JP6550117B2 - 複数の情報源を用いる建設区域検出 - Google Patents

複数の情報源を用いる建設区域検出 Download PDF

Info

Publication number
JP6550117B2
JP6550117B2 JP2017231388A JP2017231388A JP6550117B2 JP 6550117 B2 JP6550117 B2 JP 6550117B2 JP 2017231388 A JP2017231388 A JP 2017231388A JP 2017231388 A JP2017231388 A JP 2017231388A JP 6550117 B2 JP6550117 B2 JP 6550117B2
Authority
JP
Japan
Prior art keywords
construction area
vehicle
configured
construction
based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017231388A
Other languages
English (en)
Other versions
JP2018060572A (ja
Inventor
ファーガソン、デービッド・イアン
ヘーネル、ダーク
フェアフィールド、ナサニエル
Original Assignee
ウェイモ エルエルシー
ウェイモ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/603,613 priority Critical
Priority to US13/603,613 priority patent/US9221461B2/en
Application filed by ウェイモ エルエルシー, ウェイモ エルエルシー filed Critical ウェイモ エルエルシー
Publication of JP2018060572A publication Critical patent/JP2018060572A/ja
Application granted granted Critical
Publication of JP6550117B2 publication Critical patent/JP6550117B2/ja
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/009Priority selection
    • B60W2050/0091Priority selection of control inputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/42Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/52Radar, Lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2550/00Input parameters relating to exterior conditions
    • B60W2550/40Involving external transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2550/00Input parameters relating to exterior conditions
    • B60W2550/40Involving external transmission of data to or from the vehicle
    • B60W2550/402Involving external transmission of data to or from the vehicle for navigation systems

Description

関連出願の相互参照
本願は2012年9月5日に出願の米国特許出願番号第13/603,613号の優先権を主張し、それは参照によって全体が本明細書に組み込まれている。

自律型車両は、一つの場所から他の場所まで乗客を輸送するのを支援する様々なコンピュータ・システムを用いる。幾つかの自律型車両は、オペレーター(例えばパイロット、ドライバー又は乗客)からの或る初期入力又は連続入力を必要とすることがある。システムが連動したときだけ、他のシステム(例えば自動操縦装置システム)が使われることもあり、オペレーターに手動モード(オペレーターが車両の動作における高度な制御を行う)から自律型モード(車両がそれ自体を基本的に駆動する)へ、その間の何処かのモードへ切り換えることを可能にさせる。
概要

本願は、複数の情報源を用いる建設区域の検出に関する実施形態を開示する。一つの態様においては、本願は方法を説明する。この方法は、複数の情報源から、車両を制御するように構成されたコンピュータにおいて、車両が走行している道路における建設区域の検出に関する情報を受信することを含み得る。複数の情報源の各々の情報源には、その情報源から受信されるそれぞれの情報に基づく建設区域の検出の信頼性のレベルを示すそれぞれの信頼性測定基準が割り当てられることもある。この方法は、コンピュータを用いて、複数の情報源の情報とそれぞれの信頼性測定基準とに基づいて、道路における建設区域の存在の可能性を判定することを含むこともある。この方法は、コンピュータを用いて、可能性に基づいて、車両の駆動挙動に関連した制御計画を修正することを含むこともある。更に、コンピュータを用いて、修正された制御計画に基づいて車両を制御することを含むこともある。

他の態様では、本願は、コンピュータに機能を実行させるために車両のコンピュータにより実行可能な指令が記憶された非一時的なコンピュータ可読媒体を説明する。この機能は、複数の情報源から、車両が走行している道路における建設区域の検出に関する情報を受信することを含むこともある。複数の情報源の各々の情報源は、その情報源から受信されるそれぞれの情報に基づく建設区域の検出の信頼のレベルを示すそれぞれの信頼性測定基準を割り当てられることもある。この機能は、複数の情報源の情報とそれぞれの信頼性測定基準に基づいて、道路における建設区域の存在の可能性を判定することを含むこともある。この機能は更に、可能性に基づいて、車両の駆動挙動に関連した制御計画を修正することを含むこともある。この機能は、修正された制御計画に基づいて車両を制御することを含むこともある。

更に他の態様では、本願は車両のための制御システムを説明する。この制御システムは、コンピュータ・デバイスを含み得る。このコンピュータ・デバイスは、複数の情報源から、車両が走行している道路における建設区域の検出に関する情報を受信するように構成し得る。複数の情報源の各々の情報源は、その情報源から受信されるそれぞれの情報に基づいて建設区域の検出の信頼性のレベルを示すそれぞれの信頼性測定基準を割り当てられることもある。コンピュータ・デバイスは、複数の情報源の情報とそれぞれの信頼性測定基準とに基づいて、道路における建設区域の存在の可能性を判定するように構成されることもある。このコンピュータ・デバイスは更に、可能性に基づいて車両の駆動挙動に関連した制御計画を修正し、及び、修正された制御計画に基づいて車両を制御するように構成されることもある。

上述の概要は、例示のみであって、如何なる方式であれ限定を意図とするものではない。上述した例示的態様、実施形態、及び特徴に加えて、更なる態様、実施形態、及び特徴は、図面及び以下の詳細な説明を参照することによって明らかになろう。

図1は例示的実施形態による例示的自動車の単純化されたブロック図である。

図2は例示的実施形態により例示的自動車を図解する。

図3は例示的実施形態による情報の複数の情報源を用いる建設区域の検出のための方法のフローチャートである。

図4は例示的実施形態による建設区域に接近している車両を図解する。

図5は例示的実施形態による建設区域標識の検出のための方法のフローチャートである。

図6A−6Bは例示的実施形態による道路と車両が走行している道路の付近を図解する。

図6C−6Dは例示的実施形態による道路と予め規定された高さ範囲の道路の側を表す道路の付近の部分の画像の部分を図解する。

図7は例示的実施形態によるLIDAR型情報を用いる建設区域標識の検出のための方法のフローチャートである。

図8Aは例示的実施形態による道路表面から閾値高さよりも高い高さにおける区域における建設区域標識のLIDAR型検出を図解する。

図8Bは例示的実施形態による道路の表面から閾値高さよりも高い高さにおける区域を表しているLIDAR型画像を図解する。

図9は例示的実施形態によるLIDAR型情報を用いる建設区域物体の検出のための方法のフローチャートである。

図10Aは例示的実施形態による道路の表面から閾値距離内の区域における建設区域円錐のLIDAR型の検出を図解する。

図10Bは例示的実施形態による道路の表面から閾値距離内の区域を表しているLIDAR型画像を図解する。

図10Cは例示的実施形態による車線境界を形成する建設区域円錐のLIDAR型検出を図解する。

図10Dは例示的実施形態による車両境界を形成する建設区域円錐を表すLIDAR型画像を図解する。

図11は例示的実施形態によるコンピュータ・プログラムの概念上の部分図を図解する概略図である。

以下の詳細な説明は、添付図面を参照して開示されたシステム及び方法の様々な特徴及び機能を説明する。図においては、文脈が示さない限り、類似した符号は類似した構成要素を特定する。ここに説明された例示的システム及び方法実施形態は、限定を意味するものではない。開示されたシステム及び方法の特定の態様は、多種多様な異なる構成に配置及び組み合わせることができ、その全てはここに予期されていることは容易に理解されるであろう。

道路上で作動している自律型車両は、ナビゲーションのために地図に依存するように構成されることもある。或る例においては、道路における建設区域の存在に起因する変化は、地図には反映されないこともある。従って、自律型車両は建設区域を検出して、建設区域を安全に通り抜けて運転されるように構成されることもある。

一つの例においては、車両を制御するように構成されたコンピュータ・デバイスは、車両が走行している道路における建設区域の検出に関して、複数の源から情報を受信するように構成されることもある。また、コンピュータ・デバイスは、情報に基づいて、道路に
おける建設区域の存在の可能性を判定するように構成されることもある。更に、コンピュータ・デバイスは、可能性に基づいて、車両の駆動挙動と関連した制御計画を修正して、その修正された制御計画に基づいて車両を制御するように構成されることもある。

例示的車両制御システムは自動車内に実装されるか又は自動車の形態を採ることもある。或いは、車両制御システムは他の車両(例えば乗用車、トラック、オートバイ、バス、ボート、飛行機、ヘリコプター、芝刈り機、レクリエーショナル・ビークル、遊園地車両、農機具、建設装置、路面電車、ゴルフ・カート、電車、及びトロリー)内に実装されるか又はそれらの車両の形態を採ることもある。他の車両も同様に可能である。

更に、例示的システムは非一時的コンピュータ可読媒体の形態を採ることもあり、それはそこに記憶されたプログラム指令をし、これは本明細書に記載された機能を与えるために少なくとも一つのプロセッサにより実行可能である。例示的システムは、自動車の形態又は上述のような記憶されたプログラム指令を有する上述のような非一時的コンピュータ可読媒体を含む自動車のサブシステムの形態を採ることもある。

ここで図面を参照すると、図1は例示的実施形態による例示的自動車100の単純化されたブロック図である。自動車100に結合されるか又は含められた構成要素は、推進システム102、センサー・システム104、制御システム106、周辺機器108、電源110、コンピュータ・デバイス111、及びユーザ・インタフェース112を含み得る。コンピュータ・デバイス111は、プロセッサ113及びメモリ114を含み得る。メモリ114は、プロセッサ113により実行可能な指令115を含むことがあり、地図データ116も記憶することがある。自動車100の構成要素は、互いに相互接続された形態及び/又は他の構成要素がそれぞれのシステムに結合して相互接続された形態で作動するように構成されることもある。例えば、電源110は自動車100の全ての構成要素へ電力を供給することもある。コンピュータ・デバイス111は、推進システム102、センサー・システム104、制御システム106、及び周辺機器108から情報を受信して、それらを制御するように構成されることもある。コンピュータ・デバイス111はユーザ・インタフェース112に画像の表示を生成して、かつ、ユーザ・インタフェース112からの入力を受信するように構成されることもある。

他の例においては、自動車100は、より多いか、より少ないか、異なるシステムを含むことがあり、各々のシステムは、より多いか、より少ないか、異なる構成要素を含むことがある。更に、図示されたシステム及び構成要素は、幾つもの方式で結合又は分割されることがある。

推進システム102は、自動車100のための動力を与えられた運動を提供するように構成されることもある。図示のように、推進システム102は、エンジン/モータ118、エネルギー源120、変速機122、及び車輪/タイヤ124を含む。

エンジン/モータ118は、内燃機関、電気モータ、蒸気機関、及びスターリング・エンジンの任意の組合せとするか、又はこれを含むこともある。他のモータ及びとエンジンも同様に可能である。幾つかの例においては、推進システム102は、エンジン及び/又はモータの複数の種類を含むことができた。例えば、ガス−電気ハイブリッド車は、ガソリン・エンジンと電気モータとを含むことができた。他の例も可能である。

エネルギー源120は、エンジン/モータ118を完全に又は部分的に駆動するエネルギー源である場合がある。即ち、エンジン/モータ118は、エネルギー源120を機械的エネルギーに変換するように構成されることもある。エネルギー源120の例は、ガソリン、ディーゼル、他の石油系燃料、プロパン、他の圧縮ガス系燃料、エタノール、太陽
電池パネル、バッテリー、及び他の電力源を含む。エネルギー源120は、これに加えて又はこれに代えて、燃料タンク、バッテリー、キャパシタ、及び/又ははずみ車の任意の組合せを含むことができる。或る例においては、エネルギー源120は、自動車100の他のシステムに同様にエネルギーを提供することもある。

変速機122は、エンジン/モータ118から車輪/タイヤ124へ機械的動力を伝達するように構成されることもある。このためには、変速機122は、ギアボックス、クラッチ、差動装置、駆動軸、及び/又は他の要素を含み得る。変速機122が駆動軸を含む例においては、これらの駆動軸は、車輪/タイヤ124に結合するように構成された一つ以上の車軸を含むことができる。

自動車100の車輪/タイヤ124は、一輪車、自転車/オートバイ、三輪車、又は車/トラック四輪形態を含む様々な形態に構成することができる。他の車輪/タイヤ形態も同様に可能であり、例えば六つ以上の車輪を含むものである。自動車100の車輪/タイヤ124は、他の車輪/タイヤ124に関して異なって回転するように構成されることもある。或る例においては、車輪/タイヤ124は、変速機122に固定して取り付けられた少なくとも一つの車輪と、駆動表面に接触することができる車輪の縁に結合する少なくとも一つのタイヤとを含むことがある。車輪/タイヤ124は、金属とラバーとの任意の組合せ又は他の材料の組合せを含むこともある。

推進システム102は、図示されたもの以外の構成要素を付加的に又は代替的に含むことがある。

センサー・システム104は、自動車100が位置する環境に関する情報を検知するように構成された幾つかのセンサーを含むことがある。図示のように、センサー・システムのセンサーは、全地球位置測定システム(GPS)モジュール126、慣性計測ユニット(IMU)128、無線方向探知(RADAR)ユニット130、レーザー測距器及び/又は光探知及び測距(LIDAR)ユニット132、カメラ134、及びセンサーの位置及び/又は方位を変更するように構成されたアクチュエータ136を含む。このセンサー・システム104は、例えば、自動車100の内部システムを監視するセンサー(例えば、O検出器、燃料計、エンジン油温度など)を含めて、更なるセンサーを同様に含み得る。他のセンサーも同様に可能である。

GPSモジュール126は、自動車100の地理的な位置を推定するように構成された任意のセンサーである場合もある。このためには、GPSモジュール126は、衛星型位置決めデータに基づいて地球に関して自動車100の位置を推定するように構成されたトランシーバーを含むことがある。一つの例においては、コンピュータ・デバイス111は、地図データ116との組み合わせでGPSモジュール126を使用して、自動車100が移動している道路における車線境界の位置を推定するように構成されることがある。GPSモジュール126は、同様に他の形態を採り得る。

IMU128は、慣性加速に基づいて自動車100の位置及び方位変化を検知するように構成されたセンサーの任意の組合せである場合がある。或る例においては、センサーの組合せは、例えば、加速度計とジャイロスコープとを含み得る。センサーの他の組合せも同様に可能である。

RADARユニット130は、物体の特性(例えば、物体の範囲、高度、方向又は速度)を判定するためにラジオ波を使用するように構成し得る物体検出システムと見做し得る。RADARユニット130は、波の経路における任意の対象から反射し得るラジオ波又はマイクロ波のパルスを送信するように構成し得る。物体は、波のエネルギーの一部を受
信機(例えば、皿又はアンテナ)へ返すことがあり、その受信機は同様にRADARユニット130の一部とし得る。RADARユニット130は、受信信号(物体から反射する)のデジタル信号処理を実行するように構成されることもあり、物体を特定するように構成されることがある。

RADARに類似した他のシステムが電磁スペクトルの他の部分で用いられてきた。一つの例はLIDAR(光検出及び測距)であり、これはラジオ波よりもむしろレーザーからの可視光を用いるように構成し得る。

LIDARユニット132は、自動車100が位置する環境における物体を光を用いて検知若しくは検出するように構成されたセンサーを含むことがある。一般に、LIDARは、目標を光で照明することにより、目標までの距離又は目標の他の特性を測定することができる光学的遠隔検知技術である。その光はレーザーのような任意の種類の電磁波とすることができる。例えば、LIDARユニット132は、レーザー源及び/又はレーザーのパルスを発するように構成されて、かつ、そのレーザーの反射を受信するように構成されたレーザー・スキャナを含み得る。例えば、LIDARユニット132は回転ミラーにより反射されたレーザー測距器を含むことがあり、レーザーは、指定された角度間隔で距離寸法を集めて、一又は二次元において、デジタル化されている光景の周りで走査する。幾つかの例においては、LIDARユニット132は、光(例えば、レーザー)源、スキャナ及び光学機器、光検出及び受信電子機器、位置及びナビゲーション・システムのような構成要素を含むことがある。

一つの例においては、LIDARユニット132は、紫外線(UV)、可視光、又は赤外線光を用いて物体を画像化するように構成されることがあり、非金属物体を含む広範囲に亘って用いることができる。一例においては、狭細なレーザー・ビームは、高解像度で物体の物理的な特徴を明瞭に描くのに用いることができる。

例においては、約10マイクロメートル(赤外線)から約250nm(UV)の範囲の波長を用いることができた。一般的に、光は後方散乱を介して反射される。異なる種類の散乱が異なるLIDAR用途のために用いられ、例えばレイリー散乱、ミー散乱及びラマン散在、並びに蛍光である。異なる種類の後方散乱に基づいて、それに応じてLIDARは、例としてレイリーLIDAR、ミーLIDAR、ラマンLIDAR及びNA/Fe/K蛍光LIDARと称することができる。波長の適宜な組合せは、例えば、反射された信号の強度の波長依存変化を探すことにより、物体の遠隔マッピングを可能にすることができる。

3次元(3D)イメージングは、走査と非走査LIDARシステムの両方を使用し達成することができる。「3Dゲート型視覚レーザー・レーダー」は、パルス型レーザー及び高速ゲート型カメラ(fast gated camera)を適用する非ス走査レーザー測距システムの例である。イメージングLIDARは、高速検出器の配列を用いて実行することができ、変調感知検出器配列は代表的にはCMOS(相補型金属酸化物−半導体)及びハイブリッドCMOS/CCD(電荷結合デバイス)製作技術を用いて単独のチップ上に構築される。これらのデバイスでは、各々のピクセルが高速で復調又はゲート制御により局所的に処理されて、配列がカメラからの画像を表すように処理できるようにし得る。この技術を用いて、何千ピクセルも同時に獲得して、LIDARユニット132により検出された物体又は光景を表す3D点クラウドを生成することがある。

点クラウドは、3D座標系における頂点の集合を含み得る。これらの頂点は例えばX,Y,及びZ座標系によって規定されることもあり、物体の外面を表すこともある。LIDARユニット132は物体の表面における多数の点を測定することにより、点クラウドを
生成するように構成されることがあり、点クラウドをデータ・ファイルとして出力することがある。LIDARユニット132による物体の3D走査処理の結果として、点クラウドは、物体を特定して視覚化するのに用いることができる。

一つの例においては、点クラウドは、物体を視覚化するために、直接にレンダーリングすることができる。他の例においては、点クラウドは、表面再構築と称し得る処理によって、多角形又は三角形メッシュ・モデルに変換されることがある。点クラウドを3D面に変換することの例示的技術は、ドロネー三角分割法、アルフ形状、及びボール旋回を含み得る。これらの技術は、点クラウドの既存の頂点上に三角形のネットワークを構築することを含む。他の例示的技術は、点クラウドを容積距離場に変換して、潜在的な表面を再構築してマーチング・キューブ・アルゴリズムによって規定されることを含み得る。

カメラ134は、自動車100が位置する環境の画像を撮るように構成された任意のカメラ(例えば、スチル・カメラ、ビデオ・カメラなど)とし得る。このためには、カメラは可視光を検出するように構成されることもあるか、スペクトルの他の部分の光、例えば赤外線又は紫外線光を検出するように構成されることもある。他の種類のカメラも同様に可能である。カメラ134は二次元の検出器である場合があるか、3次元空間範囲を有することもある。或る例においては、カメラ134は、例えば、カメラ134から環境における幾つかの点までの距離を示している二次元画像を生成するように構成された距離検出器であることがある。このためには、カメラ134は、一つ以上の距離検出技術を用いることがある。例えば、カメラ134は、自動車100が環境における物体を予め定められた光パターン、例えば格子又はチェッカーボード・パターンで照明して、カメラ134を物体からの予め規定された光パターンの反射を検出ために用いる構造光技術を用いるように構成されることがある。反射光パターンにおける歪曲に基づいて、自動車100は物体上における点までの距離を測定するように構成されることもある。予め定められた光パターンは赤外線、又は他の波長の光からなることがある。

アクチュエータ136は、例えば、センサーの位置及び/又は方位を変更するように構成されることがある。

センサー・システム104は、付加的に又は代替的に、図示されたもの以外の構成要素を更に含むことがある。

制御システム106は、自動車100及びその構成要素の作動を制御するように構成し得る。このためには、制御システム106は、ステアリング・ユニット138、スロットル140、ブレーキ・ユニット142、センサー融合アルゴリズム144、コンピュータ視覚システム146、ナビゲーション及び経路付けシステム148、及び障害物回避システム150を含むことがある。

ステアリング・ユニット138は、自動車100の方位又は方向を調節するように構成された機構の任意の組合せとし得る。

スロットル140は、エンジン/モータ118の操作速度及び加速、ひいては自動車100の速度及び加速を制御するように構成された機構の任意の組合せとし得る。

ブレーキ・ユニット142は、自動車100を減速するように構成された機構の任意の組合せとし得る。例えば、ブレーキ・ユニット142は、車輪/タイヤ124を遅くするために、摩擦を用いることがある。他の例としては、ブレーキ・ユニット142は、再生式で車輪/タイヤ124の運動エネルギーを電流に変換するように構成されることがある。ブレーキ・ユニット142は同様に他の形態を採ることがある。

センサー融合アルゴリズム144は、例えば、コンピュータ・デバイス111により実行可能アルゴリズム(又はアルゴリズムを記憶しているコンピュータ・プログラム製品)を含むことがある。センサー融合アルゴリズム144は、センサー・システム104からのデータを入力として許容するように構成されることがある。このデータは、例えば、センサー・システム104のセンサーにおいて検知された情報を表すデータを含むことがある。センサー融合アルゴリズム144は、例えば、カルマン・フィルタ、ベイジアン・ネットワーク、又は他のアルゴリズムを含むことがある。センサー融合アルゴリズム144は、自動車100が位置する環境、特定の状況の評価及び/又は特定の状況に基づく可能性がある影響の評価において、個々の物体及び/又は特徴の評価を含めて、センサー・システム104からのデータに基づいて様々な評価を提供するように更に構成されることがある。他の評価も同様に可能である。

コンピュータ視覚システム146は、自動車100が位置する環境における物体及び/又は特徴(例えば、道路情報、交通信号及び障害物を含む)を特定する目的でカメラ134により撮られた画像を処理及び分析するように構成された任意のシステムとし得る。このためには、コンピュータ視覚システム146は、物体認識アルゴリズム、運動からの構造(SMF)アルゴリズム、ビデオ追跡又は他のコンピュータ視覚技術を用いることもある。幾つかの例においては、コンピュータ視覚システム146は、環境にマップして、物体を追跡し、物体の速度を推定するなどをなすように更に構成されることがある。

ナビゲーション及び経路付けシステム148は、自動車100のための駆動経路を判定するように構成された任意のシステムとし得る。ナビゲーション及び経路付けシステム148は、自動車100が運転中の間に、駆動経路を動的に更新するように更に構成されることがある。或る例においては、ナビゲーション及び経路付けシステム148は、センサー融合アルゴリズム144、GPSモジュール126、及び一つ以上の予め規定された地図からデータを取り込んで、自動車100のための駆動経路を判定するように構成されることがある。

障害物回避システム150は、自動車100が位置する環境における障害を特定、評価、及び回避、さもなければ通り抜けるように構成された任意のシステムとし得る。

制御システム106は、図示されたもの以外の構成要素を付加的に又は代替的に含むことがある。

周辺機器108は、自動車100を外部センサー、他の自動車、及び/又はユーザーと相互作用させるように構成されることがある。このためには、周辺機器108は、例えば、無線通信システム152、タッチスクリーン154、マイクロフォン156及び/又はスピーカー158を含むことがある。

無線通信システム152は、一つ以上の他の自動車、センサー、又は他の実体に、直接に又は通信ネットワークを介するかの何れかで無線で結合するように構成された任意のシステムとし得る。このためには、無線通信システム152は、他の自動車、センサー、又は他の実体に、直接に又はエアインターフェース上の何れかで通信するために、アンテナ及びチップセットを含むことがある。チップセット又は無線通信システム152は、一般に、他の可能性においてもとりわけブルートゥース、IEEE802.1(任意のIEEE802.11改訂版を含む)に記載された通信プロコトル、セルラー技術(例えばGSM、CDMA、UMTS、EV−DO、WiMAX、又はLTE)、ZigBee、専用短範囲通信(DSRC)、及び無線周波数識別(RFID)通信のような一つ以上の他の種類の無線通信(例えば、プロトコル)によって通信するために配置されることがある。無線通信システム152は同様に他の形態を採ることがある。

タッチスクリーン154は、ユーザーによってコマンドを自動車100へ入力するために用いられることがある。このためには、タッチスクリーン154は、他の可能性においてもとりわけ、容量性感知、抵抗感知、又は弾性表面波処理を介してユーザーの指の少なくとも一つの位置及び動作を感知するように構成し得る。タッチスクリーン154は、タッチスクリーン面に対して平行若しくは平坦な方向において、タッチスクリーン面に対して垂直な方向において、又はその両方において、指の運動を感知することができることがあり、タッチスクリーン面に加えられた圧力のレベルを感知することができることもある。タッチスクリーン154は、一つ以上の半透明又は透明な絶縁層と一つ以上の半透明又は透明な導電層とから形成されることがある。タッチスクリーン154は同様に他の形態を採ることがある。

マイクロフォン156は、自動車100のユーザーからオーディオ(例えば、音声コマンド又は他の音声入力)を受信するように構成されることがある。同様に、スピーカー158は自動車100のユーザーへオーディオを出力するように構成されることがある。

周辺機器108は、図示されたもの以外の構成要素を付加的に又は代替的に含み得る。

電源110は、動力を自動車100の構成要素の一部若しくは全部へ供給するように構成されることがある。このためには、電源110は、例えば、充電式のリチウムイオン又は鉛酸蓄電池を含むことがある。幾つかの例においては、バッテリーの一つ以上の列は、電力を提供するように構成することができた。他の電源材料及び構成が同様に可能である。幾つかの例においては、電源110及びエネルギー源120は、幾つかの純電気自動車の場合のように、一緒に実装されることがある。

コンピュータ・デバイス111に含まれたプロセッサ113は、一つ以上の汎用プロセッサ及び/又は一つ以上の特殊用途プロセッサ(例えば、画像プロセッサ、デジタル信号プロセッサなど)を含むことがある。プロセッサ113が複数のプロセッサを含むまで、そのようなプロセッサは個別に又は組合せで作動することができた。コンピュータ・デバイス111は、例えば、ユーザ・インタフェース112を通じて受信された入力に基づいて自動車100の機能を制御するように構成されることがある。

メモリ114は、次に、一つ以上の揮発性及び/又は一つ以上の不揮発性記憶構成要素、例えば光学的、磁気的及び/又は有機ストレージを含むことがあり、このメモリ114は全部又は一部においてプロセッサ113と統合されることがある。このメモリ114は、様々な自動車機能を実行するために、プロセッサ113により実行可能な指令115(例えば、プログラム論理)を含むことがある。

自動車100の構成要素は、それらのそれぞれのシステムの範囲内及び/又はその外側で他の構成要素に相互接続した方式で働くように構成することができた。このためには、自動車100の構成要素とシステムは、システムバス、ネットワーク及び/又は他の接続機構(図示せず)により一緒に通信的にリンクされることがある。

構成要素及びシステムの各々は、自動車100に集積されて図示されているが、幾つかの例においては、一つ以上の構成要素又はシステムが有線又は無線接続を用いて自動車100へ取り外し可能に装着されるか、さもなければ接続(機械的に又は電気的に)されることがある。

自動車100は、図示されたものに加えて又はそれらに代えて、一つ以上の要素を含む
ことがある。例えば、自動車100は一つ以上の更なるインターフェース及び/又は電源を含むことがある。他の更なる構成要素が同様に可能である。これらの例においては、メモリ114はプロセッサ113により実行可能な指令を更に含み、更なる構成要素を制御及び/又はその構成要素と通信することがある。

図2は実施形態に従って、図2は例示的自動車200を例示する。特に、図2は自動車200の右側側面図、正面図、後面図、及び上面図を示す。自動車200は図2には乗用車として描かれているが、他の例が可能である。例えば、自動車200は、他の例においてはとりわけ、トラック、バン、半トレーラー、オートバイ、ゴルフ・カート、オフロード車又は農場車両を表すことができる。図示のように、自動車200は第1のセンサー・ユニット202、第2のセンサー・ユニット204、第3のセンサー・ユニット206、無線通信システム208、及びカメラ210を含む。

第1、第2、及び第3のセンサー・ユニット202−206の各々は汎地球測位システム・センサー、慣性測定ユニット、RADARユニット、LIDARユニット、カメラ、通路検出センサー、及び音響のセンサーの任意の組合せを含むことがある。他の種類のセンサーが同様に可能である。

第1、第2、及び第3のセンサー・ユニット202が自動車200における特定の場所に搭載されるように図示されているが、或る例においては、センサー・ユニット202は自動車200の何処か他の場所、自動車200の内側か外側の何れかに搭載されることもある。更に、三つだけのセンサー・ユニットが図示されているが、或る例においては、より多いか少ないセンサー・ユニットが自動車200に含まれることがある。

或る例においては、第1、第2、及び第3のセンサー・ユニット202−206の一つ以上は一つ以上の可動マウントを含むことがあり、これにはセンサーが可動に搭載される。この可動マウントは、例えば、回転プラットホームを含むことがある。回転プラットホームに搭載されたセンサーは回転することができるので、これらのセンサーは自動車200の周りの各々の方向から情報を得られることがある。これに代えて又はこれに加えて、可動マウントは、傾斜プラットホームを含むことがある。傾斜プラットホームに搭載されたセンサーは角度及び/又は方位の特定の範囲内で傾斜することができるので、これらのセンサーは様々な角度から情報を得られることがある。可動マウントは同様に他の形態を採ることがある。

更に、或る例においては、第1、第2、及び第3のセンサー・ユニット202−206の一つ以上は、センサー及び/又は可動マウントを動かすことによって、センサー・ユニットにおけるセンサーの位置及び/又は方位を調節するように構成された一つ以上のアクチュエータを含むことがある。例示的なアクチュエータは、モータ、空気圧アクチュエータ、油圧ピストン、リレー、ソレノイド、及び圧電アクチュエータを含む。他のアクチュエータが同様に可能である。

無線通信システム208は、直接に又は図1における無線通信システム152に関して上述したような通信ネットワークを介しての何れかで、他の自動車、センサー又は他の実体の一つ以上に無線で接続するように構成された任意のシステムであることがある。無線通信システム208は自動車200の屋根に配置されるように図示されているが、他の例においては、無線通信システム208は、完全に又は部分的に、何処か他の場所に配置することができる。

カメラ210は、自動車200が位置する環境の画像を撮るように構成された任意のカメラ(例えば、スチル・カメラ、ビデオ・カメラなど)であることがある。このためには
、カメラは、図1におけるカメラ134に関して上述した形態の何れかを採ることがある。カメラ210は自動車200のフロントガラスの内側に搭載されるように図示されているが、他の例においては、カメラ210は自動車200における何処か他の場所に、自動車200の内側又は外側の何れかに搭載されることがある。

自動車200は、図示されたものに加えて又はそれらに代えて、一つ以上の他の構成要素を含むことがある。

自動車200の制御システムは、複数の可能な制御計画のうちの一つの制御計画に従って自動車200を制御するように構成されることがある。この制御システムは、自動車200に(自動車200上で又は離れて)結合するセンサーから情報を受信して、情報に基づく制御計画(及び関連した駆動挙動)を修正して、この修正された制御計画に従って自動車200を制御するように構成されることがある。この制御システムは、センサーから受信された情報を監視して、連続的に駆動状態を評価するように更に構成されることがあり、また、駆動状態の変化に基づいて制御計画及び駆動挙動を修正するように構成されることもある。

図3は、例示的実施形態により、複数の情報源を用いる建設区域の検出のための方法300のフローチャートである。図4は、方法300を例示するために、実施形態により、建設区域に接近している車両を図解する。図3及び4は一緒に説明される。

この方法300は、ブロック302−308の一つ以上によりで例示されるように、一つ以上の操作、機能又は措置を含むことがある。ブロックは連続した順序で例示されているが、これらのブロックは或る例においては平行に、及び/又はここに記載為れたものとは異なる順序で実行されることがある。また、様々なブロックは、より少ないブロックへ組み合わされたり、更なるブロックへ分割されたり、及び/又は、望ましい実施に基づいて削除されたりすることがある。

更に、この方法300及び本明細書に開示された他の処理及び方法については、フローチャートは本実施形態の一つの可能な実施の機能及び操作を表す。これに関して、各々のブロックはプログラム・コードのモジュール、区画、又は一部を表すことがあり、これは、処理における特定の論理的機能又はステップを実施するために、プロセッサにより実行可能な一つ以上の指令を含む。プログラム・コードは、任意の種類のコンピュータ可読媒体又はメモリ、例えば、ディスク又はハード・ドライブを含む記憶デバイスなどに記憶されることがある。コンピュータ可読媒体は、非一時的コンピュータ可読媒体、例えば、レジスター・メモリのようにデータを短期間記憶するコンピュータ可読媒体、プロセッサ・キャッシュ及びランダム・アクセス・メモリ(RAM)などを含むことがある。コンピュータ可読媒体は、非一時的媒体又はメモリ、例えば二次的又は持続的長期間ストレージ、例えば、読出し専用メモリ(ROM)、光学的又は磁気ディスク、コンパクト−ディスク読み出し専用メモリ(CD―ROM)などを含むこともある。コンピュータ可読媒体は、任意の他の揮発性又は不揮発性ストレージ・システムであることもある。コンピュータ可読媒体は、例えば、コンピュータ可読記憶媒体、実体的ストレージ・デバイス、又は他の製造品と考えられることがある。

更に、この方法300及び本明細書に開示された他の処理及び方法については、図3における各々のブロックは、処理における特定の論理的機能を実行するために配線された回路を表すことがある。

ブロック302で、この方法300は、車両を制御するように構成されたコンピュータ・デバイスにおいて、複数の情報源から、車両が走行している道路における建設区域の検
出に関する情報を受信することを含み、複数の情報源の各々の情報源は、その情報源から受信された情報に基づく建設区域の検出の信頼性のレベルを示すそれぞれの信頼性基準を割り当て得る。コンピュータ・デバイスは車両に搭載されることもあり、又は搭載されないこともあるが、これは例えば、車両との無線通信にある。また、コンピュータ・デバイスは自律型又は半自律型の操作モードにおいて車両を制御するように構成されることもある。更に、コンピュータ・デバイスは、車両に結合するセンサーから、例えば、車両のシステム及びサブシステムの状態、駆動状態、道路状況などに関連した情報を受信するように構成し得る。

図4は、道路404において建設区域に接近している車両402を図解する。車両402を制御するように構成されたコンピュータ・デバイスは、建設区域の検出に関する情報を受信するように構成し得る。情報は複数の情報源から受信されることがある。例えば、情報は、コンピュータ・デバイスへ結合された画像撮像デバイス又はカメラ(例えば、図1におけるカメラ134又は図2におけるカメラ210)から受信される画像型情報を含むことがある。一つの例においては、画像撮像デバイスは、車両402に搭載されていることがあるが、他の例においては、画像撮像デバイスは搭載されていないことがある(例えば、交通信号柱に結合された所定のカメラ)。画像型情報は、例えば、建設区域円錐標識406、建設区域バレル408、建設機器410A−B、建設区域標識412A−B等などの道路に関して一つ以上の静的物体の位置を示し得る。建設区域円錐標識406は、以下では単独の円錐又はグループ/一連の円錐を指すために用いられる。画像型情報は、建設区域に関連した他の物体、例えばオレンジ・ベスト及び山形袖章を示すこともある。画像型情報は、道路幾何形状(例えば、カーブ、車線など)を示すこともある。

他の例においては、建設区域の検出に関する情報は、車両402へ結合されてコンピュータ・デバイスと通信している光検出及び測距(LIDAR)センサー(例えば、図1におけるLIDARユニット132)から受信されたLIDAR型情報を含み得る。このLIDARセンサーは、道路404及び道路404の近傍の3次元(3D)点クラウドを与えるように構成されることがある。コンピュータ・デバイスは、例えば、3D点クラウドにおける点のセットにより表現された物体(例えば、建設区域円錐標識406、建設区域バレル408、建設機器410A−B、建設区域標識412A−Bなど)を特定するように構成されることがある。

更に他の例においては、情報は、車両402に結合されてコンピュータ・デバイスと通信しているラジオ検出及び測距(RADAR)センサー(例えば、図1におけるRADARユニット130)から受信されたRADAR型情報を含むことがある。例えば、RADARセンサーは、ラジオ波を射出して、道路404上又は道路404の近傍における物体で跳ね返って戻る射出ラジオ波を受信するように構成されることがある。受信信号又はRADAR型の情報は、ラジオ波が跳ね返って離れた物体の特徴を示すことがある。この特徴は、例えば、物体の寸法特徴、物体と車両402との間の距離、更に運動の速度及び方向に加えて、物体は静止しているか動いているかどうかを含み得る。

更に他の例においては、情報は交通情報を含み得る。交通情報は、道路404における他の車両(例えば車両414A−B)の挙動を示すことがある。一例として、交通情報は車両414A−Bに結合した全地球測位衛星(GPS)デバイスから受信されることもある。それぞれのGPSデバイスから受信されたGPS情報は、衛星型測位データに基づいて、地球に関してそれぞれのGPSデバイスを含むそれぞれの車両の位置を示し得る。

他の例においては、車両414A−Bは、場所/位置及び速度情報を道路インフラストラクチャー・デバイス(例えば、道路404の上のポストにおけるデバイス)に伝えるように構成されることがあり、このインフラストラクチャー・デバイスは、そのような交通
情報をコンピュータ・デバイスに通信し得る。この通信は、車両対インフラストラクチャー通信と称し得る。車両対インフラストラクチャー通信は、車両(例えば、車両402及び車両414A−B)と道路インフラストラクチャーとの間で重要な安全及び操作上のデータの無線交換を含むことがあり、広範囲に亘る安全、機動性、道路状態、交通、及び環境情報を有効にすることが意図されている。車両対インフラストラクチャー通信は、全ての車両型式及び全ての道路に適用され、例えば車両402に結合したコンピュータ・デバイスにより、特定の対抗策を通じて運転者へ警報及び警告をもたらすリスクの高い状況を事前に認識し得る計算を実行するために、車両とインフラストラクチャー要素との間で交換されるデータを用いるアルゴリズムの編入を通じてインフラストラクチャー機器を「高性能インフラストラクチャー」に変換し得る。一例として、道路404上の交通信号システムは、信号位相及びタイミング(SPAT)情報を車両402へ通信して、能動的な交通情報、安全報告、及び警告を車両402若しくは車両402の運転者へ伝えるように構成し得る。

更に他の例として、交通情報は、直接車両対車両通信から受信されることもある。この例では、車両402及び414A−Bの所有者は車両の間の共有情報の登録又は解除のオプションを与えられることもある。道路404上の車両414A−Bはデバイス(例えば、車両414A−Bに結合されたGPSデバイス又は車両414A−Bの運転者により使用された携帯電話)を含むことがあり、これは車両402を制御するように構成されたコンピュータ・デバイスへ追跡可能な信号を与えるように構成し得る。このコンピュータ・デバイスは、この追跡可能な信号を受信して、例えば、車両414A−Bの交通情報及び挙動情報を抽出するように構成し得る。

更に他の例においては、交通情報は、交通報告放送(例えば、ラジオ交通サービス)から受信されることもある。依然として更に他の例においては、コンピュータ・デバイスは、車両402を制御するように構成されたコンピュータと通信する搭載又は非搭載センサーから交通情報を受信されるように構成し得る。一例として、レーザー型センサーはハイウェイの車線を通過する車両の速度統計を提供することができ、そのような情報をコンピュータ・デバイスへ通信する。

交通情報に基づいて、コンピュータ・デバイスは、道路404における他の車両、例えば車両414A−Bの交通の公称速度及び交通量を推定するように構成し得る。一つの例においては、コンピュータ・デバイスは、交通情報に基づいて車両414A―Bの交通の公称速度及び交通量の変化を判定して、車両414A−Bの挙動における変化を、所定の建設区域に接近することに関連した交通変化の予め定められた又は典型的パターンと比較するように構成し得る。

更に他の例においては、建設区域の検出に関する情報は、先行若しくは既存の地図に関連した地図情報を含むことがある。例えば、地図情報は、交通標識416A−B、道路404における車線の数、車線境界の位置などに関連した情報を含むことがある。先行の地図は、既存の標識を手動で又は既存の標識の電子的検出を通じて、追加し得る。しかしながら、この地図情報は、道路車線に変化を引き起こし得る一時的な道路作業に起因する最近の道路変化に関する情報を含まないことがある。例えば、地図情報は、建設区域標識412A−Bのような一時的建設区域標識に関するそれぞれの情報を含まないことがある。

更に、複数の情報源の各々の情報源には、それぞれの信頼性測定基準を割り当てられることがある。この信頼性測定基準は、その情報源から受信されたそれぞれの情報に基づいて建設区域の検出の信頼性のレベルを示すことがある。説明のための一例として、交通情報は、建設区域の検出において、RADAR型情報よりも信頼できる場合があり、換言すれば、コンピュータ・デバイスは、交通情報に基づいて、RADAR型情報に基づく建設
区域の検出の信頼性のそれぞれのレベルよりも高い信頼性のレベルを有する建設区域の存在を検出するように構成し得る。この例では、交通情報源はRADARユニットより高い信頼性測定基準を割り当てられることもあり、それはRADAR型情報源である場合がある。例においては、この信頼性測定基準は、複数の駆動状況から既に収集されたデータに基づいて判定されることがある。

図3へ戻って参照すると、ブロック304において、方法300は、コンピュータ・デバイスを用いて、複数の情報源の情報とそれぞれの信頼性測定基準に基づいて、道路における建設区域の存在の可能性を判定することを含む。一例として、図4において、建設区域の検出に関して情報に基づいて、車両402を制御するように構成されるコンピュータで複数の源から受け取られて、コンピュータ・デバイスは道路404の建設区域の存在の可能性を判定するように構成されることもある。

一つの例においては、コンピュータ・デバイスは、画像撮像デバイスから受信された画像型情報から、建設区域に起因する道路幾何形状の変化を判定するように構成されることがあり、判定された変化に基づいて可能性を割り当てることがある。例えば、コンピュータ・デバイスは、判定された変化を典型的な建設区域に関連した典型的変化と比較して、その比較に基づいて可能性を判定するように構成し得る。他の例としては、コンピュータ・デバイスは、当該技術分野で知られている画像認識技術を用いて、画像撮像デバイスにより撮像された画像に表された建設区域物体(例えば、建設区域円錐標識406、建設区域バレル408、建設区域標識412A−B、建設機器410A−B、又は任意の他の建設区域指標)を特定するように構成し得る。一例においては、コンピュータ・デバイスは、建設区域物体を特定することに関連した信頼性のレベルを示し得る識他のそれぞれの可能性を割り当てて、建設区域物体のための識他のそれぞれの可能性に基づいて建設区域の存在の可能性を判定するように構成し得る。

同様に、コンピュータ・デバイスは、LIDAR型及び/又はRADAR型情報に基づいて建設区域物体を特定するように構成し得る。一例として、コンピュータ・デバイスは、LIDARセンサーにより提供された3D点クラウドの一組の点により表された候補建設区域物体(候補建設区域円錐標識、バレル、又は標識)を特定するように構成されることがあり、かつ、コンピュータ・デバイスは、物体の識別についての信頼性のそれぞれのレベルに基づいて、候補建設区域物についての識他のそれぞれの可能性を割り当てるように構成し得る。

一つの例として、コンピュータ・デバイスは、候補建設区域物の形状(画像型情報、LIDAR型情報又はRADAR型情報において特定される)を典型的建設区域物体の一つ以上の予め定められた形状と比較するように構成されることがあり、また、候補建設区域物が所定の予め定められた形状にどれぐらい類似しているか(例えば、候補物体の形状の寸法特徴と所定の予め定められた形状と間の整合の割合)を示す整合測定基準を判定するように構成されることがある。このコンピュータ・デバイスは、整合測定基準に基づく可能性を判定するように構成されることがある。このコンピュータ・デバイスは、図9に関して以下に説明された技術の何れかを用いて、建設区域物体を検出及び/又は特定するようにも構成し得る。

一つの例においては、コンピュータ・デバイスは、道路404に関連した地図情報を受信するように構成されることもあり、その地図情報は道路404における既存の標識(例えば、標識416A−B)の位置及び型式を含むことがある。コンピュータ・デバイスは、候補建設区域標識(例えば、建設区域標識412A−Bの一方又は両方)の存在を判定するように更に構成されることもあり、これは地図情報から失われている場合がある。一例においては、地図情報から失われている候補建設区域標識は、候補建設区域標識の一過
性を示すことがあるので、その候補建設区域標識がおそらく建設区域標識であることを示し得る。従って、コンピュータ・デバイスは、候補建設区域標識に関連しているそれぞれの標識情報及び道路における建設区域の存在の可能性を含むように地図情報を更新するように構成されることがあり、道路404における所定の建設区域の存在の可能性があることを道路404における他の車両又は運転者に用心させることを可能にする。コンピュータ・デバイスは、図5及び図7に関して以下に説明される技術の何れかを用いて、建設区域標識を検出及び/又は特定するように構成されることもある。

更に他の例においては、コンピュータ・デバイスは、道路404における他の車両414A−Bの挙動を示す交通情報を受信するように構成されることがある。この例においては、可能性を判定するために、コンピュータ・デバイスは、交通情報に基づいて、他の車両414A−Bの公称速度及び交通量における変化を判定するように構成されることがある。コンピュータ・デバイスは、他の車両414A−Bの挙動における変化を所定の建設区域に接近することに関連した交通変化の予め定められた若しくは典型的なパターンと比較するように構成されることがあり、かつ、コンピュータ・デバイスは、この比較に基づいて可能性を判定するように構成されることがある。一つの例においては、コンピュータ・デバイスは、この比較に基づいて可能性を判定する際に、それぞれの建設区域に接近することに関連した交通におけるそれぞれの変化から事故現場に関連した交通における所定の変化を識別するように構成し得る。例えば、事故現場は、一旦混雑点を通り過ぎるならば、車両が減速又は加速し得る混雑点により特徴付けられることもあり、或いは、建設区域は、交通の速度及び交通量のより長い道路区画により特徴付けられることもある。他の例においては、コンピュータ・デバイスは、事故方法サービスから受信された事故情報に基づいて建設区域から事故現場を識別するように構成し得る。

一つの例においては、コンピュータ・デバイスは、各々の種類又は情報源(例えば、画像型情報、LIDAR型情報、RADAR型情報、地図情報、及び交通情報)についての建設区域の存在のそれぞれの可能性を割り当て又は判定するように構成されることがあり、更に、それぞれの可能性の組み合わせ(例えば、それぞれの可能性の重み付け組み合わせ)に基づいて単独の可能性を判定するように構成されることがある。例えば、複数の情報源の各々の情報源に割り当てられたそれぞれの可能性は、その情報源に割り当てられる信頼性測定基準に基づき得る。また、一例においては、複数の情報源の一つの情報源について判定されたそれぞれの可能性に基づいて、コンピュータ・デバイスは、車両402に結合されたセンサー又はモジュールを有効にして、他の情報源から情報を受信して、建設区域の存在を確認するように構成されることがある。

他の例においては、コンピュータ・デバイスは、複数の源から受信された建設区域の検出及び複数の源に割り当てられたそれぞれの信頼性測定基準に関する情報に基づいて、確率モデル(例えば、ガウス分布)を生成して、建設区域の存在の可能性を判定するように構成されることがある。例えば、建設区域の存在の可能性は、複数の源及びそれぞれの信頼性測定基準からの情報に基づいて判定された一組のパラメータ値の関数として判定されることがある。この例においては、可能性は、それらのパラメータ値を与えられる観察された結果(建設区域の存在)の可能性に等しいとして規定されることがある。当業者は、可能性関数を判定することは、離散確率分布、連続確率分布、連続−離散混合分布の間の区別を含むことに関することがあり、かつ、数種類の可能性が例えばログ可能性、相対的な可能性、条件つきの可能性、限界可能性、プロファイル可能性、及び部分的可能性が存在することを理解するであろう。

更に他の例においては、コンピュータ・デバイスは、分類を通じて複数の源からの情報及びそれぞれの信頼性測定基準を処理して、可能性を判定するように構成されることがある。その分類は、地図が情報(例えば、建設区域の検出及びそれぞれの信頼性測定基準に
関する情報)をクラス(例えば、建設区域の存在)へ入力する分類アルゴリズムによって実施されたアルゴリズム又は数学的な機能と定義することができる。

分類は、既知のクラスで観察(又は例)を包含するデータのトレーニング・セットに基づいて、新しい観察が一連のクラス(例えば、建設区域の有無)の何れに属し得るかを特定することに関係し得る。個々の観察は、様々な説明的な変数又は特徴として知られている一組の定量化可能な特性に分析されることがある。一例として、分類は、建設区域の検出に関して受信された情報(例えば、画像型情報、LIDAR型情報、RADAR型情報、地図情報、交通情報など)によって示されるように、それぞれの可能性を「建設区域の存在」又は「建設区域の非存在」クラスに割り当てることを含むことがある。

一つの例においては、分類は可能性に基づく分類を含むことがある。可能性分類アルゴリズムは、可能なクラス、即ち「建設区域の存在」又は「建設区域の非存在」の各々の構成要素となる例の可能性(例えば、建設区域の検出に関して受信した情報によって示される駆動状況又は一群の観察)を出力することがある。建設区域の存在の可能性を判定することは、各々のクラスへ割り当てられた可能性に基づき得る。また、可能性に基づく分類は、建設区域の存在に関連した信頼性値を出力することができる。

例示的分類アルゴリズムは、線形分類子(例えば、フィッシャーの線形判別式、ロジスティック回帰、ナイーブ・ベイズ、及びパーセプトロン)、サポート・ベクター・マシン(例えば、最小二乗法サポート・ベクター・マシン)、二次分類子、カーネル評価(例えばk近傍法)、ブースティング、決定木(例えば、ランダム・フォレスト)、ニューラル・ネットワーク、遺伝子発現プログラム、ベイジアン・ネットワーク、隠れマルコフ・モデル、及び学習ベクトル量子化を含み得る。他の例示的分類子も可能である。

説明のための例として、線形分類子は、内積を用いて、例(例えば、駆動状況)の特徴ベクトル(建設区域の検出に関し、複数の源及びそれぞれの信頼性測定基準から受信されたパラメータのベクトル)を重さのベクトルと結合することによって、得点又は可能性を各々の可能なクラスk(例えば、「建設区域の存在」又は「建設区域の非存在」)に割り当てる一次関数として表現されることがある。より高い得点又は可能性をもつクラスは、予測されたクラスとして選択されることがある。この種の得点関数は線形予測関数として知られており、以下の一般的種類を有することがある。
ここでXは例iについての特徴ベクトル、βはカテゴリーkに対応する重さのベクトルであり、得点(X,k)は例iをカテゴリーkに割り当てることに関連した得点である。

一例として、トレーニング・コンピュータ・デバイスは、所定の車両の複数の駆動状況についてのトレーニング・データを受信するように構成されることがある。例えば、複数の駆動状況の各々について、それぞれのトレーニング・データは、それぞれの画像型情報、それぞれのLIDAR型情報、それぞれのRADAR型情報、それぞれの交通情報、及びそれぞれの地図情報を含むことがある。また、トレーニング・コンピュータ・デバイスは、駆動状況の各々についてのそれぞれのトレーニング・データに対応しているそれぞれの建設区域の存在の肯定的又は否定的な指標を受信するように構成し得る。更に、トレーニング・コンピュータ・デバイスは、各々の駆動状況について、肯定的又は否定的な指標をそれぞれのトレーニング・データに関連させるように構成されることがあり、複数の駆動状況についての相関関係に基づいて分類子のパラメータ(例えば、式1についての重みのベクトル)を判定する。更に、一例においては、トレーニング・コンピュータ・デバイ
スは、相関関係に基づいて各々の情報源についてのそれぞれの信頼性測定基準を判定するように構成されることがある。複数の情報源のパラメータ及びそれぞれの信頼性測定基準は、車両402を制御するように構成されたコンピュータ・デバイスへ与えられることがあり、コンピュータ・デバイスが複数の情報源から建設区域の検出に関する情報を受信するにつれて、コンピュータ・デバイスは、分類子の判定されたパラメータを用いて分類子を通じて情報を処理して、可能性を判定するように構成されることがある。

一つの例においては、可能性は質的に例えば「低い」、「中間」、又は「高い」とすることもあり、或いは、例えば、スケールにおける番号のような数であることがある。他の例も可能である。

図3に戻って参照すると、ブロック306において、方法300は、コンピュータ・デバイスを用いて、可能性に基づいて、車両の駆動挙動に関連した制御計画を修正することを含む。

車両の制御システムは、車両の駆動環境における変化に予め定められているか又は適応可能であり得る多重制御計画及び関連した駆動挙動を支持することがある。通常、制御計画は、例えば建設区域に接近することのような様々な駆動状況に相互作用する、交通に関連した規則のセットを含むことがある。この制御計画は、車両の速度及び車両が走行し得る車線を判定する規則を含むことがある一方、安全及び交通規則並びに懸念事項(例えば、建設区域の存在に起因する道路幾何形状の変化、交差点において停車された車両及び減速状況における好機到来、車線追随、速度制御、道路上の他の車両からの距離、通過する他の車両、交通渋滞における待機、及び対向車線のような非安全な挙動をもたらし得る領域を避けること)を考慮に入れる。例えば、建設区域に接近する際に、コンピュータ・デバイスは、建設区域の存在の判定された可能性に基づいて、制御計画(車両速度を他の物体との距離を安全に維持して制御し、建設区域の存在に起因して道路変化を与えられて最も安全であると考えられる車線を選択する措置のための規則からなる)を修正又は選択するように構成されることがある。

一例として、図4において、建設区域の存在の可能性が高い(例えば、予め定められた閾値を越える)のであれば、コンピュータ・デバイスは、ナビゲーションの判定をなす際に、建設区域に関する情報及び変化を含まないであろう既存の地図情報よりもむしろ、車両402の搭載センサー又はコンピュータ・デバイスと通信している非搭載センサーから受信されたセンサー情報を利用するように構成し得る。同様に、コンピュータ・デバイスは、既存の地図情報よりもむしろセンサー情報を利用して車線境界を推定するように構成し得る。例えば、図4を参照すると、コンピュータ・デバイスは、道路404上の車線標識418よりはむしろ、建設区域標識(例えば、建設区域円錐標識406)の位置を判定して、車線境界を推定して追従するように構成されることがある。他の例として、コンピュータ・デバイスは建設作業者420の検出のために一つ以上のセンサーを起動させるように構成されることがあり、その検出に基づいてナビゲーション判定をなす。

一例においては、第1の制御計画はデフォルト駆動挙動を含むことがあり、第2の制御計画は防御駆動挙動を含むこともある。防御駆動挙動の特性は、例えば、車両414A−Bの一台の車両に続いて、デフォルト駆動挙動で維持される距離よりも大きいことがある車両414A−Bとの予め定められた安全な距離を維持し、ライトを点灯して、車両402を減速し、車両402を停車させることである。この例においては、車両402のコンピュータ・デバイスは判定された可能性を閾値可能性と比較するように構成されることがあり、かつ、コンピュータ・デバイスは、その比較に基づいて、第1又は第2の制御計画を選択するように構成されることがある。例えば、判定された可能性が閾値可能性よりも大きいならば、コンピュータ・デバイスは第2の駆動挙動(例えば、防御駆動挙動)を選
択するように構成されることがある。判定された可能性が閾値可能性より小さいならば、コンピュータ・デバイスは、第1の制御計画に対する制御計画を修正するように構成されることがある(例えば、デフォルト駆動挙動を選択する)。

更に他の例では、別々の制御計画(例えば、第1の制御計画と第2の制御計画)の間の移行に代えて又はそれに加えて、コンピュータ・デバイスは、判定された可能性に基づいて駆動モード又は状態の連続体から選択するように構成されることがある。更に他の例においては、コンピュータ・デバイスは個別の制御計画を選択するように構成されることがあり、その選択された個別の制御計画の範囲内でモードを駆動する連続体から駆動モードを選択するように構成されることもある。この例では、所定の制御計画は駆動規則の複数のセットを含むことがあり、一つのセットの駆動規則は車両402の速度及び方向の制御のための措置を記述する。コンピュータ・デバイスは、判定された可能性に基づいて、複数の駆動規則の所定のセットから駆動規則の他のセットへの円滑な移行を引き起こすように更に構成されることがある。円滑な移行は、規則の所定のセットから他への移行が、例えば車両402の速度又は方向における突然の又はぎくしゃくした変化として車両402の乗客によって認識されないであろうことを示し得る。

一つの例においては、所定の制御計画は、プログラム又はコンピュータ指令を含むことがあり、これは判定された可能性に基づいて、車両402を制御するアクチュエータ(例えば、スロットル、ステアリングギア、ブレーキ、アクセラレータ、又は伝達シフター)を特徴付ける。所定の制御計画は、優先順位によってランクを付けられた措置セットを含むことがあり、その措置セットは、車両402が仕事(例えば、一つの場所から他の場所まで駆動する)を達成するために採り得る代替的な措置を含むことがある。この代替的な措置は、例えば、判定された可能性に基づいて、ランクを付けられることがある。また、コンピュータ・デバイスは、実行されて、選択的に、判定された可能性に基づいて修正される措置を選択するように構成されることがある。

他の例では、複数の制御計画(例えば、プログラム)は、コンピュータ・デバイスに措置を連続的に提案することがある。コンピュータ・デバイスは、何れの計画を選択し得るかを決定するように構成されることがあるか、或いは、例えば、目標の重み付けセット(安全、速度など)に基づいて制御計画を修正するように構成されることもがある。目標の重み付けセットの重みは、判定された可能性の関数である場合がある。目標の重み付けセットの評価に基づいて、コンピュータ・デバイスは、例えば、複数の制御計画及びそれぞれの措置セットにランクを付けて、そのランキングに基づいて所定の計画及びそれぞれの措置セットを選択又は修正するように構成されることがある。

これらの例及び駆動状況は例示のみのためである。他の例並びに制御計画及び駆動挙動が同様に可能である。

図3に戻って参照すると、ブロック308において、方法300は、コンピュータ・デバイスを用いて、修正された制御計画に基づいて車両を制御することを含む。一つの例においては、コンピュータ・デバイスは、修正された制御計画に関係している措置セット又は規則セットを用いて車両のアクチュエータを制御するように構成されることがある。例えば、コンピュータ・デバイスは、修正された駆動挙動に基づいて、車両の並進運動速度、又は回転速度、又はそれらの両方を調節するように構成されることがある。

例えば、図4において、車両402を制御することは、可能性に基づいて、車両の望ましい経路を判定することを含むことがある。一例においては、コンピュータ・デバイスは、車両402が移動している道路404に建設区域が存在するという高い可能性を判定していることがある。この例においては、コンピュータ・デバイスは、望ましい経路を判定
するとき、柔軟な制約(即ち、より安全な経路が判定されるならば、車線境界を侵犯することができる)として道路404における車線標識418により示される車線境界を考慮するように構成されることがある。コンピュータ・デバイスは従って、変更された車線境界を形成し得る建設区域円錐標識406の数と場所とを判定するように構成されることもあり、車線標識418により示された車線境界に代えて、変更された車線境界を固守するように構成されることがある。

図4に図示するように、車両402は道路404における建設区域に接近していることがあり、コンピュータ・デバイスは、建設区域を安全に進むために防御駆動挙動に従って車両402を制御するように構成されることがある。例えば、コンピュータ・デバイスは、予め定められた安全な距離を保ちながら、車両402の速度を減速して、車両402が車線を変更して、建設区域円錐406によって形成された変更された車線境界を固守するように、車両414Aの背後の位置へ移って、車両414Aに続くように構成されることがある。

一例においては、建設区域の存在の可能性を判定することに加えて、コンピュータ・デバイスは、建設区域の存在に起因する道路404の変化の重大性を判定若しくは推定するように構成されることがある。コンピュータ・デバイスは、変化の重大性に更に基づいて、制御計画を修正するように構成されることがある。一つの例として、図4においては、コンピュータ・デバイスは、建設機器410A−B、建設区域円錐標識406及びバレル408の位置と場所、道路404に対する変化がどれくらい重要か(例えば、車線閉鎖、移動など)について判定して、防御駆動挙動に従って車両402を制御するように構成されることがある。他の例においては、建設区域は、より少ない重要性を含むように構成こともある。例えば、建設区域は、道路404の側におけるカーブ車線を塗ることがある作業車を含むことがある。この例においては、道路404に対する変化が、図4に描かれた変化より重要性が少ないことがあり、コンピュータ・デバイスは、例えば、車両402を停車させるか、又は車両402を車線変更させるのとは対照的に車両402の速度を減速するように構成されることがある。

これらの制御措置及び駆動状況は例示のみのためである。他の措置及び状況が同様に可能である。一例においては、コンピュータ・デバイスは、人間の運転者が車両の制御をなすことができるまで、臨時制御として、修正された制御計画に基づいて車両を制御するように構成されることがある。

図3及び図4を参照して上述したように、コンピュータ・デバイスは、建設区域を示す場合がある建設区域標識(例えば、建設区域標識412A)の識別又は検出に基づいて、建設区域の存在の可能性を判定するように構成されることがある。

図5は例示的実施形態による建設区域標識の検出のための方法500のフローチャートである。図6A−6Bは例示的実施形態による車両が走行している道路及び道路の近傍の画像を図解し、図6C−6Dは例示的実施形態による所定の高さ範囲における道路の側部を表す道路及び道路の近傍の画像の部分を図解する。図5及び図6A−6Dは一緒に説明される。

この方法500は、一つ以上のブロック502−512により例示されるように、一つ以上の操作、機能、又は措置を含むことがある。ブロックは連続した順序で例示されているが、これらのブロックは或る例では並行に、及び/又はここに説明されたものとは異なる順序で実行されることがある。また、様々なブロックはより少ないブロックに組み合わされたり、更なるブロックへ分割されたり、及び/又は望ましい実施に基づいて除去されることがある。

ブロック502において、この方法500は、車両を制御するように構成されたコンピュータ・デバイスにおいて、コンピュータ・デバイスへ結合された画像取得デバイスから、車両が走行している道路の付近の一つ以上の画像を受信することを含む。コンピュータ・デバイスは車両に搭載されていることもあり、又は非搭載であるが、例えば、車両と無線通信されていることがある。また、コンピュータ・デバイスは自律型又は半自律型操作モードで車両を制御するように構成されることがある。更に、画像取得デバイス(例えば、図1におけるカメラ134又は図2におけるカメラ210)は、車両に結合してコンピュータ・デバイスと通信することがある。画像取得デバイスは、車両が走行している道路及び道路の付近の画像若しくはビデオを撮るように構成し得る。

図6A−6Bは、例えば、図4における車両402に結合された画像取得デバイスにより撮られた例示的画像602及び604をそれぞれ図解する。一つの例においては、画像取得デバイスは、静止画像を或いは静止画像を抽出することができるビデオを連続的に撮るように構成されることがある。一例においては、一つ以上の画像取得デバイスは車両402に結合されることがあり、この一つ以上の画像取得デバイスは、全ての方向からの車両402及び道路路状態の周囲環境を考慮するように複数の視野解から画像を撮るように構成されることがある。

図5へ戻って参照すると、ブロック504において、この方法500は、コンピュータ・デバイスを用いて、一つ以上の画像における一つ以上の画像部分を判定することを含み、その一つ以上の画像部分は予め定められた高さ範囲における道路の側部を表し得る。或る例においては、予め定められた高さ範囲は、建設区域標識のために典型的に用いられる高さ範囲に対応することがある。多くの管轄地では、道路における建設区域は標準的仕様及び規則によって定められており、それを、予め定められた高さ範囲を規定するのに用いられることがある。例示的な規則は、道路における建設区域の存在を示している建設区域標識は、3日よりも長く連続的に所定の場所に設置されることがあり、道路の一側の柱に装着されることがあると述べることがある。更に、他の規則は、一時的な警告建設区域標識のために高所に掲げられている最小限の標識は、例えば、道路地上より上方1フット(30.48cm)である場合があることを指定することがある。他の例においては、高所に掲げられている最小限の標識に加えて又はそれに代えて、高さ範囲を指定することができ、即ち、一時的な警告建設区域標識のための高さ範囲は、例えば1フット(30.48cm)と6フィート(182.88cm)の間にあることがある。建設区域標識が交通安全ドラム又は一時的遮蔽のような交通管制デバイスの背後に位置し得る或る場所では、最小限の高さは、更なる視認性を与えるために、5フィート(152.4cm)へ上昇されることがある。それに加えて又はそれに代えて、高さ範囲は、例えば、5フィート(152.4cm)と11フィート(335.28cm)との間になるように指定することができる。これらの数及び規則は例示のみのためである。他の標準及び規則が可能である。或る例では、予め定められた高さ範囲又は典型的建設区域標識の最小限の高さは、所在地に依存している場合がある(例えば、地理的領域、アメリカ合衆国における何れの州か、国など)。

コンピュータ・デバイスは、画像取得デバイスにより撮られた画像における部分を判定するように構成されることがあり、これは、標準仕様に従って典型的建設区域標識の予め定められた高さ範囲における道路側部を表し得る。例として、図6Aにおいて、コンピュータ・デバイスは、標準仕様に従って典型的建設区域標識のために指定された予め定められた高さ範囲の道路404の一側部を表している画像602において部分606を判定するように構成されることがある。同様に、図6Bにおいて、コンピュータ・デバイスは、予め定められた高さ範囲における道路404の他方の側部を表している画像604において部分608を判定するように構成されることがある。図6Cは、図6Aに図解された
画像602の画像部分606を図解し、図6Dは図6Bに図解された画像604の画像部分608を図解する。

図5に戻って参照すると、ブロック506において、この方法500は、コンピュータ・デバイスを用いて、一つ以上の画像部分における建設区域標識を検出することを含む。標準仕様は、典型的建設区域標識の形状、色、パターン、及び再帰反射特性のための規則を含むこともある。説明のための例として、標準仕様は、典型的建設区域標識は、標準的な種類の反射するシートを有するオレンジ背景におけるシンボルの黒体文字による48インチ(12.92cm)×48インチ(121.92cm)のダイヤモンド形状である場合があることを指定することがある。これらの仕様は例示のみのためであり、他の仕様が可能である。

例えば、図6A−6Dを参照すると、コンピュータ・デバイスは候補建設区域標識(例えば、それぞれ画像部分608及び606における標識412A及び標識416B)を検出するように構成されることがある。コンピュータ・デバイスは、例えば当技術分野で知られている画像認識技術を用いて、典型的建設区域標識の標準仕様と比較した候補建設区域標識の形状、色、パターン、及び再帰反射特性の一つ以上に基づいて、候補建設区域標識が建設区域に関するものか否かを判定するように更に構成されることがある。例えば、コンピュータ・デバイスは、その比較に基づいて、標識412Aは建設区域標識であり、一方、標識416Bはそうでないと判定するように構成されることがある。

画像認識の使用を例示する例においては、コンピュータ・デバイスは、検出された物体を、一つ以上の画像部分において、典型的建設区域標識のテンプレートと比較するように構成されることがある。例えば、コンピュータ・デバイスは、物体の特徴、例えば、一つ以上の画像部分における物体の色、形状、縁、及び隅の特徴を特定するように構成されることがある。次いで、コンピュータ・デバイスは、これらの特徴を典型的建設区域標識のオレンジ/黄色、鋭い縁を有するダイヤモンド形状、及び隅(即ち、「隅標識」)と比較するように構成されることがある。コンピュータ・デバイスは、分類子を通じて物体の特徴(例えば、色、形状など)又は物体の特徴を表すパラメータを処理して、物体の特徴が典型的建設区域標識の典型的特徴に整合するか否かを判定するように構成されることがある。分類子は、入力された情報(例えば、物体の特徴)を分類(例えば、物体は建設区域標識を表す)にマップすることができる。分類子、トレーニング・データ、及び分類アルゴリズムの例は、図3に例示された方法300のブロック304に関して上述されている。

一つの例においては、コンピュータ・デバイスは、画像取得デバイスから受信された画像型情報に加えて、車両402に結合された他のセンサー又はユニットから受信された情報を用いて、建設区域標識の検出を確認若しくは確証するように構成されることがある。例えば、コンピュータ・デバイスは、画像型情報に基づいて、画像部分内の候補建設区域標識が建設区域に関するものであるという第1の可能性を割り当て又は判定するように構成し得る。更に、コンピュータ・デバイスは、車両402に結合されてコンピュータ・デバイスと通信するLIDARセンサー(例えば、図1におけるLIDARユニット132)から、候補建設区域標識(例えば、標識412A)を表している画像部分(例えば、画像部分608)に対応する3D点クラウドを含むLIDAR型情報を受信するように構成されることがある。この3D点クラウドは、LIDARから射出されて、候補建設区域標識の表面から反射される光に基づく一組の点を含むことがある。コンピュータ・デバイスは、LIDAR型情報に基づいて、候補建設区域標識が建設区域に関するものであるという第2の可能性を判定して、第1の可能性と第2の可能性とに基づいて、建設区域標識の存在若しくは検出を確認するように構成されることがある。

他の例においては、LIDAR型情報の受信に加えて又はそれに代えて、コンピュータ・デバイスは、このコンピュータ・デバイスに結合されたRADARセンサー(例えば、図1におけるRADARユニット)から、候補建設区域標識の場所及び特徴に関連するRADAR型情報を受信するように構成し得る。このRADARセンサーは、ラジオ波を射出して、候補建設区域標識の表面から反射して戻ってきた射出ラジオ波を受信するように構成されることがある。受信信号又はRADAR型情報は、例えば、候補建設区域標識の寸法特徴を示す場合があり、候補建設区域標識が静止していることを示し得る。コンピュータ・デバイスは、RADAR型情報に基づいて、例えば候補建設区域標識の特徴と典型的建設区域標識の標準的な特徴との比較に基づいて、候補建設区域標識が建設区域に関するものであるという第3の可能性を判定するように構成されることがある。更に、コンピュータ・デバイスは、建設区域標識を第1の可能性、第2の可能性、及び第3の可能性に基づいて検出されるように構成されることがある。

例として、コンピュータ・デバイスは、第1の可能性、第2の可能性、及び第3の可能性の関数である全体的な可能性(例えば、第1の可能性、第2の可能性と第3の可能性の重み付けられた組合せ)を判定するように構成されることがあり、かつ、コンピュータ・デバイスは、建設区域標識を全体的な可能性に基づいて検出するように構成されることがある。

一例では、コンピュータ・デバイスは、複数の情報源、例えば画像取得デバイス、LIDARセンサー、及びRADARセンサーから受信される情報に基づいて建設区域標識を検出するように構成されることがあるが、他の例においては、コンピュータ・デバイスは、複数の源のサブセットから受信された情報のサブセットに基づいて建設区域標識を検出するように構成されることがある。例えば、画像取得デバイスにより撮られた画像は、画像取得デバイスの機能不全に起因してぼやけることもある。他の例としては、道路404の詳細は、霧のために画像において不明瞭になることもある。これらの例においては、コンピュータ・デバイスはLIDAR及び/又はRADARユニットから受信された情報に基づいて建設区域標識を検出するように構成されることがあり、かつ、画像取得デバイスから受信された情報を無視するように構成されることがある。

他の例においては、車両402は、或る電気的な雑音又は妨害信号が存在するであろう道路404の一部を走行することがあるので、従って、LIDAR及び/又はRADAR信号は正しく作動しないことがある。この場合、コンピュータ・デバイスは、画像取得デバイスから受信された情報に基づいて建設区域標識を検出するように構成されることがあり、かつ、LIDAR及び/又はRADARユニットから受信された情報を無視するように構成されることがある。

一例を挙げれば、コンピュータ・デバイスは、道路404の状態(例えば、霧、電子的妨害など)に基づいて及び/又は複数の源の各々の源へ割り当てられたそれぞれの信頼性測定基準に基づいて、複数の情報源をランク付けするように構成されることがある。このランキングは、何れのセンサーに頼るべきであるか、建設区域標識を検出する際により多くの重みを与えるべきかについて示すことがある。例として、霧が道路の一部に存在するならば、LIDAR及びRADARセンサーは画像型デバイスよりも高いランクを付けられることがあり、LIDAR及び/又はRADARセンサーから受信された情報は画像取得デバイスから受信されたそれぞれの情報より多くの重みを与えられることがある。

図5へ戻って参照すると、ブロック508において、この方法500は、コンピュータ・デバイスを用いて、一つ以上の画像部分における建設区域標識の種類を判定することを含む。様々な種類の建設区域標識が存在することもある。一つの建設区域標識種類は、道路における建設区域に接近して通過するとき、速度制限を規制することに関係しているこ
とがある。他の建設区域標識種類は、車線変化、閉鎖、縮小、併合等に関係していることがある。更に他の建設区域標識種類は、道路における移動方向の一時的な変化に関係していることがある。建設区域標識の例示的種類は、以下を含むことがある。即ち、「右車線閉鎖この先」、「道路工事この先」、「停車準備せよ」、「道路建設1500フィート(457.2m)」、「一車線道路この先」、「減速限界30」、「路肩工事」等である。他の例示的種類が可能である。

一つの例においては、車両のコンピュータ・デバイスは、建設区域標識の形状、色、書体などに基づいて、検出された建設区域の種類を判定するように構成されることがある。例として、コンピュータ・デバイスは、検出された建設区域標識の画像から種類(例えば、建設区域標識の形状、又はそれに記載された語句)を、画像認識技術を用いて特定するように構成されることがある。

ブロック506に関して上述したように、コンピュータ・デバイスは、画像認識技術を利用して物体を典型的建設区域標識のテンプレートと比較して建設区域標識を検出するように構成されることがある。一つの例においては、検出された建設区域標識の種類を判定するために、コンピュータ・デバイスは検出された建設区域標識の部分を典型的建設区域標識の下位テンプレートと比較するように構成されることがある。一例を挙げれば、コンピュータ・デバイスは、検出された建設区域標識に記載された個々の語句又は文字を特定して、特定された語句又は文字を典型的建設区域標識の対応する下位テンプレートと比較するように構成されることがある。他の例においては、コンピュータ・デバイスは、文字又は語句の間の間隔、及び/又は語句と検出された建設区域標識の縁との間の間隔を判定するように構成されることがある。更に他の例においては、コンピュータ・デバイスは、検出された建設区域標識に語句又は文字が印刷されるフォントを特定して、この特定されたフォントを典型的建設区域標識に関係したフォント下位テンプレートと比較するように構成されることがある。

例として、コンピュータ・デバイスは、検出された建設区域標識にタイプされた語句「この先、道路工事」を有する建設区域標識を検出するように構成されることがある。このコンピュータ・デバイスは、一つ以上の画像部分における個々の文字又は語句「道路」、「工事」、「この先」を抽出して、これらの語句とこれらの語句の特徴(例えば、フォント、文字の大きさなど)を対応する下位テンプレート典型的建設区域標識と比較するように構成されることがある。また、コンピュータ・デバイスは三つの単語の間の間隔及びこれらの語句を形成する文字の間の間隔を対応する下位テンプレートと比較するように構成されることがある。更に、コンピュータ・デバイスは、単語「道路」と検出された建設区域標識の左縁との間の間隔及び単語「この先」と検出された建設区域標識の右縁との間の間隔を対応する下位テンプレート比較するように構成されることがある。これらの比較に基づいて、コンピュータ・デバイスは検出された建設区域標識の種類を判定するように構成されることがある。

これらの特徴(例えば、文字、語句、フォント、間隔など)は例示のための例であって、他の特徴を用いて典型的建設区域標識の典型的特徴(即ち、下位テンプレート)と比較して、検出された建設区域標識の種類を判定することができる。

一例を挙げれば、画像認識を用いるのに加えて又はそれに代えて、RADAR型情報に基づいて、コンピュータ・デバイスは、建設区域標識の形状及び寸法を判定して、この判定された形状及び寸法から種類及び関連する道路変化を推論するように構成されえることがある。他の例が可能である。

ブロック510において、この方法500は、コンピュータ・デバイスを用いて、建設
区域標識の種類に基づいて、車両の駆動挙動に関連した制御計画を修正することを含む。道路における建設区域の存在に起因する道路変化は、建設区域の前方に存在する建設区域標識の種類により示されることがある。コンピュータ・デバイスは、建設区域標識の判定された種類に基づいて車両の制御計画を修正するように構成されることがある。

制御計画修正の例は、図3に示された方法300のブロック306に関して上述された。例として、コンピュータ・デバイスは、種類によって示されるように車線移動及び/又は速度変更が必要とされるか否かを判定し、ナビゲーション判定をする際に、既存の地図情報よりはむしろ、搭載又は非搭載のセンサーから受信されたセンサー情報を利用し、車線境界を推定するために、既存の地図情報よりもむしろセンサー情報を利用し、道路における車線マーカーよりもむしろ建設区域円錐標識又はバレルの位置を判定して車線境界を推定して追従し、及び、建設作業車の検出のために一つ以上のセンサーを起動して、その検出に基づいてナビゲーション判定をなすように構成し得る。これらの例及び駆動状況は例示のみのためである。他の例並びに制御計画及び駆動挙動が同様に可能である。

ブロック512において、この方法500は、コンピュータ・デバイスを用いて、修正された制御計画に基づいて車両を制御することを含む。修正された制御計画に基づいて車両を制御することの例は、図3に例示された方法300のブロック308に関して上述された。例として、コンピュータ・デバイスは、他の車両に追従するために、修正された駆動挙動に基づいて車両の並進速度、又は回転速度、又はその両方を調節し、他の車両との予め定められた安全距離を維持し、ライトを点灯し、車両の速度を減速し、車線を移動し、及び車両を停車させるように構成し得る。これらの制御措置及び駆動状況は例示のみのためである。他の措置及び状況が同様に可能である。

図5に例示された方法500のブロック506に関して説明されたように、コンピュータ・デバイスは、車両に結合されてコンピュータ・デバイスと通信するLIDARセンサーから受信された情報に基づいて建設区域標識の検出を検知若しくは確認するように構成されることがある。

図7は、例示的実施形態によるLIDAR型情報を用いる建設区域標識の検出のための方法700のフローチャートである。図8Aは、例示的実施形態による道路の表面からの閾値高さよりも高い高さにおける建設区域標識のLIDAR型検出を図解する。図8Bは、例示的実施形態による道路の表面からの閾値高さよりも高い高さにおける領域を表しているLIDAR型画像を図解する。図7と図8A−8Bとは一緒に説明される。

この方法700は、一つ以上のブロック702−712により例示されるように、一つ以上の操作、機能、又は措置を含むことがある。それらのブロックは連続した順序で描かれているが、これらのブロックは或る例では並行に、及び/又はここに説明されたものとは異なる順序で実行し得る。また、様々なブロックはより少ないブロックへ結合、更なるブロックへ分割、及び/又は望ましい実施に基づいて除去することが可能である。

ブロック702において、この方法700は、車両を制御するように構成されたコンピュータ・デバイスにおいて、コンピュータ・デバイスに結合された光検出及び測距(LIDAR)センサーからLIDAR型情報を受信することを含み、このLIDAR型情報は、(i)車両が走行している道路の近傍の3次元(3D)点クラウドであり、この3D点クラウドはLIDARから射出されて、道路の近傍の一つ以上の物体から反射された光に対応する点を含み得る3D点クラウドと、(ii)それらの点についての反射光の強度値とからなる。LIDARセンサー又はユニット(例えば、図1におけるLIDARユニット132)は、車両に結合されて、車両を制御するように構成されたコンピュータ・デバイスと通信することが可能である。図1におけるLIDARユニット132に関して説明
されるように、LIDAR操作は、散乱光の測定特性が遠くの目標の距離及び/又は他の情報を検出することを可能にする光学的遠隔検知技術に関わることがある。LIDARセンサー/ユニットは、例えば、ビームとしてレーザー・パルスを射出して、ビームを走査して二次元又は三次元値域マトリックスを生成するように構成されることもある。一つの例として、値域マトリックスは、パルスの伝送とそれぞれの反射信号の検出との間の時間遅延を測定することにより、物体又は表面までの距離を判定するのに用いられることがある。

他の例においては、LIDARセンサーは、車両を取り巻く環境を三次元で迅速に走査するように構成されることもある。或る例においては、一つよりも多くのLIDARセンサーは、車両の完全な360°水平線を走査するために車両に結合されることがある。LIDARセンサーは、道路及び道路の近傍における物体(これには既にレーザーが当たっている)を表す点データのクラウドをコンピュータ・デバイスへ与えるように構成されることがある。これらの点は、車両に固定された局所座標フレームに対して(X,Y,Z)点データへ変換する値域に加えて、方位角及び仰角を単位としてLIDARセンサーにより描写することが可能である。更に、このLIDARセンサーは、コンピュータ・デバイスに物体を反射した光又はレーザーの強度値を与えるように構成することが可能である。

ブロック704において、この方法700は、コンピュータ・デバイスを用いて、道路の表面からの閾値高さよりも高い高さにおける領域を表す3D点クラウドの一組の点を決定することを含む。方法500に関して説明したように、道路における建設区域は標準仕様及び規則によって規定されることがある。高所に掲げられている最小限の標識は、例えば、典型的建設区域標識のために指定されることがある。図8Aは、道路404を走行していて、建設区域標識412Aにより示される建設区域に接近している車両402を図解する。この車両402に結合されたLIDARセンサーは、水平線を走査して、コンピュータ・デバイスに道路404及び道路404の近傍(例えば、側部)の3D点クラウドを与えることが可能である。更に、コンピュータ・デバイスは、閾値高さ804よりも高い高さにおける領域802を判定するように構成されることがあり、その閾値高さ804は、例えば、建設区域の標準仕様に従って典型的建設区域標識のために指定された高所に掲げられている最小限の標識である場合がある。図8Bは、判定された領域802を表すか若しくはそれに対応する一組の点(例えば、3D点クラウドのサブセット)を含むLIDAR型画像806を図解する。

図7に戻って参照すると、ブロック706において、この方法700は、コンピュータ・デバイスを用いて、一組の点に関連した形状を推定することを含む。コンピュータ・デバイスは、閾値高さよりも高い高さにおける領域を表している一組の点により描かれる形状を特定又は推定するように構成されることがある。例えば、コンピュータ・デバイスは形状の寸法特性を推定するように構成されることもある。一つの例においては、コンピュータ・デバイスは、予め定められた形状を一組の点で描かれた形状に適合させて、その形状を推定するように構成されることがある。例として、図8Bにおいて、コンピュータ・デバイスは、LIDAR型画像806に含まれる一組の点でダイヤモンド形状808を推定するように構成されることがある。

図7へ戻って参照すると、ブロック708において、この方法700は、コンピュータ・デバイスを用いて、一組の点に関して推定された形状及びそれぞれの強度値に基づいて、一組の点が建設区域標識を描くという可能性を判定することを含む。一つの例においては、図8Bを参照すると、コンピュータ・デバイスは、推定された形状808を典型的建設区域標識の一つ以上の形状に整合させるか又は比較するように構成されることがあり、かつ、このコンピュータ・デバイスは、推定された形状808が所定の予め定められた形状にどれくらい類似しているかを示す整合測定基準(例えば、推定された形状808の寸
法特性と典型的建設区域標識のダイヤモンド形状との間の整合のパーセンテージ)を決定するように構成されることがある。一例を挙げれば、コンピュータ・デバイスは、推定された形状808の縁を特定して、典型的建設区域標識の典型的ダイヤモンド形状に対する縁により形成された形状に整合させるように構成されることがある。可能性は、例えば、整合測定基準に基づいて判定されることもある。

更に、典型的建設区域標識は、ビーズ又はプリズムのような再帰反射するシート材料からなるとされる建設区域の標準仕様により要求されることがあり、コンピュータ・デバイスは、推定された形状を形成する点の強度値を再帰反射シート材料の閾値強度値と比較するように構成されることがある。この比較に基づいて、このコンピュータ・デバイスは、推定された形状808が所定の建設区域標識を表し得ることを確認するように構成されることがある。例えば、強度値が閾値強度値の予め定められた値に近いか又はその範囲内にあるならば、このコンピュータ・デバイスは、推定された形状808は建設区域標識を表し得る高い可能性を判定するように構成されることがある。

一つの例においては、このコンピュータ・デバイスは、推定された形状808の典型的建設区域標識の予め定められた形状との比較に基づいて第1の可能性を判定するように構成されることがあり、かつ、強度値の閾値強度値との比較に基づいて第2の可能性を判定するように構成されることがある。このコンピュータ・デバイスは、第1の可能性と第2の可能性とを組み合わせて、一組の点(これは推定された形状808を形成する点を含む)が建設区域標識を表すという単独の可能性を判定するように構成されることがある。

他の例では、このコンピュータ・デバイスは、推定された形状808(例えば、推定された形状808の寸法特性)と強度値に基づいて確率モデル(例えば、ガウス分布)を生成し、一組の点が建設区域標識を描く可能性を判定するように構成されることがある。例えば、この可能性は、推定された形状808の寸法とそれぞれの強度値とに基づいて決定された一組のパラメータ値の関数として判定されることがある。この例において、この可能性は、それらのパラメータ値を与える観察された結果(推定された形状808は建設区域標識を表す)の可能性に等しいものとして定義されることがある。

更に他の例においては、このコンピュータ・デバイスは更に、LIDAR型画像806に描写されている点(例えば、推定された形状808を形成する)を、点の位置又は点の相互の相対的な位置に基づいて集めて一緒にクラスタにするように構成されることもがある。コンピュータ・デバイスは、点のクラスタから一組の特徴(例えば、推定された形状808の寸法特性、及び推定された形状808を形成する点の強度値)を抽出するように構成されることがある。このコンピュータ・デバイスは、この一組の特徴を分類子を通じて処理して、可能性を判定するように構成されることがある。その分類子は、入力情報(例えば、点のクラスタから抽出された一組の特徴)をクラス(例えば、クラスタは建設区域標識を表す)にマップすることができる。分類子、トレーニング・データ、及び分類アルゴリズムの例は、図3に例示された方法300のブロック304に関して上述された。

一例を挙げれば、可能性は質的に例えば「低い」、「中間」、「高い」とする場合があれば、例えば、スケール上の数とする場合がある。他の例が可能である。

図7に戻って参照すると、ブロック710において、この方法700は、コンピュータ・デバイスを用いて、可能性に基づいて、車両の駆動挙動に関連した制御計画を修正することを含む。可能性(例えば、可能性が予め定められた閾値を上回る)に基づいて、コンピュータ・デバイスは接近している建設区域を示す建設区域標識の存在を判定するように構成されることがある。更に、コンピュータ・デバイスは、一種の建設区域標識を判定して、道路における建設区域の存在に起因する道路変化の重要性判定するように構成される
ことがある。例えば、コンピュータ・デバイスは、建設区域標識の判定された形式に基づいて車両の制御計画を修正するように構成されることがある。

図5の方法500のブロック508に関して上述したように、様々な形式の建設区域標識の形式は、例えば、建設区域に接近して通過するときに、速度制限を管理し、車線変更、閉鎖、縮小、併合などを表し、例えば、道路における移動方向の一時的な変化を表すために存在することがある。車両のコンピュータ・デバイスは、検出された建設区域標識の形式を検出された建設区域標識の形状、色、書体、語句などに基づいて判定するように構成されることがある。

制御計画修正の例は、図3に例示された方法300のブロック306に関して上述した。

ブロック712において、方法700は、コンピュータを用いて、修正された制御計画に基づいて車両を制御することを含む。車両を制御することは、修正された駆動挙動に基づく車両の並進速度又は回転速度、又はその両方を調節することを含むことがある。修正された制御計画に基づく車両の制御の例は、図3に例示された方法300のブロック308に関して上述した。

LIDAR型情報を用いた建設区域標識の検出に加えて又はそれに代えて、コンピュータ・デバイスは、LIDAR型情報を用いて、建設区域物体(例えば、円錐、バレル、機器、ベスト、山形袖章など)を検出するように構成されることがある。

図9は、例示的実施形態によるLIDAR型情報を用いる建設区域物体の検出のための方法のフローチャートである。図10Aは例示的実施形態による道路の表面からの閾値距離範囲内の領域における建設区域円錐標識のLIDAR型の検出を図解する。図10Bは例示的実施形態による道路の表面からの閾値距離範囲内の領域を描いているLIDAR型画像を図解する。図10Cは例示的実施形態による車線境界を形成する建設区域円錐標識のLIDAR型検出を図解する。図10Dは例示的実施形態による車線境界を形成する建設区域円錐標識を描いているLIDAR型画像を図解する。図9及び図10A−10Dは一緒に説明される。建設区域円錐標識の検出が、ここでは方法900を例示するために用いられているが、他の建設区域物体(例えば、建設区域バレル、機器、ベスト、山形袖章など)が同様に方法900を用いて検出することができる。

方法900は一つ以上のブロック902−914により例示されるように、一つ以上の操作、機能又は措置を含むことがある。ブロックは連続した順序で例示されているが、これらのブロックは或る例においては、並行に、及び/又はここに説明されたものとは異なる順序で実行されることがある。また、様々なブロックはより少ないブロックに組み合わされ、更なるブロックに分割され、及び/又は、望ましい実施に基づいて除去されることがある。

ブロック902において、この方法900は、車両を制御するように構成されたコンピュータ・デバイスにおいて、コンピュータ・デバイスに結合された光検出及び測距(LAIDAR)センサーから、車両が走行する道路の3次元(3D)点クラウドに関するLIDAR型情報を受信することを含み、その3D点クラウドは、LIDARから射出されて道路における一つ以上の物体から反射された光に対応する点を含み得る。LIDARセンサー若しくはユニット(例えば、図1におけるLIDARユニット132)は、車両に結合してコンピュータ・デバイスと通信し得る。図1におけるLIDARユニット132、及び図7に例示された方法700のブロック702に関して上述したように、LIDARセンサーは、道路及び道路の近傍における物体を表す点データのクラウドをコンピュータ
・デバイスに与えるように構成し得る。この点は、範囲に加えて、方位角及び抑角に関してLIDARセンサーにより表されることがあり、これは車両に固定された局所座標フレームに対して、(X,Y,Z)点データに変換することができる。

ブロック904において、この方法900は、コンピュータ・デバイスを用いて、道路の表面からの閾値距離範囲内の領域を表す3D点クラウドにおける一組以上の点を決定することを含む。方法500及び700に関して上述したように、道路における建設区域は、標準仕様及び規則によって規定されることがある。一例として、交通安全円錐標識は建設区域作業領域を通過する交通を分離して誘導するのに用いられることがある。円錐標識は、例えば、高さ約18インチ(45.72cm)に指定されることがある。他の例では、交通の高速及び高い交通量又は夜間活動のために、円錐標識は高さ28インチ(71.12cm)で、再帰反射するように、又は再帰反射材料からなるバンドを含むように指定されることがある。これらの例は例示目的のみであって、他の例が可能である。

図10Aは、道路404を走行して、建設区域円錐標識406により示される建設区域に接近している車両402を図解する。車両402に結合されたLIDARセンサーは、水平線を走査して、コンピュータ・デバイスに道路404及び道路404の近傍の3D点クラウドを与えるように構成されることがある。更に、コンピュータ・デバイスは道路404の表面の閾値距離1004範囲内の領域1002を決定するように構成されることがある。例えば、閾値距離1004は、標準化された長さ(例えば、18インチ(45.72cm)又は28インチ(71.12cm))の円錐を含む約30インチ(76.2cm)インチ以上である場合がある。他の閾値距離は、特定の建設区域を管理する標準仕様に基づいて可能である。図10Bは、領域1002における対象を表している一組の点を含むLIDAR型画像1006を図解する。

図9に戻って参照すると、ブロック906において、方法900は一組以上の点における建設区域物体を特定することを含む。例えば、コンピュータ・デバイスは、LIDAR型の3D点クラウドの複数組の点で表される物体の形状を特定するように構成されることがある。例えば、コンピュータ・デバイスは一組の点によって描かれた物体の形状の特徴(例えば、寸法特徴)を推定するように構成されることがあり、予め定められた形状をその形状に適合させて、物体を特定するように構成されることがある。一例として、図10Bにおいて、コンピュータ・デバイスはLIDAR型画像1006内で建設区域円錐標識1008を特定するように構成されることがある。

一例においては、複数組の点における建設区域物体を特定するために、コンピュータ・デバイスは、特定された建設区域物体の各々について、特定のそれぞれの可能性を判定するように構成されることがある。例えば、図10Bにおいて、コンピュータ・デバイスは、代表的な円錐標識1008を表している一組の点によって規定される円錐標識1008の形状を判定するように構成されることがある。更に、コンピュータ・デバイスは、この形状を標準的な建設区域円錐の一つ以上の形状に整合させるように構成されることがある。コンピュータ・デバイスは、その形状が典型的建設区域円錐標識の所定の標準的な形状にどれくらい類似しているかを示す整合測定基準(例えば、形状と所定の標準的な形状の寸法特徴との間の整合の試合のパーセンテージ)を判定するように構成されることがある。各々の可能性は整合基準に基づいて判定されることがある。

他の例においては、形状に基づいて円錐標識1008を特定することに加えて又はそれに代えて、コンピュータ・デバイスは、点の位置又は点の互いの相対位置に基づいて、LIDAR型画像1006内に描かれたクラスタ点(例えば、円錐標識1008を形成する点)を一緒にクラスタにするように構成されることがある。コンピュータ・デバイスは更に、一組の特徴(例えば、点の最小高さ、点の最大高さ、点の数、点のクラスタの幅、変
動する高さにおける点の一般的統計など)を点のクラスタから抽出するように構成されることがある。コンピュータ・デバイスは、分類子を通じてこの一組の特徴を処理して、点のクラスタが所定の建設区域円錐標識を表すか否かを判定するように構成されることがある。分類器は、入力情報(例えば、点のクラスタから抽出された一組の特徴)をクラスにマップすることができる(例えば、クラスタは建設区域円錐標識を表す)。分類子、トレーニング・データ、及び分類アルゴリズムの例は、図3に例示された方法300のブロック304に関して上述された。

更に、典型的建設区域円錐標識は建設区域の標準仕様により再帰反射シート材料、例えばガラスのビーズ又はプリズムのような材料とされることを要求されることがあり、かつ、コンピュータ・デバイスは、円錐1008を形成する点の強度値を再帰反射シート材料の閾値強度値に比較するように構成されることがある。この比較に基づいて、コンピュータ・デバイスは、例えば、円錐標識1008の特定を確認するように構成されることがある。

或る例においては、コンピュータ・デバイスは、道路から所定の距離だけ離れている円錐標識を除外するように構成されることがあり、これはそのような円錐が道路から離れており、交通には影響を及ぼさないことを示し得るためである。また、一例においては、コンピュータ・デバイスは、典型的建設区域円錐標識の典型的寸法と比べた寸法(例えば、建設区域円錐標識であるにはあまり大きいか又はあまり小さい)に基づいて、明らかに建設区域円錐標識ではない物体を表す複数組の点を除外するように構成されることがある。

一つの例においては、建設区域円錐標識の信頼できる特定のために、コンピュータ・デバイスは、LIDARによる二つの(又はより多くの)連続的な走査から受信されたLIDAR型情報に基づいて建設区域円錐標識を特定して、特定を確認し、単独の走査における電子的若しくは信号雑音に起因する誤った特定を除去するように構成されることがある。

図9に戻って参照すると、ブロック908において、この方法900は、コンピュータ・デバイスを用いて、一つ以上の建設区域物体の数及び位置を判定することを含む。一例として、典型的建設区域円錐標識の寸法特徴及び反射特性を指定することに加えて、建設区域のための標準仕様も、円錐標識の数とそれらの間の間隔の必要条件を指定することもある。一例として、幾つかの状況下で、より密な間隔が指定されて、車両及び運転者の案内を強化する。表1は、速度制限に基づく建設区域円錐標識の間の最小限の間隔の例を例示する。

これらの例は、例示のみのためであって、間隔条件の他の例が同様に可能である。

一例においては、特定された円錐標識の特定のためのそれぞれの可能性が閾値可能性を上回るならば、コンピュータ・デバイスは更に、特定された円錐標識の数及び位置を判定するように構成されることもある。図10Cにおいて、コンピュータ・デバイスは、LIDAR型情報に基づいて、円錐標識406を検出又は特定するように構成されることがあり、円錐標識406の数並びに円錐標識406の互いに関しての位置又は相対的な位置を判定することもある。例えば、コンピュータ・デバイスは、円錐標識の間の距離1010を判定して、距離1010を標準仕様において指定された予め定められた距離(又は間隔)と比較するように構成されることがある。

図10Dは、代表的な建設区域円錐標識1012A―Dを表す複数組の点を含むLIDAR型画像1011を図解する。LIDAR型画像1011における建設区域円錐1012西暦を検出するか、確認することに加えて、コンピュータ・デバイスは円錐の組の間のそれぞれの距離を推定するように構成されることもある。

図9に戻って参照すると、ブロック910において、この方法900は、コンピュータ・デバイスを用いて、一つ以上の建設区域物体の数と位置に基づいて建設区域の存在の可能性を判定することを含む。一例として、道路の側部における単独の円錐標識は、活動中の建設区域を示さない場合がある。従って、道路における円錐標識の存在の検出又はその特定に加えて、コンピュータ・デバイスは、例えば、円錐標識の数及び位置(例えば、相対的な距離)に基づいて、円錐標識が車線境界形成して互いに予め定められた距離範囲内にある(これは道路変化を引き起こす活動中の建設区域を示し得る)ことを判定するように構成されることがある。コンピュータ・デバイスは、円錐標識の判定された数及び位置に基づいて、円錐標識が建設区域を示すということについて、その可能性を判定又はそのことを確認するように構成されることがある。

一つの例においては、コンピュータ・デバイスは、LIDAR型情報に基づいて、建設領域円錐標識の数及び位置を判定して、特定された建設区域円錐標識により形成されたパターンを典型的建設区域において典型的建設区域標識円錐により形成された典型的パターン(例えば、車線境界を形成する円錐標識のパターン)と比較するように構成されることがある。コンピュータ・デバイスは、この比較に基づいて、検出された建設区域円錐標識が建設区域に関連していると判定し、従って可能性を判定するように構成されることがある。

他の例においては、コンピュータ・デバイスは、円錐標識の判定された数及び位置に基づいて、確率モデル(例えば、ガウス分布)を生成し、建設区域の存在の可能性を判定するように構成されることがある。例えば、この可能性は、特定された円錐標識の数及び位置に基づいて判定される一組のパラメータ値の関数として判定されることがある。この例では、この可能性は、それらのパラメータ値を与えられる観察された結果の可能性(円錐標識は道路における建設区域を示す)の可能性に等しいものとして定義し得る。

更に他の例においては、コンピュータ・デバイスは、分類子を通じて円錐標識の数及び位置に関する情報を処理して可能性を判定するように構成されることがある。分類子は、入力情報(例えば、円錐の数及び位置)をクラス(例えば、建設区域の存在)にマップすることができる。分類子と分類アルゴリズムとの例は、図3に例示される方法300のブロック304に関して上述された。

一つの例として、トレーニング・コンピュータ・デバイスは、所定の車両の複数の駆動状況についてのトレーニング・データを受信するように構成されることがある。例えば、それぞれのトレーニング・データは、複数の駆動状況の各々について、それぞれの道路のそれぞれの3D点クラウドに関するそれぞれのLIDAR型情報を含むことがある。それぞれのトレーニング・データのそれぞれのLIDAR型の情報に基づいて、コンピュータ・デバイスは、それぞれの円錐標識のそれぞれの数及び位置を判定するのみならず、それぞれの円錐標識を特定するように構成されることがある。また、コンピュータ・デバイスは、駆動状況の各々についてのそれぞれのトレーニング・データに対応するそれぞれの建設区域のそれぞれの存在の肯定的又は否定的な指標を受信するように構成されることがある。更に、トレーニング・コンピュータ・デバイスは、駆動状況の各々について、それぞれのトレーニング・データに関連する肯定的又は否定的指標を相互に関連付けて、複数の駆動状況についての相関関係に基づいて分類子のパラメータ(例えば、式1についての重み付けのベクトル)を判定するように構成されることがある。これらのパラメータは、車両を制御するように構成されたコンピュータ・デバイスへ与えられて、このコンピュータ・デバイスがLIDAR型情報を受信して、このコンピュータ・デバイスが、分類子の判定されたパラメータを用いて、分類子を通じてLIDAR型情報を処理して、可能性を判定するように構成されることがある。

一例を挙げれば、可能性は質的に「低い」、「中間」、「高い」などの場合があるか、又は、例えば、スケール上における数などの数値である場合がある。他の例が可能である。

図9に戻って参照すると、ブロック912において、この方法900は、コンピュータ・デバイスを用いて、道路における建設区域の存在の可能性に基づいて、車両の駆動挙動に関連した制御計画を修正することを含む。コンピュータ・デバイスは、建設区域の存在の判定された可能性に基づいて、他の物体との距離を安全に維持する車両速度を制御する措置のための規則を含み、建設区域の存在に起因して最も安全な道路変化を与えられていると考えられる車線を選択する制御計画を修正又は選択するように構成されることがある。可能性に基づく制御計画を修正することの例は、図3に例示される方法300のブロック306に関して上述された。

ブロック914において、この方法900は、コンピュータ・デバイスを用いて、修正された制御計画に基づいて車両を制御することを含む。車両の制御は、修正された駆動挙動に基づいて車両の並進速度さ又は回転速度又はその両方を調節することを含み得る。修正された制御計画に基づいて車両を制御することの例は、図3に例示された方法300のブロック308に関して上述された。

或る実施形態においては、これらの開示された方法は、機械可読可読フォーマットにおけるコンピュータ可読記憶媒体、又は、他の非一時的な媒体又は製造物にコード化されたコンピュータ・プログラム指令として実装されることがある。図11は、ここに提示された少なくとも幾つかの実施形態により配置されたコンピュータ・デバイスにおいてコンピュータ処理を実行するためのコンピュータ・プログラムを含む例示的コンピュータ・プログラム製品1100の概念的な部分図を概略的に図解する。一つの実施形態において、例示的コンピュータ・プログラム製品1100は、信号伝搬媒体1101を用いて与えられる。この信号伝搬媒体1101は、一つ以上のプログラム指令1102を含むことがあり、これは一つ以上のプロセッサにより実行されたとき、図1−図10に関して上述された機能性の機能性又は部分を与えることがある。このように、例えば、図3、5、7、及び9に図示された実施形態を参照すると、信号伝搬媒体1101に関連した一つ以上の指令によって、ブロック302−308、502−512、702−712、及び902−914の一つ以上の特徴が開始されることがある。更に、図11におけるプログラム指令1102は、同様に例示的指令を記述する。

或る例においては、信号伝搬媒体1101は、コンピュータ可読媒体1103を含むことがあり、これは例えばハード・ディスク・ドライブ、コンパクトディスク(CD)、ディジタル・ビデオ・ディスク(DVD)、デジタル・テープ、メモリその他であるが、これらに限定されるものではない。或る実装例においては、信号伝搬媒体1101は、コンピュータ記録可能媒体1104を含むことがあり、これは例えばメモリ、読込み/書込み
(R/W)CD、R/W DVDその他であるが、これらに限定されるものではない。或る実装例においては、信号伝搬媒体1101は、通信媒体1105を含むことがあり、これは例えばデジタル及び/又はアナログ通信媒体(例えば、光ファイバー・ケーブル、導波管、有線通信リンク、無線通信リンクなど)であるが、これに限定されるものではない。このように、例えば、信号伝搬媒体1101は、通信媒体1105(例えば、IEEE802.11標準又は他の伝達プロトコルに従っている無線通信媒体)の無線形態により伝達されることがある。

一つ以上のプログラミング指令1102は、例えば、コンピュータ実行可能及び/又は論理実装指令である。或る例においては、コンピュータ・デバイス、例えば図1−10に関して説明したコンピュータ・デバイスは、コンピュータ可読媒体1103、コンピュータ記録可能な媒体1104、及び/又は通信媒体1105の一つ以上によりコンピュータ・デバイスへ伝達されたプログラミング指令1102に応じて様々な操作、機能又は措置を与えるように構成されることがある。ここに説明された配置構成は例示のみの目的であることを理解されたい。そのように、当業者は、他の配置構成及び他の要素(例えば、機械、インターフェース、機能、命令、及び機能の分類など)を代わりに使用することができ、かつ、幾つかの要素は望ましい結果により全く省略し得ることを理解するであろう。更に、説明された要素の多くは機能的な実体であって、これは任意の適宜な組合せ及び場所における離散型若しくは分散型構成要素分として又は他の構成要素とともに実装されることがある。

様々な態様及び実施形態を本明細書に開示したが、他の態様及び実施形態が当業者にとって明らかである。本明細書に開示された様々な態様及び実施形態は、例示の目的であって、以下の請求項によって示されている真の範囲の限定を意図するものではなく、そのような請求項が権利を与えられる均等物の完全な範囲に沿うものである。本明細書において用いられた用語は特定の実施形態のみを記述する目的であって、制限することを意図するものではないことも理解されたい。

Claims (17)

  1. 車両のコンピュータ・デバイスによって、前記車両が走行する道路の表面からの予め定められた閾値距離範囲内の領域を表す3次元(3D)点クラウドの一部を選択することと、
    前記選択された部分内の1つ以上の建設区域物体を特定することと、
    前記コンピュータ・デバイスを用いて、前記特定された1つ以上の建設区域物体に基づいて、建設区域の存在の可能性を判定することと、
    予め定められた閾値可能性を上回る前記可能性に応じて、前記1つ以上の建設区域物体の数及び場所に基づいて、前記車両の制御に影響を与える道路変化の重要性を判定することと、
    前記コンピュータ・デバイスを用いて、前記建設区域の前記存在の可能性及び前記道路変化の重要性に基づいて、前記車両を制御することと、
    を含む方法。
  2. 前記車両は自律型操作モードにある、請求項1に記載の方法。
  3. 前記建設区域の前記存在の可能性を判定することが、前記1つ以上の建設区域物体の前記数及び場所に基づいて、前記1つ以上の建設区域物体が車線境界を規定する所定の可能性を判定することを含む、請求項1に記載の方法。
  4. 前記1つ以上の建設区域物体が、建設円錐標識又は建設バレルである、請求項1に記載の方法。
  5. 前記建設区域の前記存在の可能性を判定することが、前記1つ以上の建設区域物体が互いに予め定められた距離範囲内にあると判定することを含む、請求項1に記載の方法。
  6. 前記選択された部分内の前記1つ以上の建設区域物体を特定することが、特定された建設区域物体の各々について、建設区域物体の存在の可能性を判定することを含む、請求項1に記載の方法。
  7. 前記建設区域物体の存在の可能性を判定することが、
    前記選択された部分内の形状を特定することと、
    前記形状を標準的な建設区域物体の1つ以上の形状に整合させることと、
    を含む、請求項6に記載の方法。
  8. 指令が記憶されている非一時的コンピュータ可読媒体であって、前記指令は、車両のコンピュータ・デバイスによって実行されると前記コンピュータ・デバイスに機能を実行させるものであり、前記機能が、
    前記車両が走行する道路の表面からの予め定められた閾値距離範囲内の領域を表す3次元(3D)点クラウドの一部を選択することと、
    前記選択された部分内の1つ以上の建設区域物体を特定することと、
    前記特定された1つ以上の建設区域物体に基づいて、建設区域の存在の可能性を判定することと、
    予め定められた閾値可能性を上回る前記可能性に応じて、前記1つ以上の建設区域物体の数及び場所に基づいて、前記車両の制御に影響を与える道路変化の重要性を判定することと、
    前記建設区域の前記存在の可能性及び前記道路変化の重要性に基づいて、前記車両を制御することと、
    を含む、非一時的コンピュータ可読媒体。
  9. 前記1つ以上の建設区域物体が、建設円錐標識又は建設バレルである、請求項8に記載の非一時的コンピュータ可読媒体。
  10. 前記建設区域の前記存在の可能性を判定する前記機能が、前記1つ以上の建設区域物体が互いに予め定められた距離範囲内にあると判定することを含む、請求項8に記載の非一時的コンピュータ可読媒体。
  11. 前記建設区域の前記存在の可能性を判定する前記機能が、前記1つ以上の建設区域物体の前記数及び場所に基づいて、前記1つ以上の建設区域物体が車線境界を規定する所定の可能性を判定することを含む、請求項8に記載の非一時的コンピュータ可読媒体。
  12. 前記選択された部分内の1つ以上の建設区域物体を特定する前記機能が、
    前記選択された部分内の形状を特定することと、
    前記形状を標準的な建設区域物体の1つ以上の形状に整合させることと、
    を含む、請求項8に記載の非一時的コンピュータ可読媒体。
  13. 車両のための制御システムであって、
    前記車両が走行する道路の表面からの予め定められた閾値距離範囲内の領域を表す3次元(3D)点クラウドを撮るように構成されている光探知及び測距(LIDAR)デバイスと、
    前記光探知及び測距(LIDARデバイスと通信するコンピュータ・デバイスと、
    前記コンピュータ・デバイスによって実行されると前記制御システムに機能を実行させる指令を含むデータ・ストレージと、を含み、前記機能が、
    前記3次元(3D)点クラウドの一部を選択することと、
    前記選択された部分内の1つ以上の建設区域物体を特定することと、
    前記特定された1つ以上の建設区域物体に基づいて、建設区域の存在の可能性を判定することと、
    予め定められた閾値可能性を上回る前記可能性に応じて、前記1つ以上の建設区域物体の数及び場所に基づいて、前記車両の制御に影響を与える道路変化の重要性を判定することと、
    前記建設区域の前記存在の可能性及び前記道路変化の重要性に基づいて、前記車両を制御することと、
    を含む、制御システム。
  14. 前記1つ以上の建設区域物体が、建設円錐標識又は建設バレルである、請求項13に記載の制御システム。
  15. 前記建設区域の前記存在の可能性を判定する前記機能が、前記1つ以上の建設区域物体の前記数及び場所に基づいて、前記1つ以上の建設区域物体が車線境界を規定する所定の可能性を判定することを含む、請求項13に記載の制御システム。
  16. 前記コンピュータ・デバイスが、前記道路における車線境界の場所を示す地図情報へアクセスするように構成され、前記道路変化の重要性を判定することが、前記1つ以上の建設区域物体によって規定された前記車線境界の場所と前記地図情報により示される所定の車線境界との差分に基づく、請求項15に記載の制御システム。
  17. 前記選択された部分内の1つ以上の建設区域物体を特定する前記機能が、
    前記選択された部分内の形状を特定することと、
    前記形状を標準的な建設区域物体の1つ以上の形状に整合させることと、
    を含む、請求項13に記載の制御システム。
JP2017231388A 2012-09-05 2017-12-01 複数の情報源を用いる建設区域検出 Active JP6550117B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/603,613 2012-09-05
US13/603,613 US9221461B2 (en) 2012-09-05 2012-09-05 Construction zone detection using a plurality of information sources

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017008154 Division 2017-01-20

Publications (2)

Publication Number Publication Date
JP2018060572A JP2018060572A (ja) 2018-04-12
JP6550117B2 true JP6550117B2 (ja) 2019-07-24

Family

ID=50188580

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015531089A Active JP6083882B2 (ja) 2012-09-05 2013-08-07 複数の情報源を用いる検出区域検出のための、方法、非一時的コンピュータ可読媒体、及び、制御システム
JP2017008154A Active JP6257057B2 (ja) 2012-09-05 2017-01-20 複数の情報源を用いる建設区域検出
JP2017231388A Active JP6550117B2 (ja) 2012-09-05 2017-12-01 複数の情報源を用いる建設区域検出

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015531089A Active JP6083882B2 (ja) 2012-09-05 2013-08-07 複数の情報源を用いる検出区域検出のための、方法、非一時的コンピュータ可読媒体、及び、制御システム
JP2017008154A Active JP6257057B2 (ja) 2012-09-05 2017-01-20 複数の情報源を用いる建設区域検出

Country Status (5)

Country Link
US (1) US9221461B2 (ja)
EP (1) EP2879929B1 (ja)
JP (3) JP6083882B2 (ja)
KR (1) KR101557464B1 (ja)
WO (1) WO2014039200A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124339A1 (en) * 2009-05-01 2010-11-04 The University Of Sydney Integrated automation system with picture compilation system
US8509982B2 (en) 2010-10-05 2013-08-13 Google Inc. Zone driving
DE102012110219A1 (de) * 2012-10-25 2014-04-30 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Erkennung von gekennzeichneten Gefahr- und/oder Baustellen im Bereich von Fahrbahnen
WO2014068302A1 (en) * 2012-11-05 2014-05-08 The Chancellor Masters And Scholars Of The University Of Oxford Extrinsic calibration of imaging sensing devices and 2d lidars mounted on transportable apparatus
US9043069B1 (en) * 2012-11-07 2015-05-26 Google Inc. Methods and systems for scan matching approaches for vehicle heading estimation
US8676431B1 (en) 2013-03-12 2014-03-18 Google Inc. User interface for displaying object-based indications in an autonomous driving system
USD750663S1 (en) 2013-03-12 2016-03-01 Google Inc. Display screen or a portion thereof with graphical user interface
USD754189S1 (en) * 2013-03-13 2016-04-19 Google Inc. Display screen or portion thereof with graphical user interface
US9092695B1 (en) * 2013-03-13 2015-07-28 Google Inc. High-accuracy real-time road sign detection from images
USD754190S1 (en) * 2013-03-13 2016-04-19 Google Inc. Display screen or portion thereof with graphical user interface
US9141107B2 (en) * 2013-04-10 2015-09-22 Google Inc. Mapping active and inactive construction zones for autonomous driving
US8930124B1 (en) * 2013-08-30 2015-01-06 International Business Machines Corporation Dynamic speed limit generation
US10086857B2 (en) 2013-11-27 2018-10-02 Shanmukha Sravan Puttagunta Real time machine vision system for train control and protection
US9796400B2 (en) 2013-11-27 2017-10-24 Solfice Research, Inc. Real time machine vision and point-cloud analysis for remote sensing and vehicle control
WO2015100483A1 (en) 2014-01-06 2015-07-09 Geodigital International Inc. Determining portions of a roadway model requiring updating
US10328932B2 (en) * 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
KR101632486B1 (ko) * 2014-07-09 2016-06-22 고려대학교 산학협력단 레이저 거리 센서를 이용한 도로의 연석 추출 방법 및 도로의 연석 정보를 이용한 이동 로봇의 위치 측정 방법
US9321461B1 (en) * 2014-08-29 2016-04-26 Google Inc. Change detection using curve alignment
US9424475B1 (en) 2014-09-17 2016-08-23 Google Inc. Construction object detection
US9248834B1 (en) 2014-10-02 2016-02-02 Google Inc. Predicting trajectories of objects based on contextual information
US9586585B2 (en) * 2014-11-20 2017-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle detection of and response to traffic officer presence
CN104408443B (zh) * 2014-12-15 2017-07-18 长春理工大学 多传感器辅助的基于激光雷达的路面类型识别方法及装置
EP3248140A4 (en) * 2015-01-20 2018-12-05 Solfice Research, Inc. Real time machine vision and point-cloud analysis for remote sensing and vehicle control
US20180001890A1 (en) * 2015-01-26 2018-01-04 Trw Automotive U.S. Llc Vehicle driver assist system
CN105467392A (zh) * 2015-11-20 2016-04-06 江苏中利电子信息科技有限公司 一种用于道路作业的雷达预警防护方法
US9858819B2 (en) * 2016-02-03 2018-01-02 Caterpillar Inc. Traffic control system having deadlock avoidance functionality
US10304335B2 (en) 2016-04-12 2019-05-28 Ford Global Technologies, Llc Detecting available parking spaces
FR3052130B1 (fr) * 2016-06-02 2018-07-06 Peugeot Citroen Automobiles Sa Procede d'assistance pour un vehicule a conduite autonome circulant sur une voie de circulation modifiee
US20170357267A1 (en) * 2016-06-10 2017-12-14 Cnh Industrial America Llc Autonomous work vehicle obstacle detection system
DE102016214045A1 (de) * 2016-07-29 2018-02-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Ermitteln eines Fahrbahnmodells für ein Fahrzeugumfeld
US20190283749A1 (en) 2016-12-07 2019-09-19 Toyota Motor Europe Systems and methods for regulation of autonomous cruise control
US10282999B2 (en) * 2017-03-17 2019-05-07 GM Global Technology Operations LLC Road construction detection systems and methods
KR20190067366A (ko) * 2017-12-07 2019-06-17 삼성전자주식회사 차량 및 그 제어 방법
WO2019130234A1 (en) * 2017-12-31 2019-07-04 3M Innovative Properties Company Visibly transparent, infrared radiation retroreflective articles
FR3078517A1 (fr) * 2018-03-01 2019-09-06 Psa Automobiles Sa Procede et dispositif d’assistance a la conduite automatisee d’un vehicule a proximite de zone(s) de passage oblige.
WO2019171446A1 (ja) * 2018-03-06 2019-09-12 三菱電機株式会社 交通情報処理装置および交通情報処理方法
US20190316913A1 (en) * 2018-04-11 2019-10-17 Micron Technology, Inc. Determining Autonomous Vehicle Status Based on Mapping of Crowdsourced Object Data

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220497A (en) * 1987-11-20 1993-06-15 North American Philips Corp. Method and apparatus for controlling high speed vehicles
JP3324821B2 (ja) * 1993-03-12 2002-09-17 富士重工業株式会社 車輌用車外監視装置
US7979173B2 (en) 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
DE19842176A1 (de) * 1998-09-15 2000-03-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Verkehrszeichenerkennung und Navigation
US6970779B2 (en) * 2002-11-25 2005-11-29 Denso Corporation Vehicle speed control system and program
JP2006113918A (ja) * 2004-10-15 2006-04-27 Fujitsu Ten Ltd 運転支援装置
US7720580B2 (en) * 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
JP2006184106A (ja) * 2004-12-27 2006-07-13 Aisin Aw Co Ltd 車載用ナビゲーション装置
DE102006001710A1 (de) * 2006-01-13 2007-08-16 Audi Ag Verfahren zum Betrieb eines Längsführungssystems in einem Kraftfahrzeug
US7912628B2 (en) * 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
JP4901275B2 (ja) 2006-04-07 2012-03-21 富士重工業株式会社 走行誘導障害物検出装置および車両用制御装置
JP2007290539A (ja) * 2006-04-25 2007-11-08 Denso Corp 車両用運転支援装置
EP1906339B1 (en) * 2006-09-01 2016-01-13 Harman Becker Automotive Systems GmbH Method for recognizing an object in an image and image recognition device
GB2442776A (en) * 2006-10-11 2008-04-16 Autoliv Dev Object detection arrangement and positioning system for analysing the surroundings of a vehicle
JP2008191781A (ja) 2007-02-01 2008-08-21 Hitachi Ltd 衝突回避システム
JP4345832B2 (ja) 2007-03-12 2009-10-14 トヨタ自動車株式会社 道路状況検出システム
DE102007051260A1 (de) 2007-10-26 2009-04-30 Volkswagen Ag Spurhalteassistenzsystem und Verfahren zum Betreiben eines Spurhalteassistenzsystems
KR101372482B1 (ko) * 2007-12-11 2014-03-26 삼성전자주식회사 이동 로봇의 경로 계획 방법 및 장치
US8996294B2 (en) 2007-12-19 2015-03-31 Nissan Motor Co., Ltd. Inter-vehicle distance maintenance supporting system and method
JP5309778B2 (ja) * 2007-12-19 2013-10-09 日産自動車株式会社 車間維持支援装置および車間維持支援方法
JP4831434B2 (ja) * 2007-12-27 2011-12-07 アイシン・エィ・ダブリュ株式会社 地物情報収集装置及び地物情報収集プログラム、並びに自車位置認識装置及びナビゲーション装置
JP4831433B2 (ja) * 2007-12-27 2011-12-07 アイシン・エィ・ダブリュ株式会社 自車位置認識装置及び自車位置認識プログラム、並びにナビゲーション装置
US8311695B2 (en) * 2008-03-19 2012-11-13 Honeywell International Inc. Construction of evidence grid from multiple sensor measurements
US8605947B2 (en) * 2008-04-24 2013-12-10 GM Global Technology Operations LLC Method for detecting a clear path of travel for a vehicle enhanced by object detection
US8332134B2 (en) * 2008-04-24 2012-12-11 GM Global Technology Operations LLC Three-dimensional LIDAR-based clear path detection
US8060271B2 (en) 2008-06-06 2011-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Detecting principal directions of unknown environments
JP2010003157A (ja) * 2008-06-20 2010-01-07 Toyota Motor Corp 走行支援装置
US8179393B2 (en) * 2009-02-13 2012-05-15 Harris Corporation Fusion of a 2D electro-optical image and 3D point cloud data for scene interpretation and registration performance assessment
US8188887B2 (en) * 2009-02-13 2012-05-29 Inthinc Technology Solutions, Inc. System and method for alerting drivers to road conditions
JP5075152B2 (ja) 2009-03-24 2012-11-14 日立オートモティブシステムズ株式会社 車両制御装置
US8384776B2 (en) 2009-04-22 2013-02-26 Toyota Motor Engineering And Manufacturing North America, Inc. Detection of topological structure from sensor data with application to autonomous driving in semi-structured environments
US8376595B2 (en) * 2009-05-15 2013-02-19 Magna Electronics, Inc. Automatic headlamp control
DE102009033058A1 (de) * 2009-07-03 2010-04-08 Daimler Ag Vorrichtung und Verfahren zur Ausgabe einer haptischen Fahrempfehlung an einen Fahrer eines Kraftfahrzeugs mittels eines Navigationssystems
JP2011145166A (ja) * 2010-01-14 2011-07-28 Toyota Motor Corp 車両検出装置
US8031085B1 (en) 2010-04-15 2011-10-04 Deere & Company Context-based sound generation
US8812193B2 (en) * 2010-05-11 2014-08-19 Conti-Temic Microelectronic Gmbh Method for determining a virtual vehicle corridor
CN103347757B (zh) 2010-07-21 2016-11-09 伊顿公司 通过使用预测环境和驾驶员行为信息来优化燃油经济性的系统和方法
JP5423631B2 (ja) * 2010-09-24 2014-02-19 株式会社デンソー 画像認識装置
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
JP5896505B2 (ja) * 2010-12-17 2016-03-30 アルパイン株式会社 車両運転支援装置
US8972147B2 (en) * 2011-01-10 2015-03-03 Bendix Commercial Vehicle Systems Llc ACC and AM braking range variable based on internal and external factors
US9582006B2 (en) * 2011-07-06 2017-02-28 Peloton Technology, Inc. Systems and methods for semi-autonomous convoying of vehicles

Also Published As

Publication number Publication date
KR101557464B1 (ko) 2015-10-06
JP6083882B2 (ja) 2017-02-22
US20140067187A1 (en) 2014-03-06
EP2879929A4 (en) 2015-11-18
EP2879929B1 (en) 2016-10-12
JP6257057B2 (ja) 2018-01-10
US9221461B2 (en) 2015-12-29
KR20150052272A (ko) 2015-05-13
WO2014039200A1 (en) 2014-03-13
JP2017097906A (ja) 2017-06-01
JP2018060572A (ja) 2018-04-12
EP2879929A1 (en) 2015-06-10
JP2015537268A (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
US8948955B2 (en) System and method for predicting behaviors of detected objects
US9778364B2 (en) Vehicle with multiple light detection and ranging devices (LIDARs)
EP2948928B1 (en) Modifying behavior of autonomous vehicles based on sensor blind spots and limitations
US8935034B1 (en) System and method for automatically detecting key behaviors by vehicles
US9120485B1 (en) Methods and systems for smooth trajectory generation for a self-driving vehicle
US9711050B2 (en) Smart vehicle
CN104271420B (zh) 基于其他车辆的预测行为修改自主车辆的行为
KR101705961B1 (ko) 대용 데이터에 기초하여 교통 신호의 상태 및 차량의 환경의 다른 양상들을 추론하기
JP2016522769A (ja) 自動運転車両の制御をドライバーに移行するためのシステムおよび方法
US8781669B1 (en) Consideration of risks in active sensing for an autonomous vehicle
US8521352B1 (en) Controlling a vehicle having inadequate map data
US8949016B1 (en) Systems and methods for determining whether a driving environment has changed
JP5912200B2 (ja) 複数のセンサーを用いる物体検出方法及びシステム
US9646497B1 (en) System and method for determining position and distance of objects using road fiducials
JP6178914B2 (ja) 自律運転のための作業中及び非作業中の工事区域のマップ作成
US9766626B1 (en) System and method for predicting behaviors of detected objects through environment representation
US9836056B2 (en) Smart vehicle
KR101953521B1 (ko) 교통 신호 및 그의 연관된 상태를 검출하는 강건한 방법
US8874372B1 (en) Object detection and classification for autonomous vehicles
US9201421B1 (en) Assisted perception for autonomous vehicles
US9665802B2 (en) Object-centric fine-grained image classification
US9465388B1 (en) Remote assistance for an autonomous vehicle in low confidence situations
US10059334B1 (en) Automated system and method for modeling the behavior of vehicles and other agents
CN105008200B (zh) 驾驶模式调整
US8504233B1 (en) Safely navigating on roads through maintaining safe distance from other vehicles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6550117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150