JP6550230B2 - Element - Google Patents

Element Download PDF

Info

Publication number
JP6550230B2
JP6550230B2 JP2014245346A JP2014245346A JP6550230B2 JP 6550230 B2 JP6550230 B2 JP 6550230B2 JP 2014245346 A JP2014245346 A JP 2014245346A JP 2014245346 A JP2014245346 A JP 2014245346A JP 6550230 B2 JP6550230 B2 JP 6550230B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite member
metal
aircraft
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014245346A
Other languages
Japanese (ja)
Other versions
JP2016108398A5 (en
JP2016108398A (en
Inventor
信幸 神原
信幸 神原
阿部 俊夫
俊夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014245346A priority Critical patent/JP6550230B2/en
Priority to EP15864708.1A priority patent/EP3214112B1/en
Priority to PCT/JP2015/080002 priority patent/WO2016088470A1/en
Priority to US15/531,606 priority patent/US20180281983A1/en
Publication of JP2016108398A publication Critical patent/JP2016108398A/en
Publication of JP2016108398A5 publication Critical patent/JP2016108398A5/ja
Application granted granted Critical
Publication of JP6550230B2 publication Critical patent/JP6550230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/001Particular heat conductive materials, e.g. superconductive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Description

本発明は、航空機又は人工衛星などに使用される部材に関する。   The present invention relates to a member used for an aircraft or a satellite.

航空機は、電子機器、バッテリ、及びエンジンのような発熱部を有する。発熱部で発生した熱は、熱流路材と呼ばれる部材を介して放出(排熱)される。従来、航空機の熱流路材として、金属シート又はジャンパー線が用いられている。人工衛星において使用される紙製のハニカムコアを有する熱流制御体の一例が特許文献1に開示されている。   An aircraft has heat generating components such as electronics, batteries, and engines. The heat generated in the heat generating portion is released (exhaust heat) through a member called a heat flow passage material. Conventionally, a metal sheet or a jumper wire is used as a thermal flow path material of an aircraft. Patent Document 1 discloses an example of a heat flow control body having a paper honeycomb core used in a satellite.

実開平05−086799号公報Japanese Utility Model Application Publication No. 05-086799

近年において、航空機の部材の材料は、金属から複合材に遷移している。また、航空機の高度化に伴い、電子機器の使用が増大している。すなわち、近年においては、発熱部の発熱量が増大しているのに対し、航空機の部材の熱伝導率は低下している。そのため、発熱部で発生した熱を効率良く放出できる技術の案出が要望される。   In recent years, the materials of aircraft components have transitioned from metal to composites. Also, with the advancement of aircraft, the use of electronic devices is increasing. That is, in recent years, while the calorific value of the heat generating portion has increased, the thermal conductivity of the members of the aircraft has decreased. Therefore, it is required to devise a technology capable of efficiently releasing the heat generated in the heat generating portion.

本発明の態様は、航空機又は人工衛星などの発熱部で発生した熱を効率良く放出できる部材を提供することを目的とする。   An aspect of the present invention is to provide a member capable of efficiently releasing heat generated in a heat generating portion such as an aircraft or a satellite.

本発明の第1の態様に従えば、金属コート炭素繊維及びピッチ系炭素繊維の一方又は両方を含む熱伝導性炭素繊維で強化されたプラスチックを有する第1複合部材を備え、繊維方向に関して前記熱伝導性炭素繊維の一端部が発熱部に配置され、前記熱伝導性炭素繊維の他端部が放熱部に配置される部材が提供される。   According to a first aspect of the present invention, there is provided a first composite member comprising a thermally conductive carbon fiber reinforced plastic comprising metal coated carbon fiber and / or pitch based carbon fiber, said heat in relation to the fiber direction A member is provided, wherein one end of the conductive carbon fiber is disposed in the heat generating portion, and the other end of the thermally conductive carbon fiber is disposed in the heat radiating portion.

本発明の第1の態様によれば、第1複合部材が金属コート炭素繊維及びピッチ系炭素繊維の一方又は両方を含む熱伝導性炭素繊維で強化された炭素繊維強化プラスチックを含み、その熱伝導性炭素繊維の一端部が発熱部に配置され、他端部が放熱部に配置される。そのため、発熱部で発生した熱は、熱伝導性炭素繊維を伝わって、効率良く放熱部に放出される。また、第1複合部材は、航空機又は人工衛星などの強度部材として使用可能である。そのため、金属シート又はジャンパー線のような専用の熱流路材を別途設けなくても、発熱部の熱を放熱部に放出することができる。そのため、重量の増大を抑制しつつ、発熱部で発生した熱が、効率良く放熱部に放出される。また、熱伝導性炭素繊維とプラスチックとは一緒に成型されるので、ロバスト性が向上する。   According to a first aspect of the present invention, a first composite member comprises a carbon fiber reinforced plastic reinforced with a thermally conductive carbon fiber comprising one or both of metal coated carbon fiber and pitch carbon fiber, the thermal conductivity of which One end of the carbon fiber is disposed in the heat generating portion, and the other end is disposed in the heat radiating portion. Therefore, the heat generated in the heat generating portion is conducted to the heat conductive carbon fiber and is efficiently released to the heat radiating portion. In addition, the first composite member can be used as a strength member such as an aircraft or a satellite. Therefore, the heat of the heat generating portion can be released to the heat radiating portion without separately providing a dedicated heat flow passage material such as a metal sheet or a jumper wire. Therefore, the heat generated in the heat generating portion is efficiently released to the heat radiating portion while suppressing an increase in weight. Also, since the thermally conductive carbon fiber and the plastic are molded together, the robustness is improved.

本発明の第2の態様に従えば、金属コート炭素繊維及びピッチ系炭素繊維の一方又は両方を含む熱伝導性炭素繊維で強化されたプラスチックを有する第1複合部材を備え、繊維方向に関して前記熱伝導性炭素繊維の中央部が発熱部に配置され、前記熱伝導性炭素繊維の一端部及び他端部が放熱部に配置される部材が提供される。   According to a second aspect of the present invention, there is provided a first composite member comprising a thermally conductive carbon fiber reinforced plastic comprising metal coated carbon fibers and / or pitch based carbon fibers, said heat in relation to the fiber direction A member is provided, wherein a central portion of the conductive carbon fiber is disposed in the heat generating portion, and one end and the other end of the thermally conductive carbon fiber are disposed in the heat radiating portion.

本発明の第2の態様によれば、熱伝導性炭素繊維の中央部が発熱部に配置され、一端部及び他端部が放熱部に配置されるので、発熱部で発生した熱は、熱伝導性炭素繊維を伝わって、効率良く放熱部に放出される。そのため、重量の増大を抑制しつつ、発熱部で発生した熱が、効率良く放熱部に放出される。また、熱伝導性炭素繊維とプラスチックとは一緒に成型されるので、ロバスト性が向上する。   According to the second aspect of the present invention, the central portion of the thermally conductive carbon fiber is disposed in the heat generating portion, and the one end portion and the other end are disposed in the heat radiating portion. It travels through the conductive carbon fiber and is efficiently released to the heat sink. Therefore, the heat generated in the heat generating portion is efficiently released to the heat radiating portion while suppressing an increase in weight. Also, since the thermally conductive carbon fiber and the plastic are molded together, the robustness is improved.

本発明の第1の態様又は第2の態様において、前記第1複合部材は、前記繊維方向と交差する並列方向に配置された複数の前記熱伝導性炭素繊維を含むプリプレグシートを前記繊維方向及び前記並列方向と交差する積層方向に複数積層した積層体を含み、前記繊維方向に関する熱伝導率は、前記並列方向に関する熱伝導率及び前記積層方向に関する熱伝導率よりも大きくてもよい。   In the first aspect or the second aspect of the present invention, the first composite member includes a prepreg sheet including a plurality of the thermally conductive carbon fibers arranged in a parallel direction crossing the fiber direction, and the fiber direction and The heat conductivity with respect to the fiber direction may be greater than the heat conductivity with respect to the parallel direction and the heat conductivity with respect to the stacking direction.

これにより、熱伝導率に異方性が付与されるので、発熱部で発生した熱が、並列方向及び積層方向に伝わることが抑制され、放熱部に効率良く放出される。   Thereby, the thermal conductivity is imparted with anisotropy, so that the heat generated in the heat generating portion is suppressed from being transmitted in the parallel direction and the stacking direction, and is efficiently released to the heat radiating portion.

本発明の第1の態様及び第2の態様において、前記第1複合部材は板状部材であり、前記第1複合部材の表面及び裏面の一方又は両方に配置され、炭素繊維で強化されたプラスチックを含む第2複合部材を備え、前記熱伝導性炭素繊維の一端部及び他端部のそれぞれは露出してもよい。   In the first aspect and the second aspect of the present invention, the first composite member is a plate-like member, and a carbon fiber reinforced plastic is disposed on one or both of the front surface and the back surface of the first composite member. And the other end of the thermally conductive carbon fiber may be exposed.

これにより、第1複合部材が第2複合部材で支持され、強度が維持される。熱伝導性炭素繊維の一端部及び他端部のそれぞれは、第2複合部材で覆われずに露出するので、発熱部で発生した熱は、放熱部から効率良く放出される。   Thereby, the first composite member is supported by the second composite member, and the strength is maintained. Each of the one end portion and the other end portion of the thermally conductive carbon fiber is exposed without being covered by the second composite member, so the heat generated in the heat generating portion is efficiently released from the heat radiating portion.

本発明の第1の態様及び第2の態様において、前記発熱部は、前記航空機の電子機器を含み、前記放熱部は、前記航空機の燃料タンクを含んでもよい。   In the first aspect and the second aspect of the present invention, the heat generating portion may include the electronic device of the aircraft, and the heat radiating portion may include a fuel tank of the aircraft.

これにより、電子機器の発熱量が増大しても、電子機器で発生した熱は、燃料タンクに効率良く放出される。   Thereby, even if the calorific value of the electronic device increases, the heat generated by the electronic device is efficiently released to the fuel tank.

本発明の態様によれば、発熱部で発生した熱を効率良く放出できる部材が提供される。   According to an aspect of the present invention, a member capable of efficiently releasing the heat generated in the heat generating portion is provided.

図1は、第1実施形態に係る航空機の一例を示す図である。FIG. 1 is a view showing an example of an aircraft according to the first embodiment. 図2は、第1実施形態に係る複合部材の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the composite member according to the first embodiment. 図3は、第1実施形態に係る複合部材の製造方法の一例を模式的に示す図である。FIG. 3: is a figure which shows typically an example of the manufacturing method of the composite member which concerns on 1st Embodiment. 図4は、第1実施形態に係る部材の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a member according to the first embodiment. 図5は、第2実施形態に係る部材の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a member according to the second embodiment. 図6は、第3実施形態に係る航空機の主翼の一例を示す平面図である。FIG. 6 is a plan view showing an example of the main wing of the aircraft according to the third embodiment. 図7は、第3実施形態に係るシアタイの一例を概略的に示す図である。FIG. 7 is a view schematically showing an example of a shear tie according to a third embodiment. 図8は、第3実施形態に係るシアタイの一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a shear tie according to a third embodiment.

以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The components of each embodiment described below can be combined as appropriate. In addition, some components may not be used.

<第1実施形態>
第1実施形態について説明する。図1は、本実施形態に係る航空機1の一例を示す図である。図1に示すように、航空機1は、胴体2と、主翼3と、水平尾翼4と、垂直尾翼5と、エンジン6と、燃料タンク7と、コックピット8と、電子機器9と、バッテリ10と、を備えている。
First Embodiment
The first embodiment will be described. FIG. 1 is a view showing an example of an aircraft 1 according to the present embodiment. As shown in FIG. 1, the aircraft 1 includes a fuselage 2, a main wing 3, a horizontal tail 4, a vertical tail 5, an engine 6, a fuel tank 7, a cockpit 8, an electronic device 9, and a battery 10. And.

胴体2、主翼3、水平尾翼4、及び垂直尾翼5の少なくとも一部は、複合材で形成されている。複合材は、炭素繊維で強化されたプラスチックである炭素繊維強化プラスチック(carbon fiber reinforced plastic:CFRP)を含む。なお、複合材が、ガラス繊維で強化されたプラスチックであるガラス繊維強化プラスチック(glass fiber reinforced plastic:GFRP)を含んでもよい。   At least a portion of the fuselage 2, the main wing 3, the horizontal tail 4 and the vertical tail 5 is formed of a composite material. The composite includes carbon fiber reinforced plastic (CFRP), which is a carbon fiber reinforced plastic. The composite material may include glass fiber reinforced plastic (GFRP) which is a glass fiber reinforced plastic.

なお、胴体2、主翼3、水平尾翼4、及び垂直尾翼5の少なくとも一部が、アルミニウム合金(ジュラルミン)のような金属で形成されてもよい。   Note that at least a portion of the fuselage 2, the main wing 3, the horizontal tail wing 4, and the vertical tail wing 5 may be formed of a metal such as an aluminum alloy (duralmin).

本実施形態において、航空機1の部材の少なくとも一部は、金属コート炭素繊維(MC)で強化されたプラスチックである金属コート炭素繊維強化プラスチックを有する。金属コート炭素繊維で強化されたプラスチックは、MC−CFRP、とも呼ばれる。金属コート炭素繊維は、熱伝導性を有する熱伝導性炭素繊維である。   In the present embodiment, at least a part of the members of the aircraft 1 has a metal-coated carbon fiber reinforced plastic which is a metal-reinforced carbon fiber (MC) reinforced plastic. Plastics reinforced with metal coated carbon fibers are also called MC-CFRP. The metal coated carbon fiber is a thermally conductive carbon fiber having thermal conductivity.

図2は、本実施形態に係る金属コート炭素繊維強化プラスチックを含む複合部材11の一例を模式的に示す斜視図である。図2に示すように、複合部材11は、金属コート炭素繊維12で強化されたプラスチック13である金属コート炭素繊維強化プラスチック14を有する。金属コート炭素繊維12は、炭素繊維15と、炭素繊維15に被覆された金属16とを有する。   FIG. 2: is a perspective view which shows typically an example of the composite member 11 containing the metal coat carbon fiber reinforced plastic which concerns on this embodiment. As shown in FIG. 2, the composite member 11 has a metal-coated carbon fiber reinforced plastic 14 which is a plastic 13 reinforced with metal-coated carbon fibers 12. The metal-coated carbon fiber 12 has a carbon fiber 15 and a metal 16 coated on the carbon fiber 15.

複合部材11は、複数の金属コート炭素繊維12を有する。金属コート炭素繊維12は、第1の方向に長い。複数の金属コート炭素繊維12が、第1の方向と直交する第2の方向に並列に並べられる。また、複数の金属コート炭素繊維12が、第1の方向及び第2の方向と直交する第3の方向に配置される。   The composite member 11 has a plurality of metal coated carbon fibers 12. The metal coated carbon fiber 12 is long in the first direction. A plurality of metal coated carbon fibers 12 are arranged in parallel in a second direction orthogonal to the first direction. Also, a plurality of metal coated carbon fibers 12 are disposed in a third direction orthogonal to the first direction and the second direction.

以下の説明においては、金属コート炭素繊維12の長手方向(第1の方向)を適宜、繊維方向、と称する。また、以下の説明においては、複数の金属コート炭素繊維12が並べられる方向(第2の方向)を適宜、並列方向、と称する。また、以下の説明においては、複数の金属コート炭素繊維12が配置される方向(第3の方向)を適宜、積層方向、と称する。   In the following description, the longitudinal direction (first direction) of the metal-coated carbon fiber 12 is appropriately referred to as a fiber direction. Moreover, in the following description, the direction (second direction) in which the plurality of metal-coated carbon fibers 12 are arranged is appropriately referred to as a parallel direction. Moreover, in the following description, the direction (third direction) in which the plurality of metal-coated carbon fibers 12 are arranged is appropriately referred to as a lamination direction.

複数の金属コート炭素繊維12は、並列方向及び積層方向のそれぞれに関して、間隔をあけて配置される。複数の金属コート炭素繊維12の間に、プラスチック13が配置される。本実施形態において、プラスチック13は、エポキシ樹脂を含む。   The plurality of metal-coated carbon fibers 12 are spaced apart in each of the parallel direction and the stacking direction. The plastic 13 is disposed between the plurality of metal coated carbon fibers 12. In the present embodiment, the plastic 13 contains an epoxy resin.

金属コート炭素繊維12の炭素繊維15の直径は、例えば、5μm以上10μm以下である。炭素繊維15の表面に金属16が被覆されている。金属16の熱伝導率は、炭素繊維15の熱伝導率よりも高い。プラスチック13の熱伝導率は、金属16の熱伝導率及び炭素繊維15の熱伝導率よりも低い。すなわち、プラスチック13の熱伝導率は、金属コート炭素繊維12の熱伝導率よりも低い。   The diameter of the carbon fiber 15 of the metal-coated carbon fiber 12 is, for example, 5 μm or more and 10 μm or less. The metal 16 is coated on the surface of the carbon fiber 15. The thermal conductivity of the metal 16 is higher than the thermal conductivity of the carbon fiber 15. The thermal conductivity of the plastic 13 is lower than the thermal conductivity of the metal 16 and the thermal conductivity of the carbon fiber 15. That is, the thermal conductivity of the plastic 13 is lower than the thermal conductivity of the metal-coated carbon fiber 12.

本実施形態において、金属16は、ニッケルである。金属コート炭素繊維12は、ニッケルコート炭素繊維である。なお、金属16は、金、銀、及び銅の少なくとも一つでもよい。   In the present embodiment, the metal 16 is nickel. The metal coated carbon fiber 12 is a nickel coated carbon fiber. The metal 16 may be at least one of gold, silver and copper.

図3は、本実施形態に係る複合部材11の製造方法の一例を模式的に示す図である。図3の(ステップA)に示すように、金属コート炭素繊維12が製造される。金属コート炭素繊維12は、直径が5μmから10μm程度の炭素繊維15に金属16を被覆することによって製造される。本実施形態においては、金属16として、ニッケルが被覆される。なお、金属16として、金、銀、及び銅の少なくとも一つが被覆されてもよい。   FIG. 3: is a figure which shows typically an example of the manufacturing method of the composite member 11 which concerns on this embodiment. As shown in FIG. 3 (Step A), metal coated carbon fibers 12 are produced. The metal-coated carbon fiber 12 is manufactured by coating a metal 16 on a carbon fiber 15 having a diameter of about 5 μm to 10 μm. In the present embodiment, nickel is coated as the metal 16. Note that at least one of gold, silver, and copper may be coated as the metal 16.

図3の(ステップB)に示すように、複数の金属コート炭素繊維12が並列方向に並べられ、エポキシ樹脂のようなブラスチック13で固められる。複数の金属コート炭素繊維12は、撚らずに、引き揃えられた状態で、プラスチック13で固められる。   As shown in FIG. 3 (Step B), a plurality of metal-coated carbon fibers 12 are arranged in a parallel direction and hardened with a plastic 13 such as an epoxy resin. The plurality of metal coated carbon fibers 12 are consolidated with the plastic 13 in a straightened state without twisting.

並列方向は、繊維方向に配置された複数の金属コート炭素繊維12が並べられる方向である。繊維方向と並列方向とは直交する。   The parallel direction is a direction in which the plurality of metal-coated carbon fibers 12 arranged in the fiber direction are arranged. The fiber direction and the parallel direction are orthogonal to each other.

プラスチック13と、並列方向に配置されプラスチック13で固められた複数の金属コート炭素繊維12とを含むシート状の部材は、プリプレグシート17、と呼ばれる。   A sheet-like member including a plastic 13 and a plurality of metal-coated carbon fibers 12 arranged in a parallel direction and hardened with the plastic 13 is called a prepreg sheet 17.

図3の(ステップC)に示すように、製造された複数のプリプレグシート17が積層方向に積層される。   As shown in (Step C) of FIG. 3, a plurality of manufactured prepreg sheets 17 are stacked in the stacking direction.

積層方向は、プリプレグシート17が複数積層される方向である。積層方向は、繊維方向及び並列方向と直交する。   The stacking direction is a direction in which a plurality of prepreg sheets 17 are stacked. The stacking direction is orthogonal to the fiber direction and the parallel direction.

プリプレグシート17の積層体は、オートクレーブと呼ばれる加熱加圧装置で、高温高圧下で加熱処理される。これにより、複数のプリプレグシート17の積層体である複合部材11が製造される。   The laminate of the prepreg sheet 17 is heat-treated under high temperature and high pressure by a heating and pressurizing device called an autoclave. Thereby, the composite member 11 which is a laminate of the plurality of prepreg sheets 17 is manufactured.

なお、本実施形態においては、複数のプリプレグシート17の金属コート炭素繊維12が全て同一方向に配置される、所謂、一方向積層であることとした。第1のプリプレグシート17の金属コート繊維12が第1の方向に配置され、第1のプリプレグシート17に重なる第2のプリプレグシート17の金属コート繊維12が第1のプリプレグシート17の第1の方向と交差する第2の方向に配置される、所謂、クロスプライ積層でもよい。   In the present embodiment, all the metal-coated carbon fibers 12 of the plurality of prepreg sheets 17 are arranged in the same direction, that is, so-called unidirectional lamination. The metal-coated fibers 12 of the first prepreg sheet 17 are disposed in the first direction, and the metal-coated fibers 12 of the second prepreg sheet 17 overlapping the first prepreg sheet 17 are the first of the first prepreg sheets 17. It may be a so-called cross-ply laminate disposed in a second direction intersecting the direction.

図4は、本実施形態に係る航空機1用の部材(熱流路材)20の一例を示す断面図である。本実施形態において、部材20は、複合部材11と、複合部材11に接続される複合部材21と、を含む。部材20は、胴体2、主翼3、水平尾翼4、及び垂直尾翼5の少なくとも一部に使用される。   FIG. 4 is a cross-sectional view showing an example of a member (heat flow path material) 20 for the aircraft 1 according to the present embodiment. In the present embodiment, the member 20 includes the composite member 11 and the composite member 21 connected to the composite member 11. The member 20 is used for at least a part of the fuselage 2, the main wing 3, the horizontal tail 4 and the vertical tail 5.

例えば、金属コート炭素繊維12を含むプリプレグシートと、金属が被覆されていない炭素繊維を含むプリブレクシートとが積層され、その積層体がオートクレーブで加熱加圧処理されることによって、部材20が製造されてもよい。   For example, a member 20 is manufactured by laminating a prepreg sheet containing metal coated carbon fibers 12 and a pre-bleaked sheet containing carbon fibers not coated with a metal, and subjecting the laminated body to heating and pressing in an autoclave. May be

図4に示すように、繊維方向に関して金属コート炭素繊維12の一端部12Aが航空機1の発熱部に配置される。繊維方向に関して金属コート炭素繊維12の他端部12Bが航空機1の放熱部に配置される。   As shown in FIG. 4, one end 12 A of the metal-coated carbon fiber 12 is disposed in the heat generating portion of the aircraft 1 in the fiber direction. The other end 12 B of the metal-coated carbon fiber 12 in the fiber direction is disposed in the heat dissipation portion of the aircraft 1.

航空機1の発熱部は、例えば、航空機1の電子機器9、バッテリ10、及びエンジン6の少なくとも一つを含む。また、発熱部は、電子機器9の筐体を含む。航空機1の放熱部は、例えば、航空機1の燃料タンク7を含む。なお、航空機1の放熱部が、航空機1の外部空間(胴体2の外面に面する空間)でもよい。   The heat generating portion of the aircraft 1 includes, for example, at least one of the electronic device 9 of the aircraft 1, the battery 10, and the engine 6. In addition, the heat generating portion includes the housing of the electronic device 9. The heat dissipation unit of the aircraft 1 includes, for example, a fuel tank 7 of the aircraft 1. Note that the heat dissipation unit of the aircraft 1 may be an external space of the aircraft 1 (a space facing the outer surface of the fuselage 2).

複合部材11は、板状部材である。図4に示す例では、複合部材11の表面及び裏面のそれぞれに、複合部材21が配置される。複合部材21は、炭素繊維で強化されたプラスチックを含む炭素繊維強化プラスチックを有する。   The composite member 11 is a plate-like member. In the example shown in FIG. 4, the composite member 21 is disposed on each of the front and back surfaces of the composite member 11. The composite member 21 has a carbon fiber reinforced plastic including a carbon fiber reinforced plastic.

複合部材21の炭素繊維強化プラスチックの炭素繊維には、金属が被覆されていない。繊維方向に関する複合部材21の熱伝導率は、繊維方向に関する複合部材11の熱伝導率よりも低い。並列方向に関する複合部材21の熱伝導率は、繊維方向に関する複合部材11の熱伝導率よりも低い。積層方向に関する複合部材21の熱伝導率は、繊維方向に関する複合部材11の熱伝導率よりも低い。   The carbon fiber of the carbon fiber reinforced plastic of the composite member 21 is not coated with metal. The thermal conductivity of the composite member 21 in the fiber direction is lower than the thermal conductivity of the composite member 11 in the fiber direction. The thermal conductivity of the composite members 21 in the parallel direction is lower than the thermal conductivity of the composite members 11 in the fiber direction. The thermal conductivity of the composite member 21 in the stacking direction is lower than the thermal conductivity of the composite member 11 in the fiber direction.

なお、並列方向に関する複合部材21の熱伝導率は、並列方向に関する複合部材11の熱伝導率と等しくてもよいし、並列方向に関する複合部材11よりも低くてもよい。積層方向に関する複合部材21の熱伝導率は、積層方向に関する複合部材11の熱伝導率と等しくてもよいし、積層方向に関する複合部材11よりも低くてもよい。   The thermal conductivity of the composite members 21 in the parallel direction may be equal to the thermal conductivity of the composite members 11 in the parallel direction, or may be lower than that of the composite members 11 in the parallel direction. The thermal conductivity of the composite member 21 in the stacking direction may be equal to the thermal conductivity of the composite member 11 in the stacking direction, or may be lower than that of the composite member 11 in the stacking direction.

金属コート炭素繊維12の一端部12A及び他端部12Bのそれぞれに、複合部材21は配置されない。金属コート炭素繊維12の一端部12A及び他端部12Bのそれぞれは、露出する。金属コート炭素繊維12の一端部12Aは、発熱部と接触する。なお、金属コート炭素繊維12の一端部12Aは、発熱部と間隙を介して対向してもよい。金属コート炭素繊維12の他端部12Bは、放熱部と接触する。金属コート炭素繊維12の他端部12Bは、放熱部と間隙を介して対向してもよい。   The composite member 21 is not disposed at each of the one end 12A and the other end 12B of the metal-coated carbon fiber 12. Each of the one end 12A and the other end 12B of the metal-coated carbon fiber 12 is exposed. One end 12A of the metal-coated carbon fiber 12 contacts the heating portion. The one end 12A of the metal-coated carbon fiber 12 may be opposed to the heat generating portion via a gap. The other end 12B of the metal-coated carbon fiber 12 is in contact with the heat radiating portion. The other end 12 </ b> B of the metal-coated carbon fiber 12 may be opposed to the heat dissipation portion via a gap.

なお、複合部材21は、複合部材11の表面に配置され、複合部材11の裏面に配置されなくてもよい。複合部材21は、複合部材11の裏面に配置され、複合部材11の表面に配置されなくてもよい。複合部材21は、複合部材11の表面及び裏面の両方に配置されなくてもよい。   The composite member 21 may be disposed on the front surface of the composite member 11 and may not be disposed on the back surface of the composite member 11. The composite member 21 may be disposed on the back surface of the composite member 11 and may not be disposed on the surface of the composite member 11. The composite member 21 may not be disposed on both of the front and back surfaces of the composite member 11.

部材20の繊維方向に金属コート炭素繊維12が配置されている。部材20の並列方向及び積層方向のそれぞれにおいて、複数の金属コート炭素繊維12の間にプラスチック13が配置されている。繊維方向に関する部材20の熱伝導率は、並列方向に関する部材20の熱伝導率及び積層方向に関する部材20の熱伝導率よりも大きい。   Metal coated carbon fibers 12 are disposed in the fiber direction of the member 20. The plastic 13 is disposed between the plurality of metal-coated carbon fibers 12 in each of the parallel direction and the stacking direction of the members 20. The thermal conductivity of the members 20 in the fiber direction is greater than the thermal conductivity of the members 20 in the parallel direction and the thermal conductivity of the members 20 in the stacking direction.

発熱部の熱は、一端部12Aより金属コート炭素繊維12に吸収される。金属コート炭素繊維12に吸収された熱は、その金属コート炭素繊維12を伝わって、他端部12Bより放出(排熱)される。   The heat of the heat generating portion is absorbed by the metal coated carbon fiber 12 from the one end 12A. The heat absorbed by the metal-coated carbon fiber 12 is transmitted along the metal-coated carbon fiber 12 and released (exhaust heat) from the other end 12B.

並列方向に関する部材20の熱伝導率及び積層方向に関する部材20の熱伝導率は、繊維方向に関する部材20の熱伝導率よりも小さい。したがって、金属コート炭素繊維12の熱は、専ら、繊維方向に移動する。金属コート炭素繊維12の熱が並列方向及び積層方向に伝達することは抑制される。   The thermal conductivity of the members 20 in the parallel direction and the thermal conductivity of the members 20 in the stacking direction are smaller than the thermal conductivity of the members 20 in the fiber direction. Therefore, the heat of the metal-coated carbon fiber 12 moves exclusively in the fiber direction. Transfer of the heat of the metal-coated carbon fiber 12 in the parallel direction and the stacking direction is suppressed.

また、本実施形態においては、積層方向に関して複合部材11の表面及び裏面のそれぞれに複合部材21が配置される。繊維方向、並列方向、及び積層方向のそれぞれの複合部材21の熱伝達率は、繊維方向に関する複合部材11の熱伝達率よりも小さい。そのため、金属コート炭素繊維12の熱が、複合部材21の表面から放出されることが抑制される。   Further, in the present embodiment, the composite member 21 is disposed on each of the front surface and the back surface of the composite member 11 in the stacking direction. The heat transfer coefficient of each composite member 21 in the fiber direction, the parallel direction, and the stacking direction is smaller than the heat transfer coefficient of the composite member 11 in the fiber direction. Therefore, the heat of the metal-coated carbon fiber 12 is suppressed from being released from the surface of the composite member 21.

以上説明したように、本実施形態によれば、複合部材11が金属コート炭素繊維12で強化された金属コート炭素繊維強化プラスチック14を含み、その金属コート炭素繊維12の一端部12Aが航空機1の発熱部に配置され、金属コート炭素繊維12の他端部12Bが航空機1の放熱部に配置される。金属コート炭素繊維12の金属16は、高い熱伝導率を有する。そのため、発熱部で発生した熱は、金属コート炭素繊維12を伝わって、効率良く放熱部に放出される。   As described above, according to the present embodiment, the composite member 11 includes the metal-coated carbon fiber reinforced plastic 14 reinforced with the metal-coated carbon fiber 12, and one end 12 A of the metal-coated carbon fiber 12 is the aircraft 1. The other end 12 B of the metal-coated carbon fiber 12 is disposed in the heat dissipation portion of the aircraft 1. The metal 16 of the metal coated carbon fiber 12 has high thermal conductivity. Therefore, the heat generated in the heat generating portion is transmitted to the metal coated carbon fiber 12 and is efficiently released to the heat radiating portion.

また、複合部材11は、航空機1の強度部材として使用可能である。そのため、従来のような、金属シート又はジャンパー線のような専用の熱流路材を別途設けなくても、発熱部の熱を放熱部に放出できる。そのため、航空機1の重量の増大を抑制しつつ、航空機1の発熱部で発生した熱は、効率良く放熱部に放出される。   The composite member 11 can also be used as a strength member of the aircraft 1. Therefore, the heat of the heat generating portion can be released to the heat radiating portion without separately providing a dedicated heat flow path material such as a conventional metal sheet or a jumper wire. Therefore, while suppressing an increase in the weight of the aircraft 1, the heat generated in the heat generating portion of the aircraft 1 is efficiently released to the heat radiating portion.

本実施形態においては、複合部材11は、繊維方向と交差する並列方向に配置された複数の金属コート炭素繊維12を含むプリプレグシート17を、繊維方向及び並列方向と交差する積層方向に複数積層した積層体を含む。繊維方向に関する部材20の熱伝導率は、並列方向に関する部材20の熱伝導率及び積層方向に関する部材の熱伝導率よりも大きい。これにより、熱伝導率に異方性が付与され、発熱部で発生した熱が、並列方向及び積層方向に伝わることが抑制され、放熱部に効率良く放出される。例えば、部材20の並列方向及び積層方向の少なくとも一方に、加熱したくない部材又は機器が存在する場合、熱伝達率に異方性を持つ部材20によって、その部材又は機器に熱が伝達されることが抑制される。   In the present embodiment, the composite member 11 is formed by laminating a plurality of prepreg sheets 17 each including a plurality of metal-coated carbon fibers 12 disposed in a parallel direction intersecting the fiber direction in a lamination direction intersecting the fiber direction and the parallel direction Including a laminate. The thermal conductivity of the members 20 in the fiber direction is greater than the thermal conductivity of the members 20 in the parallel direction and the thermal conductivity of the members in the stacking direction. Thereby, anisotropy is imparted to the thermal conductivity, and the heat generated in the heat generating portion is suppressed from being transmitted in the parallel direction and the stacking direction, and is efficiently released to the heat radiating portion. For example, when there is a member or device that does not want to heat in at least one of the parallel direction and the stacking direction of the members 20, heat is transferred to the member or device by the member 20 having anisotropy in heat transfer coefficient Is suppressed.

本実施形態においては、複合部材11は板状部材であり、部材20は、複合部材11の表面及び裏面の一方又は両方に配置された炭素繊維強化プラスチックを含む複合部材21を備える。これにより、複合部材11が複合部材21で支持され、強度が維持される。また、複合部材21の熱伝導率は、繊維方向に関する複合部材11の熱伝導率よりも小さい。そのため、部材20の並列方向及び積層方向の少なくとも一方に、加熱したくない部材又は機器が存在する場合、複合部材21によって、その部材又は機器に熱が伝達されることが抑制される。   In the present embodiment, the composite member 11 is a plate-like member, and the member 20 includes the composite member 21 including a carbon fiber reinforced plastic disposed on one or both of the front surface and the back surface of the composite member 11. Thereby, the composite member 11 is supported by the composite member 21 and the strength is maintained. Further, the thermal conductivity of the composite member 21 is smaller than the thermal conductivity of the composite member 11 in the fiber direction. Therefore, when there is a member or device that you do not want to heat in at least one of the parallel direction and the stacking direction of the members 20, the composite member 21 suppresses the transfer of heat to the member or device.

また、本実施形態においては、金属コート炭素繊維12の一端部12A及び他端部12Bのそれぞれは、複合部材21などによって覆われてなく、露出する。一端部12Aが露出しているので、発熱部で発生した熱は、一端部12Aを介して、金属コート炭素繊維12の金属16に効率良く吸収される。他端部12Bが露出しているので、発熱部で発生し、金属コート炭素繊維12の金属16を移動した熱は、他端部12Bを介して、放熱部に効率良く放出される。このように、本実施形態においては、金属コート炭素繊維12の一端部12A及び他端部12Bのそれぞれは露出しているので、発熱部で発生した熱は、放熱部から効率良く放出される。   Further, in the present embodiment, each of the one end 12A and the other end 12B of the metal-coated carbon fiber 12 is not covered by the composite member 21 or the like, and is exposed. Since the one end 12A is exposed, the heat generated in the heat generating portion is efficiently absorbed by the metal 16 of the metal-coated carbon fiber 12 through the one end 12A. Since the other end 12B is exposed, the heat generated in the heat generating part and transferred to the metal 16 of the metal coated carbon fiber 12 is efficiently released to the heat dissipation part via the other end 12B. As described above, in the present embodiment, since each of the one end 12A and the other end 12B of the metal-coated carbon fiber 12 is exposed, the heat generated in the heat generating portion is efficiently released from the heat radiating portion.

本実施形態においては、航空機1の発熱部は、航空機1の電子機器9を含む。航空機1の放熱部は、航空機1の燃料タンク7を含む。これにより、航空機1の高度化により、電子機器9の使用が増大し、電子機器9の発熱量が増大しても、電子機器9で発生した熱は、燃料タンク7に効率良く放出される。   In the present embodiment, the heat generating portion of the aircraft 1 includes the electronic device 9 of the aircraft 1. The heat dissipation unit of the aircraft 1 includes a fuel tank 7 of the aircraft 1. As a result, the use of the electronic device 9 is increased as the aircraft 1 is advanced, and the heat generated by the electronic device 9 is efficiently released to the fuel tank 7 even if the calorific value of the electronic device 9 is increased.

<第2実施形態>
第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
Second Embodiment
The second embodiment will be described. In the following description, the component parts identical or equivalent to those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.

図5は、部材20の使用方法の一例を示す断面図である。図5に示すように、航空機1の発熱部が、部材20のうち、一端部12Aと他端部12Bとの間の中央部に配置されてもよい。すなわち、繊維方向に関して金属コート炭素繊維12の中央部が発熱部に配置され、金属コート炭素繊維12の一端部12A及び他端部12Bが放熱部に配置されてもよい。本実施形態においては、一端部12A及び他端部12Bのそれぞれが、航空機1の放熱部に配置される。発熱部で発生した熱は、一端部12A及び他端部12Bのそれぞれから放出される。また、金属コート炭素繊維12の一端部12A及び他端部12Bのそれぞれが露出することにより、発熱部で発生した熱は、放熱部から効率良く放出される。   FIG. 5 is a cross-sectional view showing an example of how to use the member 20. As shown in FIG. As shown in FIG. 5, the heat generating portion of the aircraft 1 may be disposed at a central portion of the member 20 between the one end 12A and the other end 12B. That is, the central portion of the metal-coated carbon fiber 12 may be disposed in the heat generating portion in the fiber direction, and the one end 12A and the other end 12B of the metal-coated carbon fiber 12 may be disposed in the heat dissipation portion. In the present embodiment, each of the one end 12A and the other end 12B is disposed in the heat dissipation unit of the aircraft 1. The heat generated in the heat generating portion is released from each of the one end 12A and the other end 12B. Further, when the one end 12A and the other end 12B of the metal-coated carbon fiber 12 are exposed, the heat generated in the heat generating portion is efficiently released from the heat radiating portion.

<第3実施形態>
第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
Third Embodiment
A third embodiment will be described. In the following description, the component parts identical or equivalent to those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.

図6は、航空機1の主翼3の平面図を示す。リブライン29の少なくとも一部に、後述するシアタイ(構造材)31が配置される。   FIG. 6 shows a plan view of the main wing 3 of the aircraft 1. A shear tie (structural material) 31 described later is disposed on at least a part of the rib line 29.

図7は、外板30とシアタイ31との位置関係を概略的に示す図である。シアタイ31は、ストリンガ、リブ等と外板30とを結合する部材である。本実施形態において、シアタイ31は、炭素繊維強化プラスチックを含む複合部材21と、金属コート炭素繊維強化プラスチック14を含む複合部材11とによって形成される。   FIG. 7 schematically shows the positional relationship between the outer plate 30 and the shear tie 31. As shown in FIG. The shear ties 31 are members that connect the stringers, ribs, and the like to the outer plate 30. In the present embodiment, the shear tie 31 is formed by the composite member 21 containing carbon fiber reinforced plastic and the composite member 11 containing metal coated carbon fiber reinforced plastic 14.

外板30とシアタイ31とは、ファスナ51によって固定される。ファスナ51の先端にカラー(ナット)37が結合されることによって、外板30とシアタイ31とが固定される。カラー37とシアタイ31との間には、ワッシャ41及びスペーサ42が配置される。   The outer plate 30 and the shear tie 31 are fixed by fasteners 51. The outer plate 30 and the shear tie 31 are fixed by connecting the collar (nut) 37 to the tip of the fastener 51. A washer 41 and a spacer 42 are disposed between the collar 37 and the shear tie 31.

カラー37、ワッシャ41、及びスペーサ42は、キャップ44によって覆われる。キャップ44は、シアタイ31に密着するように配置される。   The collar 37, the washer 41 and the spacer 42 are covered by a cap 44. The cap 44 is disposed in close contact with the shear tie 31.

外板30は、炭素繊維強化プラスチック層32と、ガラス繊維強化プラスチック層34と、銅ペイント層39と、を含む。   The outer plate 30 includes a carbon fiber reinforced plastic layer 32, a glass fiber reinforced plastic layer 34, and a copper paint layer 39.

図8は、本実施形態に係るシアタイ31の一例を示す断面図である。シアタイ31は、炭素繊維強化プラスチックを含む複合部材21と、金属コート炭素繊維強化プラスチック14を含む複合部材11とによって形成される。複合部材11は、複合部材21によって挟まれる。複合部材11は、シアタイ31の一部に設けられる。図8において、シアタイ31の下端部に、複合部材11の金属コート炭素繊維12の一端部12Aが配置される。シアタイ31の左側の上端部に、複合部材11の金属コート炭素繊維12の他端部12Bが配置される。図8に示す例では、シアタイ31の右側の上端部は、複合部材21によって形成される。   FIG. 8 is a cross-sectional view showing an example of the shear tie 31 according to the present embodiment. The shear tie 31 is formed of a composite member 21 containing carbon fiber reinforced plastic and a composite member 11 containing metal coated carbon fiber reinforced plastic 14. The composite member 11 is sandwiched by the composite member 21. The composite member 11 is provided on a part of the shear tie 31. In FIG. 8, one end 12 </ b> A of the metal-coated carbon fiber 12 of the composite member 11 is disposed at the lower end of the shear tie 31. The other end 12 B of the metal-coated carbon fiber 12 of the composite member 11 is disposed at the upper end portion on the left side of the shear tie 31. In the example shown in FIG. 8, the upper end on the right side of the shear tie 31 is formed by the composite member 21.

シアタイ31の下端部に、航空機1の発熱部が配置される。シアタイ31の左側の上端部に、航空機1の放熱部が配置される。   The heat generating portion of the aircraft 1 is disposed at the lower end portion of the shear tie 31. The heat radiating portion of the aircraft 1 is disposed at the upper end portion on the left side of the shear tie 31.

なお、シアタイ31の右側の上端部に、複合部材11の金属コート炭素繊維12の他端部12Bが配置され、航空機1の放熱部が配置されてもよい。なお、シアタイ31の右側の上端部及び左側の上端部の両方に、複合部材11の金属コート炭素繊維12の他端部12Bが配置され、航空機1の放熱部が配置されてもよい。なお、シアタイ31の右側の上端部及び左側の上端部の一方又は両方に、複合部材11の金属コート炭素繊維12の一端部12Aが配置され、航空機1の発熱部が配置されてもよい。シアタイ31の下端部に、複合部材11の金属コート炭素繊維12の他端部12Bが配置され、航空機1の放熱部が配置されてもよい。   The other end 12 B of the metal-coated carbon fiber 12 of the composite member 11 may be disposed at the upper end on the right side of the shear tie 31, and the radiator of the aircraft 1 may be disposed. The other end 12 B of the metal-coated carbon fiber 12 of the composite member 11 may be disposed on both the upper end on the right side and the upper end on the left of the shear tie 31, and the heat dissipation unit of the aircraft 1 may be disposed. One end 12A of the metal-coated carbon fiber 12 of the composite member 11 may be disposed on one or both of the right upper end and the left upper end of the shear tie 31, and the heat generating portion of the aircraft 1 may be disposed. The other end 12 B of the metal-coated carbon fiber 12 of the composite member 11 may be disposed at the lower end of the shear tie 31, and the heat dissipation portion of the aircraft 1 may be disposed.

以上説明したように、複合部材11及び複合部材21が曲げられていてもよいし、任意の形状(3次元形状)に加工されてもよい。   As described above, the composite member 11 and the composite member 21 may be bent or may be processed into an arbitrary shape (three-dimensional shape).

なお、上述の各実施形態において、金属コート炭素繊維12に代えて、又は金属コート炭素繊維12とともに、ピッチ系炭素繊維が配置されてもよい。ピッチ系炭素繊維は、少なくともPAN炭素繊維よりも高い熱伝導率を有する熱伝導性炭素繊維である。   In the above-described embodiments, pitch-based carbon fibers may be disposed instead of the metal-coated carbon fibers 12 or together with the metal-coated carbon fibers 12. The pitch-based carbon fiber is a thermally conductive carbon fiber having a thermal conductivity at least higher than that of PAN carbon fiber.

なお、上述の各実施形態においては、部材20が航空機1の構造部材に使用される例について説明した。部材20は、人工衛星の構造部材に使用されてもよい。   In each of the above-described embodiments, an example in which the member 20 is used as a structural member of the aircraft 1 has been described. The member 20 may be used for a structural member of a satellite.

なお、上述の各実施形態においては、繊維方向と並列方向と積層方向とは、互いに直交することとした。繊維方向と並列方向とが、例えば80度以上100度以下の角度で交差してもよい。繊維方向と積層方向とが、例えば80度以上100度以下の角度で交差してもよい。並列方向と積層方向とが、例えば80度以上100度以下の角度で交差してもよい。   In each of the above-described embodiments, the fiber direction, the parallel direction, and the stacking direction are orthogonal to each other. The fiber direction and the parallel direction may intersect at an angle of, for example, 80 degrees or more and 100 degrees or less. The fiber direction and the laminating direction may intersect at an angle of, for example, 80 degrees or more and 100 degrees or less. The parallel direction and the stacking direction may intersect at an angle of, for example, 80 degrees or more and 100 degrees or less.

1 航空機
2 胴体
3 主翼
4 水平尾翼
5 垂直尾翼
6 エンジン
7 燃料タンク
8 コックピット
9 電子機器
10 バッテリ
11 複合部材
12 金属コート炭素繊維
12A 一端部
12B 他端部
13 プラスチック
14 金属コート炭素繊維強化プラスチック
15 炭素繊維
16 金属
17 プリプレグシート
20 部材
21 複合部材
29 リブライン
30 外板
31 シアタイ
32 炭素繊維強化プラスチック層
34 ガラス繊維強化プラスチック層
37 カラー
39 銅ペイント層
41 ワッシャ
42 スペーサ
44 キャップ
51 ファスナ
Reference Signs List 1 aircraft 2 fuselage 3 wing 4 horizontal tail 5 vertical tail 6 engine 7 fuel tank 8 cockpit 9 electronic device 10 battery 11 composite member 12 metal coated carbon fiber 12A one end 12B other end 13 plastic 14 metal coated carbon fiber reinforced plastic 15 carbon Fiber 16 Metal 17 Prepreg sheet 20 Member 21 Composite member 29 Librine 30 Outer plate 31 Shear tie 32 Carbon fiber reinforced plastic layer 34 Glass fiber reinforced plastic layer 37 Color 39 Copper paint layer 41 Washer 42 Spacer 44 Cap 51 Fastener

Claims (4)

金属コート炭素繊維及びピッチ系炭素繊維の一方又は両方を含む熱伝導性炭素繊維で強化されたプラスチックを有し、航空機の強度部材として使用される第1複合部材を備え、
繊維方向に関して前記熱伝導性炭素繊維の一端部が前記航空機の発熱部に配置され、前記熱伝導性炭素繊維の他端部が前記航空機の放熱部に配置され
前記第1複合部材は、前記繊維方向と交差する並列方向に配置された複数の前記熱伝導性炭素繊維を含むプリプレグシートを前記繊維方向及び前記並列方向と交差する積層方向に複数積層した積層体を含み、
前記繊維方向に関する熱伝導率は、前記並列方向に関する熱伝導率及び前記積層方向に関する熱伝導率よりも大きい、部材。
Comprising a first composite member used as a strength member of an aircraft, comprising a thermally conductive carbon fiber reinforced plastic comprising one or both of metal coated carbon fiber and pitch based carbon fiber,
One end of the thermally conductive carbon fiber is disposed in the heat generating portion of the aircraft in the fiber direction, and the other end of the thermally conductive carbon fiber is disposed in the heat radiating portion of the aircraft ;
The first composite member is a laminate in which a plurality of prepreg sheets including a plurality of the heat conductive carbon fibers disposed in a parallel direction intersecting the fiber direction are laminated in a lamination direction intersecting the fiber direction and the parallel direction Including
The thermal conductivity in the fiber direction is greater than the thermal conductivity in the parallel direction and the thermal conductivity in the stacking direction .
金属コート炭素繊維及びピッチ系炭素繊維の一方又は両方を含む熱伝導性炭素繊維で強化されたプラスチックを有し、航空機の強度部材として使用される第1複合部材を備え、
繊維方向に関して前記熱伝導性炭素繊維の中央部が前記航空機の発熱部に配置され、前記熱伝導性炭素繊維の一端部及び他端部が前記航空機の放熱部に配置され
前記第1複合部材は、前記繊維方向と交差する並列方向に配置された複数の前記熱伝導性炭素繊維を含むプリプレグシートを前記繊維方向及び前記並列方向と交差する積層方向に複数積層した積層体を含み、
前記繊維方向に関する熱伝導率は、前記並列方向に関する熱伝導率及び前記積層方向に関する熱伝導率よりも大きい、部材。
Comprising a first composite member used as a strength member of an aircraft, comprising a thermally conductive carbon fiber reinforced plastic comprising one or both of metal coated carbon fiber and pitch based carbon fiber,
The central portion of the thermally conductive carbon fiber in the fiber direction is disposed in the heat generating portion of the aircraft, and one end and the other end of the thermally conductive carbon fiber are disposed in the heat radiating portion of the aircraft ;
The first composite member is a laminate in which a plurality of prepreg sheets including a plurality of the heat conductive carbon fibers disposed in a parallel direction intersecting the fiber direction are laminated in a lamination direction intersecting the fiber direction and the parallel direction Including
The thermal conductivity in the fiber direction is greater than the thermal conductivity in the parallel direction and the thermal conductivity in the stacking direction .
前記第1複合部材は板状部材であり、
前記第1複合部材の表面及び裏面の一方又は両方に配置され、炭素繊維で強化されたプラスチックを含み、前記第1複合部材よりも熱伝導率が低い第2複合部材を備え、
前記熱伝導性炭素繊維の一端部及び他端部のそれぞれは露出する請求項1又は請求項に記載の部材。
The first composite member is a plate-like member,
The first is arranged on one or both of the front and rear surfaces of the composite member, seen including a plastic reinforced with carbon fibers, a second composite member lower thermal conductivity than the first composite member,
The member according to claim 1 or 2 , wherein each of the one end portion and the other end portion of the heat conductive carbon fiber is exposed.
前記発熱部は、前記航空機の電子機器を含み、前記放熱部は、前記航空機の燃料タンクを含む請求項1から請求項のいずれか一項に記載の部材。 The member according to any one of claims 1 to 3 , wherein the heat generating portion includes an electronic device of the aircraft, and the heat radiating portion includes a fuel tank of the aircraft.
JP2014245346A 2014-12-03 2014-12-03 Element Active JP6550230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014245346A JP6550230B2 (en) 2014-12-03 2014-12-03 Element
EP15864708.1A EP3214112B1 (en) 2014-12-03 2015-10-23 Heat passage member
PCT/JP2015/080002 WO2016088470A1 (en) 2014-12-03 2015-10-23 Member
US15/531,606 US20180281983A1 (en) 2014-12-03 2015-10-23 Member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245346A JP6550230B2 (en) 2014-12-03 2014-12-03 Element

Publications (3)

Publication Number Publication Date
JP2016108398A JP2016108398A (en) 2016-06-20
JP2016108398A5 JP2016108398A5 (en) 2017-11-30
JP6550230B2 true JP6550230B2 (en) 2019-07-24

Family

ID=56091426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245346A Active JP6550230B2 (en) 2014-12-03 2014-12-03 Element

Country Status (4)

Country Link
US (1) US20180281983A1 (en)
EP (1) EP3214112B1 (en)
JP (1) JP6550230B2 (en)
WO (1) WO2016088470A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723437B2 (en) 2017-05-30 2020-07-28 The Boeing Company System for structurally integrated thermal management for thin wing aircraft control surface actuators
JP7149577B2 (en) * 2018-10-15 2022-10-07 有限会社ヒロセ金型 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product
US11326841B2 (en) 2018-11-01 2022-05-10 Atomos Nuclear and Space Corporation Carbon fiber radiator fin system
US11117346B2 (en) 2019-07-18 2021-09-14 Hamilton Sundstrand Corporation Thermally-conductive polymer and components
WO2021201165A1 (en) * 2020-04-03 2021-10-07 日本製鉄株式会社 Power storage device structure and heat dissipation method for power storage device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270027B2 (en) * 1999-08-31 2002-04-02 藤倉ゴム工業株式会社 Heat dissipation sheet
EA006968B1 (en) * 2001-04-30 2006-06-30 Термо Композит, Ллс Thermal management material, devices and methods therefor
US6612523B2 (en) * 2001-12-21 2003-09-02 Lockheed Martin Corporation Aircraft structures having improved through-thickness thermal conductivity
US6919504B2 (en) * 2002-12-19 2005-07-19 3M Innovative Properties Company Flexible heat sink
JP2005213459A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp High thermal conductive material
EP2180094B1 (en) * 2005-04-18 2011-05-25 Teijin Limited Pitch-based carbon fiber web
JP4705559B2 (en) * 2006-12-04 2011-06-22 本田技研工業株式会社 Manufacturing method of heat exchanger and heat exchanger
JP5352893B2 (en) * 2008-04-14 2013-11-27 東洋炭素株式会社 Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
JP5703542B2 (en) * 2009-03-26 2015-04-22 三菱樹脂株式会社 Carbon fiber reinforced resin sheet and roll wound body thereof
JP5458926B2 (en) * 2009-10-05 2014-04-02 住友電気工業株式会社 Flexible substrate, flexible substrate module, and manufacturing method thereof
JP5312437B2 (en) * 2010-12-07 2013-10-09 三菱エンジニアリングプラスチックス株式会社 Thermally conductive polycarbonate resin composition and molded body

Also Published As

Publication number Publication date
EP3214112B1 (en) 2021-04-14
EP3214112A4 (en) 2017-11-22
WO2016088470A1 (en) 2016-06-09
EP3214112A1 (en) 2017-09-06
JP2016108398A (en) 2016-06-20
US20180281983A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6550230B2 (en) Element
JP5837579B2 (en) Shape memory alloy / fiber reinforced polymer composite structure and formation method
JP6482759B2 (en) Metal matrix composites used as heating elements
JP5751871B2 (en) Fuel tank
JP2008230237A5 (en)
KR20140027316A (en) Stacked noodle for high capacity pull off for a composite stringer
WO2015119064A1 (en) Thermally conductive composite material, and manufacturing method therefor
US20170066216A1 (en) Composite material structure and method of manufacturing composite material structure
JP6238168B2 (en) Composite structure
EP2818415B1 (en) Panel member for an airframe
JP2016108398A5 (en)
US9974209B1 (en) Heat sink and method
US9827697B2 (en) Systems and methods for curing complex fiber-reinforced composite structures
EP3339178B1 (en) Electrically conductive resin matrix for cnt heater
Giurgiutiu Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications
US20180339473A1 (en) Method of making complex carbon nanotube sheets
US6612523B2 (en) Aircraft structures having improved through-thickness thermal conductivity
EP3135475B1 (en) Composite material structure
KR101906264B1 (en) Heat sink plate using carbon composites and thermally conductive metal foil, method of manufacturing the same
US9072184B2 (en) Carbon fiber spacecraft panel with integral metallic foil power return
Hübler et al. Aerodynamic applications of SMA FRP structures: an active airfoil, from idea to real hardware
JP6547982B2 (en) Chopped tape fiber reinforced thermoplastic resin sheet material and method for manufacturing the same
CN206293226U (en) A kind of power resistor of middle spaced heat
JP2016103554A (en) Heat radiating material and method of manufacturing the same
Yang et al. Stress analyses of composite tee joints at elevated temperature

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190701

R150 Certificate of patent or registration of utility model

Ref document number: 6550230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150