示される技術によれば、最大許容電流が大きい電圧降下素子を使用しなくとも、電圧降下素子が大電流によって破損することを防ぐことができる。
実施形態1に係る車両を示す図 バッテリ装置の斜視図 バッテリ装置の分解斜視図 バッテリ装置のブロック図 電流遮断回路を示す図 電池保護処理のフローチャート図 故障診断処理のフローチャート図 禁止処理のフローチャート図 実施形態2にかかる電流遮断回路を示す図 補助電流遮断装置の変形例を示す図 電池保護処理のフローチャート図 実施形態3に係る禁止処理のフローチャート図 故障診断処理のフローチャート図
(本実施形態の概要)
初めに、本実施形態にて開示するバッテリ装置、電池管理プログラムおよびバッテリ装置の管理方法の概要について説明する。
本実施形態にて開示するバッテリ装置は、負荷に電力を供給する二次電池と、前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断部と、前記電流遮断部に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路と、制御部とを備え、前記制御部は、前記電圧降下素子の最大許容電流を超える電力供給によって稼働する高負荷が動作しない時に、前記電流遮断部を遮断状態に切り替える遮断処理を実行する構成とした。
また、本実施形態にて開示する車両は、前記バッテリ装置と、前記負荷と、前記負荷の動作制御を行う負荷システムとを有する構成とした。
また、本実施形態にて開示する車両は、前記バッテリ装置と、前記負荷と、前記負荷システムとを有する車両であって、前記負荷システムは、前記禁止指示が入力されることで、前記高負荷が動作することを禁止する構成とした。
また、本実施形態にて開示する電池管理プログラムは、負荷に電力を供給する二次電池と、前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断部と、前記電流遮断部に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の制御部に、前記電圧降下素子の最大許容電流を超える電力供給によって稼働する高負荷が動作しない時に、前記電流遮断部を遮断状態に切り替える遮断処理を実行させる構成とした。
また、本実施形態にて開示するバッテリ装置の管理方法は、負荷に電力を供給する二次電池と、前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の管理方法であって、前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行する構成とした。
このようなバッテリ装置、電池管理プログラムおよびバッテリ装置の管理方法によると、高負荷が動作しない時に、遮断処理によって電流遮断部が遮断状態となる。言い換えると、電流遮断部が遮断状態の時には、高負荷が動作しないから、電圧降下素子の最大許容電流を超える電流が電圧降下素子に流れることを防ぐことができる。これにより、最大許容電流が大きい電圧降下素子を使用しなくとも、電圧降下素子が大電流によって破損することを防ぐことができる。
本明細書によって開示されるバッテリ装置および車両は、以下の構成としてもよい。
本明細書により開示されるバッテリ装置の一実施態様として、前記電流遮断部の両端電圧を検出する電圧検出部を備え、前記制御部は、前記電流遮断部を通電状態に切り替えて電圧を検出する第1電圧検出処理と、前記遮断処理を実行して電圧を検出する第2電圧検出処理と、前記第1電圧検出処理の電圧と前記第2電圧検出処理の電圧とに基づいて前記電流遮断部が故障しているか否か診断する故障診断処理とを実行する構成としてもよい。
このような構成のバッテリ装置によると、故障診断の第2電圧検出処理において電流遮断部が遮断状態となった時に、並列回路によって負荷と二次電池との間が遮断状態になることを防ぎつつ、第1電圧検出処理の電圧と第2電圧検出処理の電圧とに基づいて電流遮断部が故障状態であるか否かを判断することができる。
つまり、電流遮断部の通電状態と遮断状態との間に電圧差を生じさせて故障診断を容易にするための電圧降下素子が大型化することを防ぎつつ、電圧降下素子が大電流によって破損することを防ぐことができる。
本明細書により開示されるバッテリ装置の一実施態様として、前記故障診断処理は、前記高負荷を始動させるための始動時間よりも短時間で実施する構成としてもよい。
このような構成によると、故障診断処理が、例えば、スターターモータなどの高負荷を始動させるための始動時間よりも短い数百ミリ秒程度で実施されるから、高負荷の始動時に違和感を生じさせることなく、故障診断処理を実施できる。
本明細書により開示されるバッテリ装置の一実施態様として、前記二次電池を充電する充電装置が前記電流遮断部を介して前記二次電池に接続されており、前記電圧降下素子は、前記二次電池から前記負荷へ電流を流すダイオードである構成としてもよい。
このような構成によると、電流遮断部が遮断状態となった時に電圧降下値が一定となるから、電圧降下が可変のものに比べて電流遮断部の状態を容易に判断することができる。また、電流遮断部が遮断状態の間に、二次電池から負荷に対して放電のみ許容することができるから、二次電池が充電されることで過充電状態になることを防ぐことができる。
本明細書により開示されるバッテリ装置の一実施態様として、前記並列回路は、前記電圧降下素子と直列に接続され、通電状態および遮断状態に切り替わる補助電流遮断部を有する構成としてもよい。
このような構成によると、二次電池が過放電となる前に補助電流遮断部によって放電を遮断できるから、二次電池が過放電状態に至ることを防ぐことができる。
本明細書により開示されるバッテリ装置の一実施態様として、前記制御部は、前記遮断処理を実行する前に、前記負荷の動作制御を行う負荷システムに対して、前記遮断処理中に、前記高負荷を動作させないようにする禁止指示を行う構成としてもよい。
このような構成によると、バッテリ装置から負荷システムに対して禁止指示を行うことで、高負荷が動作することを禁止し、遮断処理を実施することができるから、電圧降下素子の最大許容電流を超える電流が電圧降下素子に流れることを防ぐことができ、電圧降下素子が破損することを防ぐことができる。
本明細書により開示されるバッテリ装置の一実施態様として、前記制御部は、前記負荷の動作制御を行う負荷システムが前記高負荷の動作を禁止した後に出力する前記電流遮断部の遮断許可指示が入力されることで、前記遮断処理を行う構成としてもよい。
このような構成によると、負荷システムが高負荷の動作を禁止したことをもって出力した遮断許可指示により、制御部が遮断処理を実施するから、電圧降下素子の最大許容電流を超える電流が電圧降下素子に流れることを防ぐことができ、電圧降下素子が破損することを防ぐことができる。
本明細書により開示される車両の一実施態様として、前記制御部は、前記禁止指示によって前記負荷システムが前記高負荷の動作を禁止した後に出力する遮断許可指示が入力されることで、前記遮断処理を実行する構成としてもよい。
このような構成によると、制御部からの禁止指示によって負荷システムが高負荷の動作を禁止し、その後に出力される遮断許可指示に基づいて制御部が電流遮断装置を遮断状態にするから、電圧降下素子が大電流によって破損することを防ぐことができる。
<実施形態1>
本明細書で開示される技術を自動車などの車両10に適用した実施形態1について図1から図8を参照しつつ説明する。
本実施形態の車両10は、図1に示すように、エンジンルーム11に設置されるエンジン始動用のスターターモータや電装品などの車両負荷(「負荷」の一例)12と、車両負荷12に接続されたバッテリ装置20と、車両負荷12およびバッテリ装置20に接続されるオルターネータなどの車両発電機(「充電装置」の一例)14と、車両負荷12の動作を制御する車両側電子制御装置(以下、「車両ECU」という)13などを備えて構成されている。なお、車両側電子制御装置が、負荷システムの一例である。
車両負荷12は、バッテリ装置20および車両発電機14から電力供給されることで動作するようになっており、車両発電機14からの電力供給量が少ない場合にバッテリ装置20から電力供給を受けることで動作する。
車両発電機14は、車両10のエンジンの駆動に伴って回転することで発電し、車両負荷12およびバッテリ装置20に電力供給を行う。
車両ECU13は、車両負荷12、車両発電機14、バッテリ装置20などと通信線Wによって通信可能に接続されており、車両10の状態やバッテリ装置20の状態などに基づいてエンジンや車両負荷12の動作制御を行う。なお、図1では、図を分かりやすくするために、通信線Wを一部省略している。また、車両ECU13とバッテリ装置20との通信方式は、例えば、LIN通信などを用いることができる。
バッテリ装置20は、図2に示すように、ブロック状の電池ケース21を有しており、電池ケース21内には、図3および図4に示すように、直列に接続された複数の二次電池30と、これら二次電池30を管理する電池管理装置(以下、「BMU」という)50と、二次電池30に流れる電流を検出する電流センサ40と、電流遮断回路80などが収容されている。
なお、図3では、電池ケース21の構成を分かりやすくするために、電流センサ40および電流遮断回路80を図示省略すると共に内部構造を図示簡略化している。また、以下の説明において、図2および図3を参照する場合、電池ケース21が設置面に対して傾きなく水平に置かれた時の電池ケース21の上下方向をY方向とし、電池ケース21の長辺方向に沿う方向をX方向とし、電池ケース21の奥行き方向をZ方向をとして説明する。
電池ケース21は、合成樹脂製であって、電池ケース21の上面壁21Aは、図2および図3に示すように、平面視略矩形状をなし、Y方向に高低差を付けた形状とされている。上面壁21Aにおいて低い部分のX方向両端部には、図示しないハーネス端子が接続される一対の端子部22が上面壁21Aに埋設された状態で設けられている。一対の端子部22は、例えば、鉛合金等の金属からなり、一対の端子部22のうち、一方が正極側端子部22Pとされ、他方が負極側端子部22Nとされている。
また、電池ケース21は、図3に示すように、上方に開口する箱型のケース本体23と、複数の二次電池30を位置決めする位置決め部材24と、ケース本体23の上部に装着される中蓋25と、中蓋25の上部に装着される上蓋26とを備えて構成されている。
ケース本体23内には、図3に示すように、複数の二次電池30が個別に収容される複数のセル室23AがX方向に並んで設けられている。
位置決め部材24は、図3に示すように、複数のバスバー27が上面に配置されており、位置決め部材24がケース本体23内に配置された複数の二次電池30の上部に配置されることで、複数の二次電池30が、位置決めされると共に複数のバスバー27によって直列に接続されるようになっている。
中蓋25は、図3に示すように、BMU50が内部に収容可能とされており、中蓋25がケース本体23に装着されることで、二次電池30とBMU50とが接続されるようになっている。
二次電池30は、例えばグラファイト系材料の負極活物質と、LiFePO4などのリン酸鉄系の正極活物質を使用したリチウムイオン電池であって、直列に接続された複数の二次電池30は、図4に示すように、二次電池30に対して電流センサ40が負極側、電流遮断回路80が正極側となるように、電流センサ40および電流遮断回路80と直列に接続されている。そして、直列に接続された複数の二次電池30は、電流センサ40が、負極側端子部22N、電流遮断回路80が、正極側端子部22Pにそれぞれ接続されることで、電流センサ40および電流遮断回路80を介して一対の端子部22に接続されている。
BMU50は、図4に示すように、制御部60と、電圧検出回路(「電圧検出部」の一例)70とを備えて構成されている。
電圧検出回路70は、電圧検知線を介して、電流遮断回路80の両端および各二次電池30の両端にそれぞれ接続されている。そして、電圧検出回路70は、制御部60からの指示に応答して、電流遮断回路80の両端電圧CV1、各二次電池30の電圧および直列に接続された複数の二次電池30における総電圧Vを計測する。
制御部60は、中央処理装置(以下、「CPU」という)61と、メモリ63と、通信部65と、電流検出部67とを有しており、電流検出部67は、電流センサ40を介して二次電池30に流れる電流を計測する。
メモリ63には、BMU50の動作を制御するための各種のプログラムや各種プログラムの実行に必要なデータ、例えば、二次電池30の個別および総過放電電圧閾値、二次電池30の個別および総過充電電圧閾値等が記憶されている。また、メモリ63には、制御部60や電圧検出回路70によって計測された電圧や電流が記憶されるようになっている。
通信部65は、車両ECU13と通信可能に接続されており、車両ECU13にて発生する指令を車両ECU13側から制御部60に送信すると共に、制御部60のCPU61にて発生する指令を制御部60側から車両ECU13に送信する。
CPU61は、電圧検出回路70および電流検出部67によって計測された電圧および電流、メモリ63から読み出した各種プログラムやデータに基づいて、バッテリ装置20の各部の制御を行い、二次電池30を保護する。
さて、電流遮断回路80は、図5に示すように、電流遮断装置81と、電流遮断装置81と並列に接続された並列回路83とを備えている。
電流遮断装置81は、例えば、有接点リレー(機械式スイッチ)であり、一方の端部が二次電池30に接続され、他方の端部が正極側端子部24Pに接続されるようにして、二次電池30と正極側端子部24Pとの間に配されている。また、電流遮断装置81は、BMU50のCPU61からの指令に応答して作動し、二次電池30と正極側端子部24Pとの間を通電状態および遮断状態に切り替える。なお、本実施形態では、電流遮断装置81を、有接点リレーにより構成したが、例えば、FET等の半導体スイッチにより構成してもよい。
並列回路83は、ダイオード(「電圧降下素子」の一例)82を有しており、ダイオード82は、二次電池30側から正極側端子部24P側、つまり、二次電池30側から車両負荷12側に向かう電流方向が順方向となる向きに配置されている。そして、ダイオード82には、電流遮断装置81が遮断状態になると、順方向の電流が流れ、ダイオード82の両端間において順方向電圧Vfの電圧降下が生じるようになっている。なお、順方向電圧Vfは、ほぼ一定値であり、予めメモリ63に記憶されている。
一方、CPU61は、二次電池30の保護を図るため、電圧検出回路70および電流検出部67によって計測された電圧および電流と、メモリ63に記憶された各種プログラムとに基づいて、電流遮断装置81の切り替えを行う電池保護処理や電流遮断装置81の故障診断処理等を実行する。
以下に、電池保護処理について、図6を参照しつつ説明する。
電池保護処理では、CPU61は、電圧検出回路70において、各二次電池30の個別電圧V1および直列に接続された複数の二次電池30の総電圧V2を検出し(S11)、個別電圧V1および総電圧V2と、メモリ63に記憶されたメモリ63に記憶された個別過充電電圧閾値および総過充電電圧閾値とを比較する(S12)。
なお、個別過充電電圧閾値とは、二次電池30の1つが過充電状態になったときの電圧値よりもやや小さい値であり、総過充電電圧閾値とは、直列に接続された複数の二次電池30が過充電状態になったときの電圧値よりやや小さい値である。
CPU61は、各二次電池30の個別電圧V1のいずれかが個別過充電電圧閾値以上と判断、もしくは、総電圧V2が総過充電電圧閾値以上と判断した場合(S12:YES)、二次電池30が過充電状態に至る虞があるとして、電流遮断装置81に遮断状態に切り替える遮断切替指令を送信する。そして、電流遮断装置81を遮断状態に切り替え(S13)、二次電池30と車両発電機14との間の電流を遮断することで二次電池30が過充電状態に至ることを抑制する。そして、電池保護処理を終了する。
一方、CPU61は全ての個別電圧V1が個別過充電電圧閾値よりも小さいと判断し、かつ、総電圧V2が総過充電電圧閾値よりも小さいと判断した場合(S12:NO)、各個別電圧V1および総電圧V2と、メモリ63に記憶された個別過放電電圧閾値および総過放電電圧閾値とを比較する(S14)。なお、個別過放電電圧閾値は、二次電池30の1つが過放電状態になった時の電圧値よりもやや大きい値であり、総過放電電圧閾値は、直列に接続された複数の二次電池30が過放電状態になったときの電圧値よりもやや大きい値である。
CPU61は、各二次電池30の個別電圧V1のいずれかが個別過充電電圧閾値よりも小さいと判断し、かつ、総電圧V2が総過充電電圧閾値よりも小さいと判断した場合であって、各二次電池30の個別電圧V1のいずれかが個別過放電電圧閾値以下と判断、もしくは、総電圧V2が総過放電電圧閾値以下と判断した場合(S12:NO、且つ、S14:YES)、二次電池30が過放電状態に至る虞があるとして、電流遮断装置81に遮断切替指令を送信する。そして、電流遮断装置81を遮断状態に切り替え(S15)、二次電池30と車両発電機14との間の電流を遮断することで二次電池30が過放電状態に至ることを抑制する。そして、電池保護処理を終了する。
一方、CPU61は、全ての個別電圧V1が個別過充電電圧閾値よりも小さいと判断し、かつ、総電圧V2が総過充電電圧閾値よりも小さいと判断した場合であって、全ての個別電圧V1が個別過放電電圧閾値よりも大きいと判断し、かつ、総電圧Vが総過放電電圧閾値よりも大きいと判断した場合(S12:NO、且つ、S14:NO)、電池保護処理を終了する。
そして、この電池保護処理を、常時或いは定期的に、繰り返すことで、二次電池30が過充電状態または過放電状態になることを防いでいる。
次に、電流遮断装置81の故障診断処理について、図7を参照しつつ説明する。
電流遮断装置81の故障診断は、例えば、前回の故障診断処理の実行時から所定の時間が経過し、かつ、電流検出部67が計測する放電電流が所定値未満となった場合に実行される。言い換えると、電流遮断装置81の故障診断処理は、所定の時間、車両10に動きがなく駐車状態となった場合に実行される。
なお、電流遮断装置81の故障とは、電流遮断装置81の駆動用の磁気コイルの故障等により、CPU61が通電切替指示をしても電流遮断装置81が遮断状態のままになっているオープン故障と、例えば、電流遮断装置81の接点の溶着等により、CPU61が遮断切替指示をしても電流遮断装置81が通電状態のままになっているクローズ故障とがある。
電流遮断装置81の故障診断では、CPU61が、電流遮断装置81を通電状態やと遮断状態に切り替えることで、電流遮断装置81が故障しているか否かを判断する。そして、故障していると判断した場合、故障が、オープン故障とクローズ故障とのいずれの故障であるか診断する。
ところで、例えば、故障診断処理において電流遮断装置81を遮断状態にしている最中は、車両負荷12のうちダイオード82の最大許容電流を下回る低負荷に供給される電流や暗電流は、ダイオード82を通して二次電池30側から車両負荷12側に流れることになる。しかしながら、電流遮断装置81を遮断状態にしている最中に、車両10を始動させると、例えば、スターターモータなどの車両負荷12に対して二次電池30から大電流が流れる。ここで、仮に、大電流が、ダイオード82の最大許容電流を超える場合、すなわち、車両負荷12のうち、ダイオード82の最大許容電流を超える電力供給によって稼働する高負荷12Aを稼働させるために二次電池30から大電流が流れると、ダイオード82が破損してしまう。だからといって、最大許容電流が大きいダイオードを使用する場合、ダイオードの大型化にともなってダイオードの搭載スペースが大きくなると共に、製造コストが高くなってしまう。
そこで、本実施形態における故障診断では、CPU61は、電流遮断装置81を通電状態から遮断状態に切り替える遮断処理を実行する前に、車両ECU13に対して高負荷12Aを動作させないようにする禁止指示を行う。
詳細には、故障診断が開始されると、CPU61は、電圧検出回路70により電流遮断回路80の両端電圧CV1を計測する(S22)。
ここで、電流遮断装置81は、通常、通電状態となっているため、両端電圧CV1は、電流遮断装置81が通電状態の場合の閉電圧CV1として計測される。なお、S21とS22との処理が、「第1電圧検出処理」に相当する。
次に、CPU61は、電圧検出回路70により電流遮断回路80の電流遮断装置81が遮断状態の場合の開電圧CV2を計測し、閉電圧CV1と開電圧CV2との電圧差ΔCVを算出することになるが、CPU61は、電流遮断装置81に対して遮断切替指示を行う前に、通信部65を介して車両ECU13に高負荷12Aを動作させないように禁止指示を行う(S23)。ここで、禁止指示とは、例えば、LIN通信規格によって規定された特定幅のパルス信号(Wake up信号)を送信する。
そして、CPU61は、車両ECU13から遮断許可通知が出力されるか監視を開始する(S24)。そして、車両ECU13から遮断許可通知が出力されたことを検知したところで(S24:YES)、CPU61は、電流遮断装置81に対して遮断切替指令を送信し(S25)、電流遮断回路80の電流遮断装置81が遮断状態の場合の開電圧CV2を電圧検出回路70によって計測する(S26)。なお、S25とS26との処理が、「第2電圧検出処理」に相当する。
そして、CPU61は、閉電圧CV1と開電圧CV2との差の絶対値(|CV1−CV2|)を電圧差ΔCVとして算出し、電圧差ΔCVとメモリ63に記憶された順方向電圧Vfとを比較する(S27)。
比較の結果、電圧差ΔCVが順方向電圧Vfとほぼ同一の場合(S27:YES)、電流遮断装置81が通電状態から遮断状態となってダイオード82に順方向の電流が流れ、ダイオード82の両端間に順方向電圧Vfの電圧降下が生じたと判断される。つまり、電流遮断装置81は、故障していないと診断され(S28)、故障診断処理を終了する。
一方、電圧差ΔCVがほぼゼロの場合(S27:NO)、さらに、電流遮断回路80の両端電圧CV1と順方向電圧Vfとを比較する(S29)。
電流遮断回路80の両端電圧CV1と順方向電圧Vfとがほぼ同じ場合(S29:YES)には、ダイオード82に順方向の電流が流れることでダイオード82の両端間に順方向電圧Vfの電圧降下が生じていると判断され、電流遮断装置81は、オープン故障と診断される(S29−1)。
一方、電流遮断回路80の両端電圧CV1がほぼゼロの場合(両端電圧CV1と順方向電圧Vfとがほぼ同一でない場合)(S29:NO)、電流遮断装置81を通して電流が流れていると判断され、クローズ故障と診断される(S29−2)。
次に、CPU61から出力された禁止指示による車両ECU13の禁止処理について図8を参照しつつ説明する。
車両ECU13は、バッテリ装置20のBMU50における制御部60から禁止指示が出力されたか監視しており(S31)、禁止指示が入力された場合(S31:YES)、車両負荷12のうち、高負荷12Aの動作を禁止することが可能か判断する(S32)。
高負荷12Aの動作を禁止できない場合(S32:NO)、高負荷12Aの動作を禁止しても問題ないと判断できるまで、高負荷12Aを監視する。
一方、高負荷12Aの動作を禁止しても問題ないと判断した場合(S32:YES)、車両ECU13は、所定の期間の間、高負荷12Aが動作することを禁止する(S33)。なお、車両負荷12のうち、高負荷12Aではない車両負荷12は稼働可能であり、車両10の制御などを維持することができる。
そして、車両ECU13は、高負荷12Aの動作を禁止したところで、バッテリ装置20の制御部60に対して遮断許可通知を出力し(S34)、禁止処理を終了する。
以上のように、本実施形態によると、電流遮断装置81に並列にダイオード82を接続し、故障診断処理において、電流遮断装置81を通電状態とした場合の閉電圧CV1と、電流遮断装置81を遮断状態とした場合の開電圧CV2との間に、順方向電圧Vfと同じ大きさの電圧差ΔCVが生じるようにしたから、電流遮断装置81の故障診断を容易に行うことができる。
そして、故障診断処理において、電流遮断装置81に対して遮断切替指令を行う前に、車両ECU13に対して、ダイオード82の最大許容電流を超える高負荷12Aが稼働することを禁止する禁止指示を行い、車両ECU13によって遮断許可通知が出力された(車両ECU13によって所定の期間の間、高負荷12Aの動作が禁止された)ことをもとに、電流遮断装置81に対して遮断切替指令を行うから、ダイオード82に最大許容電流を超えた電流が流れることを防ぐことができる。
すなわち、本実施形態によると、電流遮断装置81において通電状態と遮断状態との間に電圧差を生じさせることで故障診断を容易にするダイオード82が大型化することを防ぎつつ、ダイオード82が大電流によって破損することを防ぐことができる。
また、本実施形態によると、電流遮断装置81と並列に電圧降下がほぼ一定値となるダイオード82が接続されているから、電流遮断回路80の両端電圧CV1と順方向電圧Vfとを比較するだけで、電流遮断装置81の故障がオープン故障とクローズ故障とのいずれの故障かを容易に診断することができる。
さらに、本実施形態によると、電流遮断装置81に並列して接続される電圧降下素子としてダイオード82を採用し、ダイオード82を流れる電流方向が二次電池30から車両負荷12に向けて順方向となるように配置されているから、例えば、車両10の制御中に車両負荷12に二次電池30から電力供給できなくなることを防ぎつつ、車両発電機14によって二次電池30が過充電されることを防ぐことができる。
また、本実施形態によると、故障診断処理は、例えば、スターターモータなどの車両負荷12を始動させるための始動時間よりも短い数百ミリ秒程度で実施可能であるため、車両10の始動時に違和感を生じさせることなく、実施可能である。
<実施形態2>
次に、実施形態2について図9から図11を参照して説明する。
実施形態2の電流遮断回路180は、実施形態1における電流遮断回路80の並列回路83の構成を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
実施形態2の電流遮断回路180における並列回路183は、ダイオード82の他にダイオード82と直列に接続された補助電流遮断装置184を有している。
補助電流遮断装置184は、例えば、有接点リレー(機械式スイッチ)であり、一方の端部が二次電池30に接続され、他方の端部がダイオード82に接続されるようにして、二次電池30とダイオード82との間に配されている。また、補助電流遮断装置184は、BMU50のCPU61からの指令に応答して作動し、二次電池30とダイオード82との間を通電状態および遮断状態に切り替える。
なお、本実施形態では、補助電流遮断装置184を、有接点リレーにより構成したが、例えば、図10に示すように、FETスイッチにより補助電流遮断装置284を構成してもよい。この場合、例えば、FETスイッチは、例えばPチャネルのMOSFETであって、FETスイッチは、ソースが二次電池30、ゲートがBMU50、ドレインがダイオード82にそれぞれ接続される。
以下に、本実施形態における電池保護処理について、図11を参照しつつ説明する。
本実施形態の電池保護処理では、実施形態1の電池保護処理と同様の処理を行うものの、その後に追加の処理が行われる。
詳しくは、CPU61が電池保護処理において、各二次電池30の個別電圧V1のいずれかが個別過充電電圧閾値よりも小さいと判断し、かつ、総電圧V2が総過充電電圧閾値以下よりも小さいと判断した場合であって、各二次電池30の個別電圧V1のいずれかが個別過放電電圧閾値以下と判断、もしくは、総電圧V2が総過放電電圧閾値以下と判断した場合(S12:NO、且つ、S14:YES)、二次電池30が過放電状態に至る虞があるとして、電流遮断装置81に遮断切替指令を送信して、電流遮断装置81を遮断状態に切り替える(S15)。
そして、CPU61は、電流遮断装置81を遮断状態に切り替えた後、さらに、各二次電池30の個別電圧V1のいずれかが個別過放電電圧最終閾値以下、もしくは、総電圧V2が総過放電電圧最終閾値以下であるか判断する(S116)。
ここで、個別過放電電圧最終閾値とは、二次電池30の1つが過放電状態になった時の電圧値よりも僅かに大きい値で、個別過放電電圧閾値よりも僅かに小さい値であり、総過放電電圧最終閾値とは、直列に接続された複数の二次電池30が過放電状態になったときの電圧値よりも僅かに大きい値で、総過放電電圧閾値よりも僅かに小さい値である。
そして、各二次電池30の個別電圧V1のいずれかが個別過放電電圧最終閾値以下と判断、もしくは総電圧V2が総過放電電圧最終閾値以下と判断した場合には(S116:YES)、並列回路183における補助電流遮断装置184に遮断切替指示を送信し、遮断状態に切り替え(S117)、二次電池30と車両発電機14との間の電流を完全に遮断する。これにより、車両10に搭載された車両負荷12(電装品)などの暗電流などによって二次電池30が過放電状態に至ることを防ぐことができる。
なお、本実施形態における電流遮断装置81の故障診断処理では、実施形態1と同様の操作により診断される。また、このとき、補助電流遮断装置184は正常であることを前提としている。これは、補助電流遮断装置184が、高負荷12Aに電力を供給するためには用いらず、電流遮断装置81に比べて、故障が発生する確率が極めて低いからである。
以上のように、本実施形態によると、電流遮断装置81が遮断状態になって、並列回路183からダイオード82を通じて放電可能な場合でも、暗電流などによって二次電池30が過放電状態に至る虞がある場合に、補助電流遮断装置184によって二次電池30が過放電になることを確実に防ぐことができる。
<実施形態3>
次に、実施形態3について図12および図13を参照しつつ説明する。
実施形態3の故障診断処理は、BMU50の制御部60におけるCPU61が、車両ECU13からの指示を受けることにより、BMU50が故障診断処理を実行するものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
つまり、車両ECU13が、故障診断の必要性を判断し、必要と判断した場合には、禁止処理を実行した後、BMU50において故障診断が実行される。
以下に、車両ECU13が、故障診断が必要と判断した場合の禁止処理について図12を参照しつつ説明する。
車両ECU13は、車両負荷12のうち、高負荷12Aの動作を禁止することが可能か確認し(S132)、高負荷12Aの動作を禁止できない場合(S132:NO)、高負荷12Aの動作を禁止しても問題ないと確認できるまで、高負荷12Aを監視する。
車両ECU13は、高負荷12Aの動作を禁止しても問題ないと確認できた場合(S132:YES)、高負荷12Aが所定の期間の間、動作することを禁止する(S133)。なお、車両負荷12のうち、高負荷12Aではない車両負荷12は稼働可能であり、車両10の制御などを維持することができる。
そして、高負荷12Aの動作を禁止したところで、バッテリ装置20の制御部60に対して遮断許可通知を出力し(S134)、禁止処理を終了する。
次に、BMU50における故障診断処理について、図13を参照しつつ説明する。
実施形態3の故障診断処理は、図13に示すように、CPU61が、車両ECU13から遮断許可通知が出力されるか監視しており(S221)、車両ECU13から遮断許可通知が出力されたことを検知したところで、CPU61は、電流遮断装置81に通電状態に切り替える通電切替指令を送信し(S222)、電圧検出回路70により電流遮断回路80の両端電圧CV1を計測する(S223)。なお、S222とS223との処理が、「第1電圧検出処理」に相当する。
次に、CPU61は、電流遮断装置81に対して遮断切替指令を送信し(S224)、電圧検出回路70により電流遮断装置81が遮断状態の場合の開電圧CV2を計測する(S225)。なお、S224とS225との処理が、「第2電圧検出処理」に相当する。
そして、CPU61は、閉電圧CV1と開電圧CV2との差の絶対値(|CV1−CV2|)を電圧差ΔCVとして算出し、電圧差ΔCVとメモリ63に記憶された順方向電圧Vfとを比較する(S226)。
比較の結果、電圧差ΔCVが順方向電圧Vfとほぼ同一の場合(S226:YES)、電流遮断装置81が通電状態から遮断状態となってダイオード82に順方向の電流が流れ、ダイオード82の両端間に順方向電圧Vfの電圧降下が生じたと判断される。つまり、電流遮断装置81は、故障していないと診断される(S227)、故障診断処理を終了する。
一方、電圧差ΔCVがほぼゼロの場合(S226:NO)、さらに、電流遮断回路80の両端電圧CV1と順方向電圧Vfとを比較する(S228)。
電流遮断回路80の両端電圧CV1と順方向電圧Vfとがほぼ同じ場合(S228:YES)には、ダイオード82に順方向の電流が流れることでダイオード82の両端間に順方向電圧Vfの電圧降下が生じていると判断され、電流遮断装置81は、オープン故障と診断される(S228−1)。
一方、電流遮断回路80の両端電圧CV1がほぼゼロの場合(S228:NO)、電流遮断回路80の電流遮断装置81を通して電流が流れていると判断され、クローズ故障と診断される(S228−2)。
つまり、本実施形態によると、車両ECU13が、故障診断が必要と判断し、禁止処理が実行された後、BMU50において故障診断が実行されるから、ダイオード82に最大許容電流を超えた電流が流れることを防ぐことができる。
これにより、電流遮断装置81において通電状態と遮断状態との間に電圧差を生じさせることで故障診断を容易にするダイオード82が大型化することを防ぎつつ、ダイオード82が大電流によって破損することを防ぐことができる。
<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、電池管理装置50は、1つのCPU61によって構成した。しかしながら、これに限らず、電池管理装置は、複数のCPUを備える構成や、ASIC(Application Specific Integrated Circuit)などのハード回路でもよく、マイコン、FPGA、MPU、また、それらが組み合わされた構成でもよい。
(2)上記実施形態では、電圧降下素子として、ダイオード82を用いた構成とした。しかしながら、これに限らず、電圧降下素子として、抵抗素子を用いてもよい。
(3)上記実施形態では、車両ECU13とバッテリ装置20との通信方式をLIN通信として構成にした。しかしながら、これに限らず、車両ECUとバッテリ装置の通信方式は、CAN通信でもよく、他の通信方式によって構成してもよい。
(4)上記実施形態では、故障診断処理において電流遮断装置81を遮断状態にする前に禁止指示を出力する構成とした。しかしながら、これに限らず、故障診断とは関係なく、電流遮断装置を遮断状態にする前に禁止指示を出力する構成としてもよい。
(5)上記実施形態では、CPU61から車両ECU13に禁止指示を出力し、車両ECU13から遮断許可通知が出力されたことにより、CPU61が電流遮断装置81に対し遮断切替指令を送信する構成とした。しかしながら、これに限らず、CPUから車両ECUに禁止指示を出力したことをもって、CPUが電流遮断装置に対し遮断切替指令を送信する構成にしてもよい。
(6)上記実施形態では、補助電流遮断装置184が正常であるとして電流遮断装置81の故障診断処理を実行する構成にした。しかしながら、これに限らず、電流遮断装置だけでなく、補助電流遮断装置の故障を診断してもよい。
(7)上記実施形態では、電圧検出回路70において電流遮断回路80の両端電圧CV1を計測する構成にした。しかしながら、これに限らず、電流遮断装置と正極側端子部の電圧(バッテリ装置の端子電圧)と、電流遮断装置と二次電池側の電圧(各二次電池の電圧の合計値または直列に接続された複数の二次電池の総電圧)との差分を取ることで間接的に電流遮断回路の両端電圧を取得してもよい。
10:車両
12:車両負荷(「負荷」の一例)
12A:高負荷
13:車両側電子制御装置(「負荷システム」の一例)
14:車両発電機(「充電装置」の一例)
20:バッテリ装置
30:二次電池
60:制御部
70:電圧検出回路(「電圧検出部」の一例)
81:電流遮断装置
82:ダイオード(「電圧降下素子」の一例)
83,183:並列回路
184,284:補助電流遮断装置

Claims (13)

  1. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路と、
    制御部とを備え、
    前記制御部は、前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行し
    前記制御部は、前記遮断処理を実行する前に、前記負荷の動作制御を行う負荷システムに対して、前記遮断処理中に、前記高負荷を動作させないようにする禁止指示を行う、バッテリ装置。
  2. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路と、
    制御部とを備え、
    前記制御部は、前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行し
    前記制御部は、前記負荷の動作制御を行う負荷システムが前記高負荷の動作を禁止した後に出力する前記電流遮断装置の遮断許可指示が入力されることで、前記遮断処理を行う、バッテリ装置。
  3. 前記電流遮断装置の両端電圧を検出する電圧検出部を備え、
    前記制御部は、
    前記電流遮断装置を通電状態に切り替えて電圧を検出する第1電圧検出処理と、
    前記遮断処理を実行して電圧を検出する第2電圧検出処理と、
    前記第1電圧検出処理の電圧と前記第2電圧検出処理の電圧とに基づいて前記電流遮断装置が故障しているか否か診断する故障診断処理とを実行する請求項1又は請求項2に記載のバッテリ装置。
  4. 前記故障診断処理は、前記高負荷を始動させるための始動時間よりも短時間で実施する請求項3記載のバッテリ装置。
  5. 前記二次電池を充電する充電装置が前記電流遮断装置を介して前記二次電池に接続されており、
    前記電圧降下素子は、前記二次電池から前記負荷へ電流を流すダイオードである請求項1から請求項4のいずれか一項に記載のバッテリ装置。
  6. 前記並列回路は、前記電圧降下素子と直列に接続され、通電状態および遮断状態に切り替わる補助電流遮断装置を有する請求項1から請求項5のいずれか一項に記載のバッテリ装置。
  7. 請求項1から請求項6のいずれか一項に記載のバッテリ装置と、
    前記負荷と、
    前記負荷の動作制御を行う負荷システムとを有する車両。
  8. 請求項1に記載のバッテリ装置と、
    前記負荷と、
    前記負荷システムとを有する車両であって、
    前記負荷システムは、前記禁止指示が入力されることで、前記高負荷が動作することを禁止する車両。
  9. 前記制御部は、前記禁止指示によって前記負荷システムが前記高負荷の動作を禁止した後に出力する遮断許可指示が入力されることで、前記遮断処理を実行する請求項8に記載の車両。
  10. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の制御部に、
    前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行させ、
    前記遮断処理を実行する前に、前記負荷の動作制御を行う負荷システムに対して、前記遮断処理中に、前記高負荷を動作させないようにする禁止指示を行う、電池管理プログラム。
  11. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の制御部に、
    前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行させ、
    前記負荷の動作制御を行う負荷システムが前記高負荷の動作を禁止した後に出力する前記電流遮断装置の遮断許可指示が入力されることで、前記遮断処理を実行させる、電池管理プログラム。
  12. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の管理方法であって、
    前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行し、
    前記遮断処理を実行する前に、前記負荷の動作制御を行う負荷システムに対して、前記遮断処理中に、前記高負荷を動作させないようにする禁止指示を行う、バッテリ装置の管理方法。
  13. 負荷に電力を供給する二次電池と、
    前記二次電池と前記負荷との間を通電状態および遮断状態に切り替える電流遮断装置と、
    前記電流遮断装置に並列接続され、電流が流れることで電圧降下を生じさせる電圧降下素子を有する並列回路とを備えるバッテリ装置の管理方法であって、
    前記電圧降下素子の最大許容電流を超える電力供給を受けて稼働する高負荷が動作しない時に、前記電流遮断装置を遮断状態に切り替える遮断処理を実行し、
    前記負荷の動作制御を行う負荷システムが前記高負荷の動作を禁止した後に出力する前記電流遮断装置の遮断許可指示が入力されることで、前記遮断処理を実行する、バッテリ装置の管理方法。
JP2016013267A 2016-01-27 2016-01-27 バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法 Active JP6614443B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016013267A JP6614443B2 (ja) 2016-01-27 2016-01-27 バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法
DE102017201171.8A DE102017201171A1 (de) 2016-01-27 2017-01-25 Batterievorrichtung, fahrzeug, batterieverwaltungsprogramm und verwaltungsverfahren für eine batterievorrichtung
CN201710060816.7A CN107017441B (zh) 2016-01-27 2017-01-25 蓄电池装置、车辆、记录介质及蓄电池装置管理方法
US15/415,997 US10305299B2 (en) 2016-01-27 2017-01-26 Battery apparatus, vehicle, battery management program, and management method of battery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013267A JP6614443B2 (ja) 2016-01-27 2016-01-27 バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019203156A Division JP6825678B2 (ja) 2019-11-08 2019-11-08 車両

Publications (2)

Publication Number Publication Date
JP2017135834A JP2017135834A (ja) 2017-08-03
JP6614443B2 true JP6614443B2 (ja) 2019-12-04

Family

ID=59295722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013267A Active JP6614443B2 (ja) 2016-01-27 2016-01-27 バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法

Country Status (4)

Country Link
US (1) US10305299B2 (ja)
JP (1) JP6614443B2 (ja)
CN (1) CN107017441B (ja)
DE (1) DE102017201171A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614443B2 (ja) * 2016-01-27 2019-12-04 株式会社Gsユアサ バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法
JP6973483B2 (ja) * 2017-06-05 2021-12-01 株式会社Gsユアサ 蓄電素子の保護装置
JP6809401B2 (ja) 2017-07-12 2021-01-06 トヨタ自動車株式会社 燃料電池システム
JP7205489B2 (ja) * 2017-12-04 2023-01-17 株式会社Gsユアサ 充電制御装置、蓄電装置、充電方法
JP2019158446A (ja) * 2018-03-09 2019-09-19 株式会社Gsユアサ 電流計測装置、蓄電装置、電流計測方法
CN109177806A (zh) * 2018-08-10 2019-01-11 浙江普朗特电动汽车有限公司 一种纯电动汽车低电量行驶控制方法
WO2020059732A1 (ja) * 2018-09-18 2020-03-26 株式会社Gsユアサ 移動体の電源システムの制御方法、移動体の電源システム
JP7028907B2 (ja) * 2020-04-08 2022-03-02 本田技研工業株式会社 バッテリモジュールの終端装置
JP7026160B2 (ja) * 2020-04-08 2022-02-25 本田技研工業株式会社 バッテリモジュールの終端装置
JP2021166454A (ja) * 2020-04-08 2021-10-14 株式会社Gsユアサ 電流遮断装置の故障診断方法、及び、蓄電装置
JP2022179953A (ja) * 2021-05-24 2022-12-06 株式会社Gsユアサ 蓄電装置、接続状態の判定方法
CN113335068A (zh) * 2021-07-06 2021-09-03 北京汽车集团越野车有限公司 故障诊断方法、装置、电子设备和可读存储介质
EP4270591A1 (en) * 2021-09-30 2023-11-01 Contemporary Amperex Technology Co., Limited Circuit control method, battery and controller and management system thereof, and electric apparatus
CN114506225B (zh) * 2022-02-22 2022-09-13 贺洪芝 无功率输出中断的电池串并联切换主电路及系统、方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136149U (ja) 1979-03-20 1980-09-27
JPS5883746U (ja) 1981-12-02 1983-06-07 株式会社日立製作所 ヒユ−ズ
JPH05205781A (ja) 1992-01-28 1993-08-13 Sanyo Electric Co Ltd 電池の過放電防止装置
US7589500B2 (en) * 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
JP5210516B2 (ja) 2006-12-27 2013-06-12 富士重工業株式会社 車両用電源装置
JP2010140785A (ja) * 2008-12-12 2010-06-24 Panasonic Corp 故障診断回路、及び電池パック
JP2011010483A (ja) 2009-06-26 2011-01-13 Soc Corp 電流分離器及び電流遮断装置
JP5583538B2 (ja) 2010-10-01 2014-09-03 三洋電機株式会社 電池パック
JP2012085382A (ja) 2010-10-07 2012-04-26 Toyota Motor Corp 過電流保護装置
CN103765001A (zh) * 2011-08-24 2014-04-30 松下电器产业株式会社 车辆用电源装置
JP5910172B2 (ja) * 2012-03-01 2016-04-27 株式会社Gsユアサ スイッチ故障診断装置、電池パックおよびスイッチ故障診断プログラム、スイッチ故障診断方法
US9711962B2 (en) * 2012-07-09 2017-07-18 Davide Andrea System and method for isolated DC to DC converter
JP5983171B2 (ja) 2012-08-10 2016-08-31 株式会社Gsユアサ スイッチ故障診断装置、蓄電装置
JP5579804B2 (ja) * 2012-08-28 2014-08-27 ミネベア株式会社 負荷駆動装置およびその制御方法
US9696736B2 (en) * 2013-03-15 2017-07-04 Fairchild Semiconductor Corporation Two-terminal current limiter and apparatus thereof
JP6260106B2 (ja) * 2013-04-25 2018-01-17 株式会社Gsユアサ 蓄電装置
JP6156689B2 (ja) 2013-06-25 2017-07-05 株式会社Gsユアサ スイッチ故障診断装置、スイッチ故障診断方法
JP6614443B2 (ja) * 2016-01-27 2019-12-04 株式会社Gsユアサ バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法

Also Published As

Publication number Publication date
JP2017135834A (ja) 2017-08-03
CN107017441B (zh) 2021-09-07
DE102017201171A1 (de) 2017-07-27
US10305299B2 (en) 2019-05-28
CN107017441A (zh) 2017-08-04
US20170214257A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6614443B2 (ja) バッテリ装置、車両、電池管理プログラムおよびバッテリ装置の管理方法
US9941712B2 (en) Electrical storage system
KR102227320B1 (ko) 축전 소자 보호 장치, 축전 장치, 스타터 배터리 및 축전 소자 보호 방법
KR101696160B1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
JP6155569B2 (ja) 電源システム
EP3048693B1 (en) Anomaly detector in mosfet switching element and method for detecting anomaly
US9893343B2 (en) Battery pack and electric device
EP2879900B1 (en) Electrical storage system
JP6741211B2 (ja) 蓄電装置、車両、及び蓄電装置の充電制御方法
CN106998085B (zh) 蓄电装置以及蓄电元件的不当使用判断方法
WO2018163736A1 (ja) 車載用電池の保護回路
JP7119401B2 (ja) 故障診断装置、蓄電装置、故障診断方法
KR101614202B1 (ko) 전류 측정 릴레이 장치
JP2018026923A (ja) 蓄電装置および蓄電装置の充電制御方法
CN110462968B (zh) 蓄电装置以及蓄电元件的控制方法
US10096992B2 (en) Electrical storage system
JP5493616B2 (ja) 電池パック
CN110679052A (zh) 蓄电元件的保护装置
JP6825678B2 (ja) 車両
CN109643907B (zh) 蓄电部控制装置
JP7416027B2 (ja) 車両用電源システム
KR20180112484A (ko) 리던던트 배터리가 포함된 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6614443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150