JP6486307B2 - 能動型防振装置 - Google Patents

能動型防振装置 Download PDF

Info

Publication number
JP6486307B2
JP6486307B2 JP2016189100A JP2016189100A JP6486307B2 JP 6486307 B2 JP6486307 B2 JP 6486307B2 JP 2016189100 A JP2016189100 A JP 2016189100A JP 2016189100 A JP2016189100 A JP 2016189100A JP 6486307 B2 JP6486307 B2 JP 6486307B2
Authority
JP
Japan
Prior art keywords
phase
vibration
control
variable
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189100A
Other languages
English (en)
Other versions
JP2018053982A (ja
Inventor
貴司 山口
貴司 山口
米 竜大
竜大 米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016189100A priority Critical patent/JP6486307B2/ja
Priority to US15/712,606 priority patent/US10421348B2/en
Priority to CN201710884120.6A priority patent/CN107869549B/zh
Publication of JP2018053982A publication Critical patent/JP2018053982A/ja
Application granted granted Critical
Publication of JP6486307B2 publication Critical patent/JP6486307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1283Adjustable supports, e.g. the mounting or the characteristics being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0233Clutch engagement state, e.g. engaged or disengaged of torque converter lock-up clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/024Clutch engagement state of torque converter lock-up clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements

Description

本発明は、車両に搭載される多気筒の内燃機関と車体との間に介在するエンジンマウントを備え、エンジンマウントのアクチュエータが発生させる能動的振動により内燃機関側から車体側への振動伝達を抑制する能動型防振装置に関する。
内燃機関(以下「エンジン」ともいう。)で発生する振動は車体(サブフレーム及び/又はメインフレーム)を経て車室に伝搬する。エンジンから車室に伝搬する振動の経路としては、大きくは、エンジンからエンジンマウントを経て車体に伝搬する経路(以下「マウント系経路」という。)と、エンジンの出力軸からサスペンション等を経て車体へ伝搬する経路(以下「駆動系経路」という。)がある。
車両にはマウント系経路を伝搬する振動を抑制するために防振装置が設けられる。防振装置としては、液体を封入した液室を備える液封マウントや、液封マウントとアクチュエータとを一体にしたアクティブコントロールマウント(以下「ACM」という。)等が公知である。本明細書では、ACMやその制御装置(ACM−ECU)等、防振に関わる機器をまとめて能動型防振装置という。
特許文献1には、ACMの上部がエンジンに固定され、ACMの下部がロードセンサを介してフレームに固定される装置が示される。この装置は、エンジンの振動によって生ずる荷重をロードセンサで検出し、検出された荷重を相殺するようにACMを制御することで防振効果を得る。
特開平09−273589号公報
従来は、マウント系経路を伝搬する振動を能動型防振装置で抑制している。一方、駆動系経路を伝搬する振動はロックアップクラッチの締結率を、例えば96〜97%程度に下げることにより抑制している。しかし、この方法によると、エンジンの動力の伝達効率が低下する虞がある。
本発明はこのような課題を考慮してなされたものであり、エンジンの動力の伝達効率を低下させることなく、駆動系経路を伝搬する振動を好適に抑制できる能動型防振装置を提供することを目的とする。
第1発明は、車両に搭載される多気筒の内燃機関と車体との間に介在するエンジンマウントを備え、前記エンジンマウントのアクチュエータが発生させる能動的振動により前記内燃機関側から前記車体側への振動伝達を抑制する能動型防振装置であって、前記内燃機関の回転情報に基づいて前記アクチュエータが発生させる前記能動的振動を制御する振動制御部を備え、前記振動制御部は、前記車両に搭載されるロックアップクラッチの締結率を検知する締結率検知部を有し、前記アクチュエータが発生させる前記能動的振動の振幅を前記回転情報に応じて可変制御すると共に前記アクチュエータが発生させる前記能動的振動の位相を固定制御する振幅可変・位相固定制御を実行し、前記締結率検知部により検知される前記締結率が所定締結率以上である場合には、前記アクチュエータが発生させる前記能動的振動の振幅と位相を前記回転情報に応じて可変制御する振幅可変・位相可変制御を実行することを特徴とする。
第1発明においては、振幅可変・位相固定制御を実行しつつ、ロックアップクラッチの締結率が所定締結率以上である場合に振幅可変・位相可変制御を実行する。ロックアップクラッチの締結率が大きくなるほど、駆動系経路を伝搬する振動は大きくなる。このため、ロックアップクラッチの締結率が所定締結率以上であるときに、制振効果が大きい振幅可変・位相可変制御を実行することにより、内燃機関から車室に伝搬する振動を好適に抑制できる。
能動型防振装置が、前記ロックアップクラッチの前記締結率を前記車両の走行速度又は加速度に応じて制御するロックアップクラッチ制御部を有し、前記締結率検知部は、前記ロックアップクラッチ制御部から前記締結率の情報を取得してもよい。このようにすれば、車両の走行速度又は加速度に応じてロックアップクラッチの締結率を変化させることができ、更に、ロックアップクラッチの締結率に応じて振幅可変・位相固定制御と振幅可変・位相可変制御とを切り替えることがきる。
前記振動制御部は、前記内燃機関の前記回転情報に基づいて前記内燃機関の振動値を推定する振動推定部を有し、前記振動推定部により推定される前記振動値が所定振動値以上の場合には、前記振幅可変・位相可変制御を禁止してもよい。
内燃機関の振動が大きすぎると、振幅可変・位相可変制御を行っても内燃機関から車室に伝搬する振動を好適に抑制できない場合がある。このとき、振幅可変・位相可変制御を禁止することで、演算処理の負荷を低減できる。また、防振に寄与しない電力の供給を停止するため、アクチュエータの消費電力を低減できる。
前記振動制御部は、前記振幅可変・位相固定制御から前記振幅可変・位相可変制御への切り替えに要する第1時間間隔を、前記振幅可変・位相可変制御から前記振幅可変・位相固定制御への切り替えに要する第2時間間隔よりも長くしてもよい。
振幅可変・位相固定制御と振幅可変・位相可変制御とを比較すると、振幅可変・位相固定制御の方が安定している。このような場合、振幅可変・位相固定制御から振幅可変・位相可変制御への切り替えを素早く行うと、制御が不安定になる虞がある。このため、第1時間間隔を第2時間間隔よりも長くし、制御を徐々に切り替えることにより、制御が不安定になることを抑制できる。また、第2時間間隔を第1時間間隔よりも短くすることにより、制御を素早く切り替えることができる。
前記振動制御部は、前記内燃機関によって駆動される補機類の少なくとも1つの故障を検知する故障検知部を有し、前記故障検知部により前記補機類の故障が検知された場合に、前記振幅可変・位相可変制御を禁止してもよい。
内燃機関によって駆動される補機類が故障すると、振動特性が変わることがある。振動特性が変わった場合に振幅可変・位相可変制御を実行すると却って振動が大きくなる虞がある。このとき、振幅可変・位相可変制御を禁止することで、振動が大きくなることを防止できる。
前記振動制御部は、前記アクチュエータの故障を検知する故障検知部を有し、前記故障検知部により前記アクチュエータの故障が検知された場合に、前記振幅可変・位相可変制御を禁止してもよい。
エンジンマウントのアクチュエータが故障している場合、振幅可変・位相可変制御は実行できない。このとき、振幅可変・位相可変制御を禁止することにより、振幅可変・位相可変制御のための演算処理等を実行する必要がなくなる。このため、演算処理の負荷を低減できる。また、防振に寄与しない電力の供給を停止するため、アクチュエータの消費電力を低減できる。
第2発明は、車両に搭載される多気筒の内燃機関と車体との間に介在する第1及び第2エンジンマウントを備え、前記第1エンジンマウントの第1アクチュエータ及び前記第2エンジンマウントの第2アクチュエータが発生させる能動的振動により前記内燃機関側から前記車体側への振動伝達を抑制する能動型防振装置であって、前記内燃機関の回転情報に基づいて前記第1アクチュエータ及び前記第2アクチュエータが発生させる前記能動的振動を制御する振動制御部を備え、前記振動制御部は、前記車両に搭載されるロックアップクラッチの締結率を検知する締結率検知部を有し、前記第1アクチュエータが発生させる前記能動的振動の第1振幅と前記第2アクチュエータが発生させる前記能動的振動の第2振幅のそれぞれを前記回転情報に応じて可変制御すると共に前記第1アクチュエータが発生させる前記能動的振動の第1位相と前記第2アクチュエータが発生させる前記能動的振動の第2位相のそれぞれを固定制御する振幅可変・位相固定制御を実行し、前記締結率検知部により検知される前記締結率が所定締結率以上である場合には、前記第1アクチュエータが発生させる前記能動的振動の第1振幅及び第1位相と前記第2アクチュエータが発生させる前記能動的振動の第2振幅及び第2位相のそれぞれを前記回転情報に応じて可変制御する振幅可変・位相可変制御を実行することを特徴とする。第2発明によれば、2つのエンジンマウントを協調させるため、第1発明よりも高精度に振動を抑制できる。
本発明によれば、ロックアップクラッチの締結率が所定締結率以上であるときに、制振効果が大きい振幅可変・位相可変制御を実行することにより、内燃機関から車室に伝搬する振動を好適に抑制できる。
図1は第1実施形態に係る能動型防振装置を備える車両の構成図である。 図2は第1実施形態に係る能動型防振装置の機能ブロック図である。 図3は第1実施形態で使用されるACM−ECUの制御ブロック図である。 図4AはTDCパルスとCRKパルスの波形図であり、図4Bはエンジンの振動の波形図であり、図4CはACMのソレノイドに対して通電する電流の波形図である。 図5Aは電流波形マップを示す図であり、図5Bは補正マップを示す図である。 図6は第1実施形態で実行する処理のフローチャートである。 図7は第1実施形態で実行する禁止判定処理のフローチャートである。 図8Aは位相固定制御の作用効果を説明するためのベクトル図であり、図8Bは位相可変制御の作用効果を説明するためのベクトル図である。 図9は第2実施形態に係る能動型防振装置の機能ブロック図である。 図10は第2実施形態で使用されるACM−ECUの制御ブロック図である。 図11は第2実施形態で実行する処理のフローチャートである。 図12は第2実施形態で実行する禁止判定処理のフローチャートである。
以下、本発明に係る能動型防振装置について、好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
[1 第1実施形態]
[1.1 車両10]
図1を用いて車両10について説明する。車両10は、エンジン12から車体14(サブフレーム14S及び/又はメインフレーム14M)を介して車室10aに伝搬する振動を抑制する能動型防振装置16を備える。車両10は、走行用の駆動源としてエンジン12を搭載するエンジン車両、又は、エンジン12及び電動モータ(図示せず)を含むハイブリッドパワープラントを搭載するハイブリッド車両である。
エンジン12は、全気筒運転状態と気筒休止運転状態の切り替えが可能な多気筒の内燃機関である。エンジン12は、複数のACM18を介してサブフレーム14Sの上に固定される。本実施形態では、エンジン12の前部にフロント側ACM18F(以下「ACM−Fr18F」ともいう。)が配置され、エンジン12の後部にリア側ACM18R(以下「ACM−Rr18R」ともいう。)が配置される。なお、複数のACM18が設けられるのではなく、1つのACM18が設けられてもよい。また、ACM18以外に他のマウントが設けられてもよい。ACM18等のマウント系の機構と車体14によりマウント系経路が形成される。マウント系経路にはエンジン12の振動Vmが伝搬する。
エンジン12は、燃料制御装置20から供給される燃料を燃焼させて出力軸22を回転させる。出力軸22は、ロックアップクラッチ26(以下「LC26」ともいう。)を有するトルクコンバータ24、変速機28、駆動軸(図示せず)を介して駆動輪(図示せず)に連結される。LC26の締結率Lr、及び、変速機28のギア段は、油圧制御装置30から供給される圧油に応じて変化する。駆動輪と車体14の間にはサスペンション(図示せず)が介在する。出力軸22からサスペンションまでの駆動系の機構と車体14により駆動系経路が形成される。駆動系経路にはエンジン12の振動Vdが伝搬する。
[1.2 能動型防振装置16の構成]
図2を用いて能動型防振装置16の構成について説明する。能動型防振装置16は、ACM18と、TDCセンサ34と、CRKセンサ36と、フューエルインジェクションECU38(以下「FI−ECU38」という。)と、ACM−ECU40と、トランスミッションECU(以下「TM−ECU」という。)50を有する。
ACM18は、上述したようにACM−Fr18FとACM−Rr18Rとからなる。ACM18には公知のもの、例えば特開2007−107579号公報等で開示されたものを使用可能である。ACM18は、液室とリニア式のアクチュエータ(共に図示せず)を有する。アクチュエータは、固定子と可動子とソレノイドを有する。可動子は、ACM−ECU40から出力される駆動信号に応じて振動する。本明細書では、ACM18のアクチュエータが発生させる振動を能動的振動という。能動的振動の振幅、周期及び位相はエンジン12の周期的な振動に応じて調整される。
ACM−ECU40は、マイクロコンピュータを含む計算機であり、A/D変換器やD/A変換器や各種回路等を備える入出力部42と、CPUを備える処理部44と、フラッシュメモリやEEPROM及びSRAM等を備える記憶部46を有する。処理部44は、CPUが各種プログラムを実行し、下記[1.3]で説明する各機能を実現する。ACM−ECU40は1つのECUで構成されてもよいし、複数のECUで構成されてもよい。
TDCセンサ34は、エンジン12のピストン(図示せず)が上死点に来たこと(上死点タイミング)を検知し、検知毎にTDCパルスを生成してFI−ECU38に出力する。各気筒が作動している場合、TDCパルスの間隔は、エンジン12の各気筒が上死点に位置する間隔、すなわち、爆発工程の間隔を示す。CRKセンサ36は、エンジン12のクランクシャフト(図示せず)が所定角度(クランクアングル)だけ回転したことを検知し、検知毎に回転CRKパルスを生成してFI−ECU38に出力する。なお、TDCパルス及びCRKパルスがACM−ECU40に直接出力されてもよい。
FI−ECU38は、ACM−ECU40と同様の構成を有する。FI−ECU38は、TDCパルス及びCRKパルスの他にアクセルペダル操作量等を入力し、燃料制御装置20に対して燃料噴射指令を出力する。また、FI−ECU38は、ACM−ECU40に対してTDCパルス及びCRKパルスを出力すると共に、エンジン12の運転状態の切り替わりを示す気筒切替信号を出力する。
TM−ECU50は、ACM−ECU40と同様の構成を有する。TM−ECU50は、シフトセンサで検出されるシフトレバー(いずれも図示せず)のシフトレンジ、車速センサ52で検出される車両10の走行速度(以下「車速」という。)、加速度センサ54で検出される車両10の加速度等を入力する。そして、油圧制御装置30に対してシフトレンジと、車速及び/又は加速度に基づいて目標とする締結率Lr及びギア段を求め、締結率指令及び変速指令を出力する。また、TM−ECU50は、ACM−ECU40に対して締結率指令の指令値(締結率)を締結率信号として出力する。
[1.3 ACM−ECU40が実行する制御]
図3を用いてACM−ECU40が実行する制御について説明する。ACM−ECU40は、処理部44によりACM18に通電する電流を求め、入出力部42によりACM18に駆動信号を出力する。処理部44は、外乱84を考慮したフィードフォワード制御を実行し、ACM18に通電する電流を求める。ACM18に通電する電流は、エンジン12の振動を車両10の所定位置で相殺する波形情報(後述の電流波形マップ68M及び補正マップ70M)として予め記憶部46に記憶されている。処理部44は、図3で示される各機能(パルス読み取り機能56〜ソレノイドデューティ制御機能76)を有する。
パルス読み取り機能56において、FI−ECU38から出力されるTDCパルス及びCRKパルスを読み取る(図4A参照)。ENG振動パターン判定機能58において、FI−ECU38から出力される気筒切替信号に基づいてエンジン12の運転状態が全気筒運転状態と気筒休止運転状態のいずれであるかを判定する。LC締結率検知機能60において、TM−ECU50から出力される締結率信号に基づいてLC26の締結率Lrを検知する。
回転情報算出機能62において、パルス読み取り機能56で読み取られたTDCパルス及びCRKパルスに基づいてエンジン12の回転情報を算出する。ここでは、エンジン12の回転情報として周期MEと回転トルクTRを算出する。なお、周期MEに代えて周波数を算出してもよい。本明細書において、周期MEを回転数NEと読み換えることも可能である。周期MEは単位時間当たりのTDCパルス数又はCRKパルス数に基づいて求められる。一方、回転トルクTRは、次のようにして求められる。先ず、CRKパルスの間隔を算出する。次に、所定のクランクアングルをCRKパルスの間隔で除算してクランク角速度を算出し、クランク角速度を時間微分してクランク角加速度を算出する。そして、エンジン12のクランクシャフト回りの所定のイナーシャとクランク角加速度とを乗算することによりクランクシャフト回りの回転トルクTRを算出する。
ENG振動推定機能64において、エンジン12の振動推定値を算出する。ここでは、エンジン12の振動の大きさVAPP(Vibration Amplitude Peak to Peak)を算出する。以下では、エンジン12の振動の大きさVAPPを「振動値VAPP」という。振動値VAPPは、例えば回転トルクTRから求められる。具体的には、時間的に隣接する回転トルクTRの最大値と最小値を判定し、その差を算出する。この差はエンジン12が発生する振動の振幅とみなされる。この振幅をエンジン12の振動値VAPPとする。なお、図4Bで示されるように、エンジン12の振動は波形で表されるため、振動の位相Pも求められる。例えば、任意のTDCパルスPrの立ち上がり又は立ち下がりのタイミングを基準とし、振動値VAPPが最小値となるタイミングまでのずれを位相Pとする。
なお、振動値VAPPは、例えばCRKパルスから求めることも可能である。具体的には、先ず、1つのTDCパルス内で計測される複数のCRKパルスを、横軸を経過時間、縦軸を各CRKパルス間で計測される時間の累積値としての累積時間(CRKパルス間時間累積値)とする座標にプロットする。次に、このプロットにおいて、1つのTDCパルス内で計測される複数のCRKパルスの始値と終値を結ぶ直線(平均CRKパルス間時間累積)を算出する。そして、直線(平均CRKパルス間時間累積)に対する累積時間の偏差を算出する。この偏差は、1つのTDCパルス内で計測される複数のCRKパルスの個数と同数のデータからなる。最後に、この偏差の最大値と最小値の差を振動値VAPPとする。
上述したように、本実施形態では、エンジン12の回転情報として周期MEと回転トルクTRを算出する。しかし、振動値VAPPは回転トルクTRの特徴を備えることに鑑み、エンジン12の回転情報として周期MEと振動値VAPPを算出してもよい。
制御選択機能66において、ENG振動パターン判定機能58で判定されたエンジン12の運転状態と、ENG振動推定機能64で算出された振動値VAPPに基づいてACM18の制御を選択する。具体的には、振幅可変・位相固定制御と振幅可変・位相可変制御のいずれかを選択する。
振幅可変・位相固定制御というのは、ACM18のアクチュエータが発生させる能動的振動の振幅を、エンジン12の回転情報(周期ME、回転トルクTR(振動値VAPP))に応じて可変制御すると共に、アクチュエータが発生させる能動的振動の位相を、エンジン12の振動値VAPPに関わらず固定制御(保持)することをいう。また、振幅可変・位相可変制御というのは、ACM18のアクチュエータが発生させる能動的振動の振幅と位相を、エンジン12の回転情報(周期ME、回転トルクTR(振動値VAPP))に応じて可変制御することをいう。以下では、説明の便宜のために、振幅可変・位相固定制御を単に「位相固定制御」とも称し、振幅可変・位相可変制御を単に「位相可変制御」とも称する。
制御選択機能66において、エンジン12の運転状態が全気筒運転状態である場合には位相固定制御を選択し、気筒休止運転状態である場合には位相可変制御を選択する。また、LC26の締結率Lrが所定締結率Lr_th未満である場合には位相固定制御を選択し、LC26の締結率Lrが所定締結率Lr_th以上である場合には位相可変制御を選択する。振動値VAPPが所定振動値VAPP_th以上である場合には、位相可変制御を禁止する。
電流算出機能68において、エンジン12の回転情報に基づいてACM18に通電する電流の波形を求める。電流算出機能68の処理は、制御選択機能66で位相固定制御と位相可変制御のどちらが選択されても行われる。以下で電流算出機能68において行われる処理の一例を説明する。
記憶部46(図2参照)には、ACM18の電流波形情報とエンジン12の回転情報とを対応付ける電流波形マップ68M(図5A参照)が記憶される。電流波形情報というのは、車両10内の第1位置を制振するためにACM18に通電する電流の情報であり、振幅A、周期T及び位相Pの情報を含む。この電流波形は、ACM18が発生させる振動の波形に相当する。第1位置というのは、位相固定制御を行う場合の評価点に相当する。本実施形態では、第1位置をACM18とサブフレーム14Sとの連結点にする。電流波形情報に含まれる位相Pというのは、エンジン12の振動波形を基準とした場合の位相である。
電流波形マップ68Mは、ACM18毎に設定される。個別の電流波形マップ68Mには、第1位置におけるエンジン12の振動を各ACM18の協調制御によって抑制するための電流波形情報が、エンジン12の回転情報に対応付けて設定される。なお、1つの電流波形マップ68Mの各アドレスに各ACM18の電流波形情報がまとめて設定されていてもよい。
図5Aで示される電流波形マップ68Mは、周期ME(横軸)と振動値VAPP(縦軸)とで特定されるアドレスに電流波形情報を紐付けている。例えば、図5Aで示されるように、ME=a1、VAPP=b1で特定されるアドレスXには(振幅A1、周期T1、位相P1)という電流波形情報が紐付けられている。また、ME=a1、VAPP=b2で特定されるアドレスYには(振幅A2、周期T2、位相P1)という電流波形情報が紐付けられている。また、ME=a2、VAPP=b1で特定されるアドレスZには(振幅A3、周期T3、位相P3)という電流波形情報が紐付けられている。
このように、電流波形マップ68Mには、電流波形の振幅A及び周期Tとして、周期ME及び振動値VAPPに対応する個別の値が設定される。また、電流波形の位相Pとして、周期MEに対応する一方で振動値VAPPに依存しない値が設定される。このため、周期MEが変化せずに振動値VAPPが変化する状況では、電流波形マップ68Mにより求められる振幅A及び周期Tは異なる値となり、位相Pは同じ値となる。
補正値算出機能70において、エンジン12の回転情報に基づいてACM18に通電する電流の波形の補正値を求める。補正値算出機能70の処理は、制御選択機能66で位相可変制御が選択され、且つ、位相可変制御が禁止されていない場合に行われる。以下で補正値算出機能70において行われる処理の一例を説明する。
記憶部46(図2参照)には、ACM18の電流波形情報の補正情報とエンジン12の回転情報とを対応付ける補正マップ70M(図5B参照)が記憶される。補正情報というのは、車両10内の第2位置を制振するためにACM18に通電する電流の補正値の情報であり、振幅A及び位相Pの情報を含む。第2位置というのは、位相可変制御を行う場合の評価点に相当する。本実施形態では、第2位置をサブフレーム14Sとメインフレーム14Mとの連結点、又は、サスペンションとメインフレーム14Mとの連結点にする。なお、第1位置と第2位置は同じでもよい。
補正マップ70Mは、ACM18毎に設定される。個別の補正マップ70Mには、第2位置におけるエンジン12の振動を各ACM18の協調制御によって抑制するための補正情報が、エンジン12の回転情報に対応付けて設定される。なお、1つの補正マップ70Mの各アドレスに各ACM18の補正情報がまとめて設定されていてもよい。
図5Bで示される補正マップ70Mは、周期ME(横軸)と振動値VAPP(縦軸)とで特定されるアドレスに補正情報を紐付けている。例えば、図5Bで示されるように、ME=a1、VAPP=b1で特定されるアドレスXには(振幅A1´、位相P1´)の補正情報が紐付けられる。また、ME=a1、VAPP=b2で特定されるアドレスYには(振幅A2´、位相P2´)の補正情報が紐付けられる。また、ME=a2、VAPP=b1で特定されるアドレスZには(振幅A3´、P3´)の補正情報が紐付けられる。
このように、補正マップ70Mには、振幅A及び位相Pの補正値として、周期ME及び振動値VAPPに対応する個別の値が設定される。このため、周期ME及び/又は振動値VAPPが変化する状況では、補正マップ70Mにより求められる振幅Aの補正値及び位相Pの補正値は異なる値となる。
加算機能72において、電流算出機能68で求められたACM18の電流の振幅A及び位相Pに、補正値算出機能70で求められた振幅A及び位相Pの補正値を加算する。制御選択機能66で位相固定制御が選択された場合、補正値算出機能70により補正情報が出力されないため、加算機能72からは電流算出機能68の電流波形情報がそのまま出力される。つまり、位相固定制御を実行することができる。一方、制御選択機能66で位相可変制御が選択された場合、補正値算出機能70により補正情報が出力されるため、加算機能72からは電流算出機能68の電流波形情報が補正値算出機能70の補正情報で補正されて出力される。つまり、位相可変制御を実行することができる。
目標電流決定機能74において、加算機能72で算出された電流波形情報の振幅A、周期T及び位相PをACM18のソレノイドに対して通電する電流の振幅A、周期T及び位相Pの目標値として決定する(図4C参照)。
ソレノイドデューティ制御機能76において、目標電流決定機能74で決定された電流の振幅A、周期T及び位相Pに基づいてソレノイドに対して通電する電流を実現するためのデューティ比を求める。この際、電流検出回路80により検出されるACM18の実電流に基づいてフィードバック制御、例えばPID制御を行う。
入出力部42に含まれるソレノイド駆動回路88は、電源86に接続されており、ソレノイドデューティ制御機能76で求められたデューティ比に基づいてACM18に対して駆動信号を出力する。
[1.4 ACM−ECU40の処理フロー]
図6を用いてACM−ECU40が実行する一連の処理について説明する。図6は、図3で示される一連の制御ブロックを処理フローにして示すものである。ACM−ECU40は、以下で説明する処理を極短い時間間隔で繰り返し実行する。
ステップS1において、各種情報、ここではTDCパルス、CRKパルス、気筒切替信号、締結率信号等を取得する。ステップS2において、TDCパルス及びCRKパルスに基づいてエンジン12の回転情報(周期ME及び回転トルクTR)を算出する。
ステップS3において、エンジン12の振動を推定する。本実施形態では振動値VAPPを算出する。ステップS4において、禁止判定処理(図7参照)を行う。ここでは、位相可変制御を禁止するか否かを判定する。禁止判定処理に関しては後述する。
ステップS5において、エンジン12の運転状態、及び、LC26の締結率Lrを判定する。全気筒運転状態且つLC26の締結率Lrが所定締結率Lr_th未満である場合(ステップS5:全気筒且つ<)、処理はステップS7に移行する。一方、気筒休止運転状態又はLC26の締結率Lrが所定締結率Lr_th以上である場合(ステップS5:気筒休止又は≧)、処理はステップS6に移行する。
ステップS5からステップS6に移行した場合、位相可変制御が禁止されているか否かを判定する。上記[1.3]で説明したように、制御選択機能66により、振動値VAPPが所定振動値VAPP_th以上であると判定される場合、位相可変制御は禁止される。位相可変制御が禁止されている場合(ステップS6:YES)、処理はステップS7に移行する。一方、位相可変制御が禁止されていない場合(ステップS6:NO)、処理はステップS8に移行する。
ステップS5又はステップS6からステップS7に移行した場合、位相固定制御を実行する。ここでは、ステップS2で算出した周期MEと、ステップS3で算出した振動値VAPPに基づいてACM18に通電する電流の波形(振幅A、周期T及び位相P)を決定する。具体的には、上記[1.3]で説明したように、図5Aで示される電流波形マップ68Mを用いて電流の波形(振幅A、周期T及び位相P)を求める。電流波形マップ68Mによれば、エンジン12の周期MEが変わらない限り、演算毎に同じ位相Pが求められる。すなわち位相Pは固定(保持)される。
ステップS6からステップS8に移行した場合、位相可変制御を実行する。ここでは、ステップS2で算出した周期MEと、ステップS3で算出した振動値VAPPに基づいてACM18に通電する電流の波形(振幅A、周期T及び位相P)を決定する。具体的には、上記[1.3]で説明したように、図5Aで示される電流波形マップ68Mを用いて電流の波形(振幅A、周期T及び位相P)を求め、更に、図5Bで示される補正マップ70Mを用いて補正値(振幅A及び位相P)を求める。そして、電流の波形を補正値で補正する。
ステップS9において、ステップS7又はステップS8で求められた電流波形に基づいて目標電流を決定する。ステップS10において、ステップS9で決定された目標電流に基づいてACM18を駆動する。
[1.5 禁止判定処理]
図7を用いて禁止判定処理(図6のステップS4)について説明する。ステップS11において、図6のステップS3で算出した振動値VAPPと記憶部46に記憶される所定振動値VAPP_thとを比較する。振動値VAPPが所定振動値VAPP_th未満である場合(ステップS11:<)、処理はステップS12に移行する。そして、ステップS12において、位相可変制御を許可する。一方、振動値VAPPが所定振動値VAPP_th以上である場合(ステップS11:≧)、処理はステップS13に移行する。そして、ステップS13において、位相可変制御を禁止する。
[1.6 位相固定制御と位相可変制御の切り替え]
ACM−ECU40の処理部44は、位相固定制御から位相可変制御への切り替えに要する第1時間間隔と、位相可変制御から位相固定制御への切り替えに要する第2時間間隔とを変えている。本実施形態では、第1時間間隔を第2時間間隔よりも長くする。
例えば、制御の切り替え時には、補正値算出機能70において、補正マップ70Mで求められる補正値(振幅A、位相P)に対して0から1の間で変化する係数を乗算する。このとき、位相固定制御から位相可変制御への切り替え時には、時間の経過と共に係数を徐々に大きくし(0から1)、位相可変制御から位相固定制御への切り替え時には、時間の経過と共に係数を徐々に小さくする(1から0)。位相固定制御から位相可変制御への切り替え時に係数の変化率を小さくし、位相可変制御から位相固定制御への切り替え時に係数の変化率を大きくすることにより、第1時間間隔を第2時間間隔よりも長くすることができる。
位相固定制御と位相可変制御とを比較すると、位相固定制御の方が安定している。このような場合、位相固定制御から位相可変制御への切り替えを素早く行うと、制御が不安定になる虞がある。このため、第1時間間隔を第2時間間隔よりも長くして制御を徐々に切り替えることにより、制御が不安定になることを抑制できる。また、第2時間間隔を第1時間間隔よりも短くすることにより、制御を素早く切り替えることができる。
[1.7 位相固定制御、位相可変制御の作用効果]
図8A、図8Bを用いて能動型防振装置16の作用効果について説明する。図8A、図8Bは、車両10内に設定された評価点に伝搬する各振動成分の大きさと位相とを示すベクトル図である。本実施形態では、評価点を、上述した第2位置、すなわちサブフレーム14Sとメインフレーム14Mとの連結点、又は、サスペンションとメインフレーム14Mとの連結にしている。図8A、図8Bにおいて、ベクトルの長さは各振動により発生する駆動力の大きさ(単位[m/s2])を示し、ベクトルの角度(横軸正方向を基準にした正方向すなわち図中左回りの回転角度)はエンジン12の振動を基準にした場合の位相を示す。また、図8A、図8Bにおいて、円状の許容範囲90は、許容できる駆動力の範囲を示す。
図8Aを用いてエンジン12の運転状態が全気筒運転状態であり且つLC26の締結率Lrが100%でない場合(約96〜97%)に実行される位相固定制御の作用効果について説明する。全気筒運転状態であり且つLC26の締結率Lrが100%でない場合、評価点には、駆動系経路を介してエンジン12の振動Vd1が伝搬し、マウント系経路を介してエンジン12の振動Vm1が伝搬する。図8Aの点92で示されるように、振動Vd1と振動Vm1により、評価点における振動の駆動力は許容範囲90外となる。
電流波形マップ68M(図5A参照)を使用する位相固定制御が実行されると、評価点には、マウント系経路を介してACM−Fr18Fの振動Vf1とACM−Rr18Rの振動Vr1が伝搬する。このとき、振動Vf1及び振動Vr1の位相は、エンジン12の振動を基準にして一定となるように制御される。ここでは、振動Vr1の位相よりも振動Vf1の位相が90度程度遅れるように制御される。図8Aの点94で示されるように、振動Vf1と振動Vr1の合成振動Vfr1により、エンジン12から伝搬する振動が相殺され、評価点における振動の大きさを許容範囲90内にすることができる。
図8Bを用いてエンジン12の運転状態が気筒休止運転状態であり且つLC26の締結率Lrが約100%である場合に実行される位相可変制御の作用効果について説明する。エンジン12の周期MEが一定のまま、全気筒運転状態から気筒休止運転状態に切り替わり、更にLC26の締結率Lrが100%になったとする。このとき、評価点には、駆動系経路を介してエンジン12の振動Vd2が伝搬し、マウント系経路を介してエンジン12の振動Vm2が伝搬する。振動Vd2は、図8Aで示される振動Vd1と、気筒休止運転状態により増大する振動Vdin1と、LC26の締結率Lrが100%になることにより増大する振動Vdin2が合成されたものである。また、振動Vm2は、図8Aで示される振動Vm1に、気筒休止運転状態により増大する振動Vminが合成されたものである。図8Bの点96で示されるように、振動Vd2と振動Vm2により、評価点における振動の大きさは許容範囲90外となる。このとき発生する振動は、全気筒運転状態のときに発生する振動(点92)よりも大きくなる。
電流波形マップ68M(図5A参照)及び補正マップ70M(図5B参照)を使用する位相可変制御が実行されると、評価点には、マウント系経路を介してACM−Fr18Fの振動Vf2とACM−Rr18Rの振動Vr2が伝搬する。振動Vf2は、図8Aで示される振動Vf1と比較して、駆動力が大きく且つ位相が位相角θ1[deg]だけ遅れる方向(図中右回り)に変化している。また、振動Vr2は、図8Aで示される振動Vr1と比較して、駆動力が大きく且つ位相が位相角θ2[deg]だけ進む方向(図中左回り)に変化している。
本実施形態では位相可変制御を行い、ACM−Fr18FとACM−Rr18Rに通電される電流を制御し、振動Vf2の位相と振動Vr2の位相を互いに逆方向(進む方向と遅れる方向)に変化させる。すると、振動Vf2と振動Vr2の合成ベクトルは大きくなる。つまり、位相可変制御によれば、ACM18の駆動により評価点に伝搬する振動の駆動力を位相固定制御時よりも大きくすることができる。図8Bの点98で示されるように、振動Vf2と振動Vr2の合成振動Vfr2により、エンジン12から伝搬する振動が相殺され、評価点における振動の大きさを許容範囲90内にすることができる。
図8Bにおいては、振動Vf2の駆動力と振動Vr2の駆動力は略同じであり、且つ、位相角θ1と位相角θ2は略同じである。位相角θ1と位相角θ2を略同じにすることで、合成振動Vfr2の駆動力を大きくすることができる。但し、振動Vf2の駆動力と振動Vr2の駆動力が相違し、又は、位相角θ1と位相角θ2が相違してもよい。要は、評価点における振動の駆動力を点96から許容範囲90内に戻すことができるのであれば、振動Vf2の駆動力と振動Vr2の駆動力、及び、位相角θ1と位相角θ2をどのようしてもよい。
なお、各ACM18に通電する電流を定格値まで増加させれば、各ACM18から出力される振動の振幅を最大にすることができる。その結果、ACM18の駆動により評価点に伝搬する振動の駆動力を最大にすることができる。
[1.8 変形例]
本実施形態の位相可変制御は、電流波形マップ68M(図5A参照)を補正マップ70M(図5B参照)で補正する制御である。これに代えて、位相固定制御と位相可変制御を、それぞれ独立した電流波形マップを用いて実行してもよい。
本実施形態では、各アドレスに電流波形情報(振幅A、周期T、位相P)が紐付けられた電流波形マップ68M(図5A参照)を使用する。これに代えて、各アドレスに個別の情報が紐付けられた複数のマップを使用してもよい。例えば、各アドレスに電流波形の振幅A及び周期Tの情報が紐付けられた電流振幅マップと、各アドレスに電流波形の位相Pの情報が紐付けられた電流位相マップを使用してもよい。また、本実施形態では、各アドレスに電流波形の振幅A及び位相Pの補正情報が紐付けられた補正マップ70M(図5B参照)を使用する。これに代えて、各アドレスに個別の情報が紐付けられた複数のマップを使用してもよい。例えば、各アドレスに電流波形の振幅Aの補正情報が紐付けられた振幅補正マップと、各アドレスに電流波形の位相Pの補正情報が紐付けられた位相補正マップを使用してもよい。
[1.9 第1実施形態のまとめ]
第1実施形態は、車両10に搭載される多気筒のエンジン12(内燃機関)と車体14との間に介在するACM18(エンジンマウント)を備え、ACM18のアクチュエータが発生させる能動的振動によりエンジン12側から車体14側への振動伝達を抑制する能動型防振装置16に関する。能動型防振装置16は、エンジン12の回転情報に基づいてアクチュエータが発生させる能動的振動を制御するACM−ECU40(振動制御部)を備える。ACM−ECU40は、車両10に搭載されるロックアップクラッチ26の締結率Lrを検知するLC締結率検知機能60(締結率検知部)を有する。ACM−ECU40は、アクチュエータが発生させる能動的振動の振幅を回転情報に応じて可変制御すると共にアクチュエータが発生させる能動的振動の位相を固定制御する振幅可変・位相固定制御を実行する。更に、ACM−ECU40は、LC締結率検知機能60により検知される締結率Lrが所定締結率Lr_th以上である場合には、アクチュエータが発生させる能動的振動の振幅と位相を回転情報に応じて可変制御する振幅可変・位相可変制御を実行する。
第1実施形態においては、振幅可変・位相固定制御を実行しつつ、ロックアップクラッチ26の締結率Lrが所定締結率Lr_th以上である場合に振幅可変・位相可変制御を実行する。ロックアップクラッチ26の締結率Lrが大きくなるほど、駆動系経路を伝搬する振動は大きくなる。このため、ロックアップクラッチ26の締結率Lrが所定締結率Lr_th以上であるときに、制振効果が大きい振幅可変・位相可変制御を実行することにより、エンジン12から車室10aに伝搬する振動を好適に抑制できる。
ACM−ECU40は、エンジン12の回転情報に基づいてエンジン12の振動値VAPPを推定するENG振動推定機能64(振動推定部)を有する。ACM−ECU40は、ENG振動推定機能64により推定される振動値VAPPが所定振動値VAPP_th以上の場合には、位相可変制御を禁止する。
エンジン12の振動が大きすぎると、位相可変制御を行ってもエンジン12から車室10aに伝搬する振動を好適に抑制できない場合がある。このとき、位相可変制御を禁止することで、演算処理の負荷を低減できる。また、防振に寄与しない電力の供給を停止するため、アクチュエータの消費電力を低減できる。
[2 第2実施形態]
第2実施形態に係る能動型防振装置116は、第1実施形態に係る能動型防振装置16に更なる機能、すなわち故障検知機能を付加したものである。第2実施形態に関しては、第1実施形態と相違する構成及び機能に関連する説明を中心に行い、第1実施形態と同様の構成及び機能に関する説明を省略する。
[2.1 能動型防振装置116の構成]
図9を用いて第2実施形態に係る能動型防振装置116の構成について説明する。能動型防振装置116は、第1実施形態に係るACM−ECU40に代えてACM−ECU140を有し、更に補機類(図示せず)を制御する補機ECU118を有する。
補機ECU118は、マイクロコンピュータを含む計算機である。補機ECU118は、エンジン12によって駆動される補機類、例えば、冷却装置、インタークーラー(いずれも図示せず)等を制御すると共に、補機類の故障を検知する。
[2.2 ACM−ECU140が実行する制御]
図10で示されるように、ACM−ECU140は、第1実施形態に係るACM−ECU40で実行される各機能に加えて、故障検知機能120を有する。
故障検知機能120において、補機ECU118から出力される故障信号に基づいていずれかの補機類に故障が発生したことを検知する。また、電流検出回路80により検出されるACM18の電流に基づいてACM18のアクチュエータに故障が発生したことを検知する。
制御選択機能66aにおいて、ENG振動パターン判定機能58で判定されたエンジン12の運転状態と、ENG振動推定機能64で算出された振動値VAPPと、故障検知機能120で検知される故障の有無に基づいてACM18の制御を選択する。具体的には、エンジン12の運転状態が全気筒運転状態である場合には位相固定制御を選択し、気筒休止運転状態である場合には位相可変制御を選択する。但し、故障検知機能120で故障が検知される場合、又は、振動値VAPPが所定値以上である場合には、位相可変制御を禁止する。
[2.3 ACM−ECU140の処理フロー]
図11を用いてACM−ECU40が実行する一連の処理について説明する。図11で示されるステップS21〜ステップS23、ステップS25、ステップS26、ステップS28〜ステップS31の処理は、図6で示されるステップS1〜ステップS3、ステップS5、ステップS6〜ステップS10の処理に相当する。第2実施形態の独自の処理は、ステップS24の処理と、ステップS27の処理である。
ステップS25からステップS26に移行した場合、位相可変制御が禁止されているか否かを判定する。上記[2.2]で説明したように、故障検知機能120により、補機類の故障が検知される場合、又は、制御選択機能66aにより、振動値VAPPが所定値以上であると判定される場合、振幅可変・位相可変制御は禁止される。位相可変制御が禁止されている場合(ステップS26:YES)、処理はステップS27に移行する。一方、位相可変制御が禁止されていない場合(ステップS26:NO)、処理はステップS29に移行する。
ステップS25又はステップS26からステップS27に移行した場合、位相固定制御が禁止されているか否かを判定する。上記[2.2]で説明したように、故障検知機能120により、ACM18のアクチュエータの故障が検知される場合、位相固定制御は禁止される。位相固定制御が禁止されている場合(ステップS27:YES)、処理は一旦終了し、改めて一連の処理が実行される。一方、位相固定制御が禁止されていない場合(ステップS27:NO)、処理はステップS28に移行し、位相固定制御が実行される。
[2.4 禁止判定処理]
図12を用いて第2実施形態に係る禁止判定処理(図11のステップS24)について説明する。ステップS41において、ACM18のアクチュエータが故障しているか否かを判定する。故障なしの場合(ステップS41:YES)、処理はステップS42に移行する。一方、故障ありの場合(ステップS41:NO)、処理はステップS44に移行する。そして、ステップS44において、位相固定制御及び位相可変制御を共に禁止する。
ステップS41からステップS42に移行した場合、エンジン12によって駆動される補機類が故障しているか否かを判定する。故障なしの場合(ステップS42:YES)、処理はステップS43に移行する。一方、故障ありの場合(ステップS42:NO)、処理はステップS46に移行する。そして、ステップS46において、位相固定制御を許可する一方で、位相可変制御を禁止する。
ステップS42からステップS43に移行した場合、振動値VAPPと所定振動値VAPP_thとを比較する。振動値VAPPが所定振動値VAPP_th未満である場合(ステップS43:<)、処理はステップS45に移行する。そして、ステップS45において、位相固定制御及び位相可変制御を共に許可する。一方、振動値VAPPが所定振動値VAPP_th以上である場合(ステップS43:≧)、処理はステップS46に移行する。そして、ステップS46において、位相固定制御を許可する一方で、位相可変制御を禁止する。
[2.5 変形例]
ACM−Fr18FとACM−Rr18Rのいずれかの故障が検知された場合に、両方の位相可変制御(及び位相固定制御)を禁止してもよい。
[2.6 第2実施形態のまとめ]
第2実施形態に係る能動型防振装置116は、第1実施形態に係る能動型防振装置16と同等の効果を奏する。更に、第2実施形態のACM−ECU140は、エンジン12によって駆動される補機類の少なくとも1つの故障を検知する故障検知機能120を有する。ACM−ECU140は、故障検知機能120により補機類の故障が検知された場合に、位相可変制御を禁止する。
エンジン12によって駆動される補機類が故障すると、振動特性が変わることがある。振動特性が変わった場合に位相可変制御を実行すると却って振動が大きくなる虞がある。このとき、位相可変制御を禁止することで、振動が大きくなることを防止できる。
ACM−ECU140は、アクチュエータの故障を検知する故障検知機能120を有する。ACM−ECU140は、故障検知機能120によりアクチュエータの故障が検知された場合に、位相可変制御を禁止する。
ACM18のアクチュエータが故障している場合、位相可変制御は実行できない。このとき、位相可変制御を禁止することにより、位相可変制御のための演算処理を実行する必要がなくなる。このため、演算処理の負荷を低減できる。また、防振に寄与しない電力の供給を停止するため、アクチュエータの消費電力を低減できる。
なお、本発明に係る能動型防振装置16、116は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
10…車両 12…エンジン(内燃機関)
14…車体 14M…メインフレーム
14S…サブフレーム 16、116…能動型防振装置
18…ACM(エンジンマウント)
18F…ACM−Fr(第1エンジンマウント)
18R…ACM−Rr(第2エンジンマウント)
40、140…ACM−ECU(振動制御部)
60…LC締結率検知機能(締結率検知部)
64…ENG振動推定機能(振動推定部)
120…故障検知機能(故障検知部)

Claims (7)

  1. 車両に搭載される多気筒の内燃機関と車体との間に介在するエンジンマウントを備え、前記エンジンマウントのアクチュエータが発生させる能動的振動により前記内燃機関側から前記車体側への振動伝達を抑制する能動型防振装置であって、
    前記内燃機関の回転情報に基づいて前記アクチュエータが発生させる前記能動的振動を制御する振動制御部を備え、
    前記振動制御部は、
    前記車両に搭載されるロックアップクラッチの締結率を検知する締結率検知部と、
    前記内燃機関の前記回転情報に基づいて前記内燃機関の振動値を推定する振動推定部と、を有し、
    前記アクチュエータが発生させる前記能動的振動の振幅を前記回転情報に応じて可変制御すると共に前記アクチュエータが発生させる前記能動的振動の位相を固定制御する振幅可変・位相固定制御を実行し、
    前記締結率検知部により検知される前記締結率が所定締結率以上である場合には、前記アクチュエータが発生させる前記能動的振動の振幅と位相を前記回転情報に応じて可変制御する振幅可変・位相可変制御を実行し、
    前記振動推定部により推定される前記振動値が所定振動値以上の場合には、前記振幅可変・位相可変制御を禁止する
    ことを特徴とする能動型防振装置。
  2. 車両に搭載される多気筒の内燃機関と車体との間に介在するエンジンマウントを備え、前記エンジンマウントのアクチュエータが発生させる能動的振動により前記内燃機関側から前記車体側への振動伝達を抑制する能動型防振装置であって、
    前記内燃機関の回転情報に基づいて前記アクチュエータが発生させる前記能動的振動を制御する振動制御部と、
    前記車両を制振するために前記アクチュエータが発生させる振動の波形の情報である電流波形情報と前記回転情報とを対応付ける電流波形マップと、前記車両を制振するために前記電流波形情報を補正する情報である補正情報と前記回転情報とを対応付ける補正マップと、を記憶する記憶部と、を備え、
    前記振動制御部は、
    前記車両に搭載されるロックアップクラッチの締結率を検知する締結率検知部を有し、
    前記アクチュエータが発生させる前記能動的振動の振幅を前記回転情報と前記電流波形マップとに基づいて可変制御すると共に前記アクチュエータが発生させる前記能動的振動の位相を固定制御する振幅可変・位相固定制御を実行し、
    前記締結率検知部により検知される前記締結率が所定締結率以上である場合には、前記アクチュエータが発生させる前記能動的振動の振幅と位相を前記回転情報と前記電流波形マップと前記補正マップとに基づいて可変制御する振幅可変・位相可変制御を実行する
    ことを特徴とする能動型防振装置。
  3. 請求項1または2に記載の能動型防振装置において、
    前記ロックアップクラッチの前記締結率を前記車両の走行速度又は加速度に応じて制御するロックアップクラッチ制御部を有し、
    前記締結率検知部は、前記ロックアップクラッチ制御部から前記締結率の情報を取得する
    ことを特徴とする能動型防振装置。
  4. 請求項1または2に記載の能動型防振装置において、
    前記振動制御部は、
    前記振幅可変・位相固定制御から前記振幅可変・位相可変制御への切り替えに要する第1時間間隔を、前記振幅可変・位相可変制御から前記振幅可変・位相固定制御への切り替えに要する第2時間間隔よりも長くする
    ことを特徴とする能動型防振装置。
  5. 請求項1または2に記載の能動型防振装置において、
    前記振動制御部は、
    前記内燃機関によって駆動される補機類の少なくとも1つの故障を検知する故障検知部を有し、
    前記故障検知部により前記補機類の故障が検知された場合に、前記振幅可変・位相可変制御を禁止する
    ことを特徴とする能動型防振装置。
  6. 請求項1または2に記載の能動型防振装置において、
    前記振動制御部は、
    前記アクチュエータの故障を検知する故障検知部を有し、
    前記故障検知部により前記アクチュエータの故障が検知された場合に、前記振幅可変・位相可変制御を禁止する
    ことを特徴とする能動型防振装置。
  7. 請求項1または2に記載の能動型防振装置において、
    前記エンジンマウントとして、第1及び第2エンジンマウントを備え、
    前記第1エンジンマウントは前記アクチュエータに相当する第1アクチュエータを有し、
    前記第2エンジンマウントは前記アクチュエータに相当する第2アクチュエータを有する
    ことを特徴とする能動型防振装置。
JP2016189100A 2016-09-28 2016-09-28 能動型防振装置 Active JP6486307B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016189100A JP6486307B2 (ja) 2016-09-28 2016-09-28 能動型防振装置
US15/712,606 US10421348B2 (en) 2016-09-28 2017-09-22 Active vibration damping device
CN201710884120.6A CN107869549B (zh) 2016-09-28 2017-09-26 主动型防振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189100A JP6486307B2 (ja) 2016-09-28 2016-09-28 能動型防振装置

Publications (2)

Publication Number Publication Date
JP2018053982A JP2018053982A (ja) 2018-04-05
JP6486307B2 true JP6486307B2 (ja) 2019-03-20

Family

ID=61687855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189100A Active JP6486307B2 (ja) 2016-09-28 2016-09-28 能動型防振装置

Country Status (3)

Country Link
US (1) US10421348B2 (ja)
JP (1) JP6486307B2 (ja)
CN (1) CN107869549B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657193B (zh) * 2018-06-29 2021-04-20 比亚迪股份有限公司 汽车及其主动减振控制方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672159A (ja) * 1992-07-10 1994-03-15 Mazda Motor Corp 車両の振動低減装置
JPH09273589A (ja) 1996-04-05 1997-10-21 Mitsubishi Motors Corp 振動騒音制御装置
JP3593886B2 (ja) * 1998-06-17 2004-11-24 日産自動車株式会社 車両用能動型振動制御装置
JP3803603B2 (ja) * 2001-07-31 2006-08-02 本田技研工業株式会社 能動型防振支持装置のアクチュエータ駆動制御方法
JP4801938B2 (ja) * 2005-06-15 2011-10-26 東海ゴム工業株式会社 能動型防振装置
JP2007107579A (ja) 2005-10-12 2007-04-26 Honda Motor Co Ltd 能動型防振支持装置の制御装置
US20070171992A1 (en) * 2006-01-26 2007-07-26 Broadcom Corporation, A California Corporation Near field RFID system with multiple reader coils
US8473163B2 (en) * 2007-02-02 2013-06-25 Techno-Sciences, Inc. Method of determining impact severity and adaptive impact attenuation
JP5595390B2 (ja) * 2008-07-04 2014-09-24 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学式のトルクコンバータ
CN201288815Y (zh) * 2008-10-24 2009-08-12 唐山爱信齿轮有限责任公司 汽车变速器挂档防锁止装置
JP6071568B2 (ja) * 2013-01-16 2017-02-01 本田技研工業株式会社 車両用制御装置
US9346469B2 (en) * 2014-02-07 2016-05-24 Ford Global Technologies, Llc Method and system for engine and powertrain control
JP6339145B2 (ja) * 2016-09-28 2018-06-06 本田技研工業株式会社 能動型防振装置
JP6446020B2 (ja) * 2016-11-29 2018-12-26 本田技研工業株式会社 能動型防振装置及び能動型防振方法
JP6486318B2 (ja) * 2016-11-29 2019-03-20 本田技研工業株式会社 能動型防振装置及び能動型防振方法

Also Published As

Publication number Publication date
JP2018053982A (ja) 2018-04-05
CN107869549B (zh) 2019-10-29
US10421348B2 (en) 2019-09-24
CN107869549A (zh) 2018-04-03
US20180086195A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP3750626B2 (ja) ハイブリッド車両の制御装置
JP5347702B2 (ja) 車両のバネ上制振制御装置
US8825291B2 (en) Vehicle vibration-damping controlling apparatus
KR102038614B1 (ko) 하이브리드 차량의 제어 장치 및 하이브리드 차량의 제어 방법
JP2013169953A (ja) 電動機制御装置
JP6028492B2 (ja) ハイブリッド車のモータ制御装置
JP6368750B2 (ja) 能動型防振装置
JP2007127097A (ja) エンジンの振動抑制装置
JP7006532B2 (ja) トルク制御装置
JP6339145B2 (ja) 能動型防振装置
CN107867161B (zh) 主动型防振装置
JP6486307B2 (ja) 能動型防振装置
JP6486306B2 (ja) 能動型防振装置
KR101294171B1 (ko) 하이브리드 차량의 진동 제어 방법
US8632097B1 (en) Systems and methods for hand wheel translational vibration attenuation
JP4026630B2 (ja) 車両のモータトルク制御装置
KR101713745B1 (ko) 엔진의 진동 제어 방법
JP5141420B2 (ja) 駆動部支持構造及び駆動支持系の制御方法
JP2015173553A (ja) モータ制御装置
JP4513485B2 (ja) 防振支持装置
JP2009138721A (ja) 車両駆動制御システム
JP4830928B2 (ja) 能動型防振装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150