JP6552502B2 - Method of detoxifying rice husk combustion ash and combustion equipment of rice husk - Google Patents

Method of detoxifying rice husk combustion ash and combustion equipment of rice husk Download PDF

Info

Publication number
JP6552502B2
JP6552502B2 JP2016538381A JP2016538381A JP6552502B2 JP 6552502 B2 JP6552502 B2 JP 6552502B2 JP 2016538381 A JP2016538381 A JP 2016538381A JP 2016538381 A JP2016538381 A JP 2016538381A JP 6552502 B2 JP6552502 B2 JP 6552502B2
Authority
JP
Japan
Prior art keywords
combustion
rice husk
flame
ash
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016538381A
Other languages
Japanese (ja)
Other versions
JPWO2016017669A1 (en
Inventor
勝義 近藤
勝義 近藤
道浦 吉貞
吉貞 道浦
潤 霜村
潤 霜村
謙一 笹内
謙一 笹内
健一 友澤
健一 友澤
驍騰 丁
驍騰 丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Chugai Ro Co Ltd
Original Assignee
Kurimoto Ltd
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Chugai Ro Co Ltd filed Critical Kurimoto Ltd
Publication of JPWO2016017669A1 publication Critical patent/JPWO2016017669A1/en
Application granted granted Critical
Publication of JP6552502B2 publication Critical patent/JP6552502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

この発明は、有機系廃棄物の燃焼灰の処理方法に関するものであり、特に発電用の燃料として使用される有機系廃棄物の燃焼灰の無害化方法および有機系廃棄物の燃焼設備に関するものである。   The present invention relates to a method of treating combustion waste of organic waste, and more particularly to a method of detoxifying combustion ash of organic waste used as fuel for power generation and combustion equipment of organic waste. is there.

籾殻等の有機系廃棄物(バイオマス)を燃焼させて、その燃焼熱を利用して発電するシステムが注目されている。   A system that generates power by burning organic waste (biomass) such as rice husks and using the heat of combustion has attracted attention.

例えば、特開2014−81187号公報(特許文献1)は、籾殻燃焼装置を用いて燃焼熱を発生させ、この燃焼熱を用いて水を加熱して蒸気にし、蒸気用タービンまたは蒸気用水車を回転させる発電方法を開示している。   For example, Japanese Patent Application Laid-Open No. 2014-81187 (Patent Document 1) generates combustion heat using a rice husk combustion apparatus, heats the water using this combustion heat into steam, and uses a steam turbine or a steam turbine for steam. It discloses a power generation method to rotate.

特開2014−114427号公報(特許文献2)は、小型火力発電所用の燃料として、農産物および農業廃棄物を有効利用することを開示している。   Unexamined-Japanese-Patent No. 2014-114427 (patent document 2) is disclosing effective utilization of agricultural products and agricultural waste as a fuel for small sized thermal power plants.

特開2014−81187号公報JP, 2014-81187, A 特開2014−114427号公報JP, 2014-114427, A

籾殻等の有機系廃棄物は今後のバイオマスエネルギーの一つとして期待し得るが、大量の燃焼灰の処理が問題になっている。有機系廃棄物を燃焼させた灰は、残留炭素を約2%含むものの純度92質量%以上の高結晶性のクリストバライト(高結晶性シリカ)である。   Organic waste such as rice husks can be expected as one of the future biomass energy, but the treatment of a large amount of combustion ash has become a problem. Ash produced by burning organic waste is highly crystalline cristobalite (highly crystalline silica) containing about 2% residual carbon but having a purity of 92% by mass or more.

国際がん研究機関(IARC:International Agency for Research on Cancer)によれば、不溶性の結晶性シリカの一種であるクリストバライトは発がん性があると指摘されている。そのため、発電のための燃料として有機系廃棄物を利用した場合、その燃焼灰の処理が問題となる。   According to the International Agency for Research on Cancer (IARC), cristobalite, which is a type of insoluble crystalline silica, is pointed out to be carcinogenic. Therefore, when organic waste is used as fuel for power generation, the treatment of the combustion ash becomes a problem.

本発明は、上記の課題を解決するためになされたものであり、その目的は、有機系廃棄物の燃焼灰を無害化する方法および有機系廃棄物の燃焼設備を提供することである。   The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a method for harmlessizing combustion ash of organic waste and a combustion facility for organic waste.

本発明に従った有機系廃棄物の燃焼灰の無害化方法は、以下の工程を備える。
(a)有機系廃棄物を燃焼させてクリストバライト化した燃焼灰を回収する工程。
(b)回収した有機系廃棄物の燃焼灰を粉砕して微粒粉にする工程。
(c)微粒粉を炉内の火炎中に噴射して溶融させることにより、燃焼灰の微粒粉を非晶質化する工程。
The organic waste combustion ash detoxification method according to the present invention includes the following steps.
(A) The process of collect | recovering the combustion ash which burned organic waste and was made cristobalite.
(B) The process of grind | pulverizing the combustion ash of the collect | recovered organic waste to make a fine powder.
(C) A step of amorphizing the fine particles of combustion ash by injecting and melting the fine particles into the flame in the furnace.

好ましくは、上記の火炎処理時の支燃ガス中の酸素濃度が40体積%以上である。より好ましくは、火炎処理時の支燃ガス中の酸素濃度が60体積%以上である。   Preferably, the oxygen concentration in the combustion-supporting gas during the flame treatment is 40% by volume or more. More preferably, the oxygen concentration in the support gas during the flame treatment is 60% by volume or more.

火炎処理時の炉の内壁の温度は、好ましくは1100℃以上である。好ましい火炎の温度は1750℃〜2500℃である。   The temperature of the inner wall of the furnace during the flame treatment is preferably 1100 ° C. or higher. The preferred flame temperature is 1750 ° C to 2500 ° C.

粉砕後に得られる有機系廃棄物の微粒粉の粒径は、好ましくは15μm以下である。また、火炎処理後の非晶質化した微粒粉の粒径は、好ましくは20μm以下である。   The particle size of the fine particles of organic waste obtained after pulverization is preferably 15 μm or less. Further, the particle size of the amorphized fine powder after flame treatment is preferably 20 μm or less.

好ましくは、火炎処理後の微粒粉の非晶質化率は80%以上である。   Preferably, the amorphization rate of the fine powder after the flame treatment is 80% or more.

好ましい実施形態では、有機系廃棄物の燃焼工程は、発電のための燃料として有機系廃棄物を用意すること、および有機系廃棄物を燃焼させ、燃焼熱を利用して発電することを含む。   In a preferred embodiment, the step of burning the organic waste comprises preparing the organic waste as a fuel for power generation, and burning the organic waste and generating electricity using combustion heat.

有機系廃棄物は、好ましくは、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、バガス、トウモロコシ、サトウキビ、サツマイモ、大豆、落花生、キャッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙からなる群から選ばれたいずれかである。   Organic waste is preferably rice husk, rice straw, rice bran, straw, wood, thinned wood, construction waste, sawdust, bark, bagasse, corn, sugar cane, sweet potato, soybean, peanut, cassava, eucalyptus, fern, pineapple, It is any one selected from the group consisting of bamboo, rubber and used paper.

本発明に従った有機系廃棄物の燃焼設備は、有機系廃棄物を燃焼させる燃焼炉と、燃焼炉から回収したクリストバライト化した有機系廃棄物の燃焼灰を粉砕して微粒粉にする粉砕機と、微粒粉を火炎中に噴射して溶融させることにより、この燃焼灰の微粒粉を非晶質化する火炎処理機とを備える。   Combustion facility for organic waste according to the present invention includes a combustion furnace for burning organic waste, and a pulverizer for crushing cristobaliteized organic waste combustion ash recovered from the combustion furnace into fine powder And a flame treatment machine for amorphizing the fine particles of the combustion ash by injecting and melting the fine particles into the flame.

本発明によれば、クリストバライト化した燃焼灰を火炎処理によって非晶質化しているので、燃焼灰の処理を安全に行うことができる。また、必要に応じて、火炎処理後の非晶質化したシリカ粉を種々の用途に利用可能である。   According to the present invention, the combustion ash that has been converted to cristobalite is made amorphous by the flame treatment, so that the treatment of the combustion ash can be performed safely. In addition, if necessary, the amorphized silica powder after flame treatment can be used for various applications.

本発明の一実施形態に係る方法の各ステップを示す図である。FIG. 5 illustrates the steps of a method according to an embodiment of the present invention. 本発明の一実施形態に係る有機系廃棄物の燃焼装置を示す図である。It is a figure showing the combustion device of the organic waste concerning one embodiment of the present invention. 粒径5μmの籾殻灰に対する支燃ガス中の酸素濃度と平均粒径との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the average particle diameter in support gas with respect to a rice husk ash with a particle diameter of 5 micrometers. 粒径5μmの籾殻灰に対する支燃ガス中の酸素濃度と非晶質化率との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the amorphization rate in supporting gas with respect to a rice husk ash with a particle size of 5 micrometers. 粒径5μmの籾殻灰に対するX線回折結果(XRD)を示す図である。It is a figure which shows the X-ray-diffraction result (XRD) with respect to the rice husk ash with a particle size of 5 micrometers. 粒径10μmの籾殻灰に対する支燃ガス中の酸素濃度と平均粒径との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the average particle diameter in support gas with respect to rice husk ash with a particle diameter of 10 micrometers. 粒径10μmの籾殻灰に対する支燃ガス中の酸素濃度と非晶質化率との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the amorphization rate in supporting gas with respect to a rice husk ash with a particle size of 10 micrometers. 粒径10μmの籾殻灰に対するX線回折結果(XRD)を示す図である。It is a figure which shows the X-ray-diffraction result (XRD) with respect to the rice husk ash with a particle size of 10 micrometers. 粒径15μmの籾殻灰に対する支燃ガス中の酸素濃度と平均粒径との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the average particle diameter in support gas with respect to a rice husk ash with a particle size of 15 micrometers. 粒径15μmの籾殻灰に対する支燃ガス中の酸素濃度と非晶質化率との関係を示す図である。It is a figure which shows the relationship of the oxygen concentration and the amorphization rate in supporting gas with respect to a rice husk ash with a particle size of 15 micrometers. 粒径15μmの籾殻灰に対するX線回折結果(XRD)を示す図である。It is a figure which shows the X-ray-diffraction result (XRD) with respect to the rice husk ash with a particle size of 15 micrometers.

図1は、本発明の実施形態に係る方法の処理工程を順に示している。本発明の実施形態に係る方法は、まず、有機系廃棄物を準備し、この有機系廃棄物を燃焼させて燃焼灰を回収する。回収した燃焼灰を粉砕して微粒粉にした後に、微粒粉を火炎処理して非晶質化する。   FIG. 1 shows in order the processing steps of the method according to an embodiment of the present invention. In the method according to the embodiment of the present invention, first, organic waste is prepared, and the organic waste is burned to recover the combustion ash. The pulverized combustion ash is pulverized into fine particles, and then the fine particles are subjected to flame treatment to become amorphous.

図2は、本発明の実施形態に係る有機系廃棄物の燃焼装置の図解図である。燃焼装置1は、籾殻等の有機系廃棄物を燃焼させる燃焼炉10と、燃焼炉10から回収したクリストバライト化した有機系廃棄物の燃焼灰を粉砕して微粒粉にする粉砕機20と、微粒粉を火炎中に噴射して溶融させることにより、燃焼灰の微粒粉を非晶質化する火炎処理機30とを備える。   FIG. 2 is an illustrative view of an organic waste combustion apparatus according to an embodiment of the present invention. The combustion apparatus 1 includes a combustion furnace 10 that burns organic waste such as rice husks, a pulverizer 20 that crushes the combustion ash of cristobaliteized organic waste recovered from the combustion furnace 10 into fine powder, A flame treatment machine 30 that amorphizes the fine powder of combustion ash by injecting powder into the flame and melting it.

以下、各工程について詳しく説明する。   Each step will be described in detail below.

[有機系廃棄物の準備]
有機系廃棄物は、好ましくは、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、バガス、トウモロコシ、サトウキビ、サツマイモ、大豆、落花生、キャッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙からなる群から選ばれるが、典型的には籾殻である。籾殻は、広範囲な地域で入手可能である。本発明者らは、有機系廃棄物の代表例として、入手し易く、かつ取り扱いが容易な籾殻を使用して本発明の実験を行ったが、他の有機系廃棄物を使用しても同様の作用効果を期待できる。
[Preparation of organic waste]
Organic waste is preferably rice husk, rice straw, rice bran, straw, wood, thinned wood, construction waste, sawdust, bark, bagasse, corn, sugar cane, sweet potato, soybean, peanut, cassava, eucalyptus, fern, pineapple, It is selected from the group consisting of bamboo, rubber and waste paper, but is typically rice husk. Rice husks are available in a wide range of areas. The present inventors conducted experiments of the present invention using rice husks that are easily available and easy to handle as a representative example of organic wastes, but the same applies to other organic wastes. Can be expected.

[有機系廃棄物の燃焼および燃焼灰の回収]
籾殻は、例えば発電のための燃料として用いられる。籾殻を燃焼させて、燃焼熱を利用して発電し、燃焼後の籾殻灰を回収する。籾殻の燃焼温度は750℃〜1300℃であり、燃焼後の徐冷によって燃焼灰となる。その燃焼灰は純度92質量%以上のシリカであるが、クリストバライト化している。そのため、クリストバライト化した燃焼灰をそのまま廃棄したり、他の用途に使用したりすると、人体に対する悪影響が懸念される。
[Combustion of organic waste and recovery of combustion ash]
The rice husk is used as a fuel for power generation, for example. The rice husk is burned to generate electricity using the heat of combustion, and the burned rice husk ash is recovered. The combustion temperature of rice husk is 750 ° C. to 1300 ° C., and after being burned, it becomes combustion ash by slow cooling. The combustion ash is silica having a purity of 92% by mass or more, but is cristobalite. Therefore, if the combustion ash converted to cristobalite is discarded as it is or used for other purposes, there is a concern about adverse effects on the human body.

[燃焼灰の粉砕]
そこで、本発明の実施形態に係る方法では、まず、燃焼灰を粉砕して微粒粉にする。粉砕前の籾殻の燃焼灰の粒径(最大長さ)は、原料籾殻の粒径(最大長さ)に対応するものであり、数mm〜10mm程度である。また、籾殻灰は多孔質であることから、15μm以下の微粒子を得るまでの粉砕に要するエネルギーは非常に小さい。籾殻灰を15μm程度以下の微粒粉にするのは、後工程の火炎処理の際に火炎中に噴射して即座に溶融させることを考慮したためである。
[Combustion of combustion ash]
Therefore, in the method according to the embodiment of the present invention, first, the combustion ash is pulverized into a fine powder. The particle size (maximum length) of the combustion ash of the rice husk before pulverization corresponds to the particle size (maximum length) of the raw rice husk and is about several mm to 10 mm. Moreover, since rice husk ash is porous, the energy required for pulverization to obtain fine particles of 15 μm or less is very small. The reason why the rice husk ash is made into a fine powder of about 15 μm or less is that it is considered that the rice husk ash is immediately melted by being injected into the flame in the subsequent flame treatment.

[微粒粉の火炎処理および非晶質化]
この微粒粉を炉内の火炎中に噴射して溶融させることにより、微粒粉を非晶質化する。炉内の酸素濃度が低く、炉内温度が低いと、非晶質化率が低くなる。良好な非晶質化率を得るには、炉内の酸素濃度を高くして炉内温度を高くし、急冷する必要がある。
[Flame treatment and amorphization of fine powder]
The fine powder is amorphized by being injected into a flame in the furnace and melted. If the oxygen concentration in the furnace is low and the temperature in the furnace is low, the amorphization rate becomes low. In order to obtain a good amorphization rate, it is necessary to increase the oxygen concentration in the furnace to raise the temperature in the furnace and to rapidly cool it.

火炎は、酸素、窒素および少量のアルゴンを含む支燃ガスによって形成される。火炎処理時の支燃ガス中の酸素濃度は、好ましくは40体積%以上であり、より好ましくは60体積%以上である。また、火炎処理時の炉の内壁の温度は、好ましくは1100℃以上である。効率的に微粒粉を溶融して非晶質化するためには、火炎処理時の火炎の温度を1750℃〜2500℃にするのが好ましい。火炎処理後の微粒粉の非晶質化率は、好ましくは80%以上である。   A flame is formed by a combustion gas containing oxygen, nitrogen and a small amount of argon. The oxygen concentration in the combustion supporting gas at the time of flame treatment is preferably 40% by volume or more, more preferably 60% by volume or more. The temperature of the inner wall of the furnace during the flame treatment is preferably 1100 ° C. or higher. In order to efficiently melt the fine powder to make it amorphous, it is preferable to set the flame temperature during the flame treatment to 1750 ° C. to 2500 ° C. The amorphization rate of the fine powder after the flame treatment is preferably 80% or more.

一般的に火炎バーナーに投入前のシリカ微粒子の平均粒径に比べて、火炎処理によって溶融球状化した球状シリカ粒子の平均粒径は増加する。平均粒径が増加する一つの理由は、複数のシリカ微粒子が静電気や分子間引力により凝集した状態で球状化するからである。平均粒径が増加すると内部まで急冷できなくなり、結晶化してしまう。ここで注目すべきは、有機系廃棄物由来のシリカ微粒子を溶融球状化した場合、鉱物由来のシリカ微粒子に比べて、粒径の増加を抑制することが認められる。その理由はまだ十分解明できていないが、有機系廃棄物由来のシリカ微粒子が多孔質であるので、表面積が大きく表面張力が高いこと、また内部に空隙があること等が考えられる。   Generally, the average particle size of spherical silica particles melted and spheroidized by flame treatment is increased as compared with the average particle size of silica fine particles before being introduced into a flame burner. One reason for the increase in the average particle size is that a plurality of silica fine particles are spheroidized in an aggregated state due to static electricity or intermolecular attractive force. When the average particle size is increased, the inside can not be rapidly quenched and it crystallizes. It should be noted here that when the organic fine particles derived from the organic waste are melt-spheronized, it is found that the increase in particle size is suppressed as compared with the fine particles derived from mineral. The reason for this has not been fully elucidated yet, but it is conceivable that the surface area is large, the surface tension is high, and that there are voids inside because the organic fine particles derived from organic waste are porous.

火炎を用いた溶融球状化処理時における粒子の平均粒径の増加を抑えることができれば、原料シリカ(粉砕シリカ)の粉砕サイズを火炎処理後の球状化品に近づけることができる。したがって、平均粒径の増加を見込んだ分まで粒子を細かく粉砕する必要がなくなる。好ましくは、火炎を用いた溶融球状化処理によって非晶質化した微粒粉の粒径は20μm以下である。   If the increase in the average particle diameter of the particles at the time of the melt-spheroidization treatment using a flame can be suppressed, the crushed size of the raw material silica (ground silica) can be made closer to the spheroidized product after the flame treatment. Therefore, it is not necessary to finely pulverize the particles until the average particle size is expected to increase. Preferably, the particle size of the fine powder powder made amorphous by the melt-spheronization treatment using a flame is 20 μm or less.

非晶質化したシリカ微粒粉については、廃棄処分してもよいし、他の用途、例えば金属材料、ゴム、コンクリート等の補強材や、食品・薬品添加剤等に利用することもできる。   The amorphized silica fine powder may be disposed of for disposal, and may be used for other applications such as reinforcing materials such as metal materials, rubber, concrete and the like, food and drug additives and the like.

非晶質化したシリカ微粒粉を他の用途に使用する場合には、燃焼前に籾殻等の有機系廃棄物中の不純物を取り除いておくのが好ましい。具体的には、出発原料である有機系廃棄物を、酸溶液または温水中に浸漬して撹拌することによって原料から不純物を取り除き、シリカ純度を高める。酸は、水酸基を有するカルボン酸が好ましく、より好ましくはクエン酸である。   When the amorphous silica fine powder is used for other purposes, it is preferable to remove impurities in organic waste such as rice husk before combustion. Specifically, the organic waste as a starting material is immersed in an acid solution or warm water and stirred to remove impurities from the raw material and increase the silica purity. The acid is preferably a carboxylic acid having a hydroxyl group, more preferably citric acid.

[粒径5μmの籾殻灰に対する火炎処理]
籾殻灰を平均粒径5.7μmになるまで粉砕し、この粉砕した籾殻微粒粉を原料として火炎処理を行った。火炎処理は、籾殻灰微粒粉を炉内の火炎中に噴射して溶融させて、球状化したシリカ粉を得るものである。実験は専用テスト炉内で行い、火炎の燃料として13A都市ガスを使用し、燃焼酸化剤として空気+酸素を使用した。
[Flame treatment for rice husk ash with a particle size of 5 μm]
Rice husk ash was pulverized to an average particle size of 5.7 μm, and flame treatment was carried out using the pulverized chaff fine powder as a raw material. In the flame treatment, rice husk ash fine powder is injected into a flame in a furnace and melted to obtain a spheroidized silica powder. The experiments were conducted in a dedicated test furnace, using 13A city gas as the flame fuel and air plus oxygen as the combustion oxidant.

支燃ガス中の酸素濃度および炉内温度を変更して、火炎処理後の微粒粉の平均粒径および非晶質化率を計測した。その結果を表1に示す。   The average particle size and amorphization rate of the fine powder after the flame treatment were measured by changing the oxygen concentration in the support gas and the furnace temperature. The results are shown in Table 1.

Figure 0006552502
Figure 0006552502

支燃ガス中の酸素濃度を変えて5回のテストを行った。図3は、粒径5μmの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と処理後の微粒粉の平均粒径との関係を示している。平均粒径は、CILAS社製1090L(レーザー回折・散乱法)粒度分布測定機を用いて測定した。溶媒に水を用い、超音波およびスターラを用いて1分間かけて分散処理させたものを試料とした。   Five tests were conducted by changing the oxygen concentration in the fuel gas. FIG. 3 shows the relationship between the oxygen concentration in the combustion supporting gas and the average particle size of the treated fine particles in the flame treatment performed on rice husk ash fine particles having a particle diameter of 5 μm. The average particle size was measured using a CILAS 1090L (laser diffraction / scattering method) particle size distribution analyzer. A sample was prepared using water as a solvent, and was subjected to dispersion treatment using ultrasonic waves and a stirrer for 1 minute.

図4は、粒径5μの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と非晶質化率との関係を示している。図5は、原料の籾殻灰微粒粉および火炎処理後の微粒粉に対するX線回折結果(XRD)を示している。   FIG. 4 shows the relationship between the oxygen concentration in the supporting gas and the amorphization ratio in the flame treatment performed on the rice husk ash fine powder having a particle size of 5 μm. FIG. 5 shows the X-ray diffraction results (XRD) for the raw rice husk ash fine powder and the fine powder after the flame treatment.

非晶質化率は次にように求めた。リガク社製粉末X線回折装置「Ultima IV」を用い、CuKα線の2θが3度〜90度の範囲において、試料のX線回折分析を行った。クリストバライトの場合は22.0度に主ピークが存在するが、非晶質化(無害化)が進行することにより、この位置に存在するピーク強度が徐々に弱まっていく。そこで、原料のクリストバライトのX線回折強度に対する回収粉のクリストバライトのX線回折強度の比から、クリストバライト含有率(回収粉のクリストバライトのX線回折強度/原料のクリストバライトのX線回折強度)を算出し、以下の式によって非晶質化率を求めた。   The amorphization ratio was determined as follows. Using a powder X-ray diffractometer "Ultima IV" manufactured by RIGAKU CO., LTD., X-ray diffraction analysis of the sample was performed in the range of 2 ° of CuKα ray of 3 degrees to 90 degrees. In the case of cristobalite, a main peak exists at 22.0 degrees, but as amorphization (detoxification) progresses, the peak intensity present at this position gradually weakens. Therefore, the cristobalite content ratio (X-ray diffraction intensity of cristobalite recovered material / X-ray diffraction intensity of cristobalite raw material) was calculated from the ratio of X-ray diffraction intensity of recovered powder cristobalite to X-ray diffraction intensity of raw material cristobalite. The amorphization ratio was determined by the following equation.

非晶質化率(%)=(1−クリストバライト含有率)×100
なお、原料のクリストバライトのX線回折強度および回収粉のクリストバライトのX線回折強度はそれぞれピーク強度からX線回折ベース強度を引いたものである。
Amorphization rate (%) = (1−cristobalite content) × 100
The X-ray diffraction intensity of the raw material cristobalite and the recovered powder cristobalite are obtained by subtracting the X-ray diffraction base intensity from the peak intensity.

非晶質化率が「100%」であれば、全ての微粒粉が非晶質化していることを意味し、「95%」であれば、95%の微粒粉が非晶質化し、残りの5%が非晶質化していないことを意味する。非晶質化率が高い程、無害化率が高いということを意味する。   If the amorphization ratio is "100%", it means that all the fine particles are amorphous, and if it is "95%", 95% of the fine particles are amorphous and the rest It means that 5% of is not amorphized. The higher the amorphization rate, the higher the detoxification rate.

表1および図3に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の平均粒径の増加が抑制されることが認められる。また、表1、図4および図5に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の非晶質化率が高いことが認められる。   From the results shown in Table 1 and FIG. 3, it is recognized that the higher the oxygen concentration in the combustion-supporting gas, the more the increase in the average particle size of the fine particles after the flame treatment is suppressed. Further, from the results shown in Table 1, FIG. 4 and FIG. 5, it is recognized that the higher the oxygen concentration in the combustion support gas, the higher the amorphization rate of the fine particles after the flame treatment.

[粒径10μmの籾殻灰に対する火炎処理]
籾殻灰を平均粒径9.4μm(テスト6)または11.1μm(テスト7〜10)になるまで粉砕し、この粉砕した籾殻灰微粒粉を原料として火炎処理を行った。火炎処理は、籾殻灰微粒粉を炉内の火炎中に噴射して溶融させて、球状化したシリカ粉を得るものである。実験は専用テスト炉内で行い、火炎の燃料として13A都市ガスを使用し、燃焼酸化剤として空気+酸素を使用した。
[Flame treatment for rice husk ash with a particle size of 10 μm]
Rice husk ash was ground to an average particle diameter of 9.4 μm (test 6) or 11.1 μm (test 7 to 10), and flame treatment was performed using the ground rice husk ash fine particles as a raw material. In the flame treatment, rice husk ash fine powder is injected into a flame in a furnace and melted to obtain a spheroidized silica powder. The experiments were conducted in a dedicated test furnace, using 13A city gas as the flame fuel and air plus oxygen as the combustion oxidant.

支燃ガス中の酸素濃度および炉内温度を変更して、火炎処理後の微粒粉の平均粒径および非晶質化率を計測した。その結果を表2に示す。   The average particle size and amorphization rate of the fine powder after the flame treatment were measured by changing the oxygen concentration in the support gas and the furnace temperature. The results are shown in Table 2.

Figure 0006552502
Figure 0006552502

支燃ガス中の酸素濃度を変えて5回のテストを行った。図6は、粒径10μmの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と処理後の微粒粉の平均粒径との関係を示している。図7は、粒径10μの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と非晶質化率との関係を示している。図8は、原料の籾殻灰微粒粉および火炎処理後の微粒粉に対するX線回折結果(XRD)を示している。   Five tests were conducted by changing the oxygen concentration in the fuel gas. FIG. 6 shows the relationship between the oxygen concentration in the supporting gas and the average particle size of the fine powder after the treatment in the flame treatment performed on the rice husk ash fine powder having a particle size of 10 μm. FIG. 7 shows the relationship between the oxygen concentration in the supporting gas and the amorphization ratio in the flame treatment performed on the rice husk ash fine powder having a particle size of 10 μm. FIG. 8 shows the results of X-ray diffraction (XRD) of rice husk ash fine powder as raw material and fine powder after flame treatment.

表2および図6に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の平均粒径の増加が抑制されることが認められる。また、表2、図7および図8に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の非晶質化率が高いことが認められる。   From the results shown in Table 2 and FIG. 6, it is recognized that the higher the oxygen concentration in the combustion-supporting gas, the more the increase in the average particle size of the fine particles after the flame treatment is suppressed. Further, from the results shown in Table 2, FIG. 7 and FIG. 8, it is recognized that the higher the oxygen concentration in the combustion support gas, the higher the amorphization rate of the fine particles after the flame treatment.

[粒径15μmの籾殻灰に対する火炎処理]
籾殻灰を平均粒径15.5μm(テスト11〜13)または15.7μm(テスト14〜15)になるまで粉砕し、この粉砕した籾殻灰微粒粉を原料として火炎処理を行った。火炎処理は、籾殻灰微粒粉を炉内の火炎中に噴射して溶融させて、球状化したシリカ粉を得るものである。実験は専用テスト炉内で行い、火炎の燃料として13A都市ガスを使用し、燃焼酸化剤として空気+酸素を使用した。
[Flame treatment for rice husk ash with a particle size of 15 μm]
Rice husk ash was ground to an average particle diameter of 15.5 μm (test 11 to 13) or 15.7 μm (test 14 to 15), and flame treatment was carried out using the crushed rice husk ash fine particles as a raw material. In the flame treatment, rice husk ash fine powder is injected into a flame in a furnace and melted to obtain a spheroidized silica powder. The experiments were conducted in a dedicated test furnace, using 13A city gas as the flame fuel and air plus oxygen as the combustion oxidant.

支燃ガス中の酸素濃度および炉内温度を変更して、火炎処理後の微粒粉の平均粒径および非晶質化率を計測した。その結果を表3に示す。   The average particle size and amorphization rate of the fine powder after the flame treatment were measured by changing the oxygen concentration in the support gas and the furnace temperature. The results are shown in Table 3.

Figure 0006552502
Figure 0006552502

支燃ガス中の酸素濃度を変えて5回のテストを行った。図9は、粒径15μmの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と処理後の微粒粉の平均粒径との関係を示している。図10は、粒径15μの籾殻灰微粒粉に対して行った火炎処理における支燃ガス中の酸素濃度と非晶質化率との関係を示している。図11は、原料の籾殻灰微粒粉および火炎処理後の微粒粉に対するX線回折結果(XRD)を示している。   Five tests were conducted by changing the oxygen concentration in the fuel gas. FIG. 9 shows the relationship between the oxygen concentration in the supporting gas and the average particle size of the fine powder after the treatment in the flame treatment performed on the rice husk ash fine powder having a particle size of 15 μm. FIG. 10 shows the relationship between the oxygen concentration in the supporting gas and the amorphization rate in the flame treatment performed on the rice husk ash fine powder having a particle size of 15 μm. FIG. 11 shows the X-ray diffraction results (XRD) for the raw rice husk ash fine powder and the fine powder after the flame treatment.

表3および図9に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の平均粒径の増加が抑制されることが認められる。また、表3、図10および図11に示す結果から、支燃ガス中の酸素濃度が高い程、火炎処理後の微粒子の非晶質化率が高いことが認められる。また、原料粉の平均粒径が15μm程度でも空冷で十分非晶質化できることが認められる。   From the results shown in Table 3 and FIG. 9, it is recognized that the increase in the average particle diameter of the fine particles after the flame treatment is suppressed as the oxygen concentration in the support gas is higher. Further, from the results shown in Table 3, FIG. 10, and FIG. 11, it is recognized that the higher the oxygen concentration in the combustion support gas, the higher the amorphization rate of the fine particles after the flame treatment. In addition, it is recognized that even if the average particle size of the raw material powder is about 15 μm, it can be made sufficiently amorphous by air cooling.

今回行ったテストは、籾殻灰を原料としたが、他の有機系廃棄物の燃焼灰を原料灰として用いても同様の効果を期待することができる。   In the test conducted this time, rice husk ash was used as the raw material, but the same effect can be expected even if combustion ash of other organic wastes is used as the raw material ash.

以上、この発明を実施形態に基づいて説明したが、この発明は実施形態に限定されるものではなく、特許請求の範囲に記載の発明と同一の範囲または均等の範囲内で種々の修正や変更が可能である。   Although the present invention has been described above based on the embodiment, the present invention is not limited to the embodiment, and various modifications and changes can be made within the same scope or equivalent scope as the invention described in the claims. Is possible.

この発明は、特に発電用の燃料として使用される有機系廃棄物の燃焼灰の無害化方法および燃焼設備として有利に利用され得る。   INDUSTRIAL APPLICABILITY The present invention can be advantageously used as a method for detoxifying combustion ash from organic waste used as a fuel for power generation and a combustion facility.

1 有機系廃棄物の燃焼設備、10 燃焼炉、20 粉砕機、30 火炎処理機。 1 Organic waste combustion equipment, 10 combustion furnace, 20 pulverizer, 30 flame treatment machine.

Claims (4)

発電のための燃料として籾殻を用意する工程と、
前記籾殻を燃焼させ、燃焼熱を利用して発電する工程と、
前記籾殻の燃焼によって生成する粒径数mm〜10mmのクリストバライト化した多孔質の籾殻燃焼灰を回収する工程と、
回収した前記籾殻燃焼灰を粉砕して、粒径が15μm以下の微粒粉にする工程と、
前記微粒粉を、内壁温度が1100℃以上である炉内の火炎中に噴射して溶融させることにより、前記籾殻燃焼灰の微粒粉を非晶質化する工程とを備え、
前記火炎処理時の支燃ガス中の酸素濃度が40体積%以上であり、
前記火炎の温度は1750℃〜2500℃であり、
前記火炎処理後の微粒粉の非晶質化率が80%以上である、籾殻燃焼灰の無害化方法。
Preparing rice husk as fuel for power generation;
Burning the rice husk and generating power using combustion heat;
Recovering a cristobalite-formed porous rice husk combustion ash having a particle diameter of several mm to 10 mm generated by the combustion of the rice husk;
Pulverizing the recovered rice husk combustion ash into fine particles having a particle size of 15 μm or less;
And a step of amorphizing the fine powder of rice husk combustion ash by injecting and melting the fine powder into a flame in a furnace having an inner wall temperature of 1100 ° C. or higher,
The oxygen concentration in the combustion-supporting gas during the flame treatment is 40% by volume or more,
The temperature of the flame is 1750 ° C. to 2500 ° C.
The detoxification method of rice husk combustion ash whose amorphization rate of the fine particle powder after the said flame processing is 80% or more.
前記火炎処理時の支燃ガス中の酸素濃度が60体積%以上である、請求項1に記載の籾殻燃焼灰の無害化方法。   The method for detoxifying rice husk combustion ash according to claim 1, wherein the oxygen concentration in the combustion-supporting gas during the flame treatment is 60% by volume or more. 前記火炎処理後の非晶質化した微粒粉の粒径は20μm以下である、請求項1または2に記載の籾殻燃焼灰の無害化方法。 The method for detoxifying rice husk combustion ash according to claim 1 or 2 , wherein a particle size of the amorphized fine powder after the flame treatment is 20 µm or less. 燃焼熱を利用して発電するために、籾殻を燃焼させる燃焼炉と、
前記燃焼炉での燃焼後に回収される粒径数mm〜10mmのクリストバライト化した多孔質の籾殻燃焼灰を粒径15μm以下の微粒粉になるまで粉砕する粉砕機と、
前記籾殻燃焼灰の微粒粉を火炎中に噴射して溶融させることにより、籾殻燃焼灰の微粒粉の非晶質化率を80%以上にする火炎処理機とを備え、
前記火炎処理機は、内壁温度が1100℃以上にされた火炎処理炉と、前記火炎処理炉内に酸素濃度が40体積%以上の支燃ガスを供給して前記火炎の温度を1750℃〜2500℃にする支燃ガス供給手段とを含む、籾殻の燃焼設備。
A combustion furnace for burning rice husks to generate electricity using combustion heat;
A crusher for crushing cristobalite-formed porous rice husk combustion ash having a particle diameter of several mm to 10 mm, which is recovered after combustion in the combustion furnace, to fine particles having a particle diameter of 15 μm or less;
And a flame processor for setting the amorphization ratio of the fine powder of rice husk combustion ash to 80% or more by injecting and melting the fine particles of rice husk combustion ash into a flame,
The flame processing machine supplies a temperature of the flame of 1750 ° C. to 2500 by supplying a flame treatment furnace whose inner wall temperature is set to 1100 ° C. or more, and a combustion supporting gas having an oxygen concentration of 40 vol% Combustion equipment for rice husks, including supporting gas supply means for bringing to ℃.
JP2016538381A 2014-07-31 2015-07-29 Method of detoxifying rice husk combustion ash and combustion equipment of rice husk Active JP6552502B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014155924 2014-07-31
JP2014155924 2014-07-31
PCT/JP2015/071460 WO2016017669A1 (en) 2014-07-31 2015-07-29 Method for detoxifying combustion ash from organic waste and combustion facility for organic waste

Publications (2)

Publication Number Publication Date
JPWO2016017669A1 JPWO2016017669A1 (en) 2017-04-27
JP6552502B2 true JP6552502B2 (en) 2019-07-31

Family

ID=55217567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016538381A Active JP6552502B2 (en) 2014-07-31 2015-07-29 Method of detoxifying rice husk combustion ash and combustion equipment of rice husk

Country Status (2)

Country Link
JP (1) JP6552502B2 (en)
WO (1) WO2016017669A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514054B2 (en) * 2020-01-22 2024-07-10 太平洋セメント株式会社 Cement admixture and cement composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016468A1 (en) * 1990-05-22 1991-11-28 Passavant Werke METHOD AND SYSTEM FOR THE THERMAL DISPOSAL OF CLEANING SLAVES
JPH0894056A (en) * 1994-09-28 1996-04-12 Kawasaki Heavy Ind Ltd Incinerating method for organic waste
JP3521035B2 (en) * 1995-11-28 2004-04-19 株式会社荏原製作所 Organic wastewater treatment method
JP3687869B2 (en) * 1996-04-24 2005-08-24 新日本製鐵株式会社 Method for modifying coal ash and method for using modified coal ash
JPH10192811A (en) * 1996-12-27 1998-07-28 Ishikawajima Harima Heavy Ind Co Ltd Method for treating incineration ash/fly ash of municipal waste
JP2003074830A (en) * 2001-08-30 2003-03-12 Shinroku Nishiyama Auxiliary combustion method in ash melting
JP2014081187A (en) * 2012-10-12 2014-05-08 Katsuhiko Hiramatsu Power generating method with fuel of rice hull and wooden (saw dusts)

Also Published As

Publication number Publication date
JPWO2016017669A1 (en) 2017-04-27
WO2016017669A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
Peng et al. Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification
JP5100385B2 (en) Method for producing amorphous silicon oxide powder
JP5432554B2 (en) Gasification system
JP6552502B2 (en) Method of detoxifying rice husk combustion ash and combustion equipment of rice husk
JP6328901B2 (en) Method for producing solid fuel and solid fuel
JP2009191085A (en) Method and system for manufacturing solid fuel, and solid fuel
JP2010229259A (en) Method for producing biomass fuel for dust coal boiler
JP4882061B2 (en) Processing system and processing method for effectively using biomass resources
JP6639075B2 (en) Method for producing solid fuel and solid fuel
TW201515727A (en) Manufacturing method of solid refuse derived fuel for automobile shredder residue
JP2014190882A (en) Processing method for radioactive cesium-adhered biomass
JPWO2015008730A1 (en) Spherical silica particles derived from organic waste and method for producing the same
JP2001296009A (en) Waste plastic treatment apparatus
JP2005272569A (en) Method for producing coke for blast furnace using wood-based biomass
JP2020183327A (en) Silicon, apparatus and method for producing the silicon
CN103433268A (en) Treatment method for acetic acid evaporation residue
JP6691508B2 (en) Solid fuel manufacturing method and solid fuel
JP7498012B2 (en) Fuel reforming method and fuel reforming device
KR100998580B1 (en) Pellet using coconut shell and method thereof
JP5958021B2 (en) Fuel production apparatus and fuel production method
JP5977994B2 (en) Treatment and use of animal bones
JP5002159B2 (en) Method, apparatus and system for detoxifying dioxins contained in contaminated soil
CN113198832A (en) Soil improvement method using biomass charcoal
WO2023170708A1 (en) Sustainable reclamation of bio mass
TW202140377A (en) Porous carbon material and the manufacturing method making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180424

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190702

R150 Certificate of patent or registration of utility model

Ref document number: 6552502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250