JP6600974B2 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
JP6600974B2
JP6600974B2 JP2015082328A JP2015082328A JP6600974B2 JP 6600974 B2 JP6600974 B2 JP 6600974B2 JP 2015082328 A JP2015082328 A JP 2015082328A JP 2015082328 A JP2015082328 A JP 2015082328A JP 6600974 B2 JP6600974 B2 JP 6600974B2
Authority
JP
Japan
Prior art keywords
battery
failure
charging rate
current
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015082328A
Other languages
Japanese (ja)
Other versions
JP2016201956A (en
Inventor
淑 佐々木
克好 村松
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2015082328A priority Critical patent/JP6600974B2/en
Publication of JP2016201956A publication Critical patent/JP2016201956A/en
Application granted granted Critical
Publication of JP6600974B2 publication Critical patent/JP6600974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、バッテリを制御するバッテリ制御装置に関する。   The present invention relates to a battery control device that controls a battery.
従来、ハイブリット自動車や電気自動車などの電動車には、モータ駆動用の電力を蓄電する高電圧バッテリが搭載されている。バッテリには使用上限充電率と使用下限充電率とが設定されており、この間の充電率で使用するように電流の入出力(充放電)が行われる。これは、使用上限充電率を超えると過充電状態となり、使用下限充電率を下回ると過放電状態となり、いずれの場合もバッテリ性能が低下するためである。   Conventionally, high-voltage batteries that store electric power for driving a motor are mounted on electric vehicles such as hybrid vehicles and electric vehicles. The battery has a use upper limit charge rate and a use lower limit charge rate, and current is input / output (charge / discharge) so as to be used at the charge rate during this period. This is because when the usage upper limit charging rate is exceeded, the battery is overcharged, and when it falls below the usage lower limit charging rate, the battery is overdischarged.
バッテリの充電率(SOC:State Of Charge)は、通常バッテリの電圧値およびバッテリに入出力される電流量の積算値に基づいて算出される。
一般に、バッテリの電圧と充電率とは相関関係があることが知られており、またバッテリに入出力される電流を積算すればバッテリの蓄電量(すなわち充電率)を知ることができる。よって、電圧値または電流量のいずれか一方のみを用いて充電率を算出することも可能であるが、検出値の誤差(積算誤差や検出誤差等)や個々のバッテリの特性(劣化度や温度等)などに起因して、算出した充電率と実際の充電率とにずれが生じる場合がある。特に、使用上限充電率および使用下限充電率近傍での使用時には、より正確な充電率を算出することが望まれる。
このため、バッテリの電圧値および電流量の両方を用いて充電率を算出している。
The state of charge (SOC) of the battery is calculated based on the voltage value of the normal battery and the integrated value of the amount of current input to and output from the battery.
In general, it is known that there is a correlation between the voltage of the battery and the charging rate, and by accumulating the current input to and output from the battery, the amount of charge (that is, the charging rate) of the battery can be known. Therefore, it is possible to calculate the charging rate using only one of the voltage value and the current amount, but the detection value error (integration error, detection error, etc.) and individual battery characteristics (degradation level and temperature) Etc.) may cause a difference between the calculated charging rate and the actual charging rate. In particular, it is desired to calculate a more accurate charging rate when used near the upper limit charging rate and the lower limit charging rate.
For this reason, the charging rate is calculated using both the voltage value and the current amount of the battery.
ところで、バッテリの電圧を検出する電圧検出手段またはバッテリに入出力される電流量を検出する電流検出手段のいずれかで故障が発生すると、正確な充電率を算出するのが困難となる。
このため、下記特許文献1では、電圧センサの故障が検知された場合に、通常時よりもバッテリ電流を抑制することによって、充放電時に発生するジュール熱を抑制してバッテリの保護を図っている。
By the way, if a failure occurs in either the voltage detection means for detecting the voltage of the battery or the current detection means for detecting the amount of current inputted to or outputted from the battery, it becomes difficult to calculate an accurate charging rate.
For this reason, in Patent Document 1 described below, when a failure of the voltage sensor is detected, the battery current is suppressed more than usual, thereby suppressing Joule heat generated during charging and discharging to protect the battery. .
特許3659068号公報Japanese Patent No. 3659068
電圧検出手段または電流検出手段のいずれかで故障が発生し、正確な充電率が算出できなくなった場合、バッテリの保護のためバッテリの使用を禁止することも考えられる。しかしながら、バッテリが電動車の駆動用電源である場合、突然車両が使用できなくなるとユーザの不利益が大きくなることが予測される。
また、バッテリが過放電状態になった場合と比較して、過充電状態となった場合の方がバッテリおよびその周囲への影響が大きいと考えられるため、故障が生じた場合にはバッテリからの出力のみを許可して電動車の走行を継続する方法も考えられる、しかしながら、例えば充電率が低い状態で故障が生じた場合などは、車両修理業者等にたどり着く前にバッテリ内の電力がなくなってしまう可能性がある。
If a failure occurs in either the voltage detection unit or the current detection unit and an accurate charging rate cannot be calculated, it may be considered that the use of the battery is prohibited to protect the battery. However, when the battery is a power source for driving an electric vehicle, it is predicted that the user's disadvantage will increase when the vehicle suddenly becomes unusable.
In addition, compared to the case where the battery is overdischarged, it is considered that the overcharged state has a greater effect on the battery and its surroundings. A method of allowing only the output to continue running the electric vehicle is also conceivable, however, for example, when a failure occurs with a low charging rate, the power in the battery runs out before reaching the vehicle repair company etc. There is a possibility.
本発明は、このような事情に鑑みなされたものであり、その目的は、電圧検出手段または電流検出手段のいずれかで故障が発生した場合に、バッテリを適切な範囲で使用可能とすることにある。   The present invention has been made in view of such circumstances, and an object thereof is to make it possible to use a battery in an appropriate range when a failure occurs in either the voltage detection means or the current detection means. is there.
上述の目的を達成するため、請求項1の発明にかかるバッテリ制御装置は、バッテリの電圧を検出する電圧検出手段と、前記バッテリに入出力される電流量を検出する電流検出手段と、前記電圧検出手段および前記電流検出手段の検出値に基づいて、前記バッテリの充電率を算出する充電率算出手段と、前記電圧検出手段または前記電流検出手段の前記一方で故障が検出された場合、故障検出後の前記充電率を故障検出時における充電率である故障時充電率以下に維持するように前記電流量を制御する電流制御手段と、前記電圧検出手段または前記電流検出手段の少なくとも一方の故障を検出する故障検出手段と、を備え、前記電流制御手段は、前記故障時充電率よりも低い制限充電率を設定し、前記充電率が前記制限充電率未満の際には前記故障が検出されていない時と同様の前記電流量を前記バッテリに入出力し、前記充電率が前記制限充電率以上かつ前記故障時充電率以下の際には前記故障が検出されていない時よりも前記バッテリに入力する前記電流量を抑制する、ことを特徴とする。
請求項の発明にかかるバッテリ制御装置は、前記バッテリの温度を検出する温度検出手段を更に備え、前記電流制御手段は、前記バッテリの温度が高いほど前記制限充電率を低くする、ことを特徴とする。
請求項の発明にかかるバッテリ制御装置は、前記充電率算出手段が、前記電圧検出手段または前記電流検出手段の一方で前記故障が検出された後、前記故障が検出されていない他方の検出手段の検出値に基づいて暫定的に前記充電率を算出する、ことを特徴とする。
請求項の発明にかかるバッテリ制御装置は、前記故障検出手段が、前記電圧検出手段の故障を検出し、前記充電率算出手段は、前記電圧検出手段で前記故障が検出された後、前記電流検出手段の検出値に基づいて前記充電率を算出する、ことを特徴とする。
In order to achieve the above object, a battery control device according to the invention of claim 1 includes a voltage detection unit that detects a voltage of the battery, a current detection unit that detects an amount of current input to and output from the battery, and the voltage. If a failure is detected in one of the charge rate calculation means for calculating the charge rate of the battery and the voltage detection means or the current detection means based on the detection values of the detection means and the current detection means , a failure detection is performed. A current control means for controlling the amount of current so that the subsequent charge rate is maintained below a charge rate at the time of failure, which is a charge rate at the time of failure detection, and a failure of at least one of the voltage detection means or the current detection means. comprising a failure detection means for detecting the said current control means sets the lower limit charging rate than the failure-time charging rate, when the charging ratio is less than the limit charging rate before The same amount of current as when no failure is detected is input to and output from the battery, and when the charge rate is greater than or equal to the limit charge rate and less than or equal to the charge rate during failure than when no failure is detected. Is also characterized in that the amount of current input to the battery is suppressed .
According to a second aspect of the present invention, the battery control device further includes temperature detection means for detecting the temperature of the battery, and the current control means lowers the limited charging rate as the temperature of the battery is higher. And
According to a third aspect of the present invention, in the battery control device according to the third aspect of the present invention, the charge rate calculation unit detects the failure after one of the voltage detection unit or the current detection unit and then detects the other failure. The charging rate is tentatively calculated based on the detected value.
In the battery control device according to the invention of claim 4, the failure detection unit detects a failure of the voltage detection unit, and the charge rate calculation unit detects the failure after the voltage detection unit detects the failure. The charging rate is calculated based on a detection value of a detection means.
発明によれば、電圧検出手段または電流検出手段の故障が検出された場合に、故障検出後のバッテリの充電率を故障検出時における充電率である故障時充電率以下に維持する。よって、検出手段の故障後もバッテリの過充電による影響、例えばバッテリの故障や発熱による周囲の部材の損傷などを防止しながらバッテリの使用を継続する上で有利となる。
また、充電率を故障時充電率以下に維持する以外は、バッテリへの入出力に関する制限を設けていないので、非故障時と比較した場合のユーザの違和感を軽減する上で有利となる。
また、発明では、故障時充電率以下の範囲であればバッテリへの充電(電流の入力)を許可するので、バッテリへの充電を禁止する場合と比較してバッテリの使用可能期間を長くすることができ、ユーザの利便性を向上する上で有利となる。
発明によれば、検出手段の一方で故障が検出された後は、故障が検出されていない他方の検出手段の検出値に基づいて暫定的に充電率を算出するので、充電率の概算値を得ることができ、バッテリの過充電を防止しながら使用を継続する上で有利となる。
発明によれば、故障時充電率よりも低い制限充電率を設定し、充電率が制限充電率以上かつ故障時充電率以下の際には故障が検出されていない時よりもバッテリに入力する電流量を抑制するので、充電率が故障時充電率に到るまでの時間を長くすることができ、バッテリを使用可能な期間を延長する上で有利となる。
発明によれば、バッテリ温度に基づいて制限充電率を設定するので、バッテリの状態を反映した制御を行うことができ、より確実に過充電を防止する上で有利となる。
発明によれば、電圧検出手段の故障を検出し、故障後は電流検出手段を用いて充電率を判定するので、バッテリに入出力される電流量を逐次積算することができ、精度よく充電率を算出する上で有利となる。
According to the present invention, when a failure of the voltage detection unit or the current detection unit is detected, the charge rate of the battery after the failure detection is maintained below the charge rate at the time of failure that is the charge rate at the time of failure detection. Therefore, even after the failure of the detection means, it is advantageous in continuing the use of the battery while preventing the influence of the overcharge of the battery, for example, the failure of the battery or the damage of surrounding members due to heat generation.
In addition, since there is no restriction on the input / output to the battery other than maintaining the charging rate below the charging rate at the time of failure, it is advantageous in reducing the user's uncomfortable feeling when compared with that at the time of non-failure.
Further, in the present invention, charging to the battery (input of current) is permitted if it is in the range of the charging rate at the time of failure, so that the usable period of the battery is lengthened as compared with the case where charging to the battery is prohibited. This is advantageous in improving user convenience.
According to the present invention, after a failure is detected in one of the detection means, the charge rate is tentatively calculated based on the detection value of the other detection means in which no failure is detected. This is advantageous in continuing use while preventing overcharging of the battery.
According to the present invention, a limited charging rate lower than the failure charging rate is set, and when the charging rate is equal to or higher than the limiting charging rate and equal to or lower than the failure charging rate, an input is made to the battery than when no failure is detected. Since the amount of current is suppressed, the time until the charging rate reaches the charging rate at the time of failure can be lengthened, which is advantageous in extending the period in which the battery can be used.
According to the present invention, since the limited charging rate is set based on the battery temperature, control reflecting the state of the battery can be performed, which is advantageous in preventing overcharge more reliably.
According to the present invention, since the failure of the voltage detection means is detected and the charging rate is determined using the current detection means after the failure, the amount of current input to and output from the battery can be sequentially accumulated, and charging can be performed accurately. This is advantageous in calculating the rate.
実施の形態にかかるバッテリ制御装置10の構成を示す説明図である。It is explanatory drawing which shows the structure of the battery control apparatus 10 concerning embodiment. バッテリ制御装置10の処理を示すフローチャートである。4 is a flowchart showing processing of the battery control device 10. 電圧検出手段30の故障時の充電率の時間変化の一例を示すグラフである。5 is a graph showing an example of a change in charging rate with time when the voltage detecting means 30 is faulty.
以下に添付図面を参照して、本発明にかかるバッテリ制御装置の好適な実施の形態を詳細に説明する。本実施の形態では、電圧検出手段および電流検出手段のうち、電圧検出手段が故障した場合について説明する。   Exemplary embodiments of a battery control device according to the present invention will be explained below in detail with reference to the accompanying drawings. In the present embodiment, a case will be described in which the voltage detection unit of the voltage detection unit and the current detection unit fails.
(実施の形態)
図1は、実施の形態にかかるバッテリ制御装置10の構成を示す説明図である。
バッテリ制御装置10は、電動車の駆動用電力を蓄電するバッテリ12を制御する。
本実施の形態では、バッテリ12は、モータ14とエンジン16とを搭載したハイブリット自動車の駆動用電源であるものとする。
バッテリ12は、複数の電池セル18(18A〜18N)を直列に接続した組電池17と、組電池17の正極側に設けられた正極側メインコンタクタ20と、組電池17の負極側に設けられた負極側メインコンタクタ22と、正極側メインコンタクタ20と並列に設けられプリチャージコンタクタ24Aおよびプリチャージ抵抗器24Bからなるプリチャージ回路24とが筐体26内に収容されたバッテリパックとして構成されている。
(Embodiment)
FIG. 1 is an explanatory diagram illustrating a configuration of a battery control device 10 according to the embodiment.
The battery control device 10 controls the battery 12 that stores electric power for driving the electric vehicle.
In the present embodiment, it is assumed that the battery 12 is a power source for driving a hybrid vehicle equipped with the motor 14 and the engine 16.
The battery 12 is provided on an assembled battery 17 in which a plurality of battery cells 18 (18A to 18N) are connected in series, a positive-side main contactor 20 provided on the positive electrode side of the assembled battery 17, and a negative electrode side of the assembled battery 17. The negative side main contactor 22 and the precharge circuit 24 including the precharge contactor 24A and the precharge resistor 24B provided in parallel with the positive side main contactor 20 are configured as a battery pack accommodated in the housing 26. Yes.
電圧検出手段30は、バッテリ12の電圧を検出する。より詳細には、電圧検出手段30は、それぞれの電池セル18のセル電圧を検出するとともに、組電池17全体の電池電圧を検出する。
電流検出手段32(32A,32B)は、バッテリ12に入出力される電流量を検出する。バッテリ12への電流の入力は充電に対応し、バッテリ12から電流の出力は放電に対応する。
本実施の形態では、2つの電流検出手段32A,32Bが設けられている。これは後述するように、本実施の形態では電圧検出手段30の故障後は電流検出手段32の検出値のみで暫定的に充電率を算出するため、電流検出手段32の信頼性を高めるためである。2つの電流検出手段32A,32Bの検出値の差分が所定の誤差範囲内にある場合には電流検出手段32が正常に稼働していると判断することができ、2つの検出値の差分が誤差範囲を上回る場合には電流検出手段32に故障が生じていると判断することができる。
温度検出手段34は、バッテリ12の温度(バッテリ温度)を検出する。温度検出手段34は、組電池17の代表点に設けられてもよいし、各電池セル18毎または複数の電池セル18を1単位とするセルユニット毎に設けられていてもよい。
The voltage detection unit 30 detects the voltage of the battery 12. More specifically, the voltage detection means 30 detects the cell voltage of each battery cell 18 and the battery voltage of the entire assembled battery 17.
The current detection means 32 (32A, 32B) detects the amount of current input / output to / from the battery 12. The input of current to the battery 12 corresponds to charging, and the output of current from the battery 12 corresponds to discharging.
In the present embodiment, two current detection means 32A and 32B are provided. As will be described later, in this embodiment, the charging rate is tentatively calculated only by the detection value of the current detection means 32 after the failure of the voltage detection means 30, so that the reliability of the current detection means 32 is improved. is there. If the difference between the detection values of the two current detection means 32A and 32B is within a predetermined error range, it can be determined that the current detection means 32 is operating normally, and the difference between the two detection values is an error. If it exceeds the range, it can be determined that a failure has occurred in the current detection means 32.
The temperature detection unit 34 detects the temperature of the battery 12 (battery temperature). The temperature detecting means 34 may be provided at a representative point of the assembled battery 17 or may be provided for each battery cell 18 or for each cell unit having a plurality of battery cells 18 as one unit.
モータ14は、バッテリ12に蓄電された電力を用いて稼働し、電動車の駆動輪を回転させる。また、モータ14は、電動車の減速時に発電機として機能して回生電流を発生させる。
モータ14とバッテリ12との間には図示しないインバータが設けられており、モータ14とバッテリ12との間で入出力される電流の交流/直流を変換する。
エンジン16は、高速走行時等に駆動輪を回転させる他、バッテリ12の充電率が低下した際などにモータ14を回転させて回生電流を発生させる。これにより、バッテリ12の充電率が低下した場合でも任意のタイミングでバッテリ12を充電することができる。
なお、本実施の形態ではエンジン16でモータ14を回転させて発電を行うものとして説明するが、モータ14と別に発電機を設けて、この発電機をエンジン16で駆動させて発電を行ってもよい。
The motor 14 operates using the electric power stored in the battery 12 and rotates the drive wheels of the electric vehicle. The motor 14 functions as a generator when the electric vehicle decelerates to generate a regenerative current.
An inverter (not shown) is provided between the motor 14 and the battery 12, and converts AC / DC of current input / output between the motor 14 and the battery 12.
The engine 16 rotates the drive wheels during high-speed running or the like, and rotates the motor 14 to generate a regenerative current when the charging rate of the battery 12 decreases. Thereby, even when the charging rate of the battery 12 decreases, the battery 12 can be charged at an arbitrary timing.
In the present embodiment, the motor 16 is rotated by the engine 16 to generate power. However, a generator may be provided separately from the motor 14 and the generator 16 may be driven by the engine 16 to generate power. Good.
ブレーキ機構15は、電動車の減速または停止時にタイヤの回転量を摩擦によって減少させる。なお、電動車の減速や停止は、ブレーキ機構15を用いる他、モータ14を回生運転させて回生力を発生させることによっても行うことができる。一般に、バッテリ12が満充電に近い場合以外は回生力による減速が優先され、ブレーキ機構15はこれを補う形で作動する。
表示部19は、運転者から視認可能な位置に設けられたモニタや表示灯などである。本実施の形態では、表示部19は、電圧検出手段30または電流検出手段32に故障が生じた際にその旨を運転者に報知して、修理等の対応を取るように促す報知手段として機能する。
The brake mechanism 15 reduces the rotation amount of the tire by friction when the electric vehicle is decelerated or stopped. The electric vehicle can be decelerated or stopped by using the brake mechanism 15 or by causing the motor 14 to regenerate and generating regenerative force. In general, deceleration by regenerative power is prioritized except when the battery 12 is close to full charge, and the brake mechanism 15 operates to compensate for this.
The display unit 19 is a monitor, an indicator lamp, or the like provided at a position that can be visually recognized by the driver. In the present embodiment, the display unit 19 functions as a notification unit that notifies the driver when a failure has occurred in the voltage detection unit 30 or the current detection unit 32 and prompts the operator to take measures such as repairs. To do.
処理部40は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。
なお、図1では処理部40をバッテリ12の外部に図示しているが、処理部40をバッテリ12の内部に設けてもよい。
The processing unit 40 includes a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an EEPROM that stores various data in a rewritable manner, an interface unit that interfaces with peripheral circuits, and the like. Composed.
In FIG. 1, the processing unit 40 is illustrated outside the battery 12, but the processing unit 40 may be provided inside the battery 12.
処理部40は、上記CPUが上記制御プログラムを実行することにより、充電率算出手段42、電流制御手段44、故障検出手段46として機能する。
充電率算出手段42は、電圧検出手段30および電流検出手段32の検出値に基づいて、バッテリ12の充電率を算出する。充電率算出手段42は、例えばバッテリ12の電圧と充電率との相関関係を示すマップや、バッテリ12に入出力される電流の積算値に基づいて、バッテリ12の充電率を算出する。
The processing unit 40 functions as a charging rate calculation unit 42, a current control unit 44, and a failure detection unit 46 when the CPU executes the control program.
The charging rate calculation unit 42 calculates the charging rate of the battery 12 based on the detection values of the voltage detection unit 30 and the current detection unit 32. The charging rate calculation unit 42 calculates the charging rate of the battery 12 based on, for example, a map indicating a correlation between the voltage of the battery 12 and the charging rate, or an integrated value of currents input to and output from the battery 12.
電流制御手段44は、充電率算出手段42で算出された充電率に基づいて、バッテリ12に入出力する電流量を制御する。
電流制御手段44は、通常時(電圧検出手段30や電流検出手段32の非故障時)は、バッテリ12の充電率が予め定められたバッテリ12の使用上限充電率を上回らず、かつ使用下限充電率を下回らないようにバッテリ12に入出力する電流量を制御する。
電流制御手段44は、例えばバッテリ12の充電率が使用上限充電率の近傍となった場合には、モータ14の回生運転を禁止または回生量を抑制してバッテリ12に入力される電流を抑制し、その分の減速量をブレーキ機構15の作動により得られるようにする。また、例えばバッテリ12の充電率が使用下限充電率の近傍となった場合には、エンジン16の動力を用いてモータ14を回生運転させてバッテリ12を充電するように制御する。
The current control unit 44 controls the amount of current input to and output from the battery 12 based on the charging rate calculated by the charging rate calculation unit 42.
The current control unit 44 is configured such that the charge rate of the battery 12 does not exceed a predetermined use upper limit charge rate of the battery 12 during normal times (when the voltage detection unit 30 and the current detection unit 32 are not in failure) and the use lower limit charge. The amount of current input to and output from the battery 12 is controlled so as not to fall below the rate.
For example, when the charging rate of the battery 12 is in the vicinity of the upper limit charging rate, the current control unit 44 inhibits the regenerative operation of the motor 14 or suppresses the amount of regeneration to suppress the current input to the battery 12. The amount of deceleration corresponding to that amount is obtained by the operation of the brake mechanism 15. For example, when the charging rate of the battery 12 is close to the lower limit charging rate, the motor 14 is regenerated using the power of the engine 16 so that the battery 12 is charged.
故障検出手段46は、電圧検出手段30または電流検出手段32の少なくとも一方の故障を検出する。故障検出手段46は、例えば電圧検出手段30または電流検出手段32の検出値をモニタして、これら検出手段の断線やセンシング部の変換器の故障などを検出する。
本実施の形態では、故障検出手段46は電圧検出手段30の故障を検出する。
故障検出手段46は、電圧検出手段30または電流検出手段32の故障を検出すると、表示部19に故障表示を行わせ、運転者に故障を報知する。
The failure detection unit 46 detects a failure of at least one of the voltage detection unit 30 and the current detection unit 32. The failure detection unit 46 monitors, for example, the detection value of the voltage detection unit 30 or the current detection unit 32, and detects disconnection of these detection units, failure of the converter of the sensing unit, or the like.
In the present embodiment, the failure detection unit 46 detects a failure of the voltage detection unit 30.
When the failure detection unit 46 detects a failure in the voltage detection unit 30 or the current detection unit 32, the failure detection unit 46 displays a failure on the display unit 19 and notifies the driver of the failure.
ここで、電圧検出手段30または電流検出手段32の一方で故障が検出された場合、電流制御手段44は、故障検出後のバッテリ12の充電率を故障検出時における充電率である故障時充電率以下に維持するように電流量を制御する。すなわち、故障検出後はバッテリ12の充電率が故障検出時よりも上昇しないように制御する。
なお、故障検出時の充電率(故障時充電率)とは、電圧検出手段30または電流検出手段32が故障していると判定される直前の信頼できる検出値を用いて算出された充電率である。
Here, when a failure is detected by one of the voltage detection unit 30 or the current detection unit 32, the current control unit 44 determines the charge rate of the battery 12 after the failure is detected as the charge rate at the time of failure detection. The amount of current is controlled to maintain below. That is, after the failure is detected, control is performed so that the charging rate of the battery 12 does not increase more than when the failure is detected.
The charge rate at the time of failure detection (failure charge rate) is a charge rate calculated using a reliable detection value immediately before it is determined that the voltage detection means 30 or the current detection means 32 has failed. is there.
より詳細には、充電率算出手段42は、電圧検出手段30または電流検出手段32の一方で故障が検出された後は、故障が検出されていない他方の検出手段の検出値に基づいて暫定的に充電率を算出する。この暫定的に算出された充電率を以下「暫定充電率」という。
例えば電圧検出手段30の故障が検出された場合、充電率算出手段42は、電流検出手段32の検出値に基づいて暫定充電率を算出する。
そして、電流制御手段44は、暫定充電率を故障時充電率以下にするように制御する。
暫定充電率は、少なくとも現在のバッテリ12の充電率が故障時充電率以下であるか否かが判定できればよい。例えば、電圧検出手段30が故障した場合は、故障後にバッテリ12に入力される電流量が、故障後にバッテリ12から出力された電流量を上回るか否かを識別できればよい。
暫定充電率は、通常の方法で算出される充電率よりも信頼性が低いが、電動車を車両修理業者等に移動させるまでの比較的短時間の使用であれば、誤差の蓄積等の影響が少ないものと考えられる。
More specifically, after a failure is detected in one of the voltage detection unit 30 or the current detection unit 32, the charging rate calculation unit 42 tentatively determines based on the detection value of the other detection unit in which no failure is detected. Calculate the charge rate. This provisionally calculated charging rate is hereinafter referred to as “provisional charging rate”.
For example, when a failure of the voltage detection unit 30 is detected, the charging rate calculation unit 42 calculates a temporary charging rate based on the detection value of the current detection unit 32.
Then, the current control unit 44 controls the temporary charging rate to be equal to or less than the failure charging rate.
The provisional charging rate only needs to determine whether or not at least the current charging rate of the battery 12 is equal to or lower than the charging rate at the time of failure. For example, when the voltage detection unit 30 fails, it is only necessary to identify whether or not the amount of current input to the battery 12 after the failure exceeds the amount of current output from the battery 12 after the failure.
The provisional charge rate is less reliable than the charge rate calculated by the normal method, but if it is used for a relatively short time until the electric vehicle is moved to a vehicle repair shop, etc., the effect of error accumulation etc. It is thought that there are few.
また、電流制御手段44は、故障時充電率よりも低い制限充電率を設定する。
より詳細には、電流制御手段44は、暫定充電率が制限充電率未満の際には故障が検出されていない時と同様の電流量をバッテリ12に入出力する。すなわち、運転者のアクセル操作等に連動してモータ14への供給電流をバッテリ12から出力するとともに、モータ14で発電した回生電流をバッテリ12に入力する。
一方で、暫定充電率が制限充電率以上かつ故障時充電率以下の際には故障が検出されていない時よりもバッテリ12に入力する電流量を抑制する。すなわち、バッテリ12からの電流の出力は制限しない一方で、回生電流のバッテリ12への入力を制限する。この場合、例えば電動車の減速時には通常時よりもモータ14の回生量を低減するとともに、その分ブレーキ機構15を用いた減速量を増加させて、通常時と同様の減速量を確保する。
さらに、暫定充電率が故障時充電率を超えた場合には、例えば正極側メインコンタクタ20および負極側メインコンタクタ22をオフ(開)としてバッテリ12と高電圧負荷との接続を強制的に切断してバッテリ12の過充電を防ぐ。
このように制限充電率を設定することによって、暫定充電率が故障時充電率に達するまでの時間を延長することができる。
Moreover, the current control means 44 sets a limited charging rate that is lower than the charging rate at the time of failure.
More specifically, the current control unit 44 inputs and outputs the same amount of current to and from the battery 12 when a failure is not detected when the temporary charging rate is less than the limited charging rate. In other words, the current supplied to the motor 14 is output from the battery 12 in conjunction with the driver's accelerator operation or the like, and the regenerative current generated by the motor 14 is input to the battery 12.
On the other hand, when the temporary charge rate is equal to or higher than the limit charge rate and equal to or lower than the charge rate at the time of failure, the amount of current input to the battery 12 is suppressed as compared to when no failure is detected. That is, the output of the current from the battery 12 is not limited, while the input of the regenerative current to the battery 12 is limited. In this case, for example, when the electric vehicle is decelerated, the amount of regeneration of the motor 14 is reduced as compared with the normal time, and the amount of deceleration using the brake mechanism 15 is increased correspondingly, thereby ensuring the same amount of deceleration as during normal time.
Further, when the temporary charging rate exceeds the charging rate at the time of failure, for example, the positive-side main contactor 20 and the negative-side main contactor 22 are turned off (opened) to forcibly disconnect the battery 12 from the high voltage load. Thus, overcharging of the battery 12 is prevented.
By setting the limited charging rate in this way, the time until the provisional charging rate reaches the failure charging rate can be extended.
制限充電率は、バッテリ12の温度に依存するものであってもよい。より詳細には、バッテリ12の温度が高いほど制限充電率を低くして、故障時充電率までのマージンを大きく取るようにしてもよい。
これは、高温時は低温時と比較してバッテリ12の抵抗値が低く、電流が流れやすくなり、制限充電率を超えた後に故障時充電率に到るまでの時間が短くなると予測されるためである。
The limited charging rate may depend on the temperature of the battery 12. More specifically, the limit charge rate may be lowered as the temperature of the battery 12 increases, and a margin up to the charge rate at the time of failure may be increased.
This is because the resistance value of the battery 12 is lower when the temperature is higher than when the temperature is lower, the current flows more easily, and it is predicted that the time until reaching the charging rate at the time of failure after exceeding the limited charging rate is predicted. It is.
図2は、バッテリ制御装置10の処理を示すフローチャートである。
図2のフローチャートにおいて、バッテリ制御装置10は、まず電圧検出手段30および電流検出手段32によって、バッテリ12の電圧値および電流量を検出する(ステップS200)。
つぎに、故障検出手段46は、ステップS200の検出値に基づいて電圧検出手段30に故障が生じているか否かを判断する(ステップS202)。
故障が生じていない場合は(ステップS202:No)、充電率算出手段42でステップS200の検出値に基づいてバッテリ12の充電率を算出し(ステップS204)、電流制御手段44がバッテリ12への電流の入出力を制御する(ステップS206)。すなわち、バッテリ12の充電率が使用上限充電率と使用下限充電率との間の範囲となるように電流量を制御する。
その後、ステップS200に戻り、以降の処理をくり返す。
FIG. 2 is a flowchart showing processing of the battery control device 10.
In the flowchart of FIG. 2, the battery control device 10 first detects the voltage value and current amount of the battery 12 by the voltage detection means 30 and the current detection means 32 (step S200).
Next, the failure detection means 46 determines whether or not a failure has occurred in the voltage detection means 30 based on the detection value in step S200 (step S202).
If no failure has occurred (step S202: No), the charging rate calculation means 42 calculates the charging rate of the battery 12 based on the detection value of step S200 (step S204), and the current control means 44 supplies the battery 12 to the battery 12. Current input / output is controlled (step S206). That is, the amount of current is controlled so that the charging rate of the battery 12 is in a range between the upper limit charging rate and the lower limit charging rate.
Thereafter, the process returns to step S200, and the subsequent processing is repeated.
一方、故障が生じている場合(ステップS202:Yes)、故障検出手段46は、表示部19に故障表示を行わせて(ステップS208)、運転者に電圧検出手段30の故障を報知する。
また、電流制御手段44は、電圧検出手段30の故障判定時の充電率を故障時充電率として記憶するとともに(ステップS210)、故障時充電率よりも低い制限充電率を設定し、記憶する(ステップS212)。
その後、故障していない電流検出手段32は、バッテリ12に入出力される電流量を検出し(ステップS214)、充電率算出手段42は、電流量に基づいて暫定充電率を算出する(ステップS216)。
電流制御手段44は、暫定充電率を故障時充電率以下に維持するように制御する。
すなわち、暫定充電率が制限充電率未満(暫定充電率<制限充電率)の際には(ステップS218:Yes)、バッテリ12に対して非故障時と同様に電流を入出力する(ステップS220)。すなわち、ステップS206と同様の処理を行う。その後はステップS214に戻り、以降の処理をくり返す。
また、暫定充電率が制限充電率以上かつ故障時充電率以下(制限充電率≦暫定充電率≦故障時充電率)の際には(ステップS222:Yes)、バッテリ12への電流の入力を制限する(ステップS224)。すなわち、通常時よりもモータ14の回生量を低減するとともに、その分ブレーキ機構15を用いた減速量を増加させる。その後はステップS214に戻り、以降の処理をくり返す。
また、暫定充電率が故障時充電率を超えた際(暫定充電率>故障時充電率)の際には(ステップS226)、正極側メインコンタクタ20および負極側メインコンタクタ22をオフ(開)としてバッテリ12と高電圧負荷との接続を強制的に遮断する。この場合、電動車は走行できなくなるため、本フローチャートによる処理を終了する。
On the other hand, when a failure has occurred (step S202: Yes), the failure detection unit 46 displays a failure on the display unit 19 (step S208), and notifies the driver of the failure of the voltage detection unit 30.
Further, the current control unit 44 stores the charging rate at the time of failure determination of the voltage detection unit 30 as a charging rate at the time of failure (step S210), and sets and stores a limited charging rate lower than the charging rate at the time of failure (step S210). Step S212).
Thereafter, the non-failed current detection means 32 detects the amount of current input / output to / from the battery 12 (step S214), and the charge rate calculation means 42 calculates a temporary charge rate based on the current amount (step S216). ).
The current control unit 44 controls the temporary charging rate so as to be maintained below the failure charging rate.
That is, when the temporary charging rate is less than the limited charging rate (temporary charging rate <restricted charging rate) (step S218: Yes), current is input to and output from the battery 12 in the same manner as when there is no failure (step S220). . That is, the same process as step S206 is performed. Thereafter, the process returns to step S214, and the subsequent processing is repeated.
Further, when the temporary charging rate is equal to or higher than the limited charging rate and equal to or lower than the failure charging rate (limited charging rate ≦ provisional charging rate ≦ failure charging rate) (step S222: Yes), the current input to the battery 12 is limited. (Step S224). That is, the amount of regeneration of the motor 14 is reduced as compared with the normal time, and the amount of deceleration using the brake mechanism 15 is increased accordingly. Thereafter, the process returns to step S214, and the subsequent processing is repeated.
When the temporary charging rate exceeds the failure charging rate (provisional charging rate> failing charging rate) (step S226), the positive-side main contactor 20 and the negative-side main contactor 22 are turned off (open). The connection between the battery 12 and the high voltage load is forcibly cut off. In this case, since the electric vehicle cannot travel, the processing according to this flowchart ends.
図3は、電圧検出手段30の故障時の充電率の時間変化の一例を示すグラフである。
図3のグラフの縦軸はバッテリ12の充電率であり、縦軸の符号Smaxはバッテリ12の使用上限充電率、Sminはバッテリ12の使用下限充電率である。また、横軸は時間である。
電圧検出手段30の故障が検出される時刻をT1とすると、時刻T0から時刻T1までは電動車の走行状態に応じて通常のバッテリ12への電流の入出力が行われ、充電率は使用上限充電率Smaxおよび使用下限充電率Sminの範囲で変動している。
時刻T1に電圧検出手段30の故障が検出されると、その時点の充電率が故障時充電率SAとして記憶される。また、故障時充電率SAに対して所定のマージン量Mを取った制限充電率SB(<故障時充電率)が設定され、記憶される。
FIG. 3 is a graph showing an example of a change over time in the charging rate when the voltage detecting means 30 is faulty.
The vertical axis of the graph of FIG. 3 is the charging rate of the battery 12, the symbol Smax on the vertical axis is the upper limit charging rate of use of the battery 12, and Smin is the lower limit charging rate of use of the battery 12. The horizontal axis is time.
Assuming that the time at which the failure of the voltage detecting means 30 is detected is T1, from the time T0 to the time T1, current is input / output to / from the normal battery 12 according to the running state of the electric vehicle, and the charging rate is the upper limit of use. It fluctuates within the range of the charging rate S max and the use lower limit charging rate S min .
When a failure of the voltage detection means 30 is detected at time T1, the charging rate at that time is stored as the failure charging rate SA. Further, a limited charging rate SB (<failure charging rate) obtained by taking a predetermined margin amount M with respect to the failure charging rate SA is set and stored.
時刻T1以降は、充電率(暫定充電率)が故障時充電率SA以下となるように制御される。すなわち、電流の出力に関しては特に制限されず、よって電動車は通常通り走行可能である。
一方、電流の出力に関しては、例えば時刻T2のように暫定充電率が制限充電率SB以上となった場合に制限される。すなわち、モータ14での回生量を抑制してバッテリ12に入力する電流量を減少させる。
線分L1は、上記のような入力制限の結果、充電率が低下した場合を示す。線分L1では時刻T3に暫定充電率が制限充電率SB未満となっており、その後は入力に対する制限が解除される。
なお、暫定充電率が使用下限充電率Sminに近くなった場合には、エンジン16によりモータ14を稼働させて発電を行い、バッテリ12の充電率を維持するようにしてもよい。
一方、線分L2は、上記のような入力制限にも関わらず、充電率が上昇した場合を示す。線分L2では充電率が上昇を続けて、時刻T4に故障時充電率SAを超えている。この場合、電流制御手段44は、バッテリ12のメインコンタクタ20,22をオフにして、これ以上電流がバッテリ12に入力されないようにする。この結果、電動車は走行ができなくなるが、過充電によって電池が発熱するのを防止することができる。
After time T1, the charging rate (provisional charging rate) is controlled to be equal to or lower than the failure charging rate SA. In other words, the current output is not particularly limited, and thus the electric vehicle can travel as usual.
On the other hand, the output of current is limited when the provisional charging rate becomes equal to or higher than the limited charging rate SB, for example, at time T2. That is, the amount of current input to the battery 12 is reduced by suppressing the amount of regeneration in the motor 14.
A line segment L1 indicates a case where the charging rate is reduced as a result of the input restriction as described above. In the line segment L1, the provisional charging rate is less than the limited charging rate SB at time T3, and thereafter the limitation on input is released.
When the provisional charging rate becomes close to the lower limit charging rate Smin, the motor 14 may be operated by the engine 16 to generate power, and the charging rate of the battery 12 may be maintained.
On the other hand, the line segment L2 indicates a case where the charging rate has increased despite the input restriction as described above. In the line segment L2, the charging rate continues to increase, and exceeds the failure charging rate SA at time T4. In this case, the current control unit 44 turns off the main contactors 20 and 22 of the battery 12 so that no more current is input to the battery 12. As a result, the electric vehicle cannot run, but the battery can be prevented from generating heat due to overcharging.
以上説明したように、実施の形態にかかるバッテリ制御装置10は、電圧検出手段30または電流検出手段32の故障が検出された場合に、故障検出後のバッテリ12の充電率を故障検出時における充電率である故障時充電率以下に維持する。
よって、検出手段の故障後もバッテリ12の過充電による影響、例えばバッテリ12の故障や発熱による周囲の部材の損傷などを防止しながらバッテリ12の使用を継続する上で有利となる。
また、充電率を故障時充電率以下に維持する以外は、バッテリ12への入出力に関する制限を設けていないので、非故障時と比較した場合のユーザの違和感を軽減する上で有利となる。
また、バッテリ制御装置10は、故障時充電率以下の範囲であればバッテリ12への充電(電流の入力)を許可するので、バッテリ12への充電を禁止する場合と比較してバッテリ12の使用可能期間を長くすることができ、ユーザの利便性を向上する上で有利となる。
また、バッテリ制御装置10は、検出手段の一方で故障が検出された後は、故障が検出されていない他方の検出手段の検出値に基づいて暫定的に充電率を算出するので、充電率の概算値(暫定充電率)を得ることができ、バッテリ12の過充電を防止しながら使用を継続する上で有利となる。
また、バッテリ制御装置10は、故障時充電率よりも低い制限充電率を設定し、充電率が制限充電率以上かつ故障時充電率以下の際には故障が検出されていない時よりもバッテリ12に入力する電流量を抑制するので、充電率が故障時充電率に到るまでの時間を長くすることができ、バッテリ12を使用可能な期間を延長する上で有利となる。
また、バッテリ制御装置10において、バッテリ温度に基づいて制限充電率を設定するようにすれば、バッテリ12の状態を反映した制御を行うことができ、より確実に過充電を防止する上で有利となる。
また、バッテリ制御装置10において、電圧検出手段30の故障を検出し、故障後は電流検出手段32を用いて充電率を判定するようにすれば、バッテリ12に入出力される電流量を逐次積算することができ、精度よく暫定充電率を算出する上で有利となる。
As described above, when the failure of the voltage detection means 30 or the current detection means 32 is detected, the battery control apparatus 10 according to the embodiment charges the charge rate of the battery 12 after the failure detection at the time of failure detection. The charge rate during failure, which is the rate, is maintained below.
Therefore, even after the failure of the detection means, it is advantageous in continuing to use the battery 12 while preventing the influence of the battery 12 from being overcharged, for example, the failure of the battery 12 or the damage of surrounding members due to heat generation.
Further, except that the charging rate is maintained below the charging rate at the time of failure, there is no restriction on the input / output to the battery 12, which is advantageous in reducing the user's uncomfortable feeling when compared with that at the time of non-failure.
Further, since the battery control device 10 permits charging (input of current) to the battery 12 within a range equal to or lower than the charging rate at the time of failure, the battery control device 10 uses the battery 12 as compared with the case where charging to the battery 12 is prohibited. The possible period can be extended, which is advantageous in improving user convenience.
In addition, since the battery control device 10 tentatively calculates the charging rate based on the detection value of the other detection means in which no failure is detected after the failure is detected in one of the detection means, An approximate value (provisional charging rate) can be obtained, which is advantageous in continuing use while preventing overcharging of the battery 12.
In addition, the battery control device 10 sets a limited charging rate lower than the charging rate at the time of failure, and when the charging rate is equal to or higher than the limiting charging rate and equal to or lower than the charging rate at the time of failure, the battery 12 is compared to when no failure is detected. Therefore, the time until the charging rate reaches the charging rate at the time of failure can be lengthened, which is advantageous in extending the period in which the battery 12 can be used.
In addition, if the limited charge rate is set based on the battery temperature in the battery control device 10, it is possible to perform control reflecting the state of the battery 12, which is advantageous in preventing overcharge more reliably. Become.
In addition, if the battery control device 10 detects a failure of the voltage detection means 30 and determines the charge rate using the current detection means 32 after the failure, the amount of current input to and output from the battery 12 is sequentially integrated. This is advantageous in accurately calculating the provisional charging rate.
10……バッテリ制御装置、12……バッテリ、14……モータ、16……エンジン、15……ブレーキ機構、17……組電池、18(18A〜18N)……電池セル、19……表示部、20……正極側メインコンタクタ、22……負極側メインコンタクタ、30……電圧検出手段、32(32A,32B)……電流検出手段、34……温度検出手段、40……処理部、42……充電率算出手段、44……電流制御手段、46……故障検出手段、SA……故障時充電率、SB……制限充電率、Smax……使用上限充電率、Smin……使用下限充電率。 DESCRIPTION OF SYMBOLS 10 ... Battery control apparatus, 12 ... Battery, 14 ... Motor, 16 ... Engine, 15 ... Brake mechanism, 17 ... Assembly battery, 18 (18A-18N) ... Battery cell, 19 ... Display part , 20... Positive side main contactor, 22... Negative side main contactor, 30... Voltage detection means, 32 (32 A, 32 B)... Current detection means, 34. …… Charge rate calculation means 44 …… Current control means 46 …… Failure detection means SA …… Charge rate at failure, SB …… Limited charge rate, S max …… Upper limit charge rate, S min …… Use Lower limit charging rate.

Claims (4)

  1. バッテリの電圧を検出する電圧検出手段と、
    前記バッテリに入出力される電流量を検出する電流検出手段と、
    前記電圧検出手段および前記電流検出手段の検出値に基づいて、前記バッテリの充電率を算出する充電率算出手段と、
    前記電圧検出手段または前記電流検出手段の前記一方で故障が検出された場合、故障検出後の前記充電率を故障検出時における充電率である故障時充電率以下に維持するように前記電流量を制御する電流制御手段と、
    前記電圧検出手段または前記電流検出手段の少なくとも一方の故障を検出する故障検出手段と、を備え、
    前記電流制御手段は、前記故障時充電率よりも低い制限充電率を設定し、前記充電率が前記制限充電率未満の際には前記故障が検出されていない時と同様の前記電流量を前記バッテリに入出力し、前記充電率が前記制限充電率以上かつ前記故障時充電率以下の際には前記故障が検出されていない時よりも前記バッテリに入力する前記電流量を抑制する、
    ことを特徴とするバッテリ制御装置。
    Voltage detection means for detecting the voltage of the battery;
    Current detection means for detecting the amount of current input to and output from the battery;
    A charge rate calculation means for calculating a charge rate of the battery based on detection values of the voltage detection means and the current detection means;
    When a failure is detected in the one of the voltage detection unit or the current detection unit, the current amount is set so that the charge rate after the failure detection is maintained below a charge rate at the time of failure, which is a charge rate at the time of failure detection. a current control means for controlling,
    A failure detection means for detecting a failure of at least one of the voltage detection means or the current detection means,
    The current control unit sets a limited charge rate lower than the charge rate at the time of failure, and when the charge rate is less than the limit charge rate, the current amount is the same as when the failure is not detected. Input / output to / from the battery, and when the charging rate is equal to or higher than the limit charging rate and equal to or lower than the charging rate at the time of failure, the amount of current input to the battery is suppressed more than when the failure is not detected.
    A battery control device.
  2. 前記バッテリの温度を検出する温度検出手段を更に備え、
    前記電流制御手段は、前記バッテリの温度が高いほど前記制限充電率を低くする、
    ことを特徴とする請求項記載のバッテリ制御装置。
    A temperature detecting means for detecting the temperature of the battery;
    The current control means lowers the limited charging rate as the temperature of the battery is higher.
    The battery control device according to claim 1 .
  3. 前記充電率算出手段が、前記電圧検出手段または前記電流検出手段の一方で前記故障が検出された後、前記故障が検出されていない他方の検出手段の検出値に基づいて暫定的に前記充電率を算出する、
    ことを特徴とする請求項1または2記載のバッテリ制御装置。
    After the failure is detected by one of the voltage detection means or the current detection means, the charge rate calculation means tentatively determines the charge rate based on a detection value of the other detection means where the failure is not detected. To calculate,
    The battery control apparatus according to claim 1 or 2, wherein
  4. 前記故障検出手段が、前記電圧検出手段の故障を検出し、
    前記充電率算出手段は、前記電圧検出手段で前記故障が検出された後、前記電流検出手段の検出値に基づいて前記充電率を算出する、
    ことを特徴とする請求項1から3のいずれか1項記載のバッテリ制御装置。
    The failure detection means detects a failure of the voltage detection means;
    The charge rate calculation means calculates the charge rate based on a detection value of the current detection means after the failure is detected by the voltage detection means.
    The battery control device according to claim 1 , wherein the battery control device is a battery control device.
JP2015082328A 2015-04-14 2015-04-14 Battery control device Active JP6600974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082328A JP6600974B2 (en) 2015-04-14 2015-04-14 Battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082328A JP6600974B2 (en) 2015-04-14 2015-04-14 Battery control device

Publications (2)

Publication Number Publication Date
JP2016201956A JP2016201956A (en) 2016-12-01
JP6600974B2 true JP6600974B2 (en) 2019-11-06

Family

ID=57424719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082328A Active JP6600974B2 (en) 2015-04-14 2015-04-14 Battery control device

Country Status (1)

Country Link
JP (1) JP6600974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683147B2 (en) * 2017-02-14 2020-04-15 株式会社デンソー Vehicle system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784566B2 (en) * 2006-07-12 2011-10-05 日産自動車株式会社 Secondary battery input / output power control apparatus and input / output power control method
JP5159498B2 (en) * 2008-07-29 2013-03-06 三洋電機株式会社 Charge / discharge control method for battery in power supply device of hybrid car
JP5510283B2 (en) * 2010-11-17 2014-06-04 トヨタ自動車株式会社 Power storage unit protection system for vehicles

Also Published As

Publication number Publication date
JP2016201956A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US9981567B2 (en) Battery controller
JP5660105B2 (en) Power storage system
KR101255248B1 (en) Battery management system and control method thereof
KR100921061B1 (en) Battery charge controlling method of hybrid vehicle
JP4433752B2 (en) Charge / discharge control device for battery pack
JP2011135657A (en) Battery system and vehicle with the same, and method for detecting current limit state of the battery system
JP2008043188A (en) Input/output electric power control device and method for secondary battery
JP5673657B2 (en) Power storage system
US8890488B2 (en) Power supply apparatus and method of controlling the same
JP6088355B2 (en) Battery status judgment device
JP2005117765A (en) Protection controller for battery pack, and protection control method for battery pack
CN107428254B (en) Power supply device for vehicle
JP5780107B2 (en) Power storage system and method for detecting current sensor abnormality
JP2013145175A (en) Battery system and short circuit detection method
JP5168330B2 (en) LOAD DRIVE DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND METHOD FOR CONTROLLING LOAD DRIVE DEVICE
JP6600974B2 (en) Battery control device
US9533573B2 (en) Apparatus and method for driving vehicle
JP2016067077A (en) Electric power storage system
JP6607161B2 (en) In-vehicle battery system control method
JP5978144B2 (en) Battery system
JP5724940B2 (en) Power storage system and electrical component abnormality determination method
JP2021061747A (en) Storage battery control device and electric vehicle
JP2021040375A (en) Power supply device for vehicle
JP2020048349A (en) Battery monitoring device
JP5978143B2 (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6600974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151