JP6528101B2 - Adsorbent and method of using and producing the same - Google Patents

Adsorbent and method of using and producing the same Download PDF

Info

Publication number
JP6528101B2
JP6528101B2 JP2016560317A JP2016560317A JP6528101B2 JP 6528101 B2 JP6528101 B2 JP 6528101B2 JP 2016560317 A JP2016560317 A JP 2016560317A JP 2016560317 A JP2016560317 A JP 2016560317A JP 6528101 B2 JP6528101 B2 JP 6528101B2
Authority
JP
Japan
Prior art keywords
group
adsorbent
shows
organic
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016560317A
Other languages
Japanese (ja)
Other versions
JPWO2016080546A1 (en
Inventor
小木曽 真樹
真樹 小木曽
将 青柳
将 青柳
和幸 川村
和幸 川村
宏之 関野
宏之 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Japan Oil Gas and Metals National Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Japan Oil Gas and Metals National Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016080546A1 publication Critical patent/JPWO2016080546A1/en
Application granted granted Critical
Publication of JP6528101B2 publication Critical patent/JP6528101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、水中に含まれる化学成分を吸着する有機ナノ材料を含む吸着剤並びにその使用方法及び製造方法に関する。   The present invention relates to an adsorbent comprising an organic nanomaterial that adsorbs a chemical component contained in water, and a method of using and producing the same.

新興国の経済発展に伴い、水環境汚染や水不足が顕著となっており、排水の浄化処理が非常に重要な課題となっている。また、主要な油ガス田において、石油ガスの産出がピークを越え、産出される石油ガスに対し、付随して産出される随伴水の比率が増加したことや、近年シェールガス・オイルの産出量が増大したことに伴い、随伴水の産出量が大きく増大したことから、こうしたタイプの排水の浄化処理も非常に重要な課題となっている。
更に、環境問題に対する意識の高まりに伴い、排水の浄化処理に対して、より高度な処理が求められている。例えば、随伴水に含まれる化学成分には、少量の油ガス成分、硫化水素、無機塩類、多種にわたる有機物、重金属類などの有害成分が含まれる一方で、これら有害成分は、随伴水からの除去が非常に困難な成分であることから、より効果的な浄化技術の開発が必要とされている。また、有害成分の種類や含有量は、産出される地域、地層などにより大きく異なることから、汎用性の高い浄化技術の開発も必要とされている。
With the economic development of emerging countries, water pollution and water shortages have become remarkable, and purification treatment of drainage has become a very important issue. Also, in major oil and gas fields, oil gas production has peaked, and the ratio of accompanying water produced to oil gas produced has increased, and in recent years, the amount of shale gas and oil produced As the production of accompanying water has greatly increased with the increase in water quality, purification treatment of this type of wastewater has become a very important issue.
Furthermore, with the increasing awareness of environmental issues, more advanced treatments are required for the purification of wastewater. For example, the chemical components contained in the accompanying water include harmful components such as a small amount of oil gas components, hydrogen sulfide, inorganic salts, various organic substances, heavy metals, etc. while these harmful components are removed from the accompanying water There is a need for the development of more effective purification techniques, since it is a very difficult component. In addition, since the type and content of harmful components are largely different depending on the area, the stratum, etc. to be produced, development of highly versatile purification technology is also required.

排水の浄化処理に用いられる従来技術としては、活性炭を有害成分の吸着剤として用いる浄化処理方法が知られている(特許文献1参照)。しかしながら、この浄化処理方法では、多量の活性炭が必要であり使用後の廃棄コストも嵩むこと、ろ過等による有害成分の分離速度が低く効率的でない問題がある。   As a prior art used for purification treatment of drainage, the purification treatment method which uses activated carbon as an adsorption agent of a harmful ingredient is known (refer to patent documents 1). However, in this purification treatment method, a large amount of activated carbon is required, the disposal cost after use also increases, and the separation speed of harmful components by filtration or the like is low and inefficient.

また、高分子膜を有害成分の吸着剤として用いる浄化処理方法が知られている(特許文献2参照)。しかしながら、この浄化処理方法では、高分子膜に目詰まりや劣化が起こることから、前処理として油分、固形分、硫化水素、塩などの成分の除去処理が必要とされ、成分全体の除去のための除去処理が多段階となって、システムが非効率化・複雑化する問題がある。   There is also known a purification treatment method using a polymer membrane as an adsorbent for harmful components (see Patent Document 2). However, in this purification treatment method, the polymer membrane is clogged and deteriorated, so removal treatment of components such as oil, solid, hydrogen sulfide, and salt is required as pretreatment, and for removal of the whole components There is a problem that the system is inefficient and complicated because the process of removing

ところで、本発明者らは、ペプチド脂質が水−アルコール分散液中で金属イオンと結合し、金属錯体型の有機ナノチューブを形成することを報告している(特許文献3参照)。しかしながら、この報告では、アルコール分散液中での金属イオンの結合による吸着について検討されてるものの、水中での吸着性については検討されていない。また、重金属以外の化学成分の吸着性についても検討されていない。更に、用途によっては、吸着力が不十分となることから、より高い吸着力を有する吸着剤の開発が求められる。   By the way, the present inventors have reported that a peptide lipid binds to a metal ion in a water-alcohol dispersion to form a metal complex type organic nanotube (see Patent Document 3). However, in this report, although the adsorption by binding of metal ions in an alcohol dispersion is examined, the adsorption in water is not examined. Also, the adsorptivity of chemical components other than heavy metals has not been studied. Furthermore, depending on the application, the development of an adsorbent having higher adsorption power is required because the adsorption power is insufficient.

また、本発明者らは、糖脂質やペプチド脂質に低分子有機化合物をインターカレートさせた有機ナノチューブの形成技術について報告している(特許文献4参照)。しかしながら、この技術は、熱したアルコール環境下で、溶解させた蛍光色素などの低分子有機化合物を二分子膜の脂質中に取り込むものであり、排水の浄化処理全般に適用できる技術ではない。   The present inventors have also reported on a technique for forming an organic nanotube in which a low molecular weight organic compound is intercalated in a glycolipid or a peptide lipid (see Patent Document 4). However, this technique is to incorporate low molecular weight organic compounds such as dissolved fluorescent dye in the lipid of a bilayer membrane in a heated alcohol environment, and is not a technique that can be generally applied to the purification treatment of waste water.

特開2004−275884号公報JP 2004-275884 A 特開平 5−245472号公報Japanese Patent Application Laid-Open No. 5-245472 特開2009−233825号公報JP, 2009-233825, A 特開2008−264897号公報JP, 2008-264897, A

本発明は、従来技術における前記諸問題を解決し、油分除去、脱塩、脱硫化水素などの前処理がいらず、排水に加えるだけで油分、重金属、硫化水素、有機化合物を同時に吸着して簡易かつ効率的に除去可能であるとともに、優れた吸着力を示す吸着剤並びにその使用方法及び製造方法を提供することを課題とする。   The present invention solves the above-mentioned problems in the prior art, does not require oil removal, desalting, pretreatment such as desulfurization, and simultaneously adsorbs oil, heavy metal, hydrogen sulfide and organic compounds by adding to waste water. An object of the present invention is to provide an adsorbent which can be easily and efficiently removed and which exhibits an excellent adsorptive power, and a method of using and producing the same.

本発明者らは、前記課題を達成するため鋭意検討した結果、ペプチド脂質の末端にアミド結合を介して第1級〜第3級アミン又は環式アミンの構造を有する官能基を導入させた化合物を自己組織化させて有機ナノ材料を合成することができること、更には、こうして合成された有機ナノ材料が排水中の油分、重金属、硫化水素、有機化合物などの化学成分を効果的に吸着できることの知見を得た。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors introduced a compound having a functional group having a primary to tertiary amine or cyclic amine structure at the terminal of the peptide lipid via an amide bond. Can be synthesized into organic nanomaterials, and furthermore, the organic nanomaterial thus synthesized can effectively adsorb chemical components such as oil, heavy metals, hydrogen sulfide and organic compounds in waste water I got the knowledge.

本発明は、前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 下記一般式(1)で表される有機ナノ材料を含むことを特徴とする吸着剤。
ただし、前記一般式(1)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示し、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
<2> 有機ナノ材料が外径10nm〜200nmのナノチューブ状の構造を有する前記<1>に記載の吸着剤。
<3> RCO−がミリストイル基、パルミトイル基、ステアロイル基及びオレオイル基のいずれかである前記<1>から<2>のいずれかに記載の吸着剤。
<4> R’が水素原子である前記<1>から<3>のいずれかに記載の吸着剤。
<5> mが1又は2である前記<1>から<4>のいずれかに記載の吸着剤。
<6> −NH−Xが芳香族メチルアミノ基である前記<1>から<5>のいずれかに記載の吸着剤。
<7> 前記<1>から<6>のいずれかに記載の吸着剤を被処理水に導入することを特徴とする吸着剤の使用方法。
<8> 被処理水がエネルギー資源産出に付随して産出される随伴水である前記<7>に記載の吸着剤の使用方法。
<9> 下記一般式(2)で表されるカルボン酸化合物と、下記一般式(3)で表されるアミン化合物とを脱水縮合させて、これらがアミド結合された有機ナノ材料前駆体を調製する有機ナノ材料前駆体調製工程と、前記有機ナノ材料前駆体を溶媒に溶解させて自己組織化させた有機ナノ材料を調製する有機ナノ材料調製工程と、を含むことを特徴とする吸着剤の製造方法。
ただし、前記一般式(2)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示す。また、前記一般式(3)中、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
The present invention is based on the above-mentioned findings, and means for solving the above-mentioned problems are as follows. That is,
<1> An adsorbent comprising an organic nanomaterial represented by the following general formula (1).
However, in said general formula (1), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows an integer of 1-5, and X is It shows a functional group having a primary to tertiary amine or cyclic amine structure.
<2> The adsorbent according to <1>, wherein the organic nanomaterial has a nanotube-like structure with an outer diameter of 10 nm to 200 nm.
<3> The adsorbent according to any one of <1> to <2>, wherein RCO— is any of myristoyl group, palmitoyl group, stearoyl group and oleoyl group.
The adsorbent in any one of said <1> to <3> whose <4> R 'is a hydrogen atom.
<5> The adsorbent according to any one of <1> to <4>, wherein m is 1 or 2.
<6> The adsorbent according to any one of <1> to <5>, wherein -NH-X is an aromatic methylamino group.
<7> A method of using an adsorbent, which comprises introducing the adsorbent according to any one of <1> to <6> into water to be treated.
<8> The method of using the adsorbent according to <7>, wherein the water to be treated is accompanying water produced concomitantly with energy resource production.
<9> A dehydration condensation of a carboxylic acid compound represented by the following general formula (2) and an amine compound represented by the following general formula (3) is carried out to prepare an organic nanomaterial precursor in which these are amide-bonded An adsorbent comprising: an organic nanomaterial precursor preparation step; and an organic nanomaterial preparation step of preparing the organic nanomaterial obtained by dissolving the organic nanomaterial precursor in a solvent to self-organize. Production method.
However, in the said General formula (2), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows the integer of 1-5. Further, in the general formula (3), X represents a functional group having a primary to tertiary amine or cyclic amine structure.

本発明によれば、従来技術における前記諸問題を解決することができ、油分除去、脱塩、脱硫化水素などの前処理がいらず、排水に加えるだけで油分、重金属、硫化水素、有機化合物を同時に吸着して簡易かつ効率的に除去可能であるとともに、優れた吸着力を示す吸着剤及びその製造方法を提供することができる。   According to the present invention, the above-mentioned problems in the prior art can be solved, and oil removal, desalting, desulfurization, desulfurization and other pretreatments are not required, and oil, heavy metals, hydrogen sulfide, organic compounds simply added to drainage The present invention can provide an adsorbent that can simultaneously adsorb and simultaneously and efficiently remove it, and exhibits excellent adsorption power, and a method for producing the same.

ナノチューブ構造を有するN−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミドの走査電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of N- (2- pyridyl methyl glycyl glycine) hexadecane carboxamide which has nanotube structure. ナノチューブ構造を有するN−(2−ピリジルメチルグリシルグリシン)オクタデセンカルボキサミドの走査電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of N- (2- pyridyl methyl glycyl glycine) octadecene carboxamide which has nanotube structure. ナノチューブ構造を有するN−(2−ピリジルメチルグリシン)ヘキサデカンカルボキサミドの走査透過電子顕微鏡像を示す図である。It is a figure which shows the scanning transmission electron microscope image of N- (2- pyridyl methyl glycine) hexadecane carboxamide which has nanotube structure. ナノチューブ構造を有するN−(4−ジメチルアミノフェニルメチルグリシルグリシン)ヘキサデカンカルボキサミドの走査透過電子顕微鏡像を示す図である。It is a figure which shows the scanning transmission electron microscope image of N- (4-dimethylaminophenyl methyl glycyl glycine) hexadecane carboxamide which has nanotube structure. ナノチューブ構造を有するN−(4−ジメチルアミノフェニルメチルグリシルグリシン)オクタデセンカルボキサミドの走査電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of N- (4- dimethylamino phenyl methyl glycyl glycine) octadecene carboxamide which has nanotube structure. ナノチューブ構造を有するN−(グリシルグリシン)ペンタデカンカルボキサミドの走査電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of N- (glycyl glycine) pentadecane carboxamide which has nanotube structure.

(吸着剤)
本発明の吸着剤は、有機ナノ材料を含み、必要に応じて、その他の成分を含む。
(Adsorbent)
The adsorbent of the present invention contains an organic nanomaterial, and optionally contains other components.

<有機ナノ材料>
前記有機ナノ材料は、下記一般式(1)で表される。
ただし、前記一般式(1)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示し、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
<Organic nanomaterials>
The organic nanomaterial is represented by the following general formula (1).
However, in said general formula (1), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows an integer of 1-5, and X is It shows a functional group having a primary to tertiary amine or cyclic amine structure.

前記一般式(1)中のRに関し、前記炭化水素基としては、特に制限はなく、直鎖状であっても分岐鎖状であってもよいが、直鎖状が好ましい。また、前記炭化水素基としては、特に制限はなく、飽和であっても不飽和であってもよく、前記不飽和の場合には3個以下の二重結合を含むことが好ましい。
また、前記炭化水素基の炭素数としては、6〜24であれば、特に制限はないが、10〜19が好ましく、11〜17がより好ましく、11、13、15又は17が特に好ましい。
また、前記炭化水素基の種類としては、特に制限はなく、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基、シクロアルキルアルキル基等が挙げられるが、中でも、前記アルキル基、前記アルケニル基が好ましい。また、これらの基としては、1又は2以上の適当な置換基で置換されていてもよい。このような置換基としては、特に制限はなく、例えば、炭素数6以下の炭化水素基(アルキル基、アルケニル基、アルキニル基等)、ハロゲン(塩素原子、フッ素原子、ヨウ素原子、臭素原子等)、水酸基、アミノ基、カルボキシル基等が挙げられる。
これら前記炭化水素基のうち、前記一般式(1)中のRCO−がミリストイル基、パルミトイル基、ステアロイル基、オレオイル基を構成する、n−トリデシル基、n−ペンタデシル基、n−ヘプタデシル基、9−cis−ヘプタデセル基が最も好ましい。
With respect to R in the general formula (1), the hydrocarbon group is not particularly limited and may be linear or branched, but linear is preferable. The hydrocarbon group is not particularly limited, and may be saturated or unsaturated. In the case of the unsaturated group, it is preferable that the hydrocarbon group contains 3 or less double bonds.
Moreover, as carbon number of the said hydrocarbon group, if it is 6-24, there is no restriction | limiting in particular, However, 10-19 are preferable, 11-17 are more preferable, 11, 13, 15 or 17 is especially preferable.
The type of the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, an aralkyl group and a cycloalkylalkyl group. Among them, the alkyl group and the alkenyl group are preferable. In addition, these groups may be substituted by one or more suitable substituents. The substituent is not particularly limited, and examples thereof include a hydrocarbon group having 6 or less carbon atoms (such as an alkyl group, an alkenyl group and an alkynyl group), a halogen (a chlorine atom, a fluorine atom, an iodine atom and a bromine atom) And a hydroxyl group, an amino group, a carboxyl group and the like.
Among the above-mentioned hydrocarbon groups, n-tridecyl group, n-pentadecyl group, n-heptadecyl group, in which RCO- in the general formula (1) constitutes a myristoyl group, palmitoyl group, stearoyl group or oleoyl group The 9-cis-heptadecel group is most preferred.

前記一般式(1)中のR’に関し、前記アミノ酸側鎖としては、特に制限はなく、例えば、そのアミノ酸の構造((NH−CHR’−CO)−)が、20種類の天然アミノ酸(グリシン、アラニン、ロイシン、イソロイシン、バリン、アルギニン、リジン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、システイン、メチオニン、ヒスチジン、プロリン、フェニルアラニン、チロシン、スレオニン、セリン、トリプトファン)、修飾アミノ酸、非天然アミノ酸(例えば、オルニチン、ノルバリン、ノルロイシン、ヒドロキシリジン、フェニルグリシン、β−アラニン等)の構造であってよいが、中でも、R’が水素原子である前記グリシンが好ましい。また、前記アミノ酸としては、特に制限はなく、L−体、D−体、DL−体のいずれであってもよいが、前記L−体、前記DL−体が好ましく、前記L−体が特に好ましい。
また、前記一般式(1)中のmに関し、mは、アミノ酸残基数であり、1〜5の整数であれば特に制限はないが、中でも、1又は2が特に好ましい。
前記アミノ酸の構造((NH−CHR’−CO)−)としては、R’が水素原子であり、mが1であるグリシン及びmが2であるグリシルグリシンの構造が最も好ましい。
With respect to R ′ in the general formula (1), the amino acid side chain is not particularly limited, and, for example, the structure of the amino acid ((NH—CHR′—CO) —) is 20 kinds of natural amino acids (glycine , Alanine, leucine, isoleucine, valine, arginine, lysine, glutamate, glutamine, aspartic acid, asparagine, cysteine, methionine, histidine, proline, phenylalanine, tyrosine, threonine, serine, tryptophan), modified amino acids, non-natural amino acids (eg, Ornithine, norvaline, norleucine, hydroxylysine, phenylglycine, β-alanine and the like), and among them, the above glycine wherein R ′ is a hydrogen atom is preferable. The amino acids are not particularly limited and may be L-form, D-form or DL-form, but the L-form and the DL-form are preferable, and the L-form is particularly preferable. preferable.
In the general formula (1), m is the number of amino acid residues, and is not particularly limited as long as it is an integer of 1 to 5. Among these, 1 or 2 is particularly preferable.
The structure of the amino acid ((NH-CHR'-CO)-) is most preferably a structure of glycine in which R 'is a hydrogen atom and m is 1 and glycylglycine in which m is 2.

前記一般式(1)中の−NH−Xは、アミド結合に用いられる−NH−基以外にも、−Xとして、第1級〜第3級アミン又は環式アミンの構造を有する官能基を有する。このような官能基が導入される前記有機ナノ材料では、高塩濃度の排水で問題になるアルカリ土類金属と結合しなくなるため、重金属に対する吸着力が高まるとともに、弱アルカリ性から酸性の排水中では、前記官能基が正電荷を有するため、フェノールや有機酸などの負電荷を有する有機化合物に対する吸着力も高くなる。
前記一般式(1)中の−NH−Xとしては、前記第1級〜第3級アミン又は前記環式アミンの構造を有する官能基を有する限り、特に制限はなく、NH−Xの化合物から誘導される基、例えば、アミノメチルピリジン、アミノメチルピペラジン、ジメチルアミノベンジルアミンなどの二官能性化合物、エチレンジアミン、ジエチレントリアミン及びこれらのN−アルキル置換体などのポリアミン化合物等から誘導される基が挙げられるが、前記二官能性化合物から誘導される基が好ましい。
前記二官能性化合物から誘導される基の中でも、アミノメチルピリジン、ジメチルアミノベンジルアミン等から誘導される芳香族メチルアミノ基が特に好ましい。
また、前記芳香族メチルアミノ基の中でも、前記アミノメチルピリジンから誘導される基として、2−ピリジルメチルアミノ基、3−ピリジルメチルアミノ基、4−ピリジルメチルアミノ基(ピリジルメチルアミノ基)、及び前記アミノベンジルアミンから誘導される基として、2−ジメチルアミノベンジルアミノ基、3−ジメチルアミノベンジルアミノ基、4−ジメチルアミノベンジルアミノ基(ジメチルアミノベンジルアミノ基)が好ましく、2−ピリジルメチルアミノ基及び4−ジメチルアミノベンジルアミノ基が特に好ましい。
The —NH—X in the general formula (1) has a functional group having a primary to tertiary amine or a cyclic amine structure as —X in addition to the —NH— group used for the amide bond. Have. The organic nanomaterials into which such functional groups are introduced do not bind to alkaline earth metals, which is a problem in drainage with high salt concentration, and thus the adsorptive power to heavy metals is enhanced, and in weakly alkaline to acidic drainage Since the functional group has a positive charge, the adsorptive power to an organic compound having a negative charge such as phenol or an organic acid also becomes high.
The -NH-X in the general formula (1) is not particularly limited as long as it has a functional group having the structure of the primary to tertiary amines or the cyclic amine, and a compound of NH 2 -X And groups derived from, for example, bifunctional compounds such as aminomethylpyridine, aminomethylpiperazine and dimethylaminobenzylamine, and polyamine compounds such as ethylenediamine, diethylenetriamine and N-alkyl-substituted products thereof. However, preferred are groups derived from said bifunctional compounds.
Among the groups derived from the bifunctional compounds, aromatic methylamino groups derived from aminomethylpyridine, dimethylaminobenzylamine and the like are particularly preferable.
Further, among the above-mentioned aromatic methylamino groups, as a group derived from the above-mentioned aminomethylpyridine, 2-pyridylmethylamino group, 3-pyridylmethylamino group, 4-pyridylmethylamino group (pyridylmethylamino group), and As the group derived from the aminobenzylamine, 2-dimethylaminobenzylamino group, 3-dimethylaminobenzylamino group, 4-dimethylaminobenzylamino group (dimethylaminobenzylamino group) are preferable, and 2-pyridylmethylamino group And 4-dimethylaminobenzylamino is particularly preferred.

以下に、前記有機ナノ材料を構成する化合物の一例として、前記化合物の構造式(4)〜(8)を示す。なお、構造式(4)の化合物は、N−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミドであり、構造式(5)の化合物は、N−(2−ピリジルメチルグリシルグリシン)オクタデセンカルボキサミドであり、構造式(6)の化合物は、N−(2−ピリジルメチルグリシン)ヘキサデカンカルボキサミドであり、構造式(7)の化合物は、N−(4−ジメチルアミノフェニルメチルグリシルグリシン)ヘキサデカンカルボキサミドであり、構造式(8)の化合物は、N−(4−ジメチルアミノフェニルメチルグリシルグリシン)オクタデセンカルボキサミドである。
Below, Structural formula (4)-(8) of the said compound is shown as an example of the compound which comprises the said organic nanomaterial. The compound of structural formula (4) is N- (2-pyridylmethylglycylglycine) hexadecanecarboxamide, and the compound of structural formula (5) is N- (2-pyridylmethylglycylglycine) octadecenecarboxamide The compound of structural formula (6) is N- (2-pyridylmethylglycine) hexadecanecarboxamide, and the compound of structural formula (7) is N- (4-dimethylaminophenylmethylglycylglycine) hexadecanecarboxamide The compound of structural formula (8) is N- (4-dimethylaminophenylmethylglycylglycine) octadecenecarboxamide.

前記有機ナノ材料は、同組成の化合物から自己組織化されるペプチド脂質であり、その形状としては、特に制限はないが、例えば、ナノチューブ状、ナノファイバ状、球状、薄板状が好ましく、中でも、前記ナノチューブ状が特に好ましい。
前記有機ナノ材料の大きさとしては、縦横高さのうち、いずれかが1nm〜数百nmである。
これらの中でも、外径が10nm〜200nmの前記ナノチューブ状の構造を有することが最も好ましい。
The organic nanomaterial is a peptide lipid self-assembled from a compound having the same composition, and the shape thereof is not particularly limited, but for example, nanotube-like, nanofibrous-like, sphere-like, and thin plate-like are preferable. The nanotube is particularly preferred.
The size of the organic nanomaterial is any of vertical and horizontal heights of 1 nm to several hundred nm.
Among these, it is most preferable to have the nanotube-like structure with an outer diameter of 10 nm to 200 nm.

<その他の成分>
前記その他の成分としては、本発明の効果を妨げない限り、特に制限はなく、任意の成分が挙げられる。
なお、前記吸着剤は、後述の製造方法により製造することができる。
<Other ingredients>
The other components are not particularly limited as long as the effects of the present invention are not impaired, and arbitrary components may be mentioned.
In addition, the said adsorption agent can be manufactured with the below-mentioned manufacturing method.

(吸着剤の使用方法)
本発明の吸着剤の使用方法は、本発明の前記吸着剤を被処理水に導入する方法である。
即ち、本発明の吸着剤を被処理水に導入し、前記被処理水に含まれている重金属、有機化合物、脂肪酸などの化学成分を前記吸着剤に吸着させ、前記被処理水から化学成分を除去する。
前記被処理水としては、特に制限はなく、石油、シェールオイル、炭層メタンガス、メタンガス、シェールガス、オイルサンド等のエネルギー資源産出に付随して産出される随伴水、鉱物生産に伴う鉱廃水、シェールを大量の水で水圧破砕した後にガスとともに地上に戻ってくる水(フローバック水)、各種工場廃水等を含む排水全般が挙げられる。
(How to use the adsorbent)
The method of using the adsorbent of the present invention is a method of introducing the adsorbent of the present invention into water to be treated.
That is, the adsorbent of the present invention is introduced into the water to be treated, and chemical components such as heavy metals, organic compounds and fatty acids contained in the water to be treated are adsorbed onto the adsorbent, and the chemical components are treated from the water to be treated Remove.
The water to be treated is not particularly limited, and accompanying water produced concomitantly with the production of energy resources such as petroleum, shale oil, coal bed methane gas, methane gas, shale gas, oil sand, mineral wastewater associated with mineral production, shale After hydraulic fracturing with a large amount of water, water that comes back to the ground with the gas (flow back water), and drainage in general including various industrial wastewater etc. can be mentioned.

(吸着剤の製造方法)
本発明の吸着剤の製造方法は、本発明の前記吸着剤を製造する方法に係り、少なくとも、有機ナノ材料前駆体調製工程、有機ナノ材料調製工程を含み、必要に応じて、その他の工程を含む。
(Production method of adsorbent)
The method for producing an adsorbent according to the present invention relates to the method for producing the adsorbent according to the present invention, including at least an organic nanomaterial precursor preparation step and an organic nanomaterial preparation step, and, if necessary, other steps Including.

<有機ナノ材料前駆体調製工程>
前記有機ナノ材料調製工程は、下記一般式(2)で表されるカルボン酸化合物と、下記一般式(3)で表されるアミン化合物とを脱水縮合させて、これらがアミド結合された有機ナノ材料前駆体を調製する工程である。
<Organic nanomaterial precursor preparation process>
The organic nanomaterial preparation step is carried out by dehydration condensation of a carboxylic acid compound represented by the following general formula (2) and an amine compound represented by the following general formula (3) to obtain an organic nano bond in which these are amide-bonded. It is a process of preparing a material precursor.

ただし、前記一般式(2)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示す。また、前記一般式(3)中、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
なお、前記一般式(2)、前記一般式(3)中のR、R’、m及びXは、前記一般式(1)中のR、R’、m及びXに相当し、前記有機ナノ材料前駆体は、前記一般式(1)として表される前記有機ナノ材料と同組成の化合物である。
However, in the said General formula (2), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows the integer of 1-5. Further, in the general formula (3), X represents a functional group having a primary to tertiary amine or cyclic amine structure.
R, R ′, m and X in the general formula (2) and the general formula (3) correspond to R, R ′, m and X in the general formula (1), respectively, and the organic nano The material precursor is a compound having the same composition as the organic nanomaterial represented by the general formula (1).

前記カルボン酸化合物としては、特に制限はなく、公知の合成方法により合成されたものなどを適宜選択して用いることができる。公知の合成方法としては、例えば、Soft Matter、2010、6巻、4528ページに記載の合成方法等が挙げられる。
また、前記アミン化合物としては、特に制限はなく、前記吸着剤の説明においてNH−Xとして説明した化合物を公知の方法により合成するか、市販品から入手して用いることができる。
前記脱水縮合の方法としては、特に制限はなく、酸塩化物法、カップリング試薬法等の公知の脱水縮合方法を適用することができ、例えば、前記カルボン酸化合物と前記アミン化合物との混合溶液中にDMT−MM等の脱水縮合剤を導入して脱水縮合させる方法が挙げられる。
There is no restriction | limiting in particular as said carboxylic acid compound, What was synthesize | combined by the well-known synthetic | combination method etc. can be selected suitably, and can be used. Examples of known synthesis methods include the synthesis methods described in Soft Matter, 2010, Vol. 6, page 4528.
As examples of the amine compound is not particularly limited, the or synthesized by methods known compounds described as NH 2 -X in the description of the adsorbent can be used to obtain from commercial sources.
The dehydration condensation method is not particularly limited, and a known dehydration condensation method such as an acid chloride method or a coupling reagent method can be applied. For example, a mixed solution of the carboxylic acid compound and the amine compound The method of introduce | transducing dehydration condensation agents, such as DMT-MM etc., and making it carry out dehydration condensation in it is mentioned.

<有機ナノ材料調製工程>
前記有機ナノ材料調製工程は、前記有機ナノ材料前駆体を溶媒に溶解させて自己組織化させた有機ナノ材料を調製する工程である。
前記有機ナノ材料前駆体は、溶媒に溶解させた後、自己組織化して前記ナノ材料を形成する。
前記溶媒としては、前記有機ナノ材料前駆体が可溶であれば、特に制限はないが、例えば、アルコール、DMF、DMSO等の有機溶媒が好ましく、中でもアルコールが特に好ましい。
また、自己組織化させる方法としては、特に制限はなく、公知の方法を適用することができ、例えば、Soft Matter、2010、6巻、4528ページに記載の方法等が挙げられる。
なお、前記有機ナノ材料前駆体調製工程と前記有機ナノ材料調製工程とは、前記溶媒中に前記カルボン酸化合物、前記アミン化合物及び前記脱水縮合剤を加えることにより、一連の工程として実施することもできる。
<Organic nanomaterial preparation process>
The organic nanomaterial preparation step is a step of preparing an organic nanomaterial in which the organic nanomaterial precursor is dissolved in a solvent to self-assemble.
The organic nanomaterial precursor is dissolved in a solvent and then self-assembled to form the nanomaterial.
The solvent is not particularly limited as long as the organic nanomaterial precursor is soluble, but, for example, an organic solvent such as alcohol, DMF, or DMSO is preferable, and alcohol is particularly preferable.
The self-assembly method is not particularly limited, and known methods can be applied, and examples thereof include the methods described in Soft Matter, 2010, Volume 6, page 4528.
The organic nanomaterial precursor preparation step and the organic nanomaterial preparation step may also be carried out as a series of steps by adding the carboxylic acid compound, the amine compound and the dehydration condensation agent to the solvent. it can.

<その他の工程>
前記その他の工程としては、本発明の効果を妨げない限り、特に制限はなく、任意の工程が挙げられる。
<Other process>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and arbitrary steps may be mentioned.

(実施例1)
カルボン酸化合物としてN−(グリシルグリシン)ヘキサデカンカルボキサミド1.71g(5ミリモル)と、アミン化合物として2−アミノメチルピリジン0.561mL(5.5ミリモル)とをメタノール75mLに分散させ、その分散液を50℃まで加熱した。
次いで、DMT−MM1.52g(5.5ミリモル)をメタノール25mLに溶解させ、これを前記分散液に滴下した後、50℃で1時間攪拌し、その後、室温で一晩攪拌した。
次いで、得られた沈殿物をろ過し、メタノールで洗浄後、粗生成物を再びメタノール100mLに分散させ、50℃で1時間攪拌後、室温で2時間放冷した。
次いで、得られた沈殿物を再びろ過し、メタノールで洗浄後、乾燥することで、N−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミド1.40g(3.2ミリモル、収率65%)の有機ナノ材料からなる実施例1に係る吸着剤を製造した。
このN−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミドは、図1に示すように、平均外径が100nmのナノチューブ構造を有している。なお、図1は、ナノチューブ構造を有するN−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミドの走査電子顕微鏡像を示す図である。
Example 1
Disperse 1.71 g (5 mmol) of N- (glycylglycine) hexadecanecarboxamide as a carboxylic acid compound and 0.561 mL (5.5 mmol) of 2-aminomethylpyridine as an amine compound in 75 mL of methanol, and disperse it Was heated to 50.degree.
Next, 1.52 g (5.5 mmol) of DMT-MM was dissolved in 25 mL of methanol and added dropwise to the dispersion, followed by stirring at 50 ° C. for 1 hour, and then overnight at room temperature.
Then, the resulting precipitate was filtered and washed with methanol, and then the crude product was dispersed again in 100 mL of methanol, stirred at 50 ° C. for 1 hour, and allowed to cool at room temperature for 2 hours.
Next, the obtained precipitate is again filtered, washed with methanol and then dried to give 1.40 g (3.2 mmol, 65% yield) of N- (2-pyridylmethylglycylglycine) hexadecanecarboxamide. An adsorbent according to Example 1 comprising an organic nanomaterial was manufactured.
The N- (2-pyridylmethylglycylglycine) hexadecanecarboxamide has a nanotube structure with an average outer diameter of 100 nm, as shown in FIG. FIG. 1 is a view showing a scanning electron microscopic image of N- (2-pyridylmethylglycylglycine) hexadecanecarboxamide having a nanotube structure.

(実施例2)
カルボン酸化合物としてN−(グリシルグリシン)オクタデセンカルボキサミド3.97g(10ミリモル)と、アミン化合物として2−アミノメチルピリジン1.22mL(12ミリモル)とをメタノール100mLに分散させ、その分散液を50℃まで加熱した。
次いで、DMT−MM3.32g(12ミリモル)をメタノール40mLに溶解させ、これを前記分散液に滴下した後、50℃で1時間攪拌し、その後、室温で一晩攪拌した。 次いで、撹拌後の分散液を1/3程度に濃縮後、沈殿物をろ過し、メタノールで洗浄後、乾燥することで、N−(2−ピリジルメチルグリシルグリシン)オクタデセンカルボキサミド3.51g(7.2ミリモル、収率72%)の有機ナノ材料からなる実施例2に係る吸着剤を製造した。
このN−(2−ピリジルメチルグリシルグリシン)オクタデセンカルボキサミドは、図2に示すように、平均外径が50nmのナノチューブ構造を有している。なお、図2は、ナノチューブ構造を有するN−(2−ピリジルメチルグリシルグリシン)オクタデセンカルボキサミドの走査電子顕微鏡像を示す図である。
(Example 2)
A solution of 3.97 g (10 mmol) of N- (glycylglycine) octadecenecarboxamide as a carboxylic acid compound and 1.22 mL (12 mmol) of 2-aminomethylpyridine as an amine compound is dispersed in 100 mL of methanol, and the dispersion is Heated to 50 ° C.
Next, 3.32 g (12 mmol) of DMT-MM was dissolved in 40 mL of methanol and added dropwise to the dispersion, followed by stirring at 50 ° C. for 1 hour, and then overnight at room temperature. Next, the dispersion after stirring is concentrated to about 1/3, and then the precipitate is filtered, washed with methanol and then dried to give 3.51 g of N- (2-pyridylmethylglycylglycine) octadecenecarboxamide ( An adsorbent according to Example 2 consisting of 7.2 millimoles, 72% yield) of an organic nanomaterial was prepared.
The N- (2-pyridylmethylglycylglycine) octadecenecarboxamide has a nanotube structure with an average outer diameter of 50 nm, as shown in FIG. FIG. 2 is a view showing a scanning electron microscope image of N- (2-pyridylmethylglycylglycine) octadecenecarboxamide having a nanotube structure.

(実施例3)
カルボン酸化合物としてN−(グリシン)ヘキサデカンカルボキサミド0.71g(2.5ミリモル)と、アミン化合物として2−アミノメチルピリジン0.31mL(3ミリモル)とをメタノール20mLに分散させ、その分散液を50℃まで加熱した。
次いで、DMT−MM0.83g(3ミリモル)をメタノール10mLに溶解させ、これを前記分散液に滴下した後、50℃で1時間攪拌し、その後、室温で一晩攪拌した。
次いで、撹拌後の分散液を濃縮乾固し、残った白色粉末を0.02M水酸化ナトリウム水溶液25mlに懸濁し、沈殿物をろ過し、水で洗浄後、乾燥することで、N−(2−ピリジルメチルグリシン)ヘキサデカンカルボキサミド0.68g(1.8ミリモル、収率73%)の有機ナノ材料からなる実施例3に係る吸着剤を製造した。
このN−(2−ピリジルメチルグリシン)ヘキサデカンカルボキサミドは、図3に示すように、平均外径が50nmのナノチューブ構造を有している。なお、図3は、ナノチューブ構造を有するN−(2−ピリジルメチルグリシン)ヘキサデカンカルボキサミドの走査透過電子顕微鏡像を示す図である。
(Example 3)
Disperse 0.71 g (2.5 mmol) of N- (glycine) hexadecanecarboxamide as a carboxylic acid compound and 0.31 mL (3 mmol) of 2-aminomethylpyridine as an amine compound in 20 mL of methanol, and disperse the dispersion 50 Heated to ° C.
Next, 0.83 g (3 mmol) of DMT-MM was dissolved in 10 mL of methanol and added dropwise to the dispersion, followed by stirring at 50 ° C. for 1 hour, and then overnight at room temperature.
Then, the dispersion after stirring is concentrated to dryness, the remaining white powder is suspended in 25 ml of 0.02 M aqueous sodium hydroxide solution, the precipitate is filtered, washed with water and then dried to give N- (2 -Pyridylmethylglycine) An adsorbent according to Example 3 consisting of 0.68 g (1.8 mmol, 73% yield) of an organic nanomaterial of hexadecanecarboxamide was produced.
This N- (2-pyridylmethylglycine) hexadecanecarboxamide has a nanotube structure with an average outer diameter of 50 nm, as shown in FIG. In addition, FIG. 3 is a figure which shows the scanning transmission electron microscope image of N- (2- pyridyl methyl glycine) hexadecane carboxamide which has a nanotube structure.

(実施例4)
カルボン酸化合物としてN−(グリシルグリシン)ヘキサデカンカルボキサミド3.43g(10ミリモル)と、アミン化合物として4−ジメチルアミノベンジルアミン二塩酸塩2.68g(12ミリモル)とをメタノール50mLに分散させ、トリエチルアミン3.36ml(24ミリモル)を加えた後、その分散液を50℃まで加熱した。
次いで、DMT−MM3.32g(12ミリモル)をメタノール25mLに溶解させ、これを前記分散液に滴下した後、50℃で1時間攪拌し、その後、室温で一晩攪拌した。
次いで、得られた沈殿物をろ過し、メタノールで洗浄後、粗生成物をDMF200mLに分散させ、60℃で1時間攪拌後、室温で2時間放冷した。
次いで、得られた沈殿物を再びろ過し、メタノールで洗浄後、乾燥することで、N−(4−ジメチルアミノフェニルメチルグリシルグリシン)ヘキサデカンカルボキサミド3.6g(7.5ミリモル、収率75%)の有機ナノ材料からなる実施例4に係る吸着剤を製造した。
このN−(4−ジメチルアミノフェニルメチルグリシルグリシン)ヘキサデカンカルボキサミドは、図4に示すように、平均外径が60nmのナノチューブ構造を有している。なお、図4は、ナノチューブ構造を有するN−(2−ピリジルメチルグリシルグリシン)ヘキサデカンカルボキサミドの走査電子顕微鏡像を示す図である。
(Example 4)
A solution of 3.43 g (10 mmol) of N- (glycylglycine) hexadecanecarboxamide as a carboxylic acid compound and 2.68 g (12 mmol) of 4-dimethylaminobenzylamine dihydrochloride as an amine compound is dispersed in 50 mL of methanol, triethylamine After addition of 3.36 ml (24 mmol), the dispersion was heated to 50.degree.
Next, 3.32 g (12 mmol) of DMT-MM was dissolved in 25 mL of methanol and added dropwise to the dispersion, followed by stirring at 50 ° C. for 1 hour, and then overnight at room temperature.
Then, the resulting precipitate was filtered and washed with methanol, and then the crude product was dispersed in 200 mL of DMF, stirred at 60 ° C. for 1 hour, and allowed to cool at room temperature for 2 hours.
Next, the obtained precipitate is again filtered, washed with methanol and then dried to give 3.6 g (7.5 mmol, yield 75%) of N- (4-dimethylaminophenylmethylglycylglycine) hexadecanecarboxamide. The adsorbent according to Example 4 comprising the organic nanomaterial of
The N- (4-dimethylaminophenylmethylglycylglycine) hexadecanecarboxamide has a nanotube structure having an average outer diameter of 60 nm, as shown in FIG. FIG. 4 is a view showing a scanning electron microscopic image of N- (2-pyridylmethylglycylglycine) hexadecanecarboxamide having a nanotube structure.

(実施例5)
カルボン酸化合物としてN−(グリシルグリシン)オクタデセンカルボキサミド3.97g(10ミリモル)と、アミン化合物として4−ジメチルアミノベンジルアミン二塩酸塩2.68g(12ミリモル)とをメタノール50mLに分散させ、トリエチルアミン3.36ml(24ミリモル)を加えた後、その分散液を50℃まで加熱した。
次いで、DMT−MM3.32g(12ミリモル)をメタノール25mLに溶解させ、これを前記分散液に滴下した後、50℃で1時間攪拌し、その後、室温で一晩攪拌した。
次いで、得られた沈殿物をろ過し、メタノールで洗浄後、粗生成物をDMF200mLに分散させ、60℃で1時間攪拌後、室温で2時間放冷した。
次いで、得られた沈殿物を再びろ過し、メタノールで洗浄後、乾燥することで、N−(4−ジメチルアミノフェニルメチルグリシルグリシン)オクタデセンカルボキサミド3.9g(7.4ミリモル、収率74%)の有機ナノ材料からなる実施例5に係る吸着剤を製造した。
このN−(4−ジメチルアミノフェニルメチルグリシルグリシン)オクタデセンカルボキサミドは、図5に示すように、平均外径が40nmのナノチューブ構造を有している。なお、図5は、ナノチューブ構造を有するN−(4−ジメチルアミノフェニルメチルグリシルグリシン)オクタデセンカルボキサミドの走査電子顕微鏡像を示す図である。
(Example 5)
A solution of 3.97 g (10 mmol) of N- (glycylglycine) octadecenecarboxamide as a carboxylic acid compound and 2.68 g (12 mmol) of 4-dimethylaminobenzylamine dihydrochloride as an amine compound is dispersed in 50 mL of methanol, After addition of 3.36 ml (24 mmol) of triethylamine, the dispersion was heated to 50.degree.
Next, 3.32 g (12 mmol) of DMT-MM was dissolved in 25 mL of methanol and added dropwise to the dispersion, followed by stirring at 50 ° C. for 1 hour, and then overnight at room temperature.
Then, the resulting precipitate was filtered and washed with methanol, and then the crude product was dispersed in 200 mL of DMF, stirred at 60 ° C. for 1 hour, and allowed to cool at room temperature for 2 hours.
Next, the obtained precipitate is again filtered, washed with methanol and then dried to give 3.9 g (7.4 mmol, yield 74) of N- (4-dimethylaminophenylmethylglycylglycine) octadecenecarboxamide. The adsorbent according to Example 5 comprising the organic nanomaterial of%) was manufactured.
This N- (4-dimethylaminophenylmethylglycylglycine) octadecenecarboxamide has a nanotube structure having an average outer diameter of 40 nm, as shown in FIG. FIG. 5 is a view showing a scanning electron microscopic image of N- (4-dimethylaminophenylmethylglycylglycine) octadecenecarboxamide having a nanotube structure.

(比較例1)
カルボン酸化合物としてN−(グリシルグリシン)ペンタデカンカルボキサミド5gをメタノール1Lに分散し、60℃で還流しながら溶解させた。このメタノール溶液をロータリーエバポレータにかけ、60℃で加熱しながら蒸発乾固し、N−(グリシルグリシン)ペンタデカンカルボキサミドを自己組織化させて形成される有機ナノ材料からなる比較例1に係る吸着剤を製造した。
このN−(グリシルグリシン)ペンタデカンカルボキサミドは、図6に示すように、平均外径が80nmのナノチューブ構造を有している。なお、図6は、ナノチューブ構造を有するN−(グリシルグリシン)ペンタデカンカルボキサミドの走査電子顕微鏡像を示す図である。
(Comparative example 1)
As a carboxylic acid compound, 5 g of N- (glycylglycine) pentadecanecarboxamide was dispersed in 1 L of methanol and dissolved at reflux at 60 ° C. This methanol solution is rotary evaporated, evaporated to dryness with heating at 60 ° C., and the adsorbent according to Comparative Example 1 comprising an organic nanomaterial formed by self-assembly of N- (glycylglycine) pentadecanecarboxamide. Manufactured.
This N- (glycylglycine) pentadecanecarboxamide has a nanotube structure having an average outer diameter of 80 nm, as shown in FIG. FIG. 6 is a view showing a scanning electron microscopic image of N- (glycylglycine) pentadecanecarboxamide having a nanotube structure.

(吸着試験1)
化学成分としてフェノール0.25mg、プロピオン酸1.25mgと、NMR用の内部標準としてジメチルスルホン10mgとをそれぞれ重水に溶解させ、H−NMRの参照用サンプル5mLを調製した。
(Adsorption test 1)
0.25 mg of phenol and 1.25 mg of propionic acid as chemical components and 10 mg of dimethyl sulfone as an internal standard for NMR were respectively dissolved in heavy water to prepare 5 mL of a reference sample for 1 H-NMR.

実施例1に係る吸着剤25mgを20%重塩酸0.005mLと重水4.595mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.25mg、プロピオン酸1.25mg、ジメチルスルホン10mgを加え、最終的に重水で全量5mLとした。室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノール及びプロピオン酸の濃度を測定した。25 mg of the adsorbent according to Example 1 is dispersed in a mixture of 0.005 mL of 20% hydrochloric acid and 4.595 mL of heavy water, and 0.25 mg of phenol, 1.25 mg of propionic acid, and dimethyl are added thereto as in the reference sample. 10 mg of sulfone was added, and the final volume was adjusted to 5 mL with heavy water. After shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentrations of residual phenol and propionic acid were measured by 1 H-NMR.

実施例2に係る吸着剤25mgを20%重塩酸0.005mLと重水4.595mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.25mg、プロピオン酸1.25mg、ジメチルスルホン10mgを加え、最終的に重水で全量5mLとした。室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノール及びプロピオン酸の濃度を測定した。25 mg of the adsorbent according to Example 2 is dispersed in a mixture of 0.005 mL of 20% hydrochloric acid and 4.595 mL of heavy water, and 0.25 mg of phenol, 1.25 mg of propionic acid, and dimethyl are added thereto as in the reference sample. 10 mg of sulfone was added, and the final volume was adjusted to 5 mL with heavy water. After shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentrations of residual phenol and propionic acid were measured by 1 H-NMR.

実施例3に係る吸着剤25mgを重水4.6mLに分散させ、これに前記参照サンプルと同様に、フェノール0.25mg、プロピオン酸1.25mg、ジメチルスルホン10mgを加え、最終的に重水で全量5mLとした。室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノール及びプロピオン酸の濃度を測定した。25 mg of the adsorbent according to Example 3 is dispersed in 4.6 mL of heavy water, and 0.25 mg of phenol, 1.25 mg of propionic acid and 10 mg of dimethyl sulfone are added thereto similarly to the reference sample, and finally a total of 5 mL is prepared with heavy water. And After shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentrations of residual phenol and propionic acid were measured by 1 H-NMR.

比較例1に係る25mgを30wt%重水酸化ナトリウム水溶液0.01mLと重水4.59mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.25mg、プロピオン酸1.25mg、ジメチルスルホン10mgを加え、最終的に重水で全量5mLとした。次いで、室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノール及びプロピオン酸の濃度を測定した。25 mg according to Comparative Example 1 is dispersed in a mixture of 0.01 mL of 30 wt% aqueous sodium hydroxide solution and 4.59 mL of heavy water, and the same as the reference sample, 0.25 mg of phenol, 1.25 mg of propionic acid, and dimethyl are added thereto. 10 mg of sulfone was added, and the final volume was adjusted to 5 mL with heavy water. Then, after shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentrations of residual phenol and propionic acid were measured by 1 H-NMR.

実施例1〜3及び比較例1に係る各吸着剤を用いた前記H−NMRの測定結果を下記表1に示す。なお、下記表1では、前記参照用サンプルに対する測定結果を併せて示す。The measurement results of the 1 H-NMR using the adsorbents according to Examples 1 to 3 and Comparative Example 1 are shown in Table 1 below. Table 1 below also shows the measurement results for the reference sample.

前掲表1に示すように、実施例1に係る吸着剤では、有機ナノ材料5,000ppm当たり、フェノールを8ppm、プロピオン酸39ppmを吸着除去することができることが確認された。
また、実施例2に係る吸着剤では、有機ナノ材料5,000ppm当たり、フェノールを16ppm、プロピオン酸42ppmを吸着除去することができることが確認された。
また、実施例3に係る吸着剤では、有機ナノ材料5,000ppm当たり、フェノールを12ppm、プロピオン酸48ppmを吸着除去することができることが確認された。
また、実施例1〜3に係る各吸着剤は、比較例1に係る吸着剤よりも優れた化学成分の吸着除去性を示すことが確認された。
As shown in Table 1 above, it was confirmed that the adsorbent according to Example 1 can adsorb and remove 8 ppm of phenol and 39 ppm of propionic acid per 5,000 ppm of the organic nanomaterial.
Moreover, it was confirmed that the adsorbent according to Example 2 can adsorb and remove 16 ppm of phenol and 42 ppm of propionic acid per 5,000 ppm of the organic nanomaterial.
Moreover, it was confirmed that the adsorbent according to Example 3 can adsorb and remove 12 ppm of phenol and 48 ppm of propionic acid per 5,000 ppm of the organic nanomaterial.
Moreover, it was confirmed that each adsorbent which concerns on Examples 1-3 shows the adsorption removal property of the chemical component superior to the adsorbent which concerns on the comparative example 1. As shown in FIG.

(吸着試験2)
化学成分としてフェノール0.05mgと、NMR用の内部標準としてジメチルスルホン0.1mgとをそれぞれ重水に溶解させ、H−NMRの参照用サンプル5mLを調製した。
(Adsorption test 2)
0.05 mg of phenol as a chemical component and 0.1 mg of dimethyl sulfone as an internal standard for NMR were respectively dissolved in heavy water to prepare 5 mL of a reference sample for 1 H-NMR.

実施例4に係る吸着剤50mgを20%重塩酸0.005mLと重水4.595mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.05mg、ジメチルスルホン0.1mgを加え、最終的に重水で全量5mLとした。室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノールの濃度を測定した。50 mg of the adsorbent according to Example 4 is dispersed in a mixture of 0.005 mL of 20% hydrochloric acid and 4.595 mL of heavy water, and 0.05 mg of phenol and 0.1 mg of dimethyl sulfone are added thereto as in the reference sample. Finally, the total volume was adjusted to 5 mL with heavy water. After shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentration of residual phenol was measured by 1 H-NMR.

実施例5に係る吸着剤50mgを20%重塩酸0.005mLと重水4.595mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.05mg、ジメチルスルホン0.1mgを加え、最終的に重水で全量5mLとした。室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノールの濃度を測定した。50 mg of the adsorbent according to Example 5 is dispersed in a mixture of 0.005 mL of 20% hydrochloric acid and 4.595 mL of heavy water, and 0.05 mg of phenol and 0.1 mg of dimethyl sulfone are added thereto as in the reference sample. Finally, the total volume was adjusted to 5 mL with heavy water. After shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentration of residual phenol was measured by 1 H-NMR.

比較例1に係る50mgを30wt%重水酸化ナトリウム水溶液0.01mLと重水4.59mLとの混合液に分散させ、これに前記参照サンプルと同様に、フェノール0.05mg、ジメチルスルホン0.1mgを加え、最終的に重水で全量5mLとした。次いで、室温で1時間震蕩後、0.45μmフィルターで吸着剤を除去し、H−NMRで残留フェノールの濃度を測定した。50 mg according to Comparative Example 1 is dispersed in a mixed solution of 0.01 mL of a 30 wt% aqueous sodium hydroxide solution and 4.59 mL of heavy water, and 0.05 mg of phenol and 0.1 mg of dimethyl sulfone are added thereto as in the reference sample. Finally, the total volume was adjusted to 5 mL with heavy water. Then, after shaking for 1 hour at room temperature, the adsorbent was removed with a 0.45 μm filter, and the concentration of residual phenol was measured by 1 H-NMR.

実施例4〜5及び比較例1に係る各吸着剤を用いた前記H−NMRの測定結果を下記表2に示す。なお、下記表2では、前記参照用サンプルに対する測定結果を併せて示す。The measurement results of the 1 H-NMR using the adsorbents according to Examples 4 to 5 and Comparative Example 1 are shown in Table 2 below. Table 2 below also shows the measurement results for the reference sample.

前掲表2に示すように、実施例4に係る吸着剤では、有機ナノ材料10,000ppm当たり、フェノールを3.3ppm吸着除去することができることが確認された。
また、実施例5に係る吸着剤では、有機ナノ材料10,000ppm当たり、フェノールを5.4ppm吸着除去することができることが確認された。
また、実施例4〜5に係る各吸着剤は、比較例1に係る吸着剤よりも優れた化学成分の吸着除去性を示すことが確認された。
As shown in Table 2 above, it was confirmed that the adsorbent according to Example 4 can adsorb and remove 3.3 ppm of phenol per 10,000 ppm of the organic nanomaterial.
Moreover, it was confirmed that the adsorbent according to Example 5 can adsorb and remove 5.4 ppm of phenol per 10,000 ppm of the organic nanomaterial.
Moreover, it was confirmed that each adsorbent which concerns on Examples 4-5 shows the adsorption removal property of the chemical component superior to the adsorbent which concerns on the comparative example 1. As shown in FIG.

本発明の前記吸着剤及びその製造方法は、排水中の化学成分を除去することが可能であり、石油ガス開発や化学工場等における排水浄化の分野において極めて有用である。   The adsorbent of the present invention and the method for producing the same are capable of removing chemical components in waste water, and are extremely useful in the field of oil gas development and waste water purification in chemical plants and the like.

Claims (9)

下記一般式(1)で表される有機ナノ材料を含むことを特徴とする吸着剤。
ただし、前記一般式(1)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示し、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
An adsorbent comprising an organic nanomaterial represented by the following general formula (1).
However, in said general formula (1), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows an integer of 1-5, and X is It shows a functional group having a primary to tertiary amine or cyclic amine structure.
有機ナノ材料が外径10nm〜200nmのナノチューブ状の構造を有する請求項1に記載の吸着剤。   The adsorbent according to claim 1, wherein the organic nanomaterial has a nanotube-like structure with an outer diameter of 10 nm to 200 nm. RCO−がミリストイル基、パルミトイル基、ステアロイル基及びオレオイル基のいずれかである請求項1から2のいずれかに記載の吸着剤。   The adsorbent according to any one of claims 1 to 2, wherein RCO- is any of myristoyl group, palmitoyl group, stearoyl group and oleoyl group. R’が水素原子である請求項1から3のいずれかに記載の吸着剤。   The adsorbent according to any one of claims 1 to 3, wherein R 'is a hydrogen atom. mが1又は2である請求項1から4のいずれかに記載の吸着剤。   The adsorbent according to any one of claims 1 to 4, wherein m is 1 or 2. −NH−Xが芳香族メチルアミノ基である請求項1から5のいずれかに記載の吸着剤。   The adsorbent according to any one of claims 1 to 5, wherein -NH-X is an aromatic methylamino group. 請求項1から6のいずれかに記載の吸着剤を被処理水に導入することを特徴とする吸着剤の使用方法。   A method of using an adsorbent comprising introducing the adsorbent according to any one of claims 1 to 6 into water to be treated. 被処理水がエネルギー資源産出に付随して産出される随伴水である請求項7に記載の吸着剤の使用方法。   The method of using the adsorbent according to claim 7, wherein the water to be treated is accompanying water produced concomitantly with energy resource production. 下記一般式(2)で表されるカルボン酸化合物と、下記一般式(3)で表されるアミン化合物とを脱水縮合させて、これらがアミド結合された有機ナノ材料前駆体を調製する有機ナノ材料前駆体調製工程と、
前記有機ナノ材料前駆体を溶媒に溶解させて自己組織化させた有機ナノ材料を調製する有機ナノ材料調製工程と、
を含むことを特徴とする吸着剤の製造方法。
ただし、前記一般式(2)中、Rは、炭素数6〜24の炭化水素基を示し、R’は、アミノ酸側鎖を示し、mは、1〜5の整数を示す。また、前記一般式(3)中、Xは、第1級〜第3級アミン又は環式アミンの構造を有する官能基を示す。
Organic nano material precursor is prepared by dehydration condensation of a carboxylic acid compound represented by the following general formula (2) and an amine compound represented by the following general formula (3) to prepare an amide-bonded organic nanomaterial precursor Material precursor preparation process,
An organic nanomaterial preparation step of preparing an organic nanomaterial in which the organic nanomaterial precursor is dissolved in a solvent to form a self-assembled organic nanomaterial;
A method of producing an adsorbent, comprising:
However, in the said General formula (2), R shows a C6-C24 hydrocarbon group, R 'shows an amino acid side chain, m shows the integer of 1-5. Further, in the general formula (3), X represents a functional group having a primary to tertiary amine or cyclic amine structure.
JP2016560317A 2014-11-21 2015-11-20 Adsorbent and method of using and producing the same Active JP6528101B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014237159 2014-11-21
JP2014237159 2014-11-21
PCT/JP2015/082800 WO2016080546A1 (en) 2014-11-21 2015-11-20 Absorbent, method for using same, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2016080546A1 JPWO2016080546A1 (en) 2017-09-07
JP6528101B2 true JP6528101B2 (en) 2019-06-12

Family

ID=56014076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016560317A Active JP6528101B2 (en) 2014-11-21 2015-11-20 Adsorbent and method of using and producing the same

Country Status (4)

Country Link
JP (1) JP6528101B2 (en)
CA (1) CA2968495C (en)
MX (1) MX2017006509A (en)
WO (1) WO2016080546A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106069246A (en) * 2016-06-21 2016-11-09 天津师范大学 The method using carbon nanomaterial regulation and control lawn composting substrate Cu form and distribution
CN106105457A (en) * 2016-06-21 2016-11-16 天津师范大学 Carbon nanomaterial improves the method for lawn composting substrate Trichoderma spp. quantity
CN106105454A (en) * 2016-06-21 2016-11-16 天津师范大学 The method using carbon nanomaterial regulation and control lawn composting substrate Cd form and distribution
CN106105455A (en) * 2016-06-21 2016-11-16 天津师范大学 The method using carbon nanomaterial regulation and control lawn composting substrate Cr form and distribution
CN106105453A (en) * 2016-06-21 2016-11-16 天津师范大学 The carbon nanomaterial regulation and control method to compost extraction heavy metal competitive Adsorption
CN106069666A (en) * 2016-06-21 2016-11-09 天津师范大学 The method using carbon nanomaterial regulation and control lawn composting substrate Zn form and distribution
CN106105456A (en) * 2016-06-21 2016-11-16 天津师范大学 Use carbon nanomaterial regulation and control lawn composting substrate actinomycetes identification and analysis method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207359B2 (en) * 2008-03-28 2013-06-12 独立行政法人産業技術総合研究所 Mass production method of metal coordination type organic nanotube
JP5510808B2 (en) * 2010-03-10 2014-06-04 独立行政法人産業技術総合研究所 Nucleic acid introduction agent comprising organic nanotubes

Also Published As

Publication number Publication date
MX2017006509A (en) 2018-03-23
CA2968495C (en) 2022-10-18
WO2016080546A1 (en) 2016-05-26
JPWO2016080546A1 (en) 2017-09-07
CA2968495A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6528101B2 (en) Adsorbent and method of using and producing the same
Zhao et al. Perfluorooctane sulfonate removal by nanofiltration membrane—the effect and interaction of magnesium ion/humic acid
Shafaati et al. The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples
Ahmadijokani et al. Magnetic nitrogen-rich UiO-66 metal–organic framework: an efficient adsorbent for water treatment
CN103920472A (en) Preparation method of magnetic chitosan composite microsphere adsorbent
Hang et al. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by P ickering emulsion polymerization
Ma et al. Preparation and characterization of chitosan/kaolin/Fe3O4 magnetic microspheres and their application for the removal of ciprofloxacin
Jin et al. Synthesis of nanocrystalline cellulose/hydroxyapatite nanocomposites for the efficient removal of chlortetracycline hydrochloride in aqueous medium
Nandi et al. A dipeptide‐based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water
CN109297943B (en) Fluorine ion detection method and removal method
Song et al. Fluorescent hydrogels with tunable nanostructure and viscoelasticity for formaldehyde removal
El-Said et al. Design, synthesis, anticorrosion efficiency, and applications of novel Gemini surfactants for preparation of small-sized hollow spheres mesoporous silica nanoparticles
Zhang et al. Fluorescent and magnetic dual-responsive coreshell imprinting microspheres strategy for recognition and detection of phycocyanin
JP2004345895A (en) Mesoporous silica and method for manufacturing the same
CN111871400A (en) Preparation method and application of guanidine salt ionic liquid modified magnetic solid phase extraction adsorbent
US20240246824A1 (en) Solid nanomaterial adsorbent
Li et al. Polyethyleneimine-functionalized Fe 3 O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle
Li et al. Amino acid modified molecular sieves with different pore size for chiral separation
KR20150000757A (en) Microalgae bead, and preparing method of the same
Bayrakcı et al. Electrospun nanofibrous polyacrylonitrile/calixarene mats: an excellent adsorbent for the removal of chromate ıons from aqueous solutions
WO2016193990A1 (en) Molecular gelators for containing oil spillage
Bayrakcı et al. Synthesis and application of novel magnetite nanoparticle based azacrown ether for protein recognition
JP6528100B2 (en) Nanocomposite, method for producing the same, adsorbent and method for using the same
Zhao et al. Nanoporous Metal–Organic Framework Adsorbent Constructed via Ligand Tailoring for Rare-Earth Metal Ion Recovery
Koubaissy et al. Industrial water treatment, by adsorption, using organized mesoporous materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6528101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250