JP6509569B2 - Fluid pressure control device - Google Patents

Fluid pressure control device Download PDF

Info

Publication number
JP6509569B2
JP6509569B2 JP2015009157A JP2015009157A JP6509569B2 JP 6509569 B2 JP6509569 B2 JP 6509569B2 JP 2015009157 A JP2015009157 A JP 2015009157A JP 2015009157 A JP2015009157 A JP 2015009157A JP 6509569 B2 JP6509569 B2 JP 6509569B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
accumulator
hydraulic
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015009157A
Other languages
Japanese (ja)
Other versions
JP2016133186A (en
Inventor
嶋田 佳幸
佳幸 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2015009157A priority Critical patent/JP6509569B2/en
Publication of JP2016133186A publication Critical patent/JP2016133186A/en
Application granted granted Critical
Publication of JP6509569B2 publication Critical patent/JP6509569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

本発明は、例えば自動車や建設機械、運搬車両、産業用車両、産業機械の油圧装置等に適用される流体圧制御装置に関する。   The present invention relates to a fluid pressure control device applied to, for example, automobiles, construction machines, transport vehicles, industrial vehicles, hydraulic devices of industrial machines, and the like.

従来の流体圧制御装置には、駆動機構により駆動されるポンプと、このポンプから吐出される作動流体の圧力を増圧する増圧装置と、この増圧装置により増圧された流体圧を蓄圧して圧力被供給回路に供給する蓄圧装置と、を備えた流体圧制御装置が知られている(例えば、特許文献1参照)。   In the conventional fluid pressure control device, a pump driven by a drive mechanism, a pressure increasing device for increasing the pressure of the working fluid discharged from the pump, and a fluid pressure increased by the pressure increasing device are accumulated. BACKGROUND A fluid pressure control device is known that includes a pressure storage device that supplies pressure to a pressure-supplied circuit (see, for example, Patent Document 1).

特開2011−185417号公報(第1図)JP 2011-185417 A (FIG. 1)

より詳しくは、従来の流体圧制御装置では、例えば図7(a)、(b)に示されるように、駆動機構101を駆動源とする油圧ポンプ102によって吐出された作動油が、油圧被供給回路104に供給される。作動油の一部は分岐管105に分岐し、切換弁106の流路切換えによって、増圧装置170の大径の油室172と中間の油室171とに交互に供給されることで、増圧装置170のケース173の内部でピストン175が往復動する。このピストン175の往復動により、タンク110内の作動油が、吸引管131を介し負圧を利用して増圧装置170の小径の油室174に吸入され、ポンプ圧よりも高圧で蓄圧装置108に吐出されて蓄圧される。   More specifically, in the conventional fluid pressure control device, as shown in, for example, FIGS. 7A and 7B, the hydraulic fluid supplied by the hydraulic pump 102 having the drive mechanism 101 as a drive source is hydraulically supplied. It is supplied to the circuit 104. A portion of the hydraulic oil is branched into the branch pipe 105, and is alternately supplied to the large diameter oil chamber 172 and the middle oil chamber 171 of the pressure booster 170 by switching the flow path of the switching valve 106. The piston 175 reciprocates inside the case 173 of the pressure device 170. The reciprocating motion of the piston 175 causes the hydraulic oil in the tank 110 to be sucked into the small diameter oil chamber 174 of the pressure booster 170 via the suction pipe 131 using a negative pressure, and the pressure accumulator 108 with pressure higher than the pump pressure. The pressure is discharged and accumulated.

このような従来の流体圧制御装置にあっては、蓄圧装置108に作動油が蓄圧されていない初期状態から、上記したピストン175の往復動により作動油を蓄圧装置108に蓄圧する場合、ピストン175の1サイクル当たり、小径の油室174の体積(容積)の作動油のみが吐出されるため、蓄圧装置108が油圧ポンプ102の吐出圧に相当する予圧に達するまでに、ピストン175を何度も往復させる必要が生じ、相当の時間を要していた。   In such a conventional fluid pressure control device, when the working oil is accumulated in the accumulator 108 by the reciprocation of the piston 175 from the initial state where the hydraulic oil is not accumulated in the accumulator 108, the piston 175 is used. Since only the hydraulic fluid of the volume (volume) of the small diameter oil chamber 174 is discharged in one cycle of the cycle, the piston 175 is repeatedly used until the pressure storage device 108 reaches the preload equivalent to the discharge pressure of the hydraulic pump 102. It was necessary to make it go back and forth, and it took a considerable amount of time.

本発明は、このような問題点に着目してなされたもので、蓄圧装置を早期に予圧に到達させることができる流体圧制御装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a fluid pressure control device capable of causing a pressure accumulator to reach a preload early.

前記課題を解決するために、本発明の流体圧制御装置は、
作動流体を吐出するポンプと、前記ポンプから吐出された作動流体を増圧して吐出可能な増圧装置と、前記増圧装置から吐出された作動流体を蓄圧する蓄圧装置と、を少なくとも備えた流体圧制御装置であって、
前記増圧装置は、前記ポンプの吐出した作動流体を導入する駆動室と、前記蓄圧装置に連通し前記ポンプの吐出圧力よりも増圧して作動流体を吐出可能な連通室と、を有し、
前記ポンプと前記増圧装置との間に、作動流体の流路を前記駆動室または前記連通室に切換可能な切換弁を有することを特徴としている。
この特徴によれば、ポンプから吐出された作動流体を、増圧装置の連通室に供給し、連通室の初期状態の圧力を、ポンプの吐出圧力相当の予圧まで早期に到達させ、更に増圧装置により増圧して蓄圧装置に供給できるため、全体として蓄圧装置に作動流体を供給する蓄圧時間を大幅に短縮することができる。また、ポンプから吐出される圧力が蓄圧装置の予圧よりも大きい場合、ポンプの吐出圧力を利用して、連通室を経由して蓄圧装置に作動流体が供給され、更に増圧装置により増圧して蓄圧装置に供給できるため、より蓄圧時間を大幅に短縮することができる。
In order to solve the above-mentioned subject, the fluid pressure control device of the present invention,
A fluid comprising at least a pump for discharging a working fluid, a pressure increasing device capable of increasing the pressure by discharging the working fluid discharged from the pump, and a pressure accumulator for storing pressure the working fluid discharged from the pressure increasing device. Pressure control device,
The pressure increasing device has a drive chamber for introducing the working fluid discharged by the pump, and a communication chamber in communication with the pressure storage device and capable of discharging the working fluid by increasing the discharge pressure of the pump.
It is characterized in that a switching valve capable of switching the flow path of the working fluid to the drive chamber or the communication chamber is provided between the pump and the pressure increasing device.
According to this feature, the working fluid discharged from the pump is supplied to the communication chamber of the pressure intensifier, the pressure in the initial state of the communication chamber reaches the preload equivalent to the discharge pressure of the pump early, and the pressure is further increased. Since the pressure can be increased by the device and supplied to the pressure storage device, the pressure accumulation time for supplying the working fluid to the pressure storage device as a whole can be significantly shortened. In addition, when the pressure discharged from the pump is larger than the preload pressure of the pressure accumulator, working fluid is supplied to the pressure accumulator via the communication chamber using the discharge pressure of the pump, and pressure is further increased by the pressure booster. Since the pressure can be supplied to the pressure accumulator, the pressure accumulation time can be further shortened.

本発明の流体圧制御装置は、
前記増圧装置と前記蓄圧装置との間に、前記増圧装置から前記蓄圧装置への作動流体の流れを許容する逆止弁を有することを特徴としている。
この特徴によれば、増圧装置によって増圧された作動流体が増圧装置内に留まることが無いため、増圧工程に影響を及ぼすことなく、増圧機能を発揮することができる。
The fluid pressure control device of the present invention is
A check valve is provided between the pressure intensifier and the pressure accumulator, which allows the flow of working fluid from the pressure intensifier to the pressure accumulator.
According to this feature, since the working fluid pressurized by the pressure intensifier does not stay in the pressure intensifier, the pressure intensifying function can be exhibited without affecting the pressure intensifying step.

本発明の流体圧制御装置は、
前記増圧装置は、作動流体の圧力により少なくとも前記駆動室及び前記連通室の体積を可変に移動するピストンを更に有することを特徴としている。
この特徴によれば、ポンプの吐出圧力で連通室に流入する作動流体を利用して、ピストンを駆動室に向けて予め移動させておくことができるため、駆動室に移動したピストンが作動流体を増圧しながら連通室に移動するストローク代を得ることができる。
The fluid pressure control device of the present invention is
The pressure intensifying device further includes a piston that moves at least the volumes of the drive chamber and the communication chamber by pressure of the working fluid.
According to this feature, since the piston can be moved toward the drive chamber in advance by using the working fluid flowing into the communication chamber at the discharge pressure of the pump, the piston moved to the drive chamber can be used as the working fluid. A stroke allowance moving to the communication chamber can be obtained while pressure is increased.

本発明の流体圧制御装置は、
前記増圧装置は、前記ピストンを前記駆動室に向け付勢する付勢手段を更に有することを特徴としている。
この特徴によれば、付勢手段が、ピストンを駆動室に向け付勢することで、連通室に向けて移動したピストンを早期かつ確実に駆動室に移動させることができる。
The fluid pressure control device of the present invention is
The pressure increasing device may further include biasing means for biasing the piston toward the drive chamber.
According to this feature, the biasing means biases the piston toward the drive chamber, so that the piston moved toward the communication chamber can be moved to the drive chamber early and reliably.

本発明の流体圧制御装置は、
前記増圧装置は、前記ピストンの移動に関わらず外部に圧力開放する開放室を更に有し、前記付勢手段は、前記開放室に設けられていることを特徴としている。
この特徴によれば、付勢手段が常時圧力開放した開放室に設けられていることで、付勢手段が作動流体の圧力に影響を受けることなく、その付勢力をピストンに与えることができる。
The fluid pressure control device of the present invention is
The pressure increasing device further includes an open chamber that releases pressure to the outside regardless of the movement of the piston, and the biasing unit is provided in the open chamber.
According to this feature, by providing the biasing means in the open chamber in which the pressure is always released, the biasing means can apply the biasing force to the piston without being affected by the pressure of the working fluid.

実施例1における流体圧制御装置の油圧回路図であり、(a)は電磁切換弁の消磁状態を示し、(b)は同じく励磁状態を示す図である。It is a hydraulic circuit diagram of the fluid pressure control apparatus in Example 1, (a) shows the de-energized state of an electromagnetic switching valve, (b) is a figure which similarly shows an excited state. 実施例2における流体圧制御装置の油圧回路図であり、(a)は電磁切換弁の消磁状態を示し、(b)は同じく励磁状態を示す図である。It is a hydraulic circuit diagram of the fluid pressure control apparatus in Example 2, (a) shows the de-energized state of an electromagnetic switching valve, (b) is a figure which similarly shows an excited state. 実施例1の変形例における流体圧制御装置の油圧回路図である。FIG. 7 is a hydraulic circuit diagram of a fluid pressure control device in a modification of the first embodiment. 実施例2の変形例における流体圧制御装置の油圧回路図である。FIG. 13 is a hydraulic circuit diagram of a fluid pressure control device in a modification of the second embodiment. 実施例2の別の変形例における流体圧制御装置の油圧回路図である。FIG. 13 is a hydraulic circuit diagram of a fluid pressure control device in another modification of the second embodiment. 本発明と従来技術とで蓄圧装置に蓄圧する時間を比較した図である。It is the figure which compared the time which pressure-accumulates to a pressure accumulation apparatus by this invention and prior art. 従来技術における流体圧制御装置の油圧回路図であり、(a)は電磁切換弁の消磁状態を示し、(b)は同じく励磁状態を示す図である。It is a hydraulic circuit diagram of the fluid pressure control apparatus in a prior art, (a) shows the de-energized state of an electromagnetic switching valve, (b) is a figure which similarly shows an excited state.

本発明に係る流体圧制御装置を実施するための形態を実施例に基づいて以下に説明する。   A mode for carrying out a fluid pressure control device according to the present invention will be described below based on an example.

実施例1に係る流体圧制御装置につき、図1(a)、(b)を参照して説明する。先ず図1は、本発明の適用された流体圧制御装置の油圧回路図である。   The fluid pressure control device according to the first embodiment will be described with reference to FIGS. 1 (a) and 1 (b). First, FIG. 1 is a hydraulic circuit diagram of a fluid pressure control device to which the present invention is applied.

本実施例1の流体圧制御装置は、作動流体としての作動油をタンク10から吸引して吐出する油圧ポンプ2と、油圧ポンプ2に回転駆動力を伝達する駆動機構1と、油圧ポンプ2に逆止弁12及び主管3を介し接続され油圧ポンプ2の吐出圧力で作動油が供給される油圧被供給回路4とを主に備える。なお油圧被供給回路4は、例えば後述する自動車、産業機械等のアクチュエータ等を駆動するための回路である。   The fluid pressure control device according to the first embodiment includes a hydraulic pump 2 that sucks and discharges hydraulic oil as a working fluid from a tank 10, a drive mechanism 1 that transmits rotational driving force to the hydraulic pump 2, and the hydraulic pump 2. It mainly includes a hydraulic pressure supplied circuit 4 connected via a check valve 12 and a main pipe 3 and supplied with hydraulic oil at the discharge pressure of the hydraulic pump 2. The hydraulic pressure supplied circuit 4 is a circuit for driving, for example, an actuator of an automobile, an industrial machine or the like described later.

更に流体圧制御装置は、主管3から分岐した分岐管5に接続される電磁切換弁6と、この電磁切換弁6に切換管13,30を介し接続され、作動油を油圧ポンプ2の吐出圧力よりも増圧し吐出する増圧装置7と、この増圧装置7及び油圧被供給回路4の間に逆止弁14及び高圧管15等を介し接続される蓄圧装置としてのアキュムレータ8とを備える。流体圧制御装置の他の構成部材については追って説明する。   Further, the fluid pressure control device is connected to the electromagnetic switching valve 6 connected to the branch pipe 5 branched from the main pipe 3, and to the electromagnetic switching valve 6 via the switching pipes 13 and 30. The pressure increasing device 7 increases pressure and discharges, and the accumulator 8 as a pressure accumulating device connected between the pressure increasing device 7 and the hydraulic pressure supplied circuit 4 via the check valve 14 and the high pressure pipe 15 and the like. Other components of the fluid pressure control device will be described later.

なお、本実施例の流体圧制御装置は、例えば自動車や建設機械、運搬車両、産業機械等の油圧装置として適用され、一例として自動車のブレーキ、ステアリング、トランスミッション等、あるいはトラック、油圧ショベル、フォークリフト、クレーン、ごみ収集車若しくはプレス機械などの各アクチュエータに適用される装置である。   The fluid pressure control device of this embodiment is applied as a hydraulic device of, for example, an automobile, a construction machine, a transport vehicle, an industrial machine, etc., for example, a brake, a steering, a transmission, etc. of an automobile or a truck, a hydraulic shovel, a forklift It is a device applied to each actuator such as a crane, a refuse collection vehicle or a press machine.

次に、増圧装置7は、平面視略T字状の収容空間を内部に有するケース73と、このケース73の収容空間に収まる形状であって、比較的大径の大径部及び小径の小径部からなるピストン75と、から構成されている。更にピストン75がケース73内面に図示しないシール部材を介しケース73内を摺動可能に配置される。すなわちケース73内部は、ピストン75によって、比較的大径の油室72、小径の油室74、そして前記大径部分から小径部分を差し引いた径の油室71からなる3つの油室に、それ等の体積(容積)を可変に仕切られている。   Next, the pressure increasing device 7 has a case 73 having a substantially T-shaped housing space in a plan view, and a shape fitted in the housing space of the case 73, and has a relatively large diameter large diameter portion and a small diameter. And a piston 75 having a small diameter portion. Further, the piston 75 is slidably disposed in the inside of the case 73 via a seal member (not shown) on the inner surface of the case 73. That is, the inside of the case 73 is divided into three oil chambers consisting of a relatively large diameter oil chamber 72, a small diameter oil chamber 74, and an oil chamber 71 having a diameter obtained by subtracting the small diameter portion from the large diameter portion. The volume (volume) of the

また油室74は、上記した逆止弁14及び高圧管15を介しアキュムレータ8に接続され、またこれとは別に、逆止弁17及び切換管30を介し後述する電磁切換弁6に連通するように接続されている。油室74に接続される逆止弁14は、油室74からアキュムレータ8へ向かう作動油の順方向の流れを許容し、アキュムレータ8から油室74へ向かう作動油の逆方向の流れを規制する。更に油室74に接続される別の逆止弁17は、電磁切換弁6から油室74へ向かう作動油の順方向の流れを許容し、油室74から電磁切換弁6へ向かう作動油の逆方向の流れを規制する。   The oil chamber 74 is connected to the accumulator 8 through the check valve 14 and the high pressure pipe 15 described above, and separately from this, is communicated with the electromagnetic switching valve 6 described later through the check valve 17 and the switching pipe 30. It is connected to the. The non-return valve 14 connected to the oil chamber 74 allows forward flow of hydraulic fluid from the oil chamber 74 to the accumulator 8 and restricts reverse flow of hydraulic fluid from the accumulator 8 to the oil chamber 74 . Further, another check valve 17 connected to the oil chamber 74 allows forward flow of the hydraulic oil from the electromagnetic switching valve 6 to the oil chamber 74, and the hydraulic fluid of the hydraulic chamber 74 to the electromagnetic switching valve 6. Regulate the flow in the reverse direction.

更に油室71は、タンク10内と管路31を介し接続され、ピストン75の移動に関わらず外部に圧力開放しており、ピストン75の往復動に伴う油室71の体積(容積)に応じて、作動油がタンク10から油室71に吸引し、若しくは油室71からタンク10に吐出するようになっている。   Further, the oil chamber 71 is connected to the inside of the tank 10 via the pipe line 31 and pressure-released to the outside regardless of the movement of the piston 75, and the volume (volume) of the oil chamber 71 accompanying the reciprocation of the piston 75 The hydraulic oil is sucked from the tank 10 into the oil chamber 71 or discharged from the oil chamber 71 into the tank 10.

なお、本実施例1の油室72は本発明の駆動室を構成し、油室74は本発明の連通室を構成し、また油室71は本発明の開放室を構成する。   The oil chamber 72 of the first embodiment constitutes the drive chamber of the present invention, the oil chamber 74 constitutes the communication chamber of the present invention, and the oil chamber 71 constitutes the open chamber of the present invention.

また電磁切換弁6は、その消磁状態若しくは励磁状態で作動油の流路を切換え可能に配設されている。詳述すると電磁切換弁6は、図1(a)に示す消磁状態において、分岐管5と油室74に接続される切換管30とを連通するとともに、油室72に接続される切換管13と終端がタンク10に開口する排出管16とを連通する。また電磁切換弁6は、図1(b)に示す励磁状態において、分岐管5と油室72に接続される切換管13とを連通するとともに、油室74に接続される切換管30と排出管16とを連通する。   Further, the electromagnetic switching valve 6 is disposed so as to be able to switch the flow path of the hydraulic oil in the demagnetized state or the excited state. More specifically, in the demagnetized state shown in FIG. 1A, the electromagnetic switching valve 6 establishes communication between the branch pipe 5 and the switching pipe 30 connected to the oil chamber 74, and switches the switching pipe 13 connected to the oil chamber 72. And the end communicate with the discharge pipe 16 opened to the tank 10. Further, the electromagnetic switching valve 6 communicates the branch pipe 5 with the switching pipe 13 connected to the oil chamber 72 in the excited state shown in FIG. 1B, and discharges the switching pipe 30 connected to the oil chamber 74. It communicates with the tube 16.

なお、上記した油圧ポンプ2から、分岐管5、電磁切換弁6、切換管30、逆止弁17、油室74、逆止弁14及び高圧管15を経てアキュムレータ8に至る管路は、共通して、本発明の直接管路及び増圧管路を構成する。   The pipeline from the hydraulic pump 2 described above to the accumulator 8 via the branch pipe 5, the electromagnetic switching valve 6, the switching pipe 30, the check valve 17, the oil chamber 74, the check valve 14 and the high pressure pipe 15 is common Thus, the direct pipe line and the pressure intensifying pipe line of the present invention are configured.

次にアキュムレータ8は、特に図示しないが、高圧管15に連通する筒胴部と、前記筒胴部内に配設されたゴム等からなる膜体とからなり、前記膜体内部には例えば窒素等の蓄圧気体が所定量封入されており、後述するように作動油が前記筒胴部内に流入すると、その圧力に応じて前記膜体が収縮することで、高圧流体を蓄えておくことができる。   Next, although not particularly shown, the accumulator 8 is composed of a cylindrical body portion communicating with the high pressure pipe 15 and a film body made of rubber or the like disposed in the cylindrical body portion. A predetermined amount of pressure-accumulated gas is enclosed, and as described later, when hydraulic fluid flows into the cylinder body, the membrane contracts in accordance with the pressure, whereby the high-pressure fluid can be stored.

また流体圧制御装置は、上述した構成部材のほか、主管3から分岐した排出管21を介し作動油をタンク10に排出可能なリリーフ弁20と、同様に高圧管15から分岐した排出管23を介し作動油をタンク10に排出可能なリリーフ弁24が設けられ、更にアキュムレータ8と油圧被供給回路4とを接続する高圧管19に、当該管路を開閉可能な電磁式の切換弁9及び逆止弁18が介設されている。   Further, the fluid pressure control device includes a relief valve 20 capable of discharging the hydraulic oil to the tank 10 through the discharge pipe 21 branched from the main pipe 3 and a discharge pipe 23 branched similarly from the high pressure pipe 15 in addition to the components described above. The high pressure pipe 19 connecting the accumulator 8 and the hydraulic pressure supplied circuit 4 is provided with a relief valve 24 capable of discharging the hydraulic oil to the tank 10 and the electromagnetic switching valve 9 capable of opening and closing the pipe. A stop valve 18 is interposed.

次に、本実施例1の流体圧制御装置における作動油の流動について説明する。   Next, the flow of the hydraulic oil in the fluid pressure control device of the first embodiment will be described.

先ず図1(a)に示されるように、アキュムレータ8に予圧が加わっていない初期状態では、図示しない制御部により電磁切換弁6は消磁状態となっている。この状態で油圧ポンプ2から吐出された作動油は、該油圧ポンプ2の吐出圧力で、その一部が主管3を介し油圧被供給回路4に供給されるとともに、残りが分岐管5、電磁切換弁6を介し油室74に流入する。   First, as shown in FIG. 1A, in the initial state in which the accumulator 8 is not preloaded, the control valve (not shown) demagnetizes the electromagnetic switching valve 6. A portion of the hydraulic oil discharged from the hydraulic pump 2 in this state is supplied to the hydraulic pressure supplied circuit 4 through the main pipe 3 by the discharge pressure of the hydraulic pump 2, and the remaining portion is the branch pipe 5, electromagnetic switching It flows into the oil chamber 74 through the valve 6.

さらに油室74に流入した作動油は、油圧ポンプ2を駆動源とする流量でアキュムレータ8の前記筒胴部内に流入して前記膜体が収縮し、アキュムレータ8及び高圧管15内は、油圧ポンプ2の吐出圧力に相当する予圧状態に達する。すなわちこの初期状態では、作動油は油圧ポンプ2から直接管路を通じてアキュムレータ8に流入する。なお、この初期状態では切換弁9は閉状態であり、高圧管19を介した作動油の油圧被供給回路4への供給は遮断されている。   Furthermore, the hydraulic oil that has flowed into the oil chamber 74 flows into the cylinder body of the accumulator 8 at a flow rate with the hydraulic pump 2 as a drive source, and the membrane contracts, and the hydraulic pump is filled with the hydraulic pump A preloaded condition corresponding to a discharge pressure of 2 is reached. That is, in this initial state, the hydraulic fluid flows from the hydraulic pump 2 directly to the accumulator 8 through the pipeline. In this initial state, the switching valve 9 is closed, and the supply of hydraulic oil to the hydraulic pressure supplied circuit 4 through the high pressure pipe 19 is shut off.

続いて、アキュムレータ8の予圧後状態で、電磁切換弁6は、前記制御部により図1(a)の消磁状態と図1(b)の励磁状態とを繰り返す。より詳しくは、電磁切換弁6の励磁状態では、油圧ポンプ2から吐出された作動油は、分岐管5、電磁切換弁6を介し油室72に流入する。油室72内に流入した作動油は、油圧ポンプ2の吐出圧力でピストン75を図示左方、すなわち油室74に向けて押圧する。   Subsequently, in a state after the accumulator 8 is preloaded, the electromagnetic switching valve 6 repeats the demagnetization state of FIG. 1A and the excitation state of FIG. 1B by the control unit. More specifically, in the excited state of the solenoid control valve 6, the hydraulic fluid discharged from the hydraulic pump 2 flows into the oil chamber 72 via the branch pipe 5 and the solenoid switch valve 6. The hydraulic fluid having flowed into the oil chamber 72 presses the piston 75 toward the left in the figure, that is, the oil chamber 74 by the discharge pressure of the hydraulic pump 2.

油室74内の作動油は、いわゆるパスカルの定理により、その圧力が油圧ポンプ2の吐出圧力よりも増圧されて吐出され、逆止弁14及び高圧管15を介してアキュムレータ8の前記筒胴部内に流入して前記膜体が更に収縮し、アキュムレータ8及び高圧管15内は、上記した予圧よりも高圧状態に達した作動油が蓄積される。すなわちこの予圧後状態では、作動油は油圧ポンプ2から増圧管路を通じてアキュムレータ8に流入する。   The pressure of the hydraulic oil in the oil chamber 74 is increased by the pressure of the discharge pressure of the hydraulic pump 2 and discharged according to so-called Pascal's theorem, and the cylinder of the accumulator 8 is discharged via the check valve 14 and the high pressure pipe 15. The film body further contracts by flowing into the portion, and the hydraulic oil which has reached a higher pressure than the above-described pre-load is accumulated in the accumulator 8 and the high pressure pipe 15. That is, in this post-pressure state, the hydraulic oil flows from the hydraulic pump 2 into the accumulator 8 through the pressure intensifying line.

このように、前記した直接管路及び増圧管路は、油圧ポンプ2から、分岐管5、電磁切換弁6、切換管30、逆止弁17、油室74、逆止弁14及び高圧管15を経てアキュムレータ8に至る共通の管路であることで、直接管路と増圧管路の配管部材を共通化できるため、管路を複雑化することなく部品点数を抑えることができる。   Thus, from the hydraulic pump 2, the direct pipe line and the intensifying pipe line described above are connected to the branch pipe 5, the electromagnetic switching valve 6, the switching pipe 30, the check valve 17, the oil chamber 74, the check valve 14 and the high pressure pipe 15. Since the pipe members of the direct pipe line and the pressure intensifying pipe line can be made common by directly using the common pipe line leading to the accumulator 8, the number of parts can be reduced without making the pipe line complicated.

また、油圧ポンプ2の吐出圧力で連通室としての油室74に流入する作動油を利用して、ピストン75を油室72側の縮み終端に向けて予め移動させておくことができるため、油室72に移動したピストン75が作動油を増圧しながら油室74側の伸び終端に移動するストローク代を得ることができる。   Further, since the piston 75 can be moved in advance toward the end of contraction on the side of the oil chamber 72 by using the hydraulic oil flowing into the oil chamber 74 as the communication chamber by the discharge pressure of the hydraulic pump 2, the oil It is possible to obtain a stroke allowance in which the piston 75 moved to the chamber 72 moves to the extension end on the oil chamber 74 side while pressurizing the hydraulic oil.

また、油室72及び油室74のいずれにも作動油を油圧ポンプ2の吐出圧力で供給できるため、ピストン75の往復動の切り換えを瞬時に行うことができるばかりか、1つ油室71をピストンの移動に関わらず外部に圧力開放する開放室とすることができる。これに対し図7に示す従来技術では、作動油をタンク110から吸引管131を介し負圧を利用して増圧室174に供給しているため、吸引管131の延長に制限が生じることとなる。   Further, since hydraulic fluid can be supplied to both the oil chamber 72 and the oil chamber 74 by the discharge pressure of the hydraulic pump 2, not only switching of the reciprocating motion of the piston 75 can be performed instantaneously, but one oil chamber 71 It can be an open chamber that releases pressure to the outside regardless of the movement of the piston. On the other hand, in the prior art shown in FIG. 7, since the hydraulic oil is supplied from the tank 110 to the pressure-increasing chamber 174 using negative pressure through the suction pipe 131, the extension of the suction pipe 131 is limited. Become.

更に、油室74とアキュムレータ8との間に逆止弁14が介在することで、アキュムレータ8に導入された作動油が油室74に逆流することがなく、増圧装置7によって増圧された作動油が増圧装置7内に留まることが無いため、増圧工程に影響を及ぼすことなく増圧機能を発揮し、アキュムレータ8に蓄えられた高い圧力を維持することができる。また、逆止弁14が増圧装置7とは独立して設けられているため、アキュムレータ8が高い圧力を維持していても増圧装置7に影響を及ぼすことなく、増圧装置7はアキュムレータ8の圧力状態に関係なく増圧機能を発揮することができる。   Further, the check valve 14 is interposed between the oil chamber 74 and the accumulator 8 so that the hydraulic oil introduced into the accumulator 8 does not backflow into the oil chamber 74 and the pressure is increased by the pressure increasing device 7. Since the hydraulic oil does not stay in the pressure increasing device 7, the pressure increasing function can be performed without affecting the pressure increasing step, and the high pressure stored in the accumulator 8 can be maintained. In addition, since the check valve 14 is provided independently of the pressure increasing device 7, the pressure increasing device 7 does not affect the pressure increasing device 7 even if the accumulator 8 maintains a high pressure. The pressure boosting function can be exhibited regardless of the pressure condition of 8.

また、電磁切換弁6と油室74との間に逆止弁17が介在することで、油室74に導入された作動油が電磁切換弁6に逆流することがなく、この作動油を確実にアキュムレータ8に導入することができる。   Further, by interposing the check valve 17 between the electromagnetic switching valve 6 and the oil chamber 74, the hydraulic oil introduced into the oil chamber 74 does not backflow to the electromagnetic switching valve 6, and this hydraulic oil can be reliably Can be introduced into the accumulator 8.

次に、所定条件で油圧被供給回路4に高圧力の作動油が要求された場合に、前記制御部により切換弁9が開放されるとともに、高圧管15及びアキュムレータ8内の高圧力の作動油が油圧被供給回路4に流入する。   Next, when high pressure hydraulic oil is requested to the hydraulic pressure supplied circuit 4 under predetermined conditions, the control unit opens the switching valve 9 and the high pressure hydraulic oil in the high pressure pipe 15 and the accumulator 8 Flows into the hydraulic pressure supplied circuit 4.

次に図6に示されるように、アキュムレータ8への蓄圧時間について、従来技術と比較しながら説明する。図6で横軸Tは蓄圧時間を示し、縦軸Pはアキュムレータ8内の圧力を示している。   Next, as shown in FIG. 6, the pressure accumulation time to the accumulator 8 will be described in comparison with the prior art. In FIG. 6, the horizontal axis T indicates the pressure accumulation time, and the vertical axis P indicates the pressure in the accumulator 8.

本発明の流体圧制御装置によれば、図6の実線に示されるように、アキュムレータ8に作動油の圧力が加わっていない初期状態(T=0,P=0)から、油圧ポンプ2の吐出流量を利用して極めて短い時間(T1)で、アキュムレータ8内に油圧ポンプ2の吐出圧力に相当する予圧(Ps)まで蓄圧される。続いて電磁切換弁6により増圧装置7のピストン75が往復動し、アキュムレータ8内に1ストローク当たり所定量の作動油が流入することで、内部圧力は漸次高まり、最終的に従来の装置よりも短い到達時間(T2)で、アキュムレータ8内が一定の高圧状態(Ph)となる。   According to the fluid pressure control device of the present invention, discharge of the hydraulic pump 2 is performed from the initial state (T = 0, P = 0) in which the pressure of the hydraulic fluid is not applied to the accumulator 8 as shown by the solid line in FIG. In a very short time (T1) using the flow rate, pressure is accumulated in the accumulator 8 up to a preload (Ps) corresponding to the discharge pressure of the hydraulic pump 2. Subsequently, the piston 75 of the pressure increasing device 7 is reciprocated by the electromagnetic switching valve 6, and a predetermined amount of hydraulic oil flows into the accumulator 8 per stroke, whereby the internal pressure gradually increases, and finally the conventional device The accumulator 8 is in a constant high pressure state (Ph) with a short arrival time (T2).

これに対し従来の流体圧制御装置によれば(図7参照)、図6の点線に示されるように、アキュムレータ8に作動油の圧力が加わっていない初期状態(T=0,P=0)から、内部圧力を高めるには、増圧装置7のピストン75を多数回往復動させる必要があるため、最終的にアキュムレータ8内が高圧状態(Ph)となるまでに、本発明の流体圧制御装置の到達時間(T2)と比較して非常に長い到達時間(T3)を要する(T3>T2)。   On the other hand, according to the conventional fluid pressure control device (see FIG. 7), as shown by the dotted line in FIG. 6, the initial state (T = 0, P = 0) in which the pressure of hydraulic fluid is not applied to the accumulator 8 Therefore, in order to increase the internal pressure, it is necessary to reciprocate the piston 75 of the pressure increasing device 7 a number of times, so the fluid pressure control of the present invention is performed until the accumulator 8 finally reaches a high pressure state (Ph). It requires a very long arrival time (T3) compared to the arrival time (T2) of the device (T3> T2).

このように、油圧ポンプ2から吐出された作動油を、増圧装置7の連通室としての油室74に供給し、油室74の初期状態の圧力を、油圧ポンプ2の吐出圧力相当の予圧まで早期に到達させ、更に増圧装置7により増圧してアキュムレータ8に供給できるため、全体としてアキュムレータ8に作動油を供給する蓄圧時間を大幅に短縮することができる。また、油圧ポンプ2から吐出される圧力がアキュムレータ8の予圧よりも大きい場合、油圧ポンプ2の吐出圧力を利用して、油室74を経由して作動油がアキュムレータ8に供給され、更に作動油を増圧装置7により増圧してアキュムレータ8に供給できるため、全体としてアキュムレータ8に作動油を供給する蓄圧時間をより大幅に短縮することができる。   Thus, the hydraulic oil discharged from the hydraulic pump 2 is supplied to the oil chamber 74 as the communication chamber of the pressure increasing device 7, and the pressure in the initial state of the oil chamber 74 is preloaded equivalent to the discharge pressure of the hydraulic pump 2. Since the pressure can be reached early and pressure can be increased by the pressure increasing device 7 and supplied to the accumulator 8, the pressure accumulation time for supplying the hydraulic oil to the accumulator 8 as a whole can be shortened significantly. In addition, when the pressure discharged from the hydraulic pump 2 is larger than the preload pressure of the accumulator 8, the hydraulic oil is supplied to the accumulator 8 via the oil chamber 74 using the discharge pressure of the hydraulic pump 2, and the hydraulic oil Can be boosted by the pressure booster 7 and supplied to the accumulator 8, so that the pressure accumulation time for supplying the hydraulic oil to the accumulator 8 as a whole can be further shortened.

次に、実施例2に係る流体圧制御装置につき、図2(a)、(b)を参照して説明する。尚、前記実施例1と同一構成で重複する説明を省略する。   Next, a fluid pressure control device according to a second embodiment will be described with reference to FIGS. 2 (a) and 2 (b). The same configuration as that of the first embodiment will not be described.

本実施例2の増圧装置7のケース73内部は、比較的大径の油室72、小径の油室74’、そして前記大径部分から小径部分を差し引いた径の油室71’からなる3つの油室に、それ等の体積(容積)を可変に仕切られている。   The inside of the case 73 of the pressure increasing device 7 of the second embodiment comprises an oil chamber 72 having a relatively large diameter, an oil chamber 74 'having a small diameter, and an oil chamber 71' having a diameter obtained by subtracting the small diameter portion from the large diameter portion. The volume (volume) of these is divided into three oil chambers in a variable manner.

本実施例2の増圧装置7の油室71’は、逆止弁14及び高圧管15を介しアキュムレータ8に接続され、またこれとは別に、逆止弁17及び切換管32を介し後述する電磁切換弁6に連通するように接続されている。油室71’に接続される逆止弁14は、油室71’からアキュムレータ8へ向かう作動油の順方向の流れを許容し、アキュムレータ8から油室71’へ向かう作動油の逆方向の流れを規制する。更に油室71’に接続される別の逆止弁17は、電磁切換弁6から油室71’へ向かう作動油の順方向の流れを許容し、油室71’から電磁切換弁6へ向かう作動油の逆方向の流れを規制する。   The oil chamber 71 'of the pressure increasing device 7 of the second embodiment is connected to the accumulator 8 via the check valve 14 and the high pressure pipe 15, and separately, will be described later via the check valve 17 and the switching pipe 32. It is connected in communication with the electromagnetic switching valve 6. The non-return valve 14 connected to the oil chamber 71 'allows the forward flow of hydraulic fluid from the oil chamber 71' to the accumulator 8 and the reverse flow of hydraulic fluid from the accumulator 8 to the oil chamber 71 ' Regulate. Furthermore, another check valve 17 connected to the oil chamber 71 'allows forward flow of hydraulic fluid from the solenoid valve 6 to the oil chamber 71', and from the oil chamber 71 'to the solenoid valve 6. Regulate the reverse flow of hydraulic fluid.

更に油室74’は、タンク10内と管路33を介し接続され、ピストン75の移動に関わらず外部に圧力開放しており、ピストン75の往復動に伴う油室74’の体積(容積)に応じて、作動油がタンク10から油室74’に吸引し、若しくは油室74’からタンク10に吐出するようになっている。   Further, the oil chamber 74 'is connected to the inside of the tank 10 via the conduit 33, and the pressure is released to the outside regardless of the movement of the piston 75, and the volume (volume) of the oil chamber 74' accompanying the reciprocation of the piston 75. Accordingly, hydraulic oil is drawn from the tank 10 into the oil chamber 74 'or discharged from the oil chamber 74' into the tank 10.

なお、本実施例2の油室72は本発明の駆動室を構成し、油室71’は本発明の連通室を構成し、また油室74’は本発明の開放室を構成する。   The oil chamber 72 of the second embodiment constitutes the drive chamber of the present invention, the oil chamber 71 'constitutes the communication chamber of the present invention, and the oil chamber 74' constitutes the open chamber of the present invention.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions may be made without departing from the scope of the present invention. Be

例えば、前記実施例1では、アキュムレータ8に予圧が加わっていない初期状態では、電磁切換弁6が消磁状態で、油圧ポンプ2からアキュムレータ8までの直接管路が連通するように配管されているが、例えば実施例1の変形例として図3に示されるように、電磁切換弁6’の消磁・励磁状態における配管の連通態様を、実施例1とは逆に配設してもよく、電磁切換弁6’が励磁状態で、油圧ポンプ2からアキュムレータ8までの直接管路が連通するように配管してもよい。   For example, in the first embodiment, in the initial state in which the accumulator 8 is not preloaded, the electromagnetic switching valve 6 is in a demagnetized state, and piping is provided so as to allow direct communication from the hydraulic pump 2 to the accumulator 8. For example, as shown in FIG. 3 as a modified example of the first embodiment, the communication mode of piping in the demagnetized / excited state of the electromagnetic switching valve 6 ′ may be disposed reversely to the first embodiment. With the valve 6 ′ in an energized state, piping may be provided so that the direct line from the hydraulic pump 2 to the accumulator 8 is in communication.

同様に、実施例2の変形例として図4に示されるように、電磁切換弁6’の消磁・励磁状態における配管の連通態様を、実施例2とは逆に配設してもよく、電磁切換弁6’が励磁状態で、油圧ポンプ2からアキュムレータ8までの直接管路が連通するように配管してもよい。   Similarly, as shown in FIG. 4 as a modification of the second embodiment, the communication mode of piping in the demagnetized / excited state of the electromagnetic switching valve 6 ′ may be arranged reverse to that of the second embodiment. It is also possible to pipe such that a direct pipe line from the hydraulic pump 2 to the accumulator 8 is in communication when the switching valve 6 'is in an excited state.

また前記実施例2の他の変形例として図5に示されるように、増圧装置7の油室74’に、ピストン75を油室72側に付勢するスプリング等からなる付勢手段76が設けられていてもよい。このように、付勢手段76がピストン75を油室72に向け付勢することで、連通室に向けて移動したピストン75を早期かつ確実に油室72に移動させ、ピストン75の次動作に備えることができる。   Further, as shown in FIG. 5 as another modification of the second embodiment, biasing means 76 comprising a spring or the like for biasing the piston 75 toward the oil chamber 72 is provided in the oil chamber 74 'of the pressure booster 7. It may be provided. In this manner, the biasing means 76 biases the piston 75 toward the oil chamber 72, thereby moving the piston 75 moved toward the communication chamber to the oil chamber 72 early and reliably, and for the next operation of the piston 75. It can be equipped.

またこのように、付勢手段76が常時圧力開放した油室74’に設けられていることで、付勢手段76が作動油の圧力に影響を受けることなく、その付勢力をピストン75に与えることができる。   Also, as described above, the biasing means 76 is provided in the oil chamber 74 'where the pressure is always released, so that the biasing means 76 applies the biasing force to the piston 75 without being affected by the pressure of the hydraulic fluid. be able to.

また前記実施例1,2では、流体圧制御装置として作動油を利用した油圧機器を例に説明したが、油以外の全ての液体や気体の流体においても本発明が適用できることは言うまでもなく、従って水圧機器や空圧機器等を用いた装置についても本発明を適用できる。   In the first and second embodiments, a hydraulic device using hydraulic oil has been described as an example of the fluid pressure control device, but it goes without saying that the present invention can be applied to all liquids and gases other than oil. The present invention can also be applied to an apparatus using a water pressure device or a pneumatic device.

更に前記実施例1,2では、切換弁6,6’,9は電磁式の弁として説明したが、これに限らず、例えば手動式の切換弁であっても構わない。   Furthermore, in the first and second embodiments, the switching valves 6, 6 'and 9 have been described as electromagnetic valves. However, the present invention is not limited to this. For example, manual switching valves may be used.

1 駆動機構
2 油圧ポンプ(ポンプ)
3 主管
4 油圧被供給回路
5 分岐管
6 電磁切換弁(切換弁)
7 増圧装置
8 アキュムレータ(蓄圧装置)
10 タンク
12 逆止弁
13 切換管
14 逆止弁
15 高圧管
17 逆止弁
18 逆止弁
30 切換管
32 切換管
71 油室(開放室)
72 油室(駆動室)
73 ケース
74 油室(連通室)
75 ピストン
71’ 油室(連通室)
74’ 油室(開放室)
76 付勢手段
101 駆動機構
102 油圧ポンプ
104 油圧被供給回路
105 分岐管
106 切換弁
108 蓄圧装置
110 タンク
131 吸引管
170 増圧装置
171 油室
172 油室
173 ケース
174 油室
175 ピストン
1 Drive mechanism 2 Hydraulic pump (pump)
3 Main pipe 4 Hydraulic pressure supplied circuit 5 Branch pipe 6 Solenoid switching valve (switching valve)
7 Pressure booster 8 Accumulator (pressure accumulator)
Reference Signs List 10 tank 12 check valve 13 switching pipe 14 check valve 15 high pressure pipe 17 check valve 18 check valve 30 switching pipe 32 switching pipe 71 oil chamber (open chamber)
72 Oil chamber (drive chamber)
73 case 74 oil chamber (communication chamber)
75 piston 71 'oil chamber (communication chamber)
74 'oil room (open room)
76 urging means 101 drive mechanism 102 hydraulic pump 104 hydraulic pressure supplied circuit 105 branch pipe 106 switching valve 108 pressure accumulator 110 tank 131 suction pipe 170 pressure accumulator 171 oil chamber 172 oil chamber 173 case 174 oil chamber 175 piston

Claims (4)

作動流体を吐出するポンプと、前記ポンプから吐出された作動流体を増圧して吐出可能な増圧装置と、前記増圧装置から吐出された作動流体を蓄圧する蓄圧装置と、前記ポンプに作動流体を供給するためのタンクと、を少なくとも備えた流体圧制御装置であって、
前記増圧装置は、前記ポンプの吐出した作動流体を導入する駆動室と、前記蓄圧装置に連通し前記ポンプの吐出圧力よりも増圧して作動流体を吐出可能な連通室と、作動流体の圧力により少なくとも前記駆動室及び前記連通室の体積を可変に移動するピストンと、前記ピストンの移動に関わらず常時、前記タンクに連通して圧力開放する開放室と、を有し、
前記ポンプと前記増圧装置との間に、作動流体の流路を前記駆動室または前記連通室に切換可能な切換弁を有することを特徴とする流体圧制御装置。
A pump for discharging a working fluid, a pressure booster capable of increasing the pressure by discharging the working fluid discharged from the pump , an accumulator for storing pressure the working fluid discharged from the pressure booster, and a working fluid for the pump A fluid pressure control device comprising at least a tank for supplying
The pressure booster includes a drive chamber for introducing a working fluid discharged by the pump, a communication chamber in communication with the pressure accumulator and capable of discharging a working fluid by increasing the discharge pressure of the pump, and a pressure of the working fluid A piston for variably moving the volumes of the drive chamber and the communication chamber, and an open chamber for always communicating with the tank and releasing the pressure regardless of the movement of the piston;
A fluid pressure control device comprising a switching valve capable of switching a flow path of working fluid to the drive chamber or the communication chamber between the pump and the pressure increasing device.
前記増圧装置と前記蓄圧装置との間に、前記増圧装置から前記蓄圧装置への作動流体の流れを許容する逆止弁を有することを特徴とする請求項に記載の流体圧制御装置。 The fluid pressure control device according to claim 1 , further comprising a check valve for allowing the flow of the working fluid from the pressure intensifier to the pressure accumulator, between the pressure intensifier and the pressure accumulator. . 前記増圧装置は、前記ピストンを前記駆動室に向け付勢する付勢手段を更に有することを特徴とする請求項1または2に記載の流体圧制御装置。 The fluid pressure control device according to claim 1 or 2 , wherein the pressure intensifying device further includes biasing means for biasing the piston toward the drive chamber. 前記付勢手段は、前記開放室に設けられていることを特徴とする請求項に記載の流体圧制御装置。 The fluid pressure control device according to claim 3 , wherein the biasing means is provided in the open chamber.
JP2015009157A 2015-01-21 2015-01-21 Fluid pressure control device Active JP6509569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009157A JP6509569B2 (en) 2015-01-21 2015-01-21 Fluid pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009157A JP6509569B2 (en) 2015-01-21 2015-01-21 Fluid pressure control device

Publications (2)

Publication Number Publication Date
JP2016133186A JP2016133186A (en) 2016-07-25
JP6509569B2 true JP6509569B2 (en) 2019-05-08

Family

ID=56426066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009157A Active JP6509569B2 (en) 2015-01-21 2015-01-21 Fluid pressure control device

Country Status (1)

Country Link
JP (1) JP6509569B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940721B1 (en) * 1970-09-19 1974-11-05
JPS6119103U (en) * 1984-07-09 1986-02-04 三菱重工業株式会社 Fluid pressure control device
JP2000130401A (en) * 1998-10-29 2000-05-12 Nishiatsu:Kk Hydraulic operation device equipped with accumulator
JP5968695B2 (en) * 2012-06-26 2016-08-10 イーグル工業株式会社 Fluid pressure control device
JP6077342B2 (en) * 2013-03-07 2017-02-08 イーグル工業株式会社 Fluid pressure control device

Also Published As

Publication number Publication date
JP2016133186A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
KR102497763B1 (en) Flow passage switching unit
US9926947B2 (en) Air-to-hydraulic fluid pressure amplifier
CA2476032A1 (en) Hydraulic drive system and method of operating a hydraulic drive system
CN110036210B (en) Supercharging device
US9821784B2 (en) Brake apparatus
US20160230786A1 (en) Hydraulic pressure generation unit with pneumatic actuation
KR102218113B1 (en) Reversible hydraulic pressure converter with tubular valves
JP2018054118A (en) Fluid pressure cylinder
US3787147A (en) Two-stage air-hydraulic booster
JP2014532843A (en) Hydraulic pressure booster cylinder
CN110030182B (en) Piston pump for conveying pressure medium in a pressure medium circuit
CN116249595A (en) Cleaning device, vehicle, and means for operating a cleaning device
JP6509569B2 (en) Fluid pressure control device
CN106795899B (en) Three-position cylinder and method for controlling three-position cylinder
US9969371B2 (en) Slip-controllable vehicle brake system
CN108909695A (en) The stop device of vehicle
WO2021070828A1 (en) Hydraulic drive device
KR101610303B1 (en) Brake valve operated booster oil
JP6085163B2 (en) Energy-saving hydraulic cylinder device for used paper compression packaging machine
CN108561344B (en) Double-acting reciprocating hydraulic pressure booster
CN102575655A (en) Hydraulic pump device
JP2018528365A (en) Supply limit valve integrated stop / start accumulator
KR100477240B1 (en) Accumulator having auxiliary piston
JP6077342B2 (en) Fluid pressure control device
JP5853938B2 (en) Hydraulic brake device for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6509569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250