JP6594764B2 - Variable inertia mass damping device - Google Patents

Variable inertia mass damping device Download PDF

Info

Publication number
JP6594764B2
JP6594764B2 JP2015246520A JP2015246520A JP6594764B2 JP 6594764 B2 JP6594764 B2 JP 6594764B2 JP 2015246520 A JP2015246520 A JP 2015246520A JP 2015246520 A JP2015246520 A JP 2015246520A JP 6594764 B2 JP6594764 B2 JP 6594764B2
Authority
JP
Japan
Prior art keywords
shaft member
inertial
damping device
rotating shaft
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015246520A
Other languages
Japanese (ja)
Other versions
JP2017110758A (en
Inventor
友祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Original Assignee
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp filed Critical Sanwa Tekki Corp
Priority to JP2015246520A priority Critical patent/JP6594764B2/en
Publication of JP2017110758A publication Critical patent/JP2017110758A/en
Application granted granted Critical
Publication of JP6594764B2 publication Critical patent/JP6594764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば二部材間に生じる接近離反方向の相対振動を低減するための慣性質量を利用した制振装置に関する。   The present invention relates to a vibration damping device that uses an inertial mass to reduce relative vibration in the approaching / separating direction generated between two members, for example.

回転慣性質量型の制振装置は、特許文献1に記載のように、二部材間の直線的振動をボールねじ及びこれに螺合するボールナットで回転運動に変換し、ボールねじに一体的に結合された慣性体を回転させて、慣性体の慣性モーメントにより制振対象である二部材間の振動を抑制する。   As described in Patent Document 1, a rotary inertia mass type vibration damping device converts linear vibration between two members into a rotational motion with a ball screw and a ball nut screwed to the ball screw, and is integrated with the ball screw. The coupled inertial body is rotated to suppress vibration between the two members to be controlled by the inertial moment of the inertial body.

特開平7-259909号公報Japanese Unexamined Patent Publication No. 7-259909

本発明は、二部材間の振動の緩急に応じて慣性体の慣性モーメントを変更して効果的に制振することができる制振装置を提供することを目的としている。   An object of the present invention is to provide a vibration damping device capable of effectively damping vibration by changing the moment of inertia of an inertial body according to the speed of vibration between two members.

上記課題を解決するため、本発明においては、制振対象である一方の部材と制振対象である他方の部材との間に固定され、振動に伴う両者間の直線的相対移動を回転運動に変換する運動変換機構と、この運動変換機構に連結して共回りするようにケーシング2内に回転自在に支持される回転軸部材6と、この回転軸部材6と係合し、その慣性モーメントにより回転抵抗を付与する慣性体7とを具備させ、慣性体の慣性モーメントを運動変換機構により慣性質量に変換して振動を抑制する慣性質量型制振装置1を構成する。ケーシング2は、回転軸部材6及び慣性体7を磁気回路の一部として磁場Mを形成する電磁石8を備える。慣性体7は、ケーシング2内に回転軸部材6と同軸上に相対回転自在に支持され、回転軸部材6との間に密閉領域11を形成し、密閉領域11に、磁場Mの印加により粘性が変化する磁気粘性流体12を封入した。電磁石8により密閉領域11を横切る磁場Mを印加し、回転軸部材6と慣性体7との間の磁気粘性流体12に対する相対回転に粘性硬度を高めて、慣性体7を回転軸部材6と一体的に回転させる。   In order to solve the above-described problem, in the present invention, the linear relative movement between the two members fixed as a vibration target and the other member as a vibration control object is rotated. A motion conversion mechanism for conversion, a rotary shaft member 6 rotatably supported in the casing 2 so as to rotate together with the motion conversion mechanism, and the rotary shaft member 6 are engaged with each other by the inertia moment. An inertial mass type damping device 1 that includes an inertial body 7 that imparts rotational resistance and that suppresses vibration by converting the inertial moment of the inertial body into an inertial mass by a motion conversion mechanism is configured. The casing 2 includes an electromagnet 8 that forms a magnetic field M using the rotating shaft member 6 and the inertial body 7 as part of a magnetic circuit. The inertial body 7 is supported in the casing 2 so as to be relatively rotatable coaxially with the rotating shaft member 6, forms a sealed region 11 between the rotating shaft member 6, and applies viscosity to the sealed region 11 by applying a magnetic field M. The magnetorheological fluid 12 in which the temperature changes is enclosed. A magnetic field M across the sealed region 11 is applied by the electromagnet 8 to increase the viscosity hardness in the relative rotation with respect to the magnetorheological fluid 12 between the rotating shaft member 6 and the inertial body 7, so that the inertial body 7 is integrated with the rotating shaft member 6. Rotate.

本発明の制振装置は、電磁石への通電により、密閉領域を横切る磁界を形成し、密閉領域内の磁気粘性流体の粘性硬度を高め、慣性体を回転軸部材と一体的に回転させて、大きな慣性モーメントを付加することができ、運動変換機構により変換された大きな慣性質量が振動を抑制することができる。この制振装置を複数連設すれば、振動の緩急に応じた慣性質量に調整することができ、振動を効果的に抑制することができる。   The vibration damping device of the present invention forms a magnetic field across the sealed region by energizing the electromagnet, increases the viscosity hardness of the magnetorheological fluid in the sealed region, rotates the inertial body integrally with the rotary shaft member, A large moment of inertia can be added, and the large inertial mass converted by the motion conversion mechanism can suppress vibration. If a plurality of vibration control devices are provided in series, the inertial mass can be adjusted according to the speed of vibration, and vibration can be effectively suppressed.

本発明の第1実施形態に係る制振装置の断面図である。1 is a cross-sectional view of a vibration damping device according to a first embodiment of the present invention. 図1の制振装置の一部を拡大した断面図である。It is sectional drawing to which a part of vibration damping device of FIG. 1 was expanded. 本発明の第2実施形態に係る制振装置の断面図である。It is sectional drawing of the damping device which concerns on 2nd Embodiment of this invention. 図3の制振装置の一部を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of a part of the vibration damping device of FIG. 3. 本発明の第3実施形態に係る制振装置の断面図である。It is sectional drawing of the damping device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る制振装置の断面図である。It is sectional drawing of the damping device which concerns on 4th Embodiment of this invention.

図面を参照して本発明の実施形態を説明する。
図1において、本発明における可変慣性質量型の制振装置1は、制振対象である一方の部材に接続部2aを介して固定されるケーシング2と、制振対象である他方の部材に接続部3aを介して固定されるスリーブ3とを具備する。
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, a variable inertia mass damping device 1 according to the present invention is connected to a casing 2 fixed to one member that is a damping target via a connection portion 2a and to the other member that is a damping target. And a sleeve 3 fixed via the portion 3a.

ケーシング2は、同軸的に結合された大径シリンダ2bと、小径シリンダ2cとを具備する。大径シリンダ2bは、一端側において端壁2dで閉塞し、他端側において小径シリンダ2cに連通する。接続部2aは端壁2dの外側に固着されている。   The casing 2 includes a large-diameter cylinder 2b and a small-diameter cylinder 2c that are coaxially coupled. The large-diameter cylinder 2b is closed with an end wall 2d on one end side, and communicates with the small-diameter cylinder 2c on the other end side. The connecting portion 2a is fixed to the outside of the end wall 2d.

ケーシング2の小径シリンダ2c内には、それの軸心を貫通するように、ボールねじ4が設けられる。ボールねじ4は、ケーシング2に、軸周り回転自在、軸方向移動不可能に支持される。   A ball screw 4 is provided in the small-diameter cylinder 2c of the casing 2 so as to penetrate the shaft center thereof. The ball screw 4 is supported by the casing 2 so as to be rotatable about an axis and not movable in the axial direction.

スリーブ3は、円筒状で、一端側が小径シリンダ2cに軸方向に進退動可能、軸周り回転不可能に挿入される。   The sleeve 3 has a cylindrical shape, and one end thereof is inserted into the small-diameter cylinder 2c so as to be able to advance and retract in the axial direction and not to rotate around the axis.

小径シリンダ2cに挿入されるスリーブ3の一端部に、ボールねじ4に螺合するボールナット5が固着される。ボールねじ4は、ボールナット5を貫通してスリーブ3の軸心に沿って延びる。ボールナット5は、制振対象である二部材間の振動に伴うケーシング2とスリーブ3との間の軸方向の相対移動をボールねじ4の回転運動に変換する。   A ball nut 5 screwed into the ball screw 4 is fixed to one end of the sleeve 3 inserted into the small diameter cylinder 2c. The ball screw 4 extends through the ball nut 5 along the axis of the sleeve 3. The ball nut 5 converts the relative movement in the axial direction between the casing 2 and the sleeve 3 due to the vibration between the two members to be controlled, into the rotational motion of the ball screw 4.

ボールねじ4には、軸心に沿って延び大型シリンダ2bの両端部に回転自在に支持される回転軸部材6が同軸的に結合される。   The ball screw 4 is coaxially coupled to a rotary shaft member 6 that extends along the axis and is rotatably supported at both ends of the large cylinder 2b.

回転軸部材6周りには、回転軸部材6と隙間を置いて慣性体7が大径シリンダ2bの両端部に回転自在に支持される。慣性体7は、図2に示すように、非磁性材からなるホイール部7aと軟磁性材からなるヨーク部7bとが軸方向に交互に配置固定される。   Around the rotary shaft member 6, an inertia body 7 is rotatably supported at both ends of the large-diameter cylinder 2b with a gap from the rotary shaft member 6. As shown in FIG. 2, the inertia body 7 has wheel portions 7 a made of a nonmagnetic material and yoke portions 7 b made of a soft magnetic material alternately arranged and fixed in the axial direction.

大径シリンダ2bの内側壁には、概略円筒状の電磁石8が固定される。電磁石8は、概略円筒状の軟磁性材からなる磁石ケーシング8a内に、コイル8bとヨーク8cとが軸方向に交互に複数固定される。ヨーク8cは、慣性体7のヨーク部7bと対向して配置される。磁石ケーシング8aは、大径シリンダ2bの内壁に嵌合固定される。大径シリンダ2bと回転軸部材6との間には、それぞれ回転用のシール材9,10が介設される。これによって、回転軸部材6と慣性体7との間に密閉領域11が形成される。密閉領域11には、磁気粘性流体12が充填封入される。   A substantially cylindrical electromagnet 8 is fixed to the inner wall of the large-diameter cylinder 2b. In the electromagnet 8, a plurality of coils 8b and yokes 8c are alternately fixed in the axial direction in a magnet casing 8a made of a substantially cylindrical soft magnetic material. The yoke 8c is disposed to face the yoke portion 7b of the inertial body 7. The magnet casing 8a is fitted and fixed to the inner wall of the large diameter cylinder 2b. Between the large-diameter cylinder 2b and the rotating shaft member 6, sealing materials 9 and 10 for rotation are interposed, respectively. As a result, a sealed region 11 is formed between the rotating shaft member 6 and the inertial body 7. The sealed region 11 is filled with a magnetorheological fluid 12.

電磁石8は、図2に示すように、コイル8bの通電により、大径シリンダ2b,慣性体7及び回転軸部材6を磁気回路として、密閉領域11を軸線直交方向に横切る磁場Mを形成する。密閉領域11内の磁気粘性流体12は、電磁石8により印加される磁場Mにより、その粘性硬度が増す。この磁気粘性流体12を介する回転軸部材6と慣性体7との相対回転に対して通常より大きな摩擦力のような抵抗が発生し、実質的に慣性体7に回転が伝達されて、回転軸部材6の慣性モーメントに慣性体7のそれが加わった大きな慣性モーメントが得られる。逆に、コイル8bに電流を流した慣性モーメントの大きな状態から、通電を断つことにより磁場Mを消すと、磁気粘性流体12の粘性が復帰し、回転軸部材6は慣性体7に対して空回り状態となり、小さい慣性モーメントとなる。   As shown in FIG. 2, the electromagnet 8 forms a magnetic field M that crosses the sealed region 11 in the direction orthogonal to the axis by using the large-diameter cylinder 2 b, the inertial body 7, and the rotary shaft member 6 as a magnetic circuit when the coil 8 b is energized. The viscous viscosity of the magnetorheological fluid 12 in the sealed region 11 is increased by the magnetic field M applied by the electromagnet 8. A resistance such as a frictional force larger than usual is generated with respect to the relative rotation between the rotating shaft member 6 and the inertial body 7 via the magnetorheological fluid 12, and the rotation is substantially transmitted to the inertial body 7, so that the rotation shaft A large moment of inertia obtained by adding that of the inertial body 7 to the moment of inertia of the member 6 is obtained. On the other hand, when the magnetic field M is turned off by turning off the current from the state of a large moment of inertia in which a current is passed through the coil 8 b, the viscosity of the magnetorheological fluid 12 is restored and the rotating shaft member 6 is idle with respect to the inertial body 7. The state becomes a small moment of inertia.

この可変慣性質量型制振装置1においては、制振対象である二部材間の振動に伴うケーシング2とスリーブ3との間の軸方向の相対移動をボールナット5及びボールねじ4により回転軸部材6の回転運動に変換する。回転軸部材6の慣性モーメントは、ボールナット5とボールねじ4により軸線方向の慣性質量に変換される。回転軸部材6と共に慣性体7が回転するときには、回転軸部材6のみが回転するときより大きな慣性モーメントになるため、大きな慣性質量に変換される。   In this variable inertia mass type vibration damping device 1, the relative movement in the axial direction between the casing 2 and the sleeve 3 due to the vibration between the two members to be damped is caused by the ball nut 5 and the ball screw 4 to rotate. 6 is converted into a rotational motion. The moment of inertia of the rotating shaft member 6 is converted into an inertial mass in the axial direction by the ball nut 5 and the ball screw 4. When the inertial body 7 rotates together with the rotating shaft member 6, the inertial moment becomes larger than that when only the rotating shaft member 6 rotates, so that the inertial mass is converted into a large inertial mass.

制振対象に緩慢な振動が加わると、回転軸部材6のみの小さな慣性モーメントによる小さな慣性質量が作用して振動を許容する。
一方、急激な振動が加わると、電磁石8のコイル8bが通電して、図2に示すように、大径シリンダ2b,慣性体7及び回転軸部材6を磁気回路とする密閉領域11を軸線直交方向に横切る磁場Mを形成し、密閉領域11内の磁気粘性流体12の粘性硬度を増す。この磁気粘性流体12を介して回転軸部材6と慣性体7の間で通常より大きな摩擦力のような抵抗が発生し、この抵抗力により回転軸部材6の回転が慣性体7に伝達される。従って、回転軸部材6と慣性体7が一体となって回転するため、大きな慣性モーメントになり、大きな慣性質量に変換されて、振動を抑制する。
When a slow vibration is applied to the object to be controlled, a small inertia mass due to a small moment of inertia of only the rotating shaft member 6 acts to allow the vibration.
On the other hand, when a sudden vibration is applied, the coil 8b of the electromagnet 8 is energized, and as shown in FIG. 2, the sealed region 11 having the large-diameter cylinder 2b, the inertial body 7 and the rotating shaft member 6 as a magnetic circuit is orthogonal to the axis. A magnetic field M crossing the direction is formed, and the viscous hardness of the magnetorheological fluid 12 in the sealed region 11 is increased. A resistance such as a friction force larger than usual is generated between the rotating shaft member 6 and the inertial body 7 via the magnetorheological fluid 12, and the rotation of the rotating shaft member 6 is transmitted to the inertial body 7 by this resistance force. . Therefore, since the rotating shaft member 6 and the inertial body 7 rotate as a unit, a large moment of inertia is generated and converted into a large inertial mass to suppress vibration.

なお、地震等による振動の緩急は、例えば加速度計などのセンサーで検知し、所定値において直流電源に接続される回路が閉じることにより電磁石8に通電するものとする。   It is assumed that the vibration due to an earthquake or the like is detected by a sensor such as an accelerometer, and the electromagnet 8 is energized by closing a circuit connected to the DC power source at a predetermined value.

第2の実施形態を図3に示す。なお、以下において先の実施形態と同一の構成部分には同一符号を付して説明を省略する。この可変慣性質量型制振装置13における回転軸部材6は、一端がボールねじ4に結合され、他端が慣性体14に相対回転自在に支持されている。回転軸部材6上には、大径シリンダ2b内において軸線直交方向に延出する拡径部6aが一体的に形成されている。拡径部6aは、大径シリンダ2bの内側壁の電磁石8の対応する位置に配置される。慣性体14は、回転軸部材6周りに大径シリンダ2bの内壁から隙間を置いて配置され、一端が回転軸部材6上に、他端が大径シリンダ2bの端壁に回転自在に支持される。慣性体14は、図4に示すように、回転軸部材6が貫通する略円柱状の軟磁性材からなる。慣性体14には、回転軸部材6の拡径部6aが内壁面から隙間を置いて配置される密閉領域14aが形成され、ここに磁気粘性流体12が充填封入される。   A second embodiment is shown in FIG. In the following description, the same components as those of the previous embodiment are denoted by the same reference numerals and description thereof is omitted. One end of the rotary shaft member 6 in the variable inertia mass damping device 13 is coupled to the ball screw 4 and the other end is supported by the inertia body 14 so as to be relatively rotatable. On the rotary shaft member 6, an enlarged diameter portion 6 a extending in the direction orthogonal to the axis within the large diameter cylinder 2 b is integrally formed. The enlarged diameter portion 6a is disposed at a position corresponding to the electromagnet 8 on the inner wall of the large diameter cylinder 2b. The inertia body 14 is disposed around the rotary shaft member 6 with a gap from the inner wall of the large-diameter cylinder 2b, and one end is rotatably supported on the rotary shaft member 6 and the other end is rotatably supported by the end wall of the large-diameter cylinder 2b. The As shown in FIG. 4, the inertial body 14 is made of a substantially columnar soft magnetic material through which the rotary shaft member 6 passes. The inertial body 14 is formed with a sealed region 14a in which the enlarged diameter portion 6a of the rotary shaft member 6 is disposed with a gap from the inner wall surface, and the magnetorheological fluid 12 is filled and enclosed therein.

この可変慣性質量型制振装置13においても、制振対象である二部材間の振動に伴うケーシング2とスリーブ3との間の軸方向の相対移動をボールナット5及びボールねじ4により回転軸部材6の回転運動に変換する。緩慢な振動が加わると、回転軸部材6のみが回転して小さな慣性モーメントが軸線方向の小さな慣性質量に変換されて、振動を許容する。
一方、急激な振動が加わると、電磁石8のコイル8bへの通電により、図4に示すように、大径シリンダ2b、慣性体14及び回転軸部材6の拡径部6aを磁気回路とする密閉領域14aを軸方向に横切る磁場Mを形成し、密閉領域14aに満たされた磁気粘性流体12の粘性硬度が増す。従って、回転軸部材6と共に慣性体14が一体的に回転して、回転軸部材6のみが回転するときより大きな慣性モーメントが軸線方向の大きな慣性質量に変換され、振動を抑制する。
Also in the variable inertia mass type vibration damping device 13, the relative movement in the axial direction between the casing 2 and the sleeve 3 due to the vibration between the two members that are the objects of vibration damping is performed by the ball nut 5 and the ball screw 4. 6 is converted into a rotational motion. When a slow vibration is applied, only the rotating shaft member 6 rotates and a small moment of inertia is converted into a small inertia mass in the axial direction, thereby allowing the vibration.
On the other hand, when sudden vibration is applied, energization of the coil 8b of the electromagnet 8 causes the large-diameter cylinder 2b, the inertial body 14, and the diameter-enlarged portion 6a of the rotary shaft member 6 to be hermetically sealed as shown in FIG. A magnetic field M crossing the region 14a in the axial direction is formed, and the viscous hardness of the magnetorheological fluid 12 filled in the sealed region 14a is increased. Therefore, the inertial body 14 rotates together with the rotating shaft member 6 so that a larger moment of inertia is converted into a larger inertial mass in the axial direction than when only the rotating shaft member 6 rotates, thereby suppressing vibration.

第3の実施形態を図5に示す。この可変慣性質量型制振装置15は、第1の実施形態における可変慣性質量型制振装置1と略同一構造の第1及び第2の制振装置15a,15bを軸方向に二つ連設した概略構造である。即ち、ボールねじ4側の第1の可変慣性質量型制振装置15aの回転軸部材6及び大径シリンダ2bは、第2の可変慣性質量型制振装置15bの回転軸部材6及び大径シリンダ2bにそれぞれ軸方向に一体的に結合され、各慣性体7はそれぞれ独立している。密閉領域11内には、磁気粘性流体12が充填封入されている。第1,第2の制振装置15a,15bの電磁石8は、地震等による振動の緩急に応じた慣性質量に対応する慣性モーメントに設定するように一方又は両方が通電される。   A third embodiment is shown in FIG. The variable inertial mass damping device 15 includes two first and second damping devices 15a and 15b having substantially the same structure as that of the variable inertial mass damping device 1 in the first embodiment. This is a schematic structure. That is, the rotating shaft member 6 and the large diameter cylinder 2b of the first variable inertia mass type damping device 15a on the ball screw 4 side are the same as the rotating shaft member 6 and the large diameter cylinder of the second variable inertia mass type damping device 15b. Each inertial body 7 is independent from each other in the axial direction. A magnetorheological fluid 12 is filled and sealed in the sealed region 11. One or both of the electromagnets 8 of the first and second vibration damping devices 15a and 15b are energized so as to set the moment of inertia corresponding to the inertial mass corresponding to the slowness of vibration caused by an earthquake or the like.

この可変慣性質量型制振装置15の第1及び第2の制振装置15a,15bにおいては、制振対象に緩慢な振動が加わると、これらの回転軸部材6のみの小さな慣性モーメントによる小さな慣性質量が作用して振動を許容する。急激な振動が加わると、第1及び第2の制振装置15a,15bの電磁石8のコイル8bへの通電により、回転軸部材6と共に慣性体7が一体的に回転して、二つの両制振装置15a,15bの大きな慣性モーメントが軸線方向の大きな慣性質量に変換され、振動を抑制する。この際、急激な振動の程度に応じて、第1,第2の可変慣性質量型制振装置15a,15bの一方又は両方の電磁石8を選択的に通電することにより、回転軸部材6に係合する慣性体7の数を変更できるので、振動に応じた慣性質量に調整できる。また、可変慣性質量型制振装置15a,15bの連結数をさらに増やすことにより、振動を抑制する慣性質量を大きくすることができるし、多段階に調整できる。   In the first and second damping devices 15a and 15b of the variable inertial mass damping device 15, when a slow vibration is applied to the damping target, a small inertia due to a small moment of inertia of only the rotary shaft member 6 is applied. The mass acts to allow vibration. When a sudden vibration is applied, the inertial body 7 rotates together with the rotating shaft member 6 by energization of the coil 8b of the electromagnet 8 of the first and second vibration damping devices 15a and 15b, so A large moment of inertia of the vibration devices 15a and 15b is converted into a large inertial mass in the axial direction to suppress vibration. At this time, the rotary shaft member 6 is engaged by selectively energizing one or both electromagnets 8 of the first and second variable inertia mass damping devices 15a and 15b according to the degree of sudden vibration. Since the number of inertial bodies 7 to be combined can be changed, the inertial mass can be adjusted according to the vibration. Further, by further increasing the number of connections of the variable inertial mass damping devices 15a and 15b, the inertial mass for suppressing the vibration can be increased and adjusted in multiple stages.

第4の実施形態を図6に示す。この可変慣性質量型制振装置16は、第2の実施形態における可変慣性質量型制振装置13と略同一構造の第1及び第2の制振装置16a,16bを軸方向に連設した概略構造である。即ち、第1,第2の可変慣性質量型制振装置16a,16bの大径シリンダ2bはそれぞれ軸方向に一体的に結合されている。第1の可変慣性質量型制振装置16aの回転軸部材6は、第2の可変慣性質量型制振装置16bの回転軸部材6から独立している。第1の可変慣性質量型制振装置16aの慣性体14は、第2の可変慣性質量型制振装置16bの回転軸部材6に一体に結合している。従って、第2の可変慣性質量型制振装置16bの回転軸部材6は第1の可変慣性質量型制振装置16aの慣性体14と共回りする。そして、第2の可変慣性質量型制振装置16bの慣性体14は、第1及び第2の可変慣性質量型制振装置16a,16bの両電磁石8が通電することにより回転する。   A fourth embodiment is shown in FIG. This variable inertial mass damping device 16 is a schematic structure in which first and second damping devices 16a and 16b having substantially the same structure as the variable inertial mass damping device 13 in the second embodiment are connected in the axial direction. Structure. That is, the large-diameter cylinders 2b of the first and second variable inertia mass damping devices 16a and 16b are integrally coupled in the axial direction. The rotating shaft member 6 of the first variable inertial mass damping device 16a is independent of the rotating shaft member 6 of the second variable inertial mass damping device 16b. The inertial body 14 of the first variable inertial mass damping device 16a is integrally coupled to the rotary shaft member 6 of the second variable inertial mass damping device 16b. Therefore, the rotating shaft member 6 of the second variable inertia mass damping device 16b rotates together with the inertia body 14 of the first variable inertia mass damping device 16a. The inertial body 14 of the second variable inertial mass damping device 16b rotates when the electromagnets 8 of the first and second variable inertial mass damping devices 16a and 16b are energized.

この可変慣性質量型制振装置16の第1及び第2の制振装置16a,16bにおいては、緩慢な振動が加わると、第1の制振装置16aの回転軸部材6のみが回転し小さな慣性モーメントが軸線方向の小さな慣性質量に変換されて、振動を許容する。急激な振動が加わると、第1及び第2の制振装置15a,15bの電磁石8のコイル8bへの通電により、回転軸部材6と共に慣性体7が一体的に回転して、二つの両制振装置15a,15bの大きな慣性モーメントが軸線方向の大きな慣性質量に変換され、振動を抑制する。この際、急激な振動の程度に応じて、第1の可変慣性質量型制振装置15aの電磁石8又は両方の電磁石8を選択的に通電することにより、回転軸部材6に係合する慣性体7の数を変更できるので、振動に応じた慣性質量に調整できる。また、可変慣性質量型制振装置15a,15bの連結数をさらに増やすことにより、振動を抑制する慣性質量を大きくすることができるし、多段階に調整できる。また、可変慣性質量型制振装置16a,16bの連結数をさらに増やすことにより、振動に対して大きな減衰力を発生させることができるし、多段階に調整できる。   In the first and second damping devices 16a and 16b of the variable inertial mass damping device 16, when a slow vibration is applied, only the rotating shaft member 6 of the first damping device 16a rotates and has a small inertia. The moment is converted into a small inertial mass in the axial direction to allow vibration. When a sudden vibration is applied, the inertial body 7 rotates together with the rotating shaft member 6 by energization of the coil 8b of the electromagnet 8 of the first and second vibration damping devices 15a and 15b, so A large moment of inertia of the vibration devices 15a and 15b is converted into a large inertial mass in the axial direction to suppress vibration. At this time, an inertial body that engages with the rotary shaft member 6 by selectively energizing the electromagnet 8 of the first variable inertial mass damping device 15a or both electromagnets 8 according to the degree of rapid vibration. Since the number of 7 can be changed, it can adjust to the inertial mass according to a vibration. Further, by further increasing the number of connections of the variable inertial mass damping devices 15a and 15b, the inertial mass for suppressing the vibration can be increased and adjusted in multiple stages. Further, by further increasing the number of connections of the variable inertial mass damping devices 16a and 16b, a large damping force can be generated with respect to vibration, and adjustment can be made in multiple stages.

1 質量可変型慣性制振装置
2 ケーシング
2a 接続部
2b 大径シリンダ
2c 小径シリンダ
2d 端壁
3 スリーブ
3a 接続部
4 ボールねじ
5 ボールナット
6 回転軸部材
7 慣性体
7a ホイール部
7b ヨーク部
8 電磁石
8a 磁石ケーシング
8b コイル
8c ヨーク
9 シール材
10 シール材
11 密閉領域
12 磁気粘性流体
13 密閉領域
14 慣性体
14a ホイール部
14b ヨーク部
15 可変慣性質量型制振装置
15a 第1の可変慣性質量型制振装置
15b 第2の可変慣性質量型制振装置
16 可変慣性質量型制振装置
16a 第1の可変慣性質量型制振装置
16b 第2の可変慣性質量型制振装置
DESCRIPTION OF SYMBOLS 1 Mass variable type inertia damping device 2 Casing 2a Connection part 2b Large diameter cylinder 2c Small diameter cylinder 2d End wall 3 Sleeve 3a Connection part 4 Ball screw 5 Ball nut 6 Rotating shaft member 7 Inertial body 7a Wheel part 7b Yoke part 8 Electromagnet 8a Magnet casing 8b Coil 8c Yoke 9 Sealing material 10 Sealing material 11 Sealed region 12 Magnetorheological fluid 13 Sealed region 14 Inertial body 14a Wheel unit 14b Yoke unit 15 Variable inertia mass damping device 15a First variable inertia mass damping device 15b Second variable inertia mass damping device 16 Variable inertia mass damping device 16a First variable inertia mass damping device 16b Second variable inertia mass damping device

Claims (6)

制振対象である一方の部材と制振対象である他方の部材との間に固定され、振動に伴う両者間の直線的相対移動を回転運動に変換する運動変換機構と、この運動変換機構に連結して共回りするようにケーシング内に回転自在に支持される回転軸部材と、この回転軸部材に係合し、その慣性モーメントにより回転抵抗を付与する慣性体とを具備し、慣性体の慣性モーメントを運動変換機構により慣性質量に変換して振動を抑制する慣性質量型制振装置において、
前記ケーシングは、前記回転軸部材及び前記慣性体を磁気回路の一部として磁場を形成する電磁石を備え、
前記慣性体は、前記ケーシング内に回転軸部材と同軸上に相対回転自在に支持され、前記回転軸部材との間に密閉領域を形成し、
前記密閉領域には、磁場の印加により粘性が変化する磁気粘性流体を封入し、
前記電磁石により密閉領域を横切る磁場を印加し、前記回転軸部材の前記慣性体に対する相対回転に粘性抵抗を付与して、慣性体を回転軸部材と一体的に回転させることを特徴とする可変慣性質量型制振装置。
A motion conversion mechanism that is fixed between one member that is a vibration suppression target and the other member that is a vibration suppression target, and that converts linear relative movement between the two due to vibration into a rotational motion, and this motion conversion mechanism A rotating shaft member rotatably supported in the casing so as to be connected and rotated together, and an inertial body that engages with the rotating shaft member and applies rotational resistance by the moment of inertia. In inertial mass type damping device that suppresses vibration by converting inertial moment to inertial mass by motion conversion mechanism,
The casing includes an electromagnet that forms a magnetic field using the rotating shaft member and the inertial body as a part of a magnetic circuit,
The inertial body is supported in the casing so as to be relatively rotatable coaxially with the rotary shaft member, and forms a sealed region with the rotary shaft member;
In the sealed area, a magnetorheological fluid whose viscosity changes by application of a magnetic field is enclosed,
A variable inertia characterized by applying a magnetic field across a sealed region by the electromagnet, applying a viscous resistance to the relative rotation of the rotating shaft member with respect to the inertial body, and rotating the inertial body integrally with the rotating shaft member. Mass type damping device.
前記密閉領域は、前記回転軸部材周りに環状に形成され、回転軸部材と前記慣性体との間に軸線直交方向の磁場が形成されることを特徴とする請求項1に記載の可変慣性質量型制振装置。   2. The variable inertial mass according to claim 1, wherein the sealed region is formed in an annular shape around the rotating shaft member, and a magnetic field in an axis orthogonal direction is formed between the rotating shaft member and the inertial body. Mold damping device. 前記回転軸部材が鍔状に拡径して、前記密閉領域内に突出し、回転軸部材と前記慣性体との間に軸線方向の磁場が形成されることを特徴とする請求項1に記載の可変慣性質量型制振装置。   The said rotating shaft member expands in diameter in bowl shape, protrudes in the said sealing | blocking area | region, and the magnetic field of an axial direction is formed between a rotating shaft member and the said inertial body. Variable inertia mass damping device. 前記ケーシング及び前記回転軸部材を共通にして請求項2に記載の可変慣性質量型制振装置が軸方向に複数の連設され、前記電磁石をそれぞれ順次通電することにより段階的に慣性質量を増加させることを特徴とする可変慣性質量型制振装置。   The variable inertial mass type damping device according to claim 2, wherein the casing and the rotating shaft member are shared, and a plurality of variable inertial mass type damping devices are connected in the axial direction, and the inertial mass is increased stepwise by sequentially energizing the electromagnets respectively. A variable inertial mass type vibration damping device. 前記ケーシングを共通にして、請求項3に記載の可変慣性質量型制振装置が軸方向に複数連設され、互いに隣接する可変慣性質量型制振装置の前記慣性体と前記回転軸部材とが結合し、前記電磁石をそれぞれ順次通電することにより段階的に慣性質量を増加させることを特徴とする可変慣性質量型制振装置。   A plurality of variable inertial mass damping devices according to claim 3 are provided in the axial direction with the casing in common, and the inertial body and the rotary shaft member of the variable inertial mass damping devices adjacent to each other are provided. A variable inertia mass type vibration damping device, wherein the inertial mass is increased stepwise by coupling and sequentially energizing the electromagnets. 前記運動変換機構は、制振対象である一方の部材に固定されるケーシングと、
前記ケーシング内に軸周り回転自在、軸方向移動不可能に支持され、前記回転軸部材に同軸的に結合されるボールねじと、
制振対象である他方の部材に固定され前記ケーシングに軸方向に進退動可能、軸周り回転不可能に挿入され、前記ボールねじに螺合するボールナットを備えたスリーブとを具備することを特徴とする請求項1ないし5のいずれかに記載の可変慣性質量型制振装置。
The motion conversion mechanism includes a casing fixed to one member that is a vibration control target,
A ball screw rotatably supported about an axis in the casing and supported so as not to move in the axial direction, and coaxially coupled to the rotary shaft member;
A sleeve having a ball nut that is fixed to the other member that is the object of vibration control and that can be moved forward and backward in the axial direction and that cannot be rotated about the axis, and that is screwed into the ball screw. The variable inertial mass damping device according to any one of claims 1 to 5.
JP2015246520A 2015-12-17 2015-12-17 Variable inertia mass damping device Active JP6594764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246520A JP6594764B2 (en) 2015-12-17 2015-12-17 Variable inertia mass damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246520A JP6594764B2 (en) 2015-12-17 2015-12-17 Variable inertia mass damping device

Publications (2)

Publication Number Publication Date
JP2017110758A JP2017110758A (en) 2017-06-22
JP6594764B2 true JP6594764B2 (en) 2019-10-23

Family

ID=59079446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246520A Active JP6594764B2 (en) 2015-12-17 2015-12-17 Variable inertia mass damping device

Country Status (1)

Country Link
JP (1) JP6594764B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120378B (en) * 2017-07-05 2018-02-13 南京林业大学 A kind of magneto-rheological vibration damper
CN109027090B (en) * 2018-10-25 2023-08-04 华北水利水电大学 Ternary vibration damper with parallel damping and inertial unit, design and assembly method
CN111765197B (en) * 2020-06-18 2021-07-16 常州大学 Shock-resistant large-damping vibration isolator
CN113847384B (en) * 2021-09-15 2022-06-03 山东大学 Combined type multidimensional vibration damping device with damping amplification function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247377A (en) * 2010-05-28 2011-12-08 Toyota Central R&D Labs Inc Flywheel device
JP5750280B2 (en) * 2011-03-07 2015-07-15 株式会社構造計画研究所 Structure damping device
JP6463091B2 (en) * 2014-11-19 2019-01-30 国立大学法人神戸大学 Variable mass inertial damping device

Also Published As

Publication number Publication date
JP2017110758A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6594763B2 (en) Variable inertia mass damping device
JP6594764B2 (en) Variable inertia mass damping device
JP5750280B2 (en) Structure damping device
JP5925672B2 (en) Damping device and structure damping device
JP6463091B2 (en) Variable mass inertial damping device
JP2014126177A5 (en)
WO2012039293A1 (en) Linear actuator
JP6913645B2 (en) Viscous damper
JP2017184430A5 (en)
JP2010127383A (en) Electromagnetic suspension device
WO2011102365A1 (en) Drive device, and movement mechanism using drive device
EP2621067B1 (en) Linear actuator
JP5585884B2 (en) Robot and robot system
JP7094756B2 (en) Mass damper
JP2019157947A (en) Mass damper
WO2020116344A1 (en) Eddy-current type damper
US20180115232A1 (en) Actuator
WO2019054278A1 (en) Eddy current-type damper
JP5466534B2 (en) Electromagnetic shock absorber
KR20010093004A (en) Shock absorber using magnetorheological fluid
JP2009185955A (en) Vehicular electromagnetic actuator
JP6245725B2 (en) Vibration isolator
JP2006194261A (en) Shock absorber
JP7040357B2 (en) Eddy current damper
JP7135725B2 (en) Eddy current damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6594764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250