JP6535494B2 - Imaging device, imaging method and culture vessel - Google Patents

Imaging device, imaging method and culture vessel Download PDF

Info

Publication number
JP6535494B2
JP6535494B2 JP2015072226A JP2015072226A JP6535494B2 JP 6535494 B2 JP6535494 B2 JP 6535494B2 JP 2015072226 A JP2015072226 A JP 2015072226A JP 2015072226 A JP2015072226 A JP 2015072226A JP 6535494 B2 JP6535494 B2 JP 6535494B2
Authority
JP
Japan
Prior art keywords
light
side wall
inner bottom
imaging
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015072226A
Other languages
Japanese (ja)
Other versions
JP2016191646A (en
Inventor
森脇 三造
三造 森脇
博 末木
博 末木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015072226A priority Critical patent/JP6535494B2/en
Publication of JP2016191646A publication Critical patent/JP2016191646A/en
Application granted granted Critical
Publication of JP6535494B2 publication Critical patent/JP6535494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、培養容器の内底部に貯留される培養液により培養される生物試料を撮像する撮像技術ならびに当該撮像に好適な培養容器に関するものである。   The present invention relates to an imaging technique for imaging a biological sample cultured by a culture solution stored in an inner bottom portion of a culture container, and a culture container suitable for the imaging.

医療や生物科学の実験においては、例えば生体から取り出した検体組織や、液体またはゲル状の培地で培養した細胞等の生物試料を観察、計測することが行われる。従来、生物試料を撮像目的に応じた適宜の染料で染色し視認性を高めて撮像することが一般に行われてきたが、試料へのダメージを回避するため、染色を行わずに撮像することが必要な場合がある。このような目的の撮像装置の構成例として、本願出願人は、特許文献1を先に開示している。特許文献1に記載の撮像装置では、浅皿型の細胞培養ディッシュ(本発明の「培養容器」の一例に相当にする)の内底部に培養液を貯留し、当該培養液で培養された細胞(以下「接着培養細胞」という)等の生物試料の画像を撮像している。   In medical and biological science experiments, for example, observation and measurement of a biological sample such as a sample tissue removed from a living body or a cell cultured in a liquid or gel-like medium is performed. Conventionally, it has been common practice to stain a biological sample with an appropriate dye according to the purpose of imaging to enhance visibility for imaging, but to avoid damage to the sample, imaging without staining may be performed. It may be necessary. The applicant of the present application has previously disclosed Patent Document 1 as a configuration example of an imaging device for such purpose. In the imaging device described in Patent Document 1, a culture solution is stored in the inner bottom portion of a shallow dish-type cell culture dish (corresponding to an example of the “culture container” of the present invention), and cells cultured with the culture solution Images of biological samples (hereinafter referred to as "adherent cultured cells") are taken.

特開2015−45598号公報(例えば、図1)Unexamined-Japanese-Patent No. 2015-45598 (for example, FIG. 1)

特許文献1に記載の装置は、散乱光と透過光を利用することで、接着培養細胞等の生物試料であっても、培養容器の中心部では明るくコントラストが高い画像を取得することができる。しかしながら、培養容器の辺縁部、つまり底面部から立設された側壁部付近では、過剰に明るくなってしまい、明瞭な画像を取得することが困難であった。   The device described in Patent Document 1 can acquire a bright image with high contrast at the center of the culture vessel, even if it is a biological sample such as adherent cultured cells, by utilizing scattered light and transmitted light. However, in the vicinity of the peripheral portion of the culture vessel, that is, the side wall portion erected from the bottom portion, the image becomes excessively bright and it is difficult to obtain a clear image.

この発明は上記課題に鑑みなされたものであり、培養容器の内底部に貯留される培養液により培養される生物試料を撮像する際に、培養容器の辺縁部に存在する生物試料を良好な画像コントラストで撮像することのできる技術および当該技術に好適な培養容器を提供することを目的とする。   This invention was made in view of the said subject, and when imaging the biological sample culture | cultivated by the culture solution stored by the inner bottom part of a culture container, the biological sample which exists in the peripheral part of a culture container is good. An object of the present invention is to provide a technique capable of imaging with image contrast and a culture vessel suitable for the technique.

この発明の第1態様は、撮像装置であって、底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を保持する容器保持部と、容器保持部に保持される培養容器の内底部に向けて照明光を出射する照明部と、照明光のうち側壁部を透過して内底部に貯留された培養液に入射する光が進む光路上に配置される偏光部材と、内底部を挟んで照明部の反対側に配置されて内底部を透過してくる光を受光して培養液で培養される生物試料の画像を撮像する撮像部とを備え 容器保持部は、内底部を透過してくる光を撮像部に通過自在に培養容器を支持する支持部材を有し、偏光部材は、支持部材に支持される培養容器の側壁部を取り囲むように支持部材に設けられることを特徴としている。
また、この発明の第2態様は、撮像装置であって、底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を保持する容器保持部と、容器保持部に保持される培養容器の内底部に向けて照明光を出射する照明部と、照明光のうち側壁部を透過して内底部に貯留された培養液に入射する光が進む光路上に配置される偏光部材と、内底部を挟んで照明部の反対側に配置されて内底部を透過してくる光を受光して培養液で培養される生物試料の画像を撮像する撮像部とを備え、偏光部材は培養容器の側壁部の外周面に設けられる偏光層である
ことを特徴としている。
A first aspect of the present invention is an imaging device, comprising: a container holding unit for holding a culture container for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion; An illumination unit that emits illumination light toward the inner bottom of the culture vessel to be held, and an illumination light that is transmitted through the side wall of the illumination light and is incident on the culture solution stored in the inner bottom travels on the optical path comprising a polarization member, and an imaging unit that captures an image of the biological sample being cultured in a culture medium by receiving the light transmitted through the inner bottom portion disposed on the opposite side of the illumination portion across the inner bottom portion, the container The holding portion has a support member for supporting the culture vessel so that light passing through the inner bottom portion can pass through the imaging portion to the imaging portion, and the polarization member is supported to surround the side wall portion of the culture vessel supported by the support member It is characterized in that it is provided on a member .
A second aspect of the present invention is an imaging device, comprising: a container holding unit for holding a culture container for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion; And an illumination unit for emitting illumination light toward the inner bottom of the culture vessel held by the storage unit, and an illumination light which is transmitted through the side wall and is incident on the culture solution stored in the inner bottom along the light path. And an imaging unit disposed on the opposite side of the illumination unit with the inner bottom interposed therebetween to receive light transmitted through the inner bottom and pick up an image of a biological sample cultured in a culture solution. The polarizing member is a polarizing layer provided on the outer peripheral surface of the side wall of the culture vessel
It is characterized by

また、この発明の第態様は、撮像方法であって、底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を、照明部と撮像部との間に配置する工程と、 照明部から培養容器の内底部に向けて照明光を出射する工程と、照明光のうち側壁部を透過して内底部に貯留された培養液に入射する側壁入射光の光路上で側壁入射光を偏光して偏光光を作り出し、側壁部に入射する工程と、内底部を透過してくる光を受光して培養液で培養される生物試料の画像を撮像する工程とを備え、培養容器は内底部を透過してくる光を撮像部に通過自在に支持部材で支持され、偏光光は支持部材に支持される培養容器の側壁部を取り囲むように支持部材に設けられた偏光部材で作り出されることを特徴としている。
また、この発明の第4態様は、撮像方法であって、底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を、照明部と撮像部との間に配置する工程と、 照明部から培養容器の内底部に向けて照明光を出射する工程と、照明光のうち側壁部を透過して内底部に貯留された培養液に入射する側壁入射光の光路上で側壁入射光を偏光して偏光光を作り出し、側壁部に入射する工程と、内底部を透過してくる光を受光して培養液で培養される生物試料の画像を撮像する工程とを備え、偏光光は培養容器の側壁部の外周面に設けられる偏光層で作り出されることを特徴としている。
A third aspect of the present invention is the imaging method, wherein the culture vessel for storing the culture fluid at the inner bottom formed with the side wall standing on the periphery of the bottom is formed between the illumination unit and the imaging unit. Placing the illumination light toward the inner bottom of the culture vessel from the illumination unit, and of the illumination light passing through the sidewall and entering the culture fluid stored in the inner bottom, of the illumination light Forming polarized light by polarizing the side wall incident light on the optical path and entering the side wall, and receiving the light transmitted through the inner bottom to pick up an image of the biological sample cultured in the culture solution; The culture vessel is supported by the support member so that light transmitted through the inner bottom can pass through the imaging unit to the imaging unit, and polarized light is provided to the support member so as to surround the side wall portion of the culture vessel supported by the support member. It is characterized in that it is produced by a polarization member .
A fourth aspect of the present invention is the imaging method, wherein the culture vessel for storing the culture fluid at the inner bottom formed with the side wall standing on the periphery of the bottom is formed between the lighting unit and the imaging unit. Placing the illumination light toward the inner bottom of the culture vessel from the illumination unit, and of the illumination light passing through the sidewall and entering the culture fluid stored in the inner bottom, of the illumination light Forming polarized light by polarizing the side wall incident light on the optical path and entering the side wall, and receiving the light transmitted through the inner bottom to pick up an image of the biological sample cultured in the culture solution; , And polarized light is produced by a polarization layer provided on the outer peripheral surface of the side wall of the culture vessel.

さらに、この発明の第態様は、底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器であって、側壁部の外周面に偏光層が設けられることを特徴としている。 Further, according to a fifth aspect of the present invention, there is provided a culture vessel for storing a culture solution at an inner bottom formed with a side wall standing on the periphery of the bottom, wherein a polarizing layer is provided on the outer peripheral surface of the side wall. It is characterized by

培養容器は底部と底部の周縁から立設された側壁部とを有し、その内底部に貯留した培養液により生物試料が培養されている。ここで、培養容器の辺縁部、つまり側壁部に隣接した領域では、培養液のメニスカスが形成される。そして、後で詳述するように照明光のうち側壁部を介して培養液に入射してきた光は培養容器の辺縁部で集光して局部的に明るくなる。その結果、上記したように明瞭な画像を取得することが難しくなっていた。これに対し、本発明では、偏光部材や偏光層が設けられ、照明光のうち側壁部を透過して培養液に入射する光、つまり側壁入射光を偏光して偏光光とし、培養液に入射させている。このため、培養容器の辺縁部が過剰に明るくなるのを抑制し、培養容器の辺縁部に存在する生物試料を良好な画像コントラストで撮像可能としている。   The culture vessel has a bottom portion and a side wall portion erected from the periphery of the bottom portion, and a biological sample is cultured by a culture solution stored in the inner bottom portion. Here, a meniscus of the culture solution is formed in the peripheral edge portion of the culture vessel, that is, in the region adjacent to the side wall portion. Then, as will be described in detail later, among the illumination light, light that has entered the culture solution through the side wall is condensed at the peripheral portion of the culture vessel and becomes locally bright. As a result, it has been difficult to obtain a clear image as described above. On the other hand, in the present invention, a polarization member or a polarization layer is provided, and light which passes through the side wall portion of the illumination light and enters the culture solution, that is, the side wall incident light is polarized to be polarized light and is incident on the culture solution I am doing it. Therefore, excessive brightening of the peripheral portion of the culture vessel is suppressed, and imaging of the biological sample present in the peripheral portion of the culture vessel can be performed with good image contrast.

本発明にかかる撮像装置の第1実施形態の主要構成を示す図である。It is a figure showing the main composition of a 1st embodiment of the imaging device concerning the present invention. 図1の撮像装置の分解斜視図である。It is a disassembled perspective view of the imaging device of FIG. 第1実施形態におけるメニスカス部分での照明光の軌跡を模式的に示す図である。It is a figure which shows typically the locus | trajectory of the illumination light in the meniscus part in 1st Embodiment. 偏光部材を設けずに照明光をそのまま用いたときの照明光の軌跡を模式的に示す図である。It is a figure which shows typically the locus | trajectory of illumination light when using illumination light as it is, without providing a polarization member. 第2実施形態において偏光部材を設けたことによる作用効果を示すグラフである。It is a graph which shows the effect by having provided the polarization member in a 2nd embodiment. 本発明にかかる撮像装置の第2実施形態の主要構成の分解斜視図である。It is a disassembled perspective view of the main composition of a 2nd embodiment of the imaging device concerning the present invention. 第2実施形態におけるメニスカス部分での照明光の軌跡を模式的に示す図である。It is a figure which shows typically the locus | trajectory of the illumination light in the meniscus part in 2nd Embodiment. 第2実施形態において偏光部材を設けたことによる作用効果を示すグラフである。It is a graph which shows the effect by having provided the polarization member in a 2nd embodiment. 本発明にかかる撮像装置の第3実施形態の主要構成の分解斜視図である。It is an exploded perspective view of the principal composition of a 3rd embodiment of the imaging device concerning the present invention.

図1は本発明にかかる撮像装置の第1実施形態の主要構成を示す図である。また、図2は図1の撮像装置の分解斜視図である。以下の説明のために、図1に示すようにXYZ直交座標系を設定する。ここで、XY平面は水平面を表し、Z軸は鉛直軸を表す。   FIG. 1 is a view showing the main configuration of a first embodiment of an imaging device according to the present invention. FIG. 2 is an exploded perspective view of the imaging device of FIG. For the following description, an XYZ orthogonal coordinate system is set as shown in FIG. Here, the XY plane represents a horizontal plane, and the Z axis represents a vertical axis.

この撮像装置1は、撮像対象物たる生物試料を担持する浅皿型の細胞培養ディッシュ(以下、単に「ディッシュ」と称する)10を略水平姿勢に保持する保持ユニット20を挟んで、その上方に試料を照明する照明ユニット30、下方に撮像ユニット40をそれぞれ配置した構造を有するとともに、これら各部の動作を制御する制御ユニット50を備えている。図1では、装置の内部構造を明示するために、各ユニットを固定するための支持機構や筐体等の図示を省略している。   The imaging apparatus 1 is provided above a holding unit 20 for holding a shallow dish type cell culture dish (hereinafter simply referred to as a "dish") 10 carrying a biological sample as an imaging object in a substantially horizontal posture. An illumination unit 30 for illuminating a sample, and a structure in which an imaging unit 40 is disposed below the control unit 50 are provided. In FIG. 1, in order to clearly show the internal structure of the device, illustration of a support mechanism, a housing, and the like for fixing each unit is omitted.

ディッシュ10はガラス、ポリスチレン、ポリカーボネートなどの透明材料により形成されており、その代表的な寸法としては、例えば直径が数十ミリメートル、周縁部の高さが数ミリメートル、底面の厚さが1ミリメートル前後であるが、これらの数値に限定されない。この実施形態において用いられるディッシュ10は、平坦面を有する底部11と、当該底部11の周縁に立設された側壁部12とを有しており、これら底部11と側壁部12とで囲まれた内底部13で培養液を貯留可能となっている。そして、当該培養液に、所定種類、所定量の培地と共に播種され培養された細胞、菌、微生物等の生物試料が予め作成されており、これらの生物試料がこの撮像装置1の撮像対象物となる。例えばディッシュ内底部13への接着培養により培養された細胞組織等を、撮像対象物とすることができる。   The dish 10 is formed of a transparent material such as glass, polystyrene, polycarbonate or the like, and its typical dimensions are, for example, a diameter of several tens of millimeters, a peripheral height of several millimeters, and a thickness of the bottom of about 1 mm. However, it is not limited to these figures. The dish 10 used in this embodiment has a bottom portion 11 having a flat surface, and a side wall portion 12 erected on the periphery of the bottom portion 11, and is surrounded by the bottom portion 11 and the side wall portion 12 The culture solution can be stored at the inner bottom portion 13. Then, biological samples such as cells, bacteria, and microorganisms, which are seeded and cultured in a predetermined type and a predetermined amount of culture medium, are prepared in advance in the culture solution, and these biological samples are used as imaging objects of the imaging device 1. Become. For example, a cell tissue or the like cultured by adhesion culture to the dish inner bottom 13 can be used as an imaging object.

このように構成されたディッシュ10を位置決め保持するために、保持ユニット20が設けられている。この保持ユニット20は底面が円形であるディッシュ10の外形寸法に合わせた開口が設けられたステージ21を有している。より詳しくは、ステージ21は中央部にディッシュ10の外径より少し大きな開口21aが設けられた平板状部材であり、ステージ21の底面付近で、開口21aの内壁面が内側に突出した突起部21bとなっている。ディッシュ10がステージ21にセットされると、突起部21bによりディッシュ10の側壁部12の下方端部12a(図3A、図3B参照)が保持される。したがって、ステージ21に位置決め保持されたディッシュ10の底部11は光学的に開放されている。   A holding unit 20 is provided to position and hold the dish 10 configured as described above. The holding unit 20 has a stage 21 provided with an opening conforming to the external dimensions of the dish 10 whose bottom is circular. More specifically, the stage 21 is a flat member provided with an opening 21a at the center portion slightly larger than the outer diameter of the dish 10, and a projection 21b in which the inner wall surface of the opening 21a protrudes inward near the bottom surface of the stage 21. It has become. When the dish 10 is set on the stage 21, the lower end 12a (see FIGS. 3A and 3B) of the side wall 12 of the dish 10 is held by the projection 21b. Therefore, the bottom 11 of the dish 10 positioned and held on the stage 21 is optically open.

このステージ21は図1に示すように制御ユニット50のステージ駆動制御部52に連結されている。そして、ステージ駆動制御部52がステージ21をX方向およびY方向に水平移動させることで、ステージ21に保持されたディッシュ10を水平方向に2次元的に移動させる。   The stage 21 is connected to a stage drive control unit 52 of the control unit 50 as shown in FIG. Then, the stage drive control unit 52 horizontally moves the stage 21 in the X and Y directions, thereby moving the dish 10 held by the stage 21 two-dimensionally in the horizontal direction.

また、ステージ21の上面21c、つまり、照明ユニット30を向いた面では、開口21aを取り囲むように偏光部材60が立設されており、ステージ21にセットされたディッシュ10の側壁部12を径方向外側より覆う。なお、偏光部材60を設けた理由および作用効果については、後で図3A、図3Bおよび図4を参照して詳述する。   Further, on the upper surface 21 c of the stage 21, that is, the surface facing the illumination unit 30, the polarization member 60 is erected so as to surround the opening 21 a, and the side wall 12 of the dish 10 set on the stage 21 Cover from the outside. The reason for providing the polarizing member 60 and the effects and advantages will be described later in detail with reference to FIGS. 3A, 3B and 4.

上記のように構成された保持ユニット20の上方に、照明ユニット30が配置されている。図1および図2に示すように、照明ユニット30は、下向きにリング状の光(以下「リング状照明光」という)を出射面31aから出射する光源31を備えている。光源31は、白色光を出射する発光素子として例えば複数の白色LED(図示省略)がリング状に配置され、各白色LEDの出射面から出射される白色光がディッシュ10の内底部13に向かって集光され、内底部13を部分的に照明する。この実施形態では、複数の白色LEDの出射面を含むリング面を出射面31aとしている。そして、制御ユニット50に設けられた光源制御部53から光源31に点灯信号が与えられると、光源31の各白色LEDが点灯してディッシュ10の内底部13を照明する。なお、光源31からの出射光量および光源31の消灯も光源制御部53により制御される。   The illumination unit 30 is disposed above the holding unit 20 configured as described above. As shown in FIGS. 1 and 2, the illumination unit 30 includes a light source 31 that emits ring-shaped light (hereinafter referred to as “ring-shaped illumination light”) downward from the emission surface 31 a. The light source 31 includes, for example, a plurality of white LEDs (not shown) arranged in a ring shape as light emitting elements for emitting white light, and the white light emitted from the emission surface of each white LED is directed toward the inner bottom portion 13 of the dish 10 The light is collected and partially illuminates the inner bottom portion 13. In this embodiment, a ring surface including the emitting surface of the plurality of white LEDs is used as the emitting surface 31 a. Then, when a lighting signal is given to the light source 31 from the light source control unit 53 provided in the control unit 50, each white LED of the light source 31 is lit to illuminate the inner bottom portion 13 of the dish 10. The amount of light emitted from the light source 31 and the turning off of the light source 31 are also controlled by the light source control unit 53.

保持ユニット20の下方には撮像ユニット40が配置されている。撮像ユニット40は、2次元のエリアセンサー41を有している。そして、ステージ21に保持されたディッシュ10の内底部13のうち照明ユニット30により照明された領域から出射される光を受光して撮像ユニット40はディッシュ10の底面側からみた撮像対象物(生物試料)の2次元画像を部分的に撮像することができる。また、ステージ駆動制御部52によりディッシュ10がXY方向に移動される間に上記画像の撮像を繰り返し実行することで、撮像対象物の全体画像を撮像することができる。   An imaging unit 40 is disposed below the holding unit 20. The imaging unit 40 has a two-dimensional area sensor 41. The imaging unit 40 receives the light emitted from the area illuminated by the illumination unit 30 of the inner bottom portion 13 of the dish 10 held by the stage 21, and the imaging unit 40 is viewed from the bottom side of the dish 10 Can be partially captured. In addition, by repeatedly performing the imaging of the image while the dish 10 is moved in the XY direction by the stage drive control unit 52, it is possible to capture the entire image of the imaging target.

ステージ駆動制御部52の作動によりステージ21が水平移動する際、照明ユニット30および撮像ユニット40は静止している。したがって、これらに対して、ステージ21に保持されたディッシュ10のみが移動する。相対的には、ディッシュ10およびステージ21に対して、照明ユニット30および撮像ユニット40が一体的に、水平方向に走査移動することになる。   When the stage 21 moves horizontally by the operation of the stage drive control unit 52, the illumination unit 30 and the imaging unit 40 are stationary. Therefore, only the dish 10 held on the stage 21 moves with respect to these. Relatively, the lighting unit 30 and the imaging unit 40 integrally scan and move in the horizontal direction with respect to the dish 10 and the stage 21.

撮像ユニット40から出力される、撮像対象物の像に対応する電気信号は、図示を省略するADコンバーターによりデジタル信号(画像データ)に変換されて制御ユニット50の画像処理部54に入力される。画像処理部54は、得られた画像データに対し種々の画像処理を施す。   An electrical signal corresponding to the image of the object to be imaged output from the imaging unit 40 is converted into a digital signal (image data) by an AD converter (not shown) and input to the image processing unit 54 of the control unit 50. The image processing unit 54 performs various image processing on the obtained image data.

制御ユニット50には画像データを記憶する例えば画像メモリなどの記憶部55がさらに設けられており、撮像ユニット40により撮像された画像に対応する画像データや、画像処理部54により生成された各種の加工画像データやその中間データなどを記憶保存する。   The control unit 50 is further provided with, for example, a storage unit 55 such as an image memory for storing image data, and image data corresponding to the image captured by the imaging unit 40 and various types of images generated by the image processing unit 54 Store and save processed image data and its intermediate data.

制御ユニット50には、上記の他に、装置の動作やその制御パラメータ設定に関しユーザや外部装置から与えられる操作入力を受け付ける入力受付部56と、装置の動作状況や撮像された画像を表示する表示部57とを備えている。   In addition to the above, the control unit 50 also has an input receiving unit 56 for receiving an operation input given from the user or an external device regarding the operation of the device and setting of its control parameters, and a display for displaying the operation status of the device and a captured image. And a unit 57.

上記のように構成された撮像装置1では、入力受付部56を介して与えられるユーザまたは外部装置からの要求に応じて、制御ユニット50が予め定められた制御プログラムに基づき上記した装置各部を制御して所定の動作を行わせることにより撮像動作を実行する。   In the imaging apparatus 1 configured as described above, the control unit 50 controls the respective units of the apparatus based on a predetermined control program in response to a request from a user or an external apparatus given via the input reception unit 56. The imaging operation is performed by performing a predetermined operation.

ステージ21に撮像対象物を担持するディッシュ10をセットする。このとき、ディッシュ10は、図3Aに示すように、ステージ21の突起部21bにディッシュ10の側壁部12の下方端部12aが係止されることで、ステージ21に保持される。こうして保持されたディッシュ10の底部11の上面、つまり培養液70を担持する担持面がステージ21の上面21cと同一高さに位置している。なお、図3A(および後で説明する図3B)中の符号71は、培養液70をディッシュ10に貯留した際に側壁部12の内周面側で発生するメニスカスを示している。   The dish 10 carrying an object to be imaged is set on the stage 21. At this time, as shown in FIG. 3A, the lower end 12a of the side wall 12 of the dish 10 is engaged with the projection 21b of the stage 21 so that the dish 10 is held by the stage 21. The upper surface of the bottom portion 11 of the dish 10 held in this manner, that is, the supporting surface for supporting the culture solution 70 is positioned at the same height as the upper surface 21 c of the stage 21. Reference numeral 71 in FIG. 3A (and FIG. 3B described later) indicates a meniscus generated on the inner peripheral surface side of the side wall 12 when the culture solution 70 is stored in the dish 10.

ステージ21へのディッシュ10のセットが完了すると、ステージ駆動制御部52を作動させてステージ21とともにディッシュ10を水平方向X、Yに移動させながら、撮像ユニット40による撮像を順次行い、ディッシュ10の内底部13、特にそこに貯留される培養液70で培養される生物試料を撮像する。   When the setting of the dish 10 on the stage 21 is completed, the stage drive control unit 52 is operated to move the dish 10 in the horizontal direction X and Y together with the stage 21 and sequentially perform imaging by the imaging unit 40. The biological sample to be cultured in the bottom 13, in particular the culture fluid 70 stored therein, is imaged.

ここで、本実施形態ではリング状照明を採用しており、特許文献1に記載の発明と同様に、散乱光と透過光を利用して生物試料の撮像を行っている。つまり、照明ユニット30および撮像ユニット40で構成される光学系の光軸OA(図2参照)に対し斜め方向から培養液70に照明光Lを入射させ、散乱光成分を撮像ユニット40に受光させることで、暗視野撮像技術と同様に、画像コントラストの高い撮像を可能にしている。その一方で、光源31から培養液70を透過した透過光が撮像ユニット40に入射することをある程度許容しているため、より明るい画像が得られ、暗視野撮像画像において明るさが不足するという問題点を解消している。そして、培養液70のうちメニスカス71が発生していない領域R1では、照明光Lは設定通り安定して培養液70に入射され、培養液70で培養されている接着培養細胞が適切な明るさで良好に撮像される。   Here, in the present embodiment, ring-shaped illumination is employed, and similarly to the invention described in Patent Document 1, imaging of a biological sample is performed using scattered light and transmitted light. That is, the illumination light L is made to enter the culture fluid 70 from an oblique direction with respect to the optical axis OA (see FIG. 2) of the optical system configured by the illumination unit 30 and the imaging unit 40, and the scattered light component is received by the imaging unit 40 Thus, as in the dark field imaging technology, imaging with high image contrast is enabled. On the other hand, since the transmitted light transmitted from the light source 31 through the culture fluid 70 is allowed to be incident to the imaging unit 40 to some extent, brighter images can be obtained, and the brightness is insufficient in the dark field imaged image. The point has been eliminated. Then, in the region R1 where the meniscus 71 is not generated in the culture solution 70, the illumination light L is stably incident on the culture solution 70 as set, and the adhesion culture cells cultured in the culture solution 70 have appropriate brightness. The image is captured well.

一方、培養液70のうちメニスカス71が発生している領域R2では、照明光Lの入射状態が安定化しない。しかしながら、本実施形態では偏光部材60を設けているため、メニスカス71の影響を抑えて接着培養細胞を良好に撮像することが可能となっている。その理由と作用効果について、図3A、図3Bおよび図4を参照しつつ説明する。   On the other hand, in the region R2 where the meniscus 71 is generated in the culture solution 70, the incident state of the illumination light L is not stabilized. However, in the present embodiment, since the polarizing member 60 is provided, it is possible to suppress the influence of the meniscus 71 and favorably image the adherent cultured cell. The reason and the effect will be described with reference to FIG. 3A, FIG. 3B and FIG.

図3Aは図1および図2に示す実施形態におけるメニスカス部分での照明光の軌跡を模式的に示す図であり、図3Bは偏光部材を設けずに照明光をそのまま用いたときの照明光の軌跡を模式的に示す図である。ここでは、まず図3Bを参照しつつ偏光部材を設けない場合について説明した後で、本実施形態について説明する。   FIG. 3A is a view schematically showing a locus of illumination light at a meniscus portion in the embodiment shown in FIGS. 1 and 2. FIG. 3B is a diagram of illumination light when the illumination light is used as it is without providing a polarization member. It is a figure which shows a locus | trajectory typically. Here, first, the case where the polarizing member is not provided will be described with reference to FIG. 3B, and then the present embodiment will be described.

図3Bに示すように、光軸OA(図2参照)に対し斜め方向から培養液70に照明光Lをそのまま入射させると、照明光Lの一部の光成分が他の光成分に近づいて部分的な光量増加を招く。より詳しくは、側壁部12を通過する照明光Lのうち一度空気層(培養液70の上方空間)に出た後で培養液70のメニスカス71に入射する光L1はメニスカス71で一部反射されて反射光L1rとなるものの、残りは空気層とメニスカス71との界面で屈折される。この屈折光L1dは、照明光Lのうち側壁部12を通過して直接培養液70に入射する光L2に向かって進む。その結果、領域R2での光量が増加して過剰に明るくなってしまい、明瞭な画像を取得することが困難となる。   As shown in FIG. 3B, when the illumination light L is incident on the culture fluid 70 as it is from an oblique direction with respect to the optical axis OA (see FIG. 2), a part of the light components of the illumination light L approaches other light components. It causes a partial increase in light intensity. More specifically, of the illumination light L passing through the side wall portion 12, the light L1 incident on the meniscus 71 of the culture solution 70 after being emitted to the air layer (space above the culture solution 70) is partially reflected by the meniscus 71 The remaining light is refracted at the interface between the air layer and the meniscus 71. The refracted light L1d travels toward the light L2 that passes through the side wall portion 12 of the illumination light L and directly enters the culture solution 70. As a result, the light amount in the region R2 increases and becomes excessively bright, which makes it difficult to obtain a clear image.

これに対し、本実施形態では、図3Aに示すように、側壁部12に対して偏光部材60が隣接しているため、照明光Lは偏光部材60を介して培養液70に照射される。このため、照明光Lは偏光部材60により偏光され、上記した光L1、L2はいずれも光量を削減された上で側壁部12を介して培養液70に入射される。したがって、領域R2での光量が過剰なものとなるのを防止することができる。   On the other hand, in the present embodiment, as shown in FIG. 3A, since the polarization member 60 is adjacent to the side wall 12, the illumination light L is irradiated to the culture solution 70 through the polarization member 60. For this reason, the illumination light L is polarized by the polarization member 60, and the light L1 and L2 described above are reduced in light amount and then enter the culture fluid 70 via the side wall portion 12. Therefore, it is possible to prevent the amount of light in the region R2 from becoming excessive.

ここで、偏光部材60の偏光特性を調整すると、領域R2での光量をさらに低下させることができる。その理由は、以下のとおりである。一般的に、光が空気中から物質表面に入射するとき、当該物質表面で反射する光には入射面に対して垂直な成分(つまりs偏光成分)が多くなり、当該物質表面で屈折して物質中を進む光には入射面に対して平行な成分(p偏光成分)が多くなる。したがって、図3Aに示すように、照明光Lを偏光部材60によりs偏光させると、光L1、L2はいずれもs偏光成分の比率(以下「s偏光比率」という)が高いs偏光光となる。そして、それらのうちs偏光光L2はそのまま側壁部12、培養液70および底部11を通過するが、s偏光光L11は側壁部12および空気層を介してメニスカス71に入射される。このため、当該s偏光光L1の大部分は当該メニスカス71の表面で反射され、反射光L11rとして空気層に戻され、空気層とメニスカス71との界面で屈折された後で培養液70中を進む屈折光L11dの光量は大幅に低下する。その結果、領域R2での光量が偏光光L2の光量から大幅に増加するのを防止することができる。   Here, when the polarization characteristic of the polarization member 60 is adjusted, the light amount in the region R2 can be further reduced. The reason is as follows. Generally, when light is incident on the surface of a substance from the air, the light reflected on the surface of the substance has more components (that is, s-polarization components) perpendicular to the incident surface and is refracted at the surface of the substance. The light traveling through the substance has many components (p-polarization components) parallel to the incident surface. Therefore, as shown in FIG. 3A, when the illumination light L is s-polarized by the polarization member 60, the light L1 and L2 both become s-polarized light having a high ratio of s-polarization components (hereinafter referred to as “s-polarization ratio”). . Among them, the s-polarized light L2 passes through the side wall 12, the culture solution 70 and the bottom 11 as it is, but the s-polarized light L11 is incident on the meniscus 71 through the side wall 12 and the air layer. For this reason, most of the s-polarized light L1 is reflected on the surface of the meniscus 71, returned to the air layer as the reflected light L11r, and refracted at the interface between the air layer and the meniscus 71, and then in the culture solution 70. The light amount of the refracted light L11d to be advanced is significantly reduced. As a result, it is possible to prevent the light amount in the region R2 from significantly increasing from the light amount of the polarized light L2.

また、本実施形態では、s偏光比率がほぼ100%となるように偏光部材60を配置しているが、偏光部材60を構成する偏光子(図示省略)の角度調整によってs偏光比率を偏光することができる。例えば、上記したように領域R2での光量増加を効果的に抑制するためには、s偏光比率を50%以上に調整するのが望ましい。また、領域R2での光量増加量は培養液70の種類や厚みなどによっても相違するため、それらに応じてs偏光比率を調整してもよい。この点については、その他の実施形態においても同様である。   Further, in the present embodiment, the polarization member 60 is disposed so that the s-polarization ratio is approximately 100%, but the s-polarization ratio is polarized by adjusting the angle of a polarizer (not shown) constituting the polarization member 60. be able to. For example, as described above, in order to effectively suppress the increase in light amount in the region R2, it is desirable to adjust the s-polarization ratio to 50% or more. Further, since the amount of increase in the amount of light in the region R2 also differs depending on the type, thickness and the like of the culture solution 70, the s-polarization ratio may be adjusted accordingly. The same applies to the other embodiments in this regard.

ここで、本実施形態の作用効果を確認するために、偏光部材60を設けない場合(図3B)、s偏光比率が100%となるように偏光部材60を設けた(偏光部材60によりs偏光させる)場合、s偏光比率が50%となるように偏光部材60を設けた(偏光子の回転角が45゜)場合、s偏光比率が0%となるように偏光部材60を設けた(偏光部材60によりp偏光させる)場合について、領域R2および領域R1の一部(領域R2に隣接する一部領域)を撮像ユニット40で撮像した像の階調を調べた。その結果をまとめたグラフが図4である。なお、図4(および後で説明する図7)における横軸は側壁部12の内周面から内底部13の中央部に向けての距離を示し、縦軸は各距離に対応する画素の階調値を示しており、階調値が大きいほど明るいことを示している。   Here, in the case where the polarizing member 60 is not provided (FIG. 3B), the polarizing member 60 is provided such that the s-polarization ratio is 100% in order to confirm the function and effect of the present embodiment (s-polarization When the polarization member 60 is provided such that the s polarization ratio is 50% (when the rotation angle of the polarizer is 45 °), the polarization member 60 is provided such that the s polarization ratio is 0% (polarization In the case where p polarization is performed by the member 60, the gradation of the image captured by the imaging unit 40 of the region R2 and a part of the region R1 (a partial region adjacent to the region R2) was examined. The graph which put together the result is FIG. The horizontal axis in FIG. 4 (and FIG. 7 to be described later) indicates the distance from the inner peripheral surface of the side wall 12 to the central portion of the inner bottom 13. The vertical axis indicates the floor of the pixel corresponding to each distance. The tone value is shown, and the larger the tone value is, the brighter it is.

同図中のグラフに示すように、上記したように、
(1)偏光部材60を設けることで領域R2での光量が過剰なものとなるのを防止することができる、
(2)s偏光比率を高めることにより、領域R2での光量が過剰なものとなるのをより効果的に防止することができる。
As shown in the graph in the figure, as described above,
(1) By providing the polarization member 60, it is possible to prevent the amount of light in the region R2 from becoming excessive.
(2) By increasing the s-polarization ratio, it is possible to more effectively prevent the amount of light in the region R2 from becoming excessive.

図5は本発明にかかる撮像装置の第2実施形態の主要構成の分解斜視図である。この第2実施形態が第1実施形態と大きく相違する点は、偏光部材60を照明ユニット30の近傍位置に設けている点であり、その他の構成は第1実施形態と基本的に同一である。したがって、以下のおいては、相違点を中心に説明し、同一構成については同一符号を付して説明を省略する。   FIG. 5 is an exploded perspective view of the main configuration of a second embodiment of the imaging device according to the present invention. The second embodiment is largely different from the first embodiment in that the polarization member 60 is provided in the vicinity of the illumination unit 30, and the other configuration is basically the same as the first embodiment. . Therefore, in the following, differences will be mainly described, and the same components will be assigned the same reference numerals and descriptions thereof will be omitted.

この第2実施形態では、図5に示すように、出射面31aに対してリング状の偏光部材61が下方側(−Z方向側)から対向して近接配置されている。このため、出射面31aから出射した光は偏光部材61で偏光され、当該偏光光が照明光Lとしてディッシュ10の内底部13に照射される。このため、ディッシュ10の側壁部12を透過して内底部13に貯留された培養液70に入射する照明光Lのうち一度空気層(培養液70の上方空間)に出た後で培養液70のメニスカス71に入射する光L1と側壁部12を通過して直接培養液70に入射する光L2とは、第1実施形態と同様に、偏光光である。したがって、領域R2での光量が過剰なものとなるのを防止することができる。   In the second embodiment, as shown in FIG. 5, a ring-shaped polarization member 61 is disposed in proximity to and facing the emission surface 31 a from the lower side (−Z direction side). Therefore, the light emitted from the emission surface 31 a is polarized by the polarization member 61, and the polarized light is irradiated as the illumination light L to the inner bottom portion 13 of the dish 10. For this reason, the illumination liquid L of the illumination light L which passes through the side wall portion 12 of the dish 10 and is incident on the culture fluid 70 stored in the inner bottom portion 13 is once output to the air layer (the space above the culture fluid 70) The light L1 incident on the meniscus 71 and the light L2 directly transmitted to the culture solution 70 through the side wall portion 12 are polarized light as in the first embodiment. Therefore, it is possible to prevent the amount of light in the region R2 from becoming excessive.

また、例えば偏光部材61により照明光Lがs偏光光となる場合、図6に示すように、s偏光光L2はそのまま側壁部12、培養液70および底部11を通過するが、s偏光光L1は側壁部12および空気層を介してメニスカス71に入射される。このため、当該s偏光光L1の大部分は当該メニスカス71の表面で反射され、反射光L11rとして空気層に戻される。したがって、空気層とメニスカス71との界面で屈折された後で培養液70中を進む屈折光L11dの光量は大幅に低下する。その結果、領域R2での光量が偏光光L2の光量から大幅に増加するのを防止することができる。   Further, for example, when the illumination light L is s-polarized light by the polarization member 61, the s-polarized light L2 passes through the side wall 12, the culture solution 70 and the bottom 11 as it is, as shown in FIG. Is incident on the meniscus 71 through the side wall 12 and the air layer. Therefore, most of the s-polarized light L1 is reflected by the surface of the meniscus 71 and is returned to the air layer as the reflected light L11r. Therefore, the light amount of the refracted light L11d that travels in the culture solution 70 after being refracted at the interface between the air layer and the meniscus 71 is significantly reduced. As a result, it is possible to prevent the light amount in the region R2 from significantly increasing from the light amount of the polarized light L2.

また、出射面31aに対向して偏光部材61を配置する第2実施形態においても、第1実施形態と同様の作用効果が得られる。具体的には、偏光部材61を設けない場合、図6に示すようにs偏光比率が100%となるように偏光部材61を設けた(偏光部材61によりs偏光させる)場合、s偏光比率が50%となるように偏光部材61を設けた(偏光子の回転角が45゜)場合、s偏光比率が0%となるように偏光部材61を設けた(偏光部材61によりp偏光させる)場合について、領域R2および領域R1の一部(領域R2に隣接する一部領域)を撮像ユニット40で撮像した像の階調を調べた。その結果をまとめたグラフが図7である。同図中のグラフに示すように、上記したように、
(1)偏光部材61を設けることで領域R2での光量が過剰なものとなるのを防止することができる、
(2)s偏光比率を高めることにより、領域R2での光量が過剰なものとなるのをより効果的に防止することができる。
Also in the second embodiment in which the polarization member 61 is disposed so as to face the emission surface 31a, the same function and effect as those in the first embodiment can be obtained. Specifically, when the polarization member 61 is not provided, the polarization member 61 is provided such that the s polarization ratio is 100% as shown in FIG. 6 (when s polarization is performed by the polarization member 61), the s polarization ratio is When the polarization member 61 is provided to be 50% (the rotation angle of the polarizer is 45 °), the polarization member 61 is provided such that the s polarization ratio is 0% (p polarization is performed by the polarization member 61) The gradation of the image obtained by the imaging unit 40 of the region R2 and a part of the region R1 (a partial region adjacent to the region R2) was examined. The graph which put together the result is FIG. As shown in the graph in the figure, as described above,
(1) By providing the polarization member 61, it is possible to prevent the amount of light in the region R2 from becoming excessive.
(2) By increasing the s-polarization ratio, it is possible to more effectively prevent the amount of light in the region R2 from becoming excessive.

図8は本発明にかかる撮像装置の第3実施形態の主要構成の分解斜視図である。この第3実施形態が第1実施形態と大きく相違する点は、偏光部材としてシート状の偏光層62をディッシュ10の側壁部12の外周面に設け、偏光層62がディッシュ10の一部となっている点であり、その他の構成は第1実施形態と基本的に同一である。このように構成された第3実施形態においても、側壁部12に偏光部材(偏光層)62が隣接して設けられており(図3A参照)、その結果、第1実施形態と同様の作用効果が得られる。つまり、偏光部材62を設けることで領域R2での光量が過剰なものとなるのを防止することができる。また、偏光部材62のs偏光比率を高めることにより、領域R2での光量が過剰なものとなるのをより効果的に防止することができる。   FIG. 8 is an exploded perspective view of the main configuration of a third embodiment of the imaging device according to the present invention. A large difference between this third embodiment and the first embodiment is that a sheet-like polarizing layer 62 is provided on the outer peripheral surface of the side wall portion 12 of the dish 10 as a polarizing member, and the polarizing layer 62 becomes a part of the dish 10 The other configuration is basically the same as that of the first embodiment. Also in the third embodiment configured as described above, the polarization member (polarization layer) 62 is provided adjacent to the side wall 12 (see FIG. 3A), and as a result, the same effects as those of the first embodiment Is obtained. That is, by providing the polarization member 62, it is possible to prevent the amount of light in the region R2 from becoming excessive. Further, by increasing the s-polarization ratio of the polarization member 62, it is possible to more effectively prevent the light amount in the region R2 from becoming excessive.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、リング状照明を採用した撮像装置1に対して本発明を適用しているが、例えば特許文献1に記載の撮像装置、つまり照明光を出射する出射面に対して遮光部材を部分的に対向させることで光軸OAに対し斜め方向から培養液70に照明光を入射させる装置に対しても本発明を適用することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made other than the above without departing from the scope of the invention. For example, in the above embodiment, the present invention is applied to the imaging device 1 adopting ring-like illumination, but for example, the imaging device described in Patent Document 1, that is, light shielding for the emission surface that emits illumination light The present invention can also be applied to an apparatus that causes illumination light to be incident on the culture fluid 70 from an oblique direction with respect to the optical axis OA by partially opposing the members.

また、上記実施形態では、照明ユニット30および撮像ユニット40を固定し、ディッシュ10を保持するステージ21を移動させることで、撮像対象物に対する撮像ユニット40の走査移動を実現している。これとは逆に、ディッシュ10を固定し、照明ユニット30と撮像ユニット40とを移動させるようにしても技術的には等価である。このようにした場合、撮像時にディッシュ10が振動して試料に及ぼす影響を低減することができる。   In the above embodiment, the illumination unit 30 and the imaging unit 40 are fixed, and the stage 21 holding the dish 10 is moved to realize the scanning movement of the imaging unit 40 with respect to the imaging target. Conversely, even if the dish 10 is fixed and the illumination unit 30 and the imaging unit 40 are moved, it is technically equivalent. In this case, it is possible to reduce the influence of the dish 10 on the sample vibrating at the time of imaging.

また、上記第1実施形態ではディッシュ10の側壁部12に隣接して、第2実施形態では光源31の出射面31aに対向して、また第3実施形態ではディッシュ10の側壁部12の外周面にそれぞれ偏光部材を設けているが、偏光部材の配設位置はこれらに限定されるものではない。要は、出射面31aから出射された照明光のうち側壁部12を透過して内底部13に貯留された培養液70に入射する光が進む光路上に偏光部材を配置すればよい。   Further, in the first embodiment, it is adjacent to the side wall portion 12 of the dish 10, and in the second embodiment, it faces the emission surface 31a of the light source 31. In the third embodiment, the outer peripheral surface of the side wall portion 12 of the dish 10 Although each has provided the polarization member, the arrangement position of a polarization member is not limited to these. The point is that the polarization member may be disposed on the light path on which the light transmitted through the side wall portion 12 and incident on the culture fluid 70 stored in the inner bottom portion 13 out of the illumination light emitted from the emission surface 31a travels.

このように、上記実施形態では、保持ユニット20およびステージ21がそれぞれ本発明の「容器保持部」および「支持部材」の一例に相当している。また、照明ユニット30および撮像ユニット40がそれぞれ本発明の「照明部」および「撮像部」の一例に相当している。また、光L1、L2が本発明の「側壁部を透過して内底部に貯留された培養液に入射する光」や「側壁入射光」の一例に相当している。また、偏光光L21、L11dが本発明の「内底部を透過してくる光」の一例に相当している。   Thus, in the said embodiment, the holding | maintenance unit 20 and the stage 21 are respectively corresponded to an example of the "container holding part" of this invention, and a "support member." The illumination unit 30 and the imaging unit 40 correspond to an example of the “illumination unit” and the “imaging unit” in the present invention respectively. The light L1 and L2 correspond to one example of the “light entering through the side wall portion and entering the culture solution stored in the inner bottom portion” or “side wall incident light” in the present invention. The polarized lights L21 and L11d correspond to an example of the "light transmitted through the inner bottom portion" in the present invention.

以上、具体的な実施形態を例示して説明してきたように、本発明は、例えば偏光部材がs偏光成分を有する偏光光を作り出すように構成してもよく、s偏光成分が50%以上の偏光光を作り出すように構成するのが望ましく、これによって側壁部近傍での光量が過剰なものとなるのをより効果的に防止することができ、培養容器の辺縁部に存在する生物試料をさらに良好な画像コントラストで撮像することができる。   As described above, as the specific embodiment has been illustrated and described, the present invention may be configured such that, for example, the polarization member produces polarized light having an s-polarization component, and the s-polarization component is 50% or more It is desirable to configure so as to create polarized light, which can more effectively prevent an excessive amount of light in the vicinity of the side wall, and the biological sample present at the edge of the culture vessel is Furthermore, imaging can be performed with good image contrast.

また、偏光部材を以下のように配置してもよい。例えば容器保持部が内底部を透過してくる光を撮像部に通過自在に培養容器を支持する支持部材を有する場合、偏光部材を支持部材に支持される培養容器の側壁部を取り囲むように支持部材に設けてもよい。また、照明部は照明光を出射する出射面を有する場合、偏光部材を出射面に対向して設けられてもよい。さらに、偏光部材を培養容器の側壁部の外周面に設けられる偏光層で構成してもよい。   Also, the polarization member may be arranged as follows. For example, when the container holding unit has a support member that supports the culture container so that light passing through the inner bottom can pass through the imaging unit to the imaging unit, the polarization member is supported to surround the side wall of the culture container supported by the support member. You may provide in a member. In addition, in the case where the illumination unit has an emission surface that emits illumination light, the polarization member may be provided to face the emission surface. Furthermore, the polarization member may be configured of a polarization layer provided on the outer peripheral surface of the side wall portion of the culture vessel.

この発明は、培養容器の内底部に貯留される培養液により培養される生物試料を撮像する撮像技術に好適である。   The present invention is suitable for an imaging technique for imaging a biological sample cultured by a culture solution stored in the inner bottom of a culture vessel.

1…撮像装置
10…細胞培養ディッシュ(培養容器)
11…底部
12…側壁部
13…内底部
20…保持ユニット(容器保持部)
21…ステージ(支持部材)
30…照明ユニット(照明部)
31a…出射面
40…撮像ユニット(撮像部)
60、61…偏光部材
62…偏光層(偏光部材)
70…培養液
71…メニスカス
L…照明光
L1、L2…(側壁入射)光
1 ... imaging device 10 ... cell culture dish (culture vessel)
11 bottom 12 side wall 13 inner bottom 20 holding unit (container holding unit)
21: Stage (supporting member)
30: Lighting unit (lighting unit)
31a ... emitting surface 40 ... imaging unit (imaging unit)
60, 61 ... polarization member 62 ... polarization layer (polarization member)
70 ... culture solution 71 ... meniscus L ... illumination light L1, L2 ... (side wall incident) light

Claims (7)

底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を保持する容器保持部と、
前記容器保持部に保持される前記培養容器の前記内底部に向けて照明光を出射する照明部と、
前記照明光のうち前記側壁部を透過して前記内底部に貯留された培養液に入射する光が進む光路上に配置される偏光部材と、
前記内底部を挟んで前記照明部の反対側に配置されて前記内底部を透過してくる光を受光して前記培養液で培養される生物試料の画像を撮像する撮像部とを備え
前記容器保持部は、前記内底部を透過してくる光を前記撮像部に通過自在に前記培養容器を支持する支持部材を有し、
前記偏光部材は、前記支持部材に支持される前記培養容器の前記側壁部を取り囲むように前記支持部材に設けられる
ことを特徴とする撮像装置。
A container holding unit for holding a culture container for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion;
An illumination unit that emits illumination light toward the inner bottom of the culture vessel held by the vessel holder;
A polarization member disposed on an optical path along which a light beam transmitted through the side wall portion and incident on a culture solution stored in the inner bottom portion among the illumination light travels;
An imaging unit disposed on the opposite side of the illumination unit across the inner bottom to receive light transmitted through the inner bottom and capture an image of a biological sample cultured in the culture solution ;
The container holding unit has a support member for supporting the culture container so that light transmitted through the inner bottom can pass through the imaging unit.
The imaging device , wherein the polarizing member is provided on the support member so as to surround the side wall portion of the culture vessel supported by the support member .
底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を保持する容器保持部と、
前記容器保持部に保持される前記培養容器の前記内底部に向けて照明光を出射する照明部と、
前記照明光のうち前記側壁部を透過して前記内底部に貯留された培養液に入射する光が進む光路上に配置される偏光部材と、
前記内底部を挟んで前記照明部の反対側に配置されて前記内底部を透過してくる光を受光して前記培養液で培養される生物試料の画像を撮像する撮像部とを備え
前記偏光部材は前記培養容器の前記側壁部の外周面に設けられる偏光層である
ことを特徴とする撮像装置。
A container holding unit for holding a culture container for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion;
An illumination unit that emits illumination light toward the inner bottom of the culture vessel held by the vessel holder;
A polarization member disposed on an optical path along which a light beam transmitted through the side wall portion and incident on a culture solution stored in the inner bottom portion among the illumination light travels;
An imaging unit disposed on the opposite side of the illumination unit across the inner bottom to receive light transmitted through the inner bottom and capture an image of a biological sample cultured in the culture solution ;
The imaging device, wherein the polarizing member is a polarizing layer provided on an outer peripheral surface of the side wall portion of the culture vessel .
請求項1または2に記載の撮像装置であって、
前記偏光部材はs偏光成分を有する偏光光を作り出す撮像装置。
The imaging device according to claim 1 or 2 ,
An imaging device for producing polarized light having an s-polarization component;
請求項に記載の撮像装置であって、
前記偏光部材は、s偏光成分が50%以上の偏光光を作り出す撮像装置。
The imaging apparatus according to claim 3 ,
The image pickup apparatus, wherein the polarizing member produces polarized light having an s-polarized component of 50% or more.
底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を、照明部と撮像部との間に配置する工程と、
前記照明部から前記培養容器の前記内底部に向けて照明光を出射する工程と、
前記照明光のうち前記側壁部を透過して前記内底部に貯留された培養液に入射する側壁入射光の光路上で前記側壁入射光を偏光して偏光光を作り出し、前記側壁部に入射する工程と、
前記内底部を透過してくる光を受光して前記培養液で培養される生物試料の画像を撮像する工程とを備え
前記培養容器は前記内底部を透過してくる光を前記撮像部に通過自在に支持部材で支持され、
前記偏光光は前記支持部材に支持される前記培養容器の前記側壁部を取り囲むように前記支持部材に設けられた偏光部材で作り出される
ことを特徴とする撮像方法。
Disposing a culture vessel for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion, between the illumination portion and the imaging portion;
Emitting illumination light from the illumination unit toward the inner bottom of the culture vessel;
Of the illumination light, the side wall incident light is polarized on the optical path of the side wall incident light that passes through the side wall portion and enters the culture solution stored in the inner bottom portion to create polarized light and enter the side wall portion Process,
Receiving the light transmitted through the inner bottom and imaging an image of the biological sample cultured in the culture solution ,
The culture vessel is supported by a support member so as to allow light transmitted through the inner bottom to pass through the imaging unit.
The imaging method is characterized in that the polarized light is produced by a polarization member provided on the support member so as to surround the side wall portion of the culture vessel supported by the support member .
底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器を、照明部と撮像部との間に配置する工程と、
前記照明部から前記培養容器の前記内底部に向けて照明光を出射する工程と、
前記照明光のうち前記側壁部を透過して前記内底部に貯留された培養液に入射する側壁入射光の光路上で前記側壁入射光を偏光して偏光光を作り出し、前記側壁部に入射する工程と、
前記内底部を透過してくる光を受光して前記培養液で培養される生物試料の画像を撮像する工程とを備え
前記偏光光は前記培養容器の前記側壁部の外周面に設けられる偏光層で作り出される
ことを特徴とする撮像方法。
Disposing a culture vessel for storing a culture solution at an inner bottom portion where a side wall portion is erected on the periphery of the bottom portion, between the illumination portion and the imaging portion;
Emitting illumination light from the illumination unit toward the inner bottom of the culture vessel;
Of the illumination light, the side wall incident light is polarized on the optical path of the side wall incident light that passes through the side wall portion and enters the culture solution stored in the inner bottom portion to create polarized light and enter the side wall portion Process,
Receiving the light transmitted through the inner bottom and imaging an image of the biological sample cultured in the culture solution ,
The imaging method characterized in that the polarized light is produced by a polarizing layer provided on an outer peripheral surface of the side wall portion of the culture vessel .
底部の周縁に側壁部が立設されて形成される内底部で培養液を貯留する培養容器であって、
前記側壁部の外周面に偏光層が設けられることを特徴とする培養容器。
A culture vessel for storing a culture solution at an inner bottom portion which is formed by standing a side wall portion on the periphery of the bottom portion,
A culture vessel characterized in that a polarizing layer is provided on the outer peripheral surface of the side wall portion.
JP2015072226A 2015-03-31 2015-03-31 Imaging device, imaging method and culture vessel Active JP6535494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072226A JP6535494B2 (en) 2015-03-31 2015-03-31 Imaging device, imaging method and culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072226A JP6535494B2 (en) 2015-03-31 2015-03-31 Imaging device, imaging method and culture vessel

Publications (2)

Publication Number Publication Date
JP2016191646A JP2016191646A (en) 2016-11-10
JP6535494B2 true JP6535494B2 (en) 2019-06-26

Family

ID=57245749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072226A Active JP6535494B2 (en) 2015-03-31 2015-03-31 Imaging device, imaging method and culture vessel

Country Status (1)

Country Link
JP (1) JP6535494B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983325B2 (en) * 2016-12-12 2021-04-20 Molecular Devices, Llc Trans-illumination imaging with an array of light sources

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321330A (en) * 1980-04-04 1982-03-23 Baker Fraser L Tissue culture device
JP5556444B2 (en) * 2010-06-30 2014-07-23 株式会社ニコン Microscope, culture observation equipment
EP2520923A1 (en) * 2011-05-06 2012-11-07 bioMérieux Bio-imaging method and system
JP5869920B2 (en) * 2012-03-08 2016-02-24 株式会社Screenホールディングス Image evaluation method
JP5690359B2 (en) * 2012-03-30 2015-03-25 株式会社Screenホールディングス Imaging apparatus and imaging method
JP6124774B2 (en) * 2013-03-22 2017-05-10 オリンパス株式会社 Phase distribution measuring method and phase distribution measuring apparatus
JP5775550B2 (en) * 2013-08-29 2015-09-09 株式会社Screenホールディングス Imaging apparatus and imaging method

Also Published As

Publication number Publication date
JP2016191646A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6251454B2 (en) Observation apparatus and observation method
JP6126693B2 (en) Container and system for optical analysis of sample without using optical lens
JP6389721B2 (en) Imaging apparatus and imaging method
US20200318058A1 (en) Observation system and observation method using the same
JP6692660B2 (en) Imaging device
US20150185456A1 (en) Microscope system and control method therefor
JP5556444B2 (en) Microscope, culture observation equipment
US10674044B2 (en) Observation apparatus, method for controlling observation apparatus, and non-transitory computer-readable medium storing control program for observation apparatus
JP7021348B2 (en) Safety light curtain that disables the rotation of the carousel
JP6514832B2 (en) Observation device
JP7004808B2 (en) Opposed edge system for scanning and processing glass slides
JPWO2010128670A1 (en) Focus control method and culture observation apparatus
JP6685148B2 (en) Imaging device and imaging method
JPWO2018062215A1 (en) Observation device
JP6543002B2 (en) Culture observation system
JP2018040569A (en) Picked-up image arrangement determining method, image pick-up method, and image pick-up apparatus
EP3105542B1 (en) Apparatus for acquiring images of elements to be inspected and method of inspections of such elements
JP2012147739A (en) Observation apparatus
JP6535494B2 (en) Imaging device, imaging method and culture vessel
TW201732366A (en) Imaging arrangement determination method for imaging device and imaging device
US10310242B2 (en) Observation apparatus, method for controlling observation apparatus, and non-transitory computer readable storage medium storing control program for observation apparatus
JP5775550B2 (en) Imaging apparatus and imaging method
US10129474B2 (en) Observation apparatus, measurement system and observation method
US20170280051A1 (en) Observation apparatus, measurement system, culture vessel and control method for observation apparatus
EP2917719B1 (en) Receptacle and system for optically analyzing a sample without optical lenses

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6535494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250