JP6520701B2 - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP6520701B2
JP6520701B2 JP2015254332A JP2015254332A JP6520701B2 JP 6520701 B2 JP6520701 B2 JP 6520701B2 JP 2015254332 A JP2015254332 A JP 2015254332A JP 2015254332 A JP2015254332 A JP 2015254332A JP 6520701 B2 JP6520701 B2 JP 6520701B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
exhaust gas
density
ratio
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015254332A
Other languages
Japanese (ja)
Other versions
JP2017113727A (en
Inventor
鈴木 宏昌
宏昌 鈴木
満克 岡田
満克 岡田
聖次 仲東
聖次 仲東
伊藤 健一
健一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015254332A priority Critical patent/JP6520701B2/en
Publication of JP2017113727A publication Critical patent/JP2017113727A/en
Application granted granted Critical
Publication of JP6520701B2 publication Critical patent/JP6520701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車等の内燃機関の排ガスを浄化するための触媒の担体として用いられるハニカム構造体に関する。   The present invention relates to a honeycomb structure used as a carrier of a catalyst for purifying exhaust gas of an internal combustion engine such as a car.

従来から自動車等の内燃機関の排ガスを浄化するための触媒の担体として、例えば、格子状に設けられた隔壁とその隔壁に囲まれて形成された複数のセルとを有するハニカム構造体が知られている(下記特許文献1から3を参照)。   Conventionally, as a carrier of a catalyst for purifying exhaust gas of an internal combustion engine such as a car, a honeycomb structure having, for example, partition walls provided in a grid shape and a plurality of cells formed by being surrounded by the partition walls is known. (See Patent Documents 1 to 3 below).

特許文献1に記載されたハニカム構造体は、格子状に設けられた隔壁と該隔壁に囲まれて形成された複数のセルとを有するコージェライト製のハニカム構造体である。このハニカム構造体は、軸方向に直交する断面において、中心部から外周部に向かって径方向にセル密度が連続的又は段階的に変化するよう構成されている。   The honeycomb structure described in Patent Document 1 is a cordierite honeycomb structure having partition walls provided in a lattice shape and a plurality of cells formed so as to be surrounded by the partition walls. The honeycomb structure is configured such that the cell density changes continuously or stepwise in the radial direction from the central portion to the outer peripheral portion in a cross section orthogonal to the axial direction.

特許文献1のハニカム構造体は、ハニカム構造体の中心に近い内側の領域の平均セル密度が、中心から遠い外側の領域の平均セル密度よりも大きくなっている。これにより、中心に近い内側における排ガスの流速が、中心から遠い外側における排ガスの流速よりも大きくなる通常のエンジンにおいて、排ガスの流速分布の均一化、排ガス浄化性能の向上、及び、圧力損失の低減に寄与する。   In the honeycomb structure of Patent Document 1, the average cell density of the inner region near the center of the honeycomb structure is larger than the average cell density of the outer region far from the center. As a result, in a conventional engine in which the flow velocity of the exhaust gas at the inner side near the center is larger than the flow velocity of the exhaust gas at the outer side far from the center, equalization of the flow velocity distribution of the exhaust gas, improvement of exhaust gas purification performance, and reduction of pressure loss Contribute to

特許文献2に記載されたハニカム構造体は、軸方向に垂直な断面において、少なくとも一部の隔壁が、外周壁の一点から外周壁の別の点まで繋がる屈折点を持たない1つの線または破線を形成している。この隔壁は、断面中心から外側に向かって凸状に湾曲した形状を示すか、又は、外側から断面中心に向かって凸状に湾曲した形状を示している。特許文献3に記載されたハニカム構造体は、側面外周より1〜10mmのセルの孔隙のピッチをそれより内部のセル孔隙のピッチよりも80%以下に小さくしている。   In the honeycomb structure described in Patent Document 2, in a cross section perpendicular to the axial direction, at least a part of partition walls is a single line or a broken line having no inflection point connecting from one point of the outer peripheral wall to another point of the outer peripheral wall Form. The partition wall has a convexly curved shape from the center of the cross section to the outside, or has a convexly curved shape from the outside to the center of the cross section. The honeycomb structure described in Patent Document 3 makes the pore pitch of cells of 1 to 10 mm from the outer periphery smaller than that by 80% or less than the pitch of the cell pores inside.

特許第5771541号公報Patent No. 5771541 gazette 特許第4511396号公報Patent No. 4511396 gazette 特開昭55−155742号公報JP-A-55-155742

通常のエンジンでは、中心に近い内側における排ガスの流速が、中心から遠い外側における排ガスの流速よりも大きくなる。しかし、ターボエンジンでは、排ガスが旋回流となり、中心から遠い外側における排ガスの流速が、中心に近い内側における排ガスの流速よりも大きくなる。そのため、上記特許文献1のハニカム構造体をターボエンジンに使用した場合には、上述の効果が期待できない。   In a conventional engine, the flow velocity of the exhaust gas at the inner side near the center is higher than the flow velocity of the exhaust gas at the outer side far from the center. However, in the turbo engine, the exhaust gas is swirling, and the flow velocity of the exhaust gas at the outer side far from the center is higher than the flow velocity of the exhaust gas at the inner side near the center. Therefore, when the honeycomb structure of Patent Document 1 is used for a turbo engine, the above-described effects can not be expected.

また、特許文献2に記載されたハニカム構造体は、軸方向に垂直な断面において、中心部のセル密度と外周部とのセル密度との比率によっては、排ガスの流速分布が不均一になり、排ガス浄化性能が低下する虞がある。また、特許文献3に記載されたハニカム構造体は、セルの孔隙のピッチが小さくされた側面外周より1〜10mmの部分は、隔壁の数を増し、これにより外周部分の耐圧強度を高めることを目的として設けられている。この部分は、フランジに当接され、ハニカム触媒の保持のみに使用されるため、排ガスの流速分布の均一化には寄与しない。   In the honeycomb structure described in Patent Document 2, the flow velocity distribution of the exhaust gas becomes uneven depending on the ratio of the cell density of the central portion to the cell density of the outer peripheral portion in the cross section perpendicular to the axial direction. The exhaust gas purification performance may be reduced. In the honeycomb structure described in Patent Document 3, the number of the partition walls is increased by 1 to 10 mm from the side outer periphery where the pore pitch of the cells is reduced, thereby enhancing the pressure resistance of the outer peripheral portion. It is provided as a purpose. This portion abuts on the flange and is used only for holding the honeycomb catalyst, so it does not contribute to the equalization of the flow velocity distribution of the exhaust gas.

本発明は、前記課題に鑑みてなされたものであり、ターボエンジンの排ガス浄化装置に使用されたときに、排ガスの流速分布を均一化させ、排ガス浄化性能を向上させることができるハニカム構造体を提供することを目的とする。   The present invention has been made in view of the above problems, and when used in an exhaust gas purification apparatus for a turbo engine, a honeycomb structure capable of making the flow velocity distribution of the exhaust gas uniform and improving the exhaust gas purification performance. Intended to be provided.

前記目的を達成すべく、本発明のハニカム構造体は、ターボエンジンの排ガス浄化装置に用いられるハニカム構造体であって、格子状に設けられた隔壁と、該隔壁に区画されて軸方向に伸びる複数のセルとを備え、前記軸方向に直交する断面において、外周部の前記セルの密度Mbと中央部の前記セルの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たすことを特徴とする。   In order to achieve the above object, the honeycomb structure of the present invention is a honeycomb structure used in an exhaust gas purification apparatus for a turbo engine, and is partitioned into partition walls provided in a grid shape and the partition walls and extends in the axial direction In the cross section orthogonal to the axial direction, the ratio Mb / Ma of the density Mb of the cells at the outer peripheral portion to the density Ma of the cells at the central portion in the cross section orthogonal to the axial direction is inequality: 1 <(Mb / Ma) It is characterized by satisfying <1.8.

過給中のターボエンジンの排ガスは、旋回流となるため、触媒コンバータとしてのハニカム構造体の中央部よりも外周部の方に優先的に流れやすい。そのため、ハニカム構造体の外周部のセルの密度Mbを中央部のセルの密度Maよりも高くすることで、軸方向に直交する断面において、ハニカム構造体が全体的に有効利用される。   Since the turbo exhaust gas during supercharging has a swirling flow, it tends to flow preferentially to the outer peripheral portion than to the central portion of the honeycomb structure as a catalytic converter. Therefore, by setting the density Mb of the cells in the outer peripheral portion of the honeycomb structure to be higher than the density Ma of the cells in the central portion, the honeycomb structure is effectively used as a whole in the cross section orthogonal to the axial direction.

そのために、本発明のハニカム構造体は、軸方向に直交する断面において、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たしている。すなわち、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Maが、1以下の場合又は1.8以上の場合には、ハニカム構造体を全体的に有効利用することが困難になる。   Therefore, in the honeycomb structure of the present invention, in the cross section perpendicular to the axial direction, the ratio Mb / Ma of the density Mb of the cells in the outer peripheral portion to the density Ma of the cells in the central portion is inequalities: 1 <(Mb / Ma ) <1.8 is satisfied. That is, when the ratio Mb / Ma of the cell density Mb of the outer peripheral portion to the cell density Ma of the central portion is 1 or less or 1.8 or more, the honeycomb structure is used effectively as a whole. Will be difficult.

なお、本発明のハニカム構造体において、軸方向に直交する断面における前記セルの密度は、中央部から外周部へ向かって径方向に連続的に変化してもよいし、中央部から外周部へ向かって径方向に段階的に変化してもよい。また、本発明のハニカム構造体は、コーディライト製であることが好ましい。また、軸方向に直交する断面における前記セルの断面形状は、四角形又は六角形にすることができる。   In the honeycomb structure of the present invention, the density of the cells in the cross section orthogonal to the axial direction may be continuously changed in the radial direction from the central portion to the outer peripheral portion, or from the central portion to the outer peripheral portion It may be stepwise changed in the radial direction. The honeycomb structure of the present invention is preferably made of cordierite. In addition, the cross-sectional shape of the cell in a cross section orthogonal to the axial direction can be square or hexagonal.

ここで、本発明のハニカム構造体は、軸方向に直交する断面の面積をS、中央部の面積をSaとした場合に、外周部の面積Sb=S−Saと中央部の面積Saとの比Sb/Saは、0.65より大きいこと、すなわち不等式:Sb/Sa>0.65を満たすことが好ましい。また、比Sb/Saは、0.7以上であること、すなわち不等式:Sb/Sa≧0.7を満たすことがより好ましい。   Here, in the honeycomb structure of the present invention, when the area of the cross section orthogonal to the axial direction is S and the area of the central part is Sa, the area Sb of the outer peripheral part Sb = S−Sa and the area Sa of the central part Preferably, the ratio Sb / Sa is greater than 0.65, ie the inequality In: Sb / Sa> 0.65. Further, it is more preferable that the ratio Sb / Sa be 0.7 or more, that is, the inequality Sb / Sa ≧ 0.7 be satisfied.

また、本発明のハニカム構造体は、ターボ車両の過給器の下流にFr触媒とRr触媒が搭載される場合には、Rr触媒よりも上流側のFr触媒の位置に搭載されることが好ましい。この場合、Rr触媒の位置に搭載されるハニカム構造体は、軸方向に直交する断面において、外周部のセルの密度Mbよりも中央部のセルの密度Maが高いこと、すなわち比Mb/Maが、不等式:(Mb/Ma)<1を満たしていることが好ましい。   Further, when the Fr catalyst and the Rr catalyst are mounted downstream of the turbocharger of the turbo vehicle, the honeycomb structure of the present invention is preferably mounted at the position of the Fr catalyst upstream of the Rr catalyst. . In this case, in the honeycomb structure mounted at the position of the Rr catalyst, in the cross section orthogonal to the axial direction, the cell density Ma in the central portion is higher than the cell density Mb in the outer peripheral portion, that is, the ratio Mb / Ma is It is preferable that the inequality: (Mb / Ma) <1 is satisfied.

以上の説明から理解できるように、本発明のハニカム構造体によれば、軸方向に直交する断面において、外周部のセルの密度Mbが中央部のセルの密度Maよりも高くするだけでなく、さらに排ガスの流れに合わせてセルの密度の関係を最適化している。したがって、ターボエンジンの排ガス浄化装置に使用されたときに、排ガスの流速分布を均一化させ、排ガス浄化性能を向上させることができるハニカム構造体を提供することができる。   As understood from the above description, according to the honeycomb structure of the present invention, in the cross section orthogonal to the axial direction, not only the density Mb of the cells in the outer peripheral portion is made higher than the density Ma of the cells in the central portion Furthermore, the cell density relationship is optimized in accordance with the exhaust gas flow. Therefore, it is possible to provide a honeycomb structure capable of making the flow velocity distribution of exhaust gas uniform and improving the exhaust gas purification performance when it is used in an exhaust gas purification apparatus for a turbo engine.

ターボエンジンの排ガス浄化装置のシステム概要図。The system outline figure of exhaust gas purification equipment of a turbo engine. 図1AのB−B線に沿う断面における排ガスの流速分布を示す図。The figure which shows the flow-rate distribution of waste gas in the cross section which follows the BB line of FIG. 1A. 図1Aに示す排ガス浄化装置の入口における排ガスの流れを示す模式図。The schematic diagram which shows the flow of the waste gas in the inlet of the waste gas purification apparatus shown to FIG. 1A. 過給器と排ガス浄化装置のFr触媒及びRr触媒の位置関係を示す図。The figure which shows the positional relationship of a Fr catalyst of a supercharger and exhaust gas purification apparatus, and Rr catalyst. Fr触媒の横断面図及び縦断面図。The cross-sectional view and longitudinal cross-sectional view of Fr catalyst. Rr触媒の横断面図及び縦断面図。The cross-sectional view and longitudinal cross-sectional view of Rr catalyst. 中心からの距離と流速分布比との関係を示すグラフ(実施例1)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 1). 中心からの距離と流速分布比との関係を示すグラフ(実施例2)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 2). 中心からの距離と流速分布比との関係を示すグラフ(実施例3)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 3). 中心からの距離と流速分布比との関係を示すグラフ(実施例4)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 4). 中心からの距離と流速分布比との関係を示すグラフ(実施例5)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 5). 中心からの距離と流速分布比との関係を示すグラフ(比較例1)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 1). 中心からの距離と流速分布比との関係を示すグラフ(比較例2)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 2). 中心からの距離と流速分布比との関係を示すグラフ(比較例3)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 3). 中心からの距離と流速分布比との関係を示すグラフ(比較例4)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (comparative example 4). 密度の比Mb/Maとエミッション比との関係を示すグラフ。The graph which shows the relationship between density ratio Mb / Ma and emission ratio. 面積の比Sb/Saとエミッション比との関係を示すグラフ。The graph which shows the relationship between area ratio Sb / Sa and emission ratio. 中心からの距離と流速分布比との関係を示すグラフ(実施例1)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 1). 中心からの距離と流速分布比との関係を示すグラフ(実施例2)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 2). 中心からの距離と流速分布比との関係を示すグラフ(実施例3)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 3). 中心からの距離と流速分布比との関係を示すグラフ(実施例4)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 4). 中心からの距離と流速分布比との関係を示すグラフ(実施例5)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (example 5). 中心からの距離と流速分布比との関係を示すグラフ(比較例1)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 1). 中心からの距離と流速分布比との関係を示すグラフ(比較例2)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 2). 中心からの距離と流速分布比との関係を示すグラフ(比較例3)。The graph which shows the relationship between the distance from the center, and flow velocity distribution ratio (comparative example 3). 中心からの距離と流速分布比との関係を示すグラフ(比較例4)。The graph which shows the relationship between the distance from the center, and the flow velocity distribution ratio (comparative example 4). 新気ガス量Gaとエミッション比との関係を示すグラフ。The graph which shows the relationship between fresh air gas amount Ga and emission ratio. 新気ガス量Gaと流速分布比との関係を示すグラフ。The graph which shows the relationship between fresh air gas amount Ga and flow velocity distribution ratio.

以下、図面を参照して本発明のハニカム構造体の実施形態を説明する。   Hereinafter, an embodiment of a honeycomb structure of the present invention will be described with reference to the drawings.

図1Aは、ターボエンジンTEの排ガス浄化装置CCの周辺を示すシステム概要図である。図1Bは、図1AのB−B線に沿う断面における排ガスの流速分布を示す図である。図1Cは、図1Aの3Dモデルにおける排ガス浄化装置CCの入口における排ガスの流れを示す模式図である。   FIG. 1A is a system schematic view showing the periphery of an exhaust gas purification device CC of a turbo engine TE. FIG. 1B is a view showing the flow velocity distribution of the exhaust gas in a cross section taken along the line B-B of FIG. 1A. FIG. 1C is a schematic view showing the flow of the exhaust gas at the inlet of the exhaust gas purification device CC in the 3D model of FIG. 1A.

図1Aに示すように、排ガス浄化装置CCは、ターボエンジンTEの排ガス流路EPに設けられている。ターボエンジンTEでは、図1Cに示すように、排ガスが旋回流となる。そのため、図1Bに示すように、中心から遠い外側における排ガスの流速が、中心に近い内側における排ガスの流速よりも大きくなる。   As shown in FIG. 1A, the exhaust gas purification device CC is provided in the exhaust gas flow path EP of the turbo engine TE. In the turbo engine TE, as shown in FIG. 1C, the exhaust gas becomes a swirling flow. Therefore, as shown in FIG. 1B, the flow velocity of the exhaust gas at the outer side far from the center becomes larger than the flow velocity of the exhaust gas at the inner side near the center.

図2Aは、ターボエンジンTEの過給器SCと、排ガス浄化装置CCのFr触媒FC及びRr触媒RCとの位置関係を示す図である。図2Bにおいて、(a)はFr触媒FCの横断面図であり、(b)はFr触媒FCの縦断面図である。図2Cにおいて、(a)はRr触媒RCの横断面図であり、(b)はRr触媒RCの縦断面図である。   FIG. 2A is a view showing the positional relationship between the turbocharger SC of the turbo engine TE and the Fr catalyst FC and Rr catalyst RC of the exhaust gas purification device CC. In FIG. 2B, (a) is a transverse sectional view of the Fr catalyst FC, and (b) is a longitudinal sectional view of the Fr catalyst FC. In FIG. 2C, (a) is a transverse sectional view of the Rr catalyst RC, and (b) is a longitudinal sectional view of the Rr catalyst RC.

ターボエンジンTEの排ガス浄化装置CCは、図2Aに示すように、例えば、過給器SCの下流側に、Fr触媒FC及びRr触媒RCを備えている。本発明の実施形態に係るハニカム構造体HS1は、例えば、コーディライト製であり、ターボエンジンTEの排ガス浄化装置CCのFr触媒FCに用いられている。   The exhaust gas purification apparatus CC of the turbo engine TE includes, for example, an Fr catalyst FC and an Rr catalyst RC downstream of the turbocharger SC, as shown in FIG. 2A. The honeycomb structure HS1 according to the embodiment of the present invention is, for example, made of cordierite, and is used for the Fr catalyst FC of the exhaust gas purification device CC of the turbo engine TE.

本実施形態のハニカム構造体HS1は、図2Bに示すように、格子状に設けられた隔壁Wと、隔壁Wに区画されて軸A方向に伸びる複数のセルCとを備えている。ハニカム構造体HS1は、図2Bの(a)に示すように、軸A方向に直交する断面において、外周部PPのセルCの密度Mbと中央部CPのセルCの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たすことを特徴としている。   As shown in FIG. 2B, the honeycomb structure HS1 of the present embodiment is provided with partition walls W provided in a lattice shape, and a plurality of cells C partitioned in the partition walls W and extending in the axis A direction. The honeycomb structure HS1 has a ratio Mb / of the density Mb of the cells C of the outer peripheral portion PP to the density Ma of the cells C of the central portion CP in a cross section orthogonal to the axis A direction, as shown in FIG. It is characterized in that Ma satisfies inequality: 1 <(Mb / Ma) <1.8.

本実施形態のハニカム構造体HS1は、軸A方向に直交する断面におけるセルCの密度が、中央部CPと外周部PPとの2段階に変化している。しかし、ハニカム構造体HS1において、軸A方向に直交する断面におけるセルCの密度は、中央部CPから外周部PPへ向かって径方向に連続的に変化してもよい。また、ハニカム構造体HS1において、軸A方向に直交する断面におけるセルCの密度は、中央部CPから外周部PPへ向かって径方向に3段階以上に段階的に変化してもよい。また、ハニカム構造体HS1において、軸A方向に直交する断面におけるセルCの断面形状は、特に限定されず、例えば、四角形でもよいし、六角形でもよい。   In the honeycomb structure HS1 of the present embodiment, the density of the cells C in the cross section orthogonal to the axis A direction is changed in two steps of the central portion CP and the outer peripheral portion PP. However, in the honeycomb structure HS1, the density of the cells C in a cross section orthogonal to the axis A direction may continuously change in the radial direction from the central portion CP to the outer peripheral portion PP. Further, in the honeycomb structure HS1, the density of the cells C in the cross section orthogonal to the axis A direction may change stepwise in three or more stages in the radial direction from the central portion CP to the outer peripheral portion PP. Further, in the honeycomb structure HS1, the cross-sectional shape of the cell C in the cross section orthogonal to the axis A direction is not particularly limited, and may be, for example, a quadrangle or a hexagon.

ここで、本実施形態のハニカム構造体HS1は、軸A方向に直交する断面の面積をS、中央部CPの面積をSaとした場合に、外周部PPの面積Sb=S−Saと、中央部CPの面積Saとの比Sb/Saは、0.65以上であること、すなわち不等式:Sb/Sa≧0.65を満たすことが好ましい。   Here, when the area of the cross section orthogonal to the direction of the axis A is S and the area of the central portion CP is Sa, the honeycomb structure HS1 of the present embodiment has the area Sb of the outer peripheral portion Sb = S−Sa, The ratio Sb / Sa of the portion CP to the area Sa is preferably 0.65 or more, that is, the inequality In: Sb / Sa ≧ 0.65 is satisfied.

Fr触媒FCとして用いられる本実施形態のハニカム構造体HS1の下流側のRr触媒RCとして用いられるハニカム構造体HS2は、図2Cに示すように、軸A方向に直交する断面において、外周部PPのセルCの密度Mbよりも中央部CPのセルCの密度Maが高いこと、すなわち比Mb/Maが、不等式:(Mb/Ma)<1を満たしていることが好ましい。   The honeycomb structure HS2 used as the Rr catalyst RC on the downstream side of the honeycomb structure HS1 of the present embodiment used as the Fr catalyst FC is, as shown in FIG. It is preferable that the density Ma of the cell C in the central portion CP be higher than the density Mb of the cell C, that is, the ratio Mb / Ma satisfy the inequality: (Mb / Ma) <1.

以下、本実施形態のハニカム構造体HS1の作用を説明する。   Hereinafter, the operation of the honeycomb structure HS1 of the present embodiment will be described.

前述のように、過給中のターボエンジンTEの排ガスは、旋回流となるため、触媒コンバータとしてのハニカム構造体HS1の中央部CPよりも外周部PPの方に優先的に流れやすい。そのため、ハニカム構造体HS1の外周部PPのセルCの密度Mbを中央部CPのセルCの密度Maよりも高くすることで、軸A方向に直交する断面において、ハニカム構造体HS1が全体的に有効利用される。   As described above, since the exhaust gas of the turbo engine TE being charged becomes a swirling flow, it tends to flow preferentially toward the outer peripheral portion PP than the central portion CP of the honeycomb structure HS1 as a catalytic converter. Therefore, by setting the density Mb of the cells C of the outer peripheral portion PP of the honeycomb structure HS1 to be higher than the density Ma of the cells C of the central portion CP, the honeycomb structure HS1 as a whole is cross section perpendicular to the axis A direction. It is used effectively.

ここで、本実施形態のハニカム構造体HS1は、軸A方向に直交する断面において、外周部PPのセルCの密度Mbと中央部CPのセルCの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たしている。これにより、排ガスの流れに合わせてセルCの密度の関係を最適化することができ、密度の比Mb/Maが、1以下の場合又は1.8以上である場合と比較して、排ガスの流速分布を均一化させ、排ガス浄化性能を向上させることができる。   Here, in the honeycomb structure HS1 of the present embodiment, in the cross section orthogonal to the axis A direction, the ratio Mb / Ma of the density Mb of the cells C in the outer peripheral portion PP to the density Ma of the cells C in the central portion CP is an inequality It satisfies: 1 <(Mb / Ma) <1.8. Thereby, the relationship of the density of the cell C can be optimized according to the flow of the exhaust gas, and compared with the case where the density ratio Mb / Ma is 1 or less or 1.8 or more, The flow velocity distribution can be made uniform and the exhaust gas purification performance can be improved.

また、本実施形態のハニカム構造体HS1は、軸A方向に直交する断面の面積をS、中央部CPの面積をSaとした場合に、外周部PPの面積Sb=S−Saと中央部CPの面積Saとの比Sb/Saは、不等式:Sb/Sa>0.65を満たしている。これにより、排ガスの流速分布の均一化と、排ガス浄化性能の向上をより確実に達成することが可能になる。   In the honeycomb structure HS1 of the present embodiment, when the area of the cross section orthogonal to the direction of the axis A is S and the area of the central portion CP is Sa, the area Sb of the outer peripheral portion PP = S−Sa and the central portion CP The ratio Sb / Sa to the area Sa satisfies the inequality: Sb / Sa> 0.65. As a result, it becomes possible to achieve the equalization of the flow velocity distribution of the exhaust gas and the improvement of the exhaust gas purification performance more reliably.

また、本実施形態のハニカム構造体HS1は、Fr触媒FCとして用いられ、その下流側にRr触媒RCとして用いられるハニカム構造体HS2が配置されている。このRr触媒RCとしてのハニカム構造体HS2は、軸A方向に直交する断面において、外周部PPのセルCの密度Mbよりも中央部CPのセルCの密度Maが高いこと、すなわち比Mb/Maが、不等式:(Mb/Ma)<1を満たしている。これにより、ターボエンジンTEの排ガス浄化装置CCの全体の排ガスの流速分布を均一化させ、排ガス浄化性能を向上させることができる。   Further, the honeycomb structure HS1 of the present embodiment is used as the Fr catalyst FC, and the honeycomb structure HS2 used as the Rr catalyst RC is disposed downstream thereof. In the honeycomb structure HS2 as the Rr catalyst RC, the density Ma of the cells C in the central portion CP is higher than the density Mb of the cells C in the outer peripheral portion PP in the cross section orthogonal to the axis A direction, that is, the ratio Mb / Ma However, the inequality: (Mb / Ma) <1 is satisfied. Thereby, the flow velocity distribution of the whole exhaust gas of exhaust gas purification apparatus CC of turbo engine TE can be equalized, and exhaust gas purification performance can be improved.

以上説明したように、本実施形態のハニカム構造体HS1によれば、ターボエンジンTEの排ガス浄化装置CCに使用されたときに、排ガスの流速分布を均一化させ、排ガス浄化性能を向上させることができる。   As described above, according to the honeycomb structure HS1 of the present embodiment, when used in the exhaust gas purification device CC of the turbo engine TE, the flow velocity distribution of the exhaust gas is made uniform to improve the exhaust gas purification performance. it can.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   As mentioned above, although the embodiment of the present invention has been described in detail using the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within the scope of the present invention. Also, they are included in the present invention.

以下、本発明のハニカム構造体の実施例と比較例について説明する。   Hereinafter, examples of the honeycomb structure of the present invention and comparative examples will be described.

(実施例1)
まず、原料粉末としてカオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク、及び、カーボン粒子を、最終的に化学組成比が重量比で以下の組成となるように調製し、所定量の水及びバインダを添加して混練することで、セラミックス原料を得た。原料粉末の化学組成比は、最終的に重量比で、SiO:45%以上かつ55%以下、Al:33%以上かつ42%以下、MgO:12%以上かつ18%以下のコージェライトの主成分となるように調製した。
Example 1
First, kaolin, fused silica, aluminum hydroxide, alumina, talc, and carbon particles are prepared as raw material powder so that the chemical composition ratio finally becomes the following composition by weight ratio, and a predetermined amount of water and a binder are prepared. Were added and kneaded to obtain a ceramic raw material. Finally, the chemical composition ratio of the raw material powder is, by weight ratio, SiO 2 : 45% or more and 55% or less, Al 2 O 3 : 33% or more and 42% or less, MgO: 12% or more and 18% or less It was prepared to be the main component of light.

次に、四角形のセル形状に対応するスリット溝を有する押出成形用金型を用い、セラミックス原料を押出成形し、ハニカム成形体を成形した。次に、ハニカム成形体をマイクロ波により乾燥させ、105mmの長さに切断し、1390℃以上かつ1430℃以下の最高温度で焼成して、ハニカム構造体の基材を得た。   Next, using an extrusion molding die having slit grooves corresponding to square cell shapes, the ceramic raw material was extrusion molded to form a honeycomb formed body. Next, the honeycomb formed body was dried by a microwave, cut into a length of 105 mm, and fired at a maximum temperature of 1390 ° C. or more and 1430 ° C. or less to obtain a base material of a honeycomb structure.

次に、貴金属Pt、Rh、Pdの少なくとも一種を含有し、γアルミナ、さらにセリア等の酸素吸蔵材を含有する、三元触媒のスラリーを基材に流し込み、ブロアーで不要分を吹き払うことで、基材表面にスラリーをコーティングした。次に、コーティングされた基材を120℃に保たれた乾燥機で2時間に亘って乾燥させて水分を飛ばした後、電気炉によって500℃で2時間の焼成を加え、実施例1のハニカム構造体を得た。   Next, a slurry of a three-way catalyst containing at least one of noble metals Pt, Rh, and Pd and containing an oxygen storage material such as γ alumina and ceria is poured into the substrate and the unnecessary portion is blown away with a blower. The slurry was coated on the substrate surface. Next, the coated substrate is dried by a dryer kept at 120 ° C. for 2 hours to remove moisture, and then fired by an electric furnace at 500 ° C. for 2 hours, and the honeycomb of Example 1 is added. I got a structure.

得られた実施例1のハニカム構造体は、軸方向に直交する断面において、四角形のセル形状を有し、中央部のセルの密度Maが571[cpsi]、外周部のセルの密度Mbが629[cpsi]、中央部の直径が73mm、断面の外径が103mmであった。また、実施例1のハニカム構造体は、軸方向の長さが105mmであり、素材はコージェライト製である。   The obtained honeycomb structure of Example 1 has a rectangular cell shape in a cross section orthogonal to the axial direction, and the cell density Ma at the central portion is 571 [cpsi] and the cell density Mb at the outer peripheral portion is 629 [Cpsi], the diameter of the central part was 73 mm, and the outer diameter of the cross section was 103 mm. The honeycomb structure of Example 1 has an axial length of 105 mm, and the material is made of cordierite.

以下の表1に、実施例1のハニカム構造体の中央部のセルの密度Ma、外周部のセルの密度Mb、中央部の直径、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Ma、外周部の面積Sb=S−Saと中央部の面積Saとの比Sb/Saを示す。   In Table 1 below, the density Ma of cells in the central part of the honeycomb structure of Example 1, the density Mb of cells in the outer peripheral part, the diameter of the central part, the density Mb of cells in the outer peripheral part and the density Ma of cells in the central part And the ratio Sb / Sa of the area Sb = S-Sa of the outer peripheral portion to the area Sa of the central portion.

Figure 0006520701
Figure 0006520701

(実施例2から実施例5)
実施例1のハニカム構造体と同様に、実施例2から実施例5のハニカム構造体を製作した。なお、実施例2から実施例5のハニカム構造体は、実施例1のハニカム構造体の製作時に使用した押出成型金型とは別の押出成型金型を用い、中央部のセルの密度Ma及び外周部のセルの密度Mbを実施例1のハニカム構造体と異ならせた以外は、実施例1のハニカム構造体と同様に製作した。
(Examples 2 to 5)
Similarly to the honeycomb structure of Example 1, honeycomb structures of Example 2 to Example 5 were manufactured. The honeycomb structures of Examples 2 to 5 use an extrusion molding die different from the extrusion molding die used at the time of manufacturing the honeycomb structure of Example 1, and the density Ma of the cells in the central portion and the The honeycomb structure of Example 1 was manufactured in the same manner as the honeycomb structure of Example 1 except that the cell density Mb of the outer peripheral portion was different from that of the honeycomb structure of Example 1.

表1に、実施例2から実施例5のハニカム構造体の中央部のセルの密度Ma、外周部のセルの密度Mb、中央部の直径、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Ma、外周部の面積Sb=S−Saと中央部の面積Saとの比Sb/Saを示す。   In Table 1, the density Ma of cells in the central part of the honeycomb structures of Examples 2 to 5 and the density Mb of cells in the outer peripheral part, the diameter of the central part, the density Mb of cells in the outer peripheral part and the cells of the central part The ratio Mb / Ma to the density Ma and the ratio Sb / Sa to the area Sb = S-Sa of the outer peripheral portion and the area Sa of the central portion are shown.

(比較例1から比較例4)
実施例1のハニカム構造体と同様に、比較例1から比較例4のハニカム構造体を製作した。なお、比較例1のハニカム構造体は、実施例1のハニカム構造体の製作時に使用した押出成型金型とは別の押出成型金型を用い、セルの密度を径方向で一定にした。
(Comparative Examples 1 to 4)
Similarly to the honeycomb structure of Example 1, honeycomb structures of Comparative Examples 1 to 4 were produced. In the honeycomb structure of Comparative Example 1, the density of cells was made constant in the radial direction by using an extrusion molding die different from the extrusion molding die used at the time of manufacturing the honeycomb structure of Example 1.

また、比較例2から比較例4のハニカム構造体は、実施例1のハニカム構造体の製作時に使用した押出成型金型とは別の押出成型金型を用い、中央部のセルの密度Ma及び外周部のセルの密度Mbを実施例1のハニカム構造体と異ならせた以外は、実施例1のハニカム構造体と同様に製作した。   Further, in the honeycomb structures of Comparative Examples 2 to 4, using the extrusion molding die different from the extrusion molding die used at the time of manufacturing the honeycomb structure of Example 1, the density Ma of the cells in the central portion and The honeycomb structure of Example 1 was manufactured in the same manner as the honeycomb structure of Example 1 except that the cell density Mb of the outer peripheral portion was different from that of the honeycomb structure of Example 1.

以下の表2に、比較例1から比較例4のハニカム構造体の中央部のセルの密度Ma、外周部のセルの密度Mb、中央部の直径、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Ma、外周部の面積Sb=S−Saと中央部の面積Saとの比Sb/Saを示す。   In Table 2 below, the density Ma of cells in the central part of honeycomb structures of Comparative Examples 1 to 4 and the density Mb of cells in the outer peripheral part, the diameter of the central part, the density Mb of cells in the outer peripheral part and the central part The ratio Mb / Ma to the cell density Ma and the ratio Sb / Sa to the area Sb = S-Sa of the outer peripheral part and the area Sa of the central part are shown.

Figure 0006520701
Figure 0006520701

(流速分布の評価)
実施例1から実施例5及び比較例1から比較例4のハニカム構造体をアルミナマットで巻いた状態で、ターボエンジンの排気管内に設置し、流速計を用いて排ガスの流速を測定した。より詳細には、ハニカム構造体の軸方向に直交する断面における中心から外周までを10等分し、各地点(計11点)の排ガスの流速を測定した。
(Evaluation of flow velocity distribution)
The honeycomb structures of Example 1 to Example 5 and Comparative Example 1 to Comparative Example 4 were wound in an alumina mat, installed in the exhaust pipe of a turbo engine, and the flow velocity of exhaust gas was measured using a flow meter. More specifically, from the center to the outer periphery in the cross section orthogonal to the axial direction of the honeycomb structure was divided into 10 equal parts, and the flow velocity of the exhaust gas at each point (11 points in total) was measured.

次に、比較例1のハニカム構造体の中心部における排ガスの流速を基準として、実施例1から実施例5並びに比較例2から比較例4のハニカム構造体の各地点の流速比を求めた。また、測定した流速から標準偏差を算出した。流速分布の判定は、比較例1よりも標準偏差が小さい場合には、良好(○)、比較例1よりも標準偏差が大きい場合には、不良(×)とした。流速分布の評価結果を、表1及び表2に示す。   Next, with reference to the flow velocity of the exhaust gas at the central portion of the honeycomb structure of Comparative Example 1, the flow velocity ratio of each point of the honeycomb structure of Examples 1 to 5 and Comparative Example 2 to Comparative Example 4 was determined. Moreover, the standard deviation was calculated from the measured flow velocity. The determination of the flow velocity distribution was good (判定) when the standard deviation was smaller than that of Comparative Example 1, and bad (×) when the standard deviation was larger than that of Comparative Example 1. The evaluation results of the flow velocity distribution are shown in Tables 1 and 2.

図3から図7は、実施例1から実施例5のハニカム構造の軸方向に直交する断面における中心からの距離と、流速分布比との関係を示すグラフである。図8から図11は、比較例1から比較例4のハニカム構造の軸方向に直交する断面における中心からの距離と、流速分布比との関係を示すグラフである。   3 to 7 are graphs showing the relationship between the distance from the center of the cross section orthogonal to the axial direction of the honeycomb structures of Examples 1 to 5 and the flow velocity distribution ratio. FIGS. 8 to 11 are graphs showing the relationship between the distance from the center of the cross section orthogonal to the axial direction of the honeycomb structures of Comparative Examples 1 to 4 and the flow velocity distribution ratio.

表1、表2、及び図3から図11に示すように、外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たす実施例1から実施例5のハニカム構造体は、同不等式を満たさない比較例1から比較例4のハニカム構造体と比較して、排ガスの流速分布が均一化された。   As shown in Table 1, Table 2 and FIGS. 3 to 11, the ratio Mb / Ma of the cell density Mb of the outer peripheral portion to the cell density Ma of the central portion is not inequalities: 1 <(Mb / Ma) < In the honeycomb structures of Examples 1 to 5 satisfying 1.8, the flow velocity distribution of the exhaust gas was uniformed as compared with the honeycomb structures of Comparative Examples 1 to 4 not satisfying the inequality.

(排ガス浄化性能の評価)
スタート触媒(S/C)床温を1000℃とし、1分間にフィードバック、フューエルカット、リッチ、リーンを含むサイクルで、50時間に亘って耐久性を評価した。所定のモード(LA♯4モード)を走行し、排出されるエミッション量を測定した。比較例1のハニカム構造体のエミッション量を基準として、実施例1から実施例5並びに比較例2から比較例4のハニカム構造体のエミッション比を求めた。求めたエミッション比を、表1及び表2に示す。
(Evaluation of exhaust gas purification performance)
The starting catalyst (S / C) bed temperature was 1000 ° C., and the durability was evaluated over 50 hours in a cycle including feedback, fuel cut, rich, and lean in 1 minute. The vehicle traveled in a predetermined mode (LA # 4 mode), and the amount of emitted emissions was measured. With reference to the emission amount of the honeycomb structure of Comparative Example 1, the emission ratio of the honeycomb structures of Examples 1 to 5 and Comparative Example 2 to Comparative Example 4 was determined. The determined emission ratios are shown in Tables 1 and 2.

図12は、各実施例及び比較例のハニカム構造体における外周部のセルの密度Mbと中央部のセルの密度Maとの比Mb/Maと、比較例1のハニカム構造体のエミッション量を基準としたときのエミッション比との関係を示すグラフである。図12中、D1、D2、及びD3は、それぞれ実施例1、実施例2、及び実施例3のデータを示し、X1、X2、X3、及びX4は、それぞれ比較例1、比較例2、比較例3、及び比較例4のデータを示している。   FIG. 12 is based on the ratio Mb / Ma of the cell density Mb at the outer peripheral portion to the cell density Ma at the central portion in the honeycomb structures of each example and comparative example and the emission amount of the honeycomb structure of comparative example 1 Is a graph showing the relationship with the emission ratio. In FIG. 12, D1, D2, and D3 indicate data of Example 1, Example 2, and Example 3, respectively, and X1, X2, X3, and X4 indicate Comparative Example 1, Comparative Example 2, and Comparative, respectively. Data of Example 3 and Comparative Example 4 are shown.

図13は、各実施例のハニカム構造体における外周部の面積Sbと中央部の面積Saとの比Sb/Saと、比較例1のハニカム構造体のエミッション量を基準としたときのエミッション比との関係を示すグラフである。図13中、D1、D4、及びD5は、それぞれ実施例1、実施例4、及び実施例5のデータを示している。   FIG. 13 shows the ratio Sb / Sa of the area Sb of the outer peripheral portion to the area Sa of the central portion in the honeycomb structure of each example and the emission ratio based on the emission amount of the honeycomb structure of Comparative Example 1 and Is a graph showing the relationship of In FIG. 13, D1, D4, and D5 indicate data of Example 1, Example 4, and Example 5, respectively.

表1、表2、図12及び図13の結果から、1<(Mb/Ma)<1.8を満たし、(Sb/Sa)≧0.65を満たす実施例1から実施例5のハニカム構造体は、比較例1から比較例4のハニカム構造体と比較して、エミッション比、すなわち排ガス浄化性能が向上した。これは、流速分布の均一化に伴ってハニカム構造体の利用効率が向上したためと考えられる。   From the results of Tables 1 and 2 and FIGS. 12 and 13, the honeycomb structures of Examples 1 to 5 satisfy 1 <(Mb / Ma) <1.8 and (Sb / Sa) ≧ 0.65. As compared with the honeycomb structures of Comparative Example 1 to Comparative Example 4, the body has an improved emission ratio, that is, an exhaust gas purification performance. It is considered that this is because the utilization efficiency of the honeycomb structure is improved along with the uniform flow velocity distribution.

図14から図18及び図19から図22は、それぞれ実施例1から5及び比較例1から4において、新気ガス量Ga[g/s]を異ならせたときのハニカム構造体の中心からの距離と、比較例1を基準とした流速分布比との関係を示すグラフである。図23は、新気ガス量Ga[g/s]と、比較例1を基準としたエミッション比との関係を示すグラフである。図24は、新気ガス量Ga[g/s]と、比較例1を基準とした流速分布比との関係を示すグラフである。図23、24中、D1〜D5、X1〜X4はそれぞれ実施例1〜5、比較例1〜4のデータを示している。   FIGS. 14 to 18 and FIGS. 19 to 22 are from the center of the honeycomb structure when the amount of fresh air gas Ga [g / s] is made different in Examples 1 to 5 and Comparative Examples 1 to 4, respectively. It is a graph which shows the relationship between distance and the flow velocity distribution ratio on the basis of the comparative example 1. FIG. FIG. 23 is a graph showing the relationship between the amount of fresh air gas Ga [g / s] and the emission ratio based on Comparative Example 1. FIG. 24 is a graph showing the relationship between the amount of fresh air gas Ga [g / s] and the flow velocity distribution ratio based on Comparative Example 1. In FIGS. 23 and 24, D1 to D5 and X1 to X4 indicate data of Examples 1 to 5 and Comparative Examples 1 to 4, respectively.

図23のグラフから、新気ガス量Ga[g/s]を異ならせた場合でも、実施例1から3のハニカム構造体のエミッション性能は、比較例1から比較例4のハニカム構造体よりも高いことが分かる。また、図24のグラフから、新気ガス量Ga[g/s]を異ならせた場合でも、実施例1、4及び5のハニカム構造体の流速分布比は、比較例1のハニカム構造体の流速分布比よりも高いことが分かる。   From the graph of FIG. 23, even when the amount of fresh air gas Ga [g / s] is made different, the emission performance of the honeycomb structures of Examples 1 to 3 is better than that of the honeycomb structures of Comparative Examples 1 to 4. I understand that it is high. Further, from the graph of FIG. 24, even when the amount of fresh air gas Ga [g / s] is made different, the flow velocity distribution ratio of the honeycomb structures of Examples 1, 4 and 5 is similar to that of the honeycomb structure of Comparative Example 1. It can be seen that it is higher than the flow velocity distribution ratio.

A 軸
C セル
CC 排ガス浄化装置
CP 中央部
HS1 ハニカム構造体
PP 外周部
TE ターボエンジン
W 隔壁
A axis C cell CC exhaust gas purification device CP central part HS1 honeycomb structure PP outer peripheral part TE turbo engine W partition

Claims (1)

ターボエンジンの排ガス浄化装置に用いられるハニカム構造体であって、
格子状に設けられた隔壁と、該隔壁に区画されて軸方向に伸びる複数のセルとを備え、
前記軸方向に直交する断面において、中央部の面積Saと外周部の面積Sbとの比Sb/Saが不等式:Sb/Sa≧0.65を満たし、前記中央部における個々の前記セルの開口面積が前記外周部における個々の前記セルの開口面積よりも大きくされ、前記外周部の前記セルの密度Mbと前記中央部の前記セルの密度Maとの比Mb/Maが、不等式:1<(Mb/Ma)<1.8を満たすことを特徴とするハニカム構造体。
A honeycomb structure used for an exhaust gas purification device for a turbo engine,
A partition provided in a grid shape, and a plurality of axially partitioned cells divided by the partition;
In the cross section orthogonal to the axial direction, the ratio Sb / Sa of the area Sa of the central part to the area Sb of the outer peripheral part satisfies the inequality: Sb / Sa ≧ 0.65, and the opening areas of the individual cells in the central part There is larger than the opening area of each of the cells in the outer peripheral portion, the ratio Mb / Ma between the density Ma of the cell density Mb and the central portion of the cells of the outer peripheral portion, the inequality: 1 <(Mb / Ma) A honeycomb structure characterized by satisfying <1.8.
JP2015254332A 2015-12-25 2015-12-25 Honeycomb structure Expired - Fee Related JP6520701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254332A JP6520701B2 (en) 2015-12-25 2015-12-25 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254332A JP6520701B2 (en) 2015-12-25 2015-12-25 Honeycomb structure

Publications (2)

Publication Number Publication Date
JP2017113727A JP2017113727A (en) 2017-06-29
JP6520701B2 true JP6520701B2 (en) 2019-05-29

Family

ID=59233027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254332A Expired - Fee Related JP6520701B2 (en) 2015-12-25 2015-12-25 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP6520701B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094823B2 (en) * 2001-04-03 2008-06-04 日本碍子株式会社 Honeycomb structure and assembly thereof
JP2004092512A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Catalyst converter
JP2004251138A (en) * 2003-02-18 2004-09-09 Mazda Motor Corp Filtering device for engine exhaust particulate purification and engine exhaust particulate purifying device
FR2896823B1 (en) * 2006-01-31 2008-03-14 Saint Gobain Ct Recherches CATALYTIC FILTER HAVING REDUCED STARTING TIME
JP2013244437A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Catalytic converter

Also Published As

Publication number Publication date
JP2017113727A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US9080484B2 (en) Wall flow type exhaust gas purification filter
US10030555B2 (en) Honeycomb structure body
JP6200212B2 (en) Honeycomb catalyst body
JP6339463B2 (en) Honeycomb structure
JP5964564B2 (en) Wall flow type exhaust gas purification filter
WO2013111728A1 (en) Honeycomb structure
JP5771541B2 (en) Honeycomb structure
JP2013173134A (en) Honeycomb structure
JP2019171318A (en) Honeycomb filter
US11027269B2 (en) Plugged honeycomb structure
JP2007290945A (en) Honeycomb structure and method of producing the same
JP6782659B2 (en) Honeycomb structure
US10722877B2 (en) Honeycomb structure
JP6775458B2 (en) Honeycomb structure
US9976458B2 (en) Honeycomb structure body
JP2018167199A (en) Honeycomb filter
JP6792500B2 (en) Honeycomb structure
JP2014148924A (en) Exhaust gas purification device
JP5730631B2 (en) Honeycomb structure
JP6174509B2 (en) Honeycomb structure
JP6520701B2 (en) Honeycomb structure
JP5486973B2 (en) Honeycomb catalyst body and exhaust gas purification device
JP2013227882A (en) Exhaust emission control device
JP7408462B2 (en) honeycomb filter
JP7406416B2 (en) honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees