JP6476906B2 - Cooling structure for vehicle battery pack - Google Patents

Cooling structure for vehicle battery pack Download PDF

Info

Publication number
JP6476906B2
JP6476906B2 JP2015010910A JP2015010910A JP6476906B2 JP 6476906 B2 JP6476906 B2 JP 6476906B2 JP 2015010910 A JP2015010910 A JP 2015010910A JP 2015010910 A JP2015010910 A JP 2015010910A JP 6476906 B2 JP6476906 B2 JP 6476906B2
Authority
JP
Japan
Prior art keywords
cooling
intake duct
battery pack
cooling air
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010910A
Other languages
Japanese (ja)
Other versions
JP2016135621A (en
Inventor
智一 竹内
智一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2015010910A priority Critical patent/JP6476906B2/en
Priority to CN201610022118.3A priority patent/CN105826631B/en
Priority to DE102016200600.2A priority patent/DE102016200600B4/en
Publication of JP2016135621A publication Critical patent/JP2016135621A/en
Application granted granted Critical
Publication of JP6476906B2 publication Critical patent/JP6476906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両用バッテリパックの冷却構造に関し、特に、バッテリパックの内部にバッテリケースと電装部品とを収納する車両用バッテリパックの冷却構造に関する。   The present invention relates to a cooling structure for a vehicle battery pack, and more particularly to a cooling structure for a vehicle battery pack that houses a battery case and electrical components inside the battery pack.

一般に、ハイブリッド自動車や電気自動車等の車両は、走行用モータに電力を供給する大容量のバッテリと、インバータを有する電装部品と、を備えている。バッテリと電装部品は、バッテリパックとして一体化されており、バッテリパックは、バッテリパックのケースの内部に冷却風を流通させることで冷却される。   Generally, a vehicle such as a hybrid vehicle or an electric vehicle includes a large-capacity battery that supplies electric power to a traveling motor and an electrical component having an inverter. The battery and the electrical component are integrated as a battery pack, and the battery pack is cooled by circulating cooling air inside the case of the battery pack.

従来の車両用バッテリパックの冷却構造としては特許文献1に記載のものが知られている。特許文献に記載の車両用バッテリパックの冷却構造は、バッテリパックの内部に、バッテリケースと電装部品ケースとを、冷却風流れ方向に並べて配置しており、バッテリケースを冷却した冷却風が、下流側の電装部品を冷却している。   As a conventional cooling structure for a vehicle battery pack, a cooling structure described in Patent Document 1 is known. In the cooling structure for a vehicle battery pack described in the patent document, a battery case and an electrical component case are arranged side by side in the cooling air flow direction inside the battery pack, and the cooling air that has cooled the battery case is downstream. The electrical component on the side is cooled.

特開2010−120397号公報JP 2010-120297 A

しかしながら、従来の車両用バッテリパックの冷却構造は、バッテリケースと電装部品ケースとを冷却風流れ方向に直列に並べて配置しているので、バッテリケースから電装部品へ冷却風を流す中間ダクトが必要になってしまう。また、中間ダクト内で冷却風をスムーズに流すために、中間ダクトの曲率半径を大きくする必要があるため、中間ダクトを取り回すための余分なスペースがバッテリパックの内部に必要になってしまう。   However, the conventional cooling structure for a battery pack for a vehicle has a battery case and an electrical component case arranged side by side in series in the cooling air flow direction, so an intermediate duct for flowing cooling air from the battery case to the electrical component is required. turn into. In addition, since it is necessary to increase the radius of curvature of the intermediate duct in order to allow the cooling air to flow smoothly in the intermediate duct, an extra space for routing the intermediate duct is required inside the battery pack.

また、従来の車両用バッテリパックの冷却構造は、バッテリケースと電装部品ケースとを冷却風流れ方向に直列に並べて配置しているため、冷却風の圧力損失が大きくなってしまう。このため、冷却風の圧力損失の分だけ、冷却風を流し込む冷却ファンの要求性能が高くなり、冷却ファンを大型化する必要があった。   Further, in the conventional cooling structure for a vehicle battery pack, the battery case and the electrical component case are arranged in series in the cooling air flow direction, so that the pressure loss of the cooling air becomes large. For this reason, the required performance of the cooling fan that flows the cooling air is increased by the pressure loss of the cooling air, and the cooling fan has to be enlarged.

したがって、従来の車両用バッテリパックの冷却構造は、中間ダクトを設ける必要があること、中間ダクトの取り回しにスペースが必要なこと、および、冷却ファンを大型化する必要があることにより、バッテリパックが大型化するという問題があった。   Therefore, the conventional cooling structure for a battery pack for a vehicle requires that an intermediate duct be provided, that a space is required for handling the intermediate duct, and that the cooling fan be increased in size. There was a problem of increasing the size.

さらに、従来の車両用バッテリパックの冷却構造は、バッテリケースを冷却して暖まった冷却風が電装部品に流入するため、電装部品ケースの冷却性能が低下するという問題があった。   Furthermore, the conventional cooling structure for a vehicle battery pack has a problem in that the cooling performance of the electrical component case is deteriorated because the cooling air that is warmed by cooling the battery case flows into the electrical component.

本発明は、上記のような問題点に着目してなされたものであり、構造を小型化しつつ、バッテリケースおよび電装部品の冷却性能を向上させることができる車両用バッテリパックの冷却構造を提供することを目的とするものである。   The present invention has been made paying attention to the above-described problems, and provides a cooling structure for a vehicle battery pack capable of improving the cooling performance of a battery case and an electrical component while reducing the size of the structure. It is for the purpose.

本発明は、バッテリモジュールを内蔵したバッテリケースと、電装部品とを収納するバッテリパックと、前記バッテリパックに連結され、前記バッテリパックに冷却風を導入する吸気ダクトと、前記吸気ダクトを通して前記バッテリパック内に冷却風を送風する冷却ファンと、を備えた車両用バッテリパックの冷却構造であって、前記吸気ダクトは、前記バッテリパックの外部に配置され、冷却風取入れ口を有する上流側吸気ダクトと、前記バッテリパックの内部に配置され、前記上流側吸気ダクトにその上流側端部が接続されるとともに、前記電装部品および前記バッテリケースにその下流側端部が接続される下流側吸気ダクトと、を備え、前記下流側吸気ダクトは、前記電装部品および前記バッテリケースの上流側で二股に分岐する分岐部と、前記分岐部から前記電装部品に向って延びて、前記電装部品に冷却風を送る第1冷却通路と、前記分岐部から前記バッテリケースに向って延びて、前記バッテリケースに冷却風を送る第2冷却通路と、を有し、前記バッテリケースは、その内部に前記第2冷却通路と連通する内部冷却通路を有し、前記電装部品を、前記バッテリケースの前記内部冷却通路の前記冷却風の上下流方向の中央よりも下流側の上方のみに配置したものから構成されている。 The present invention provides a battery case containing a battery module, a battery pack for storing electrical components, an intake duct connected to the battery pack for introducing cooling air into the battery pack, and the battery pack through the intake duct. a cooling structure for a vehicle battery pack having a cooling fan, the blowing of the cooling air within said air intake duct is disposed on the outside of the battery pack, and the upstream-side intake duct having a cooling air inlet A downstream intake duct that is disposed inside the battery pack, and whose upstream end is connected to the upstream intake duct, and whose downstream end is connected to the electrical component and the battery case; The downstream intake duct is bifurcated to bifurcate on the upstream side of the electrical component and the battery case And a first cooling passage that extends from the branch portion toward the electrical component and sends cooling air to the electrical component, and extends from the branch portion toward the battery case and sends cooling air to the battery case. a second cooling passage, have a, the battery case has an internal cooling passage communicating with the second cooling passage therein, the electrical component, the cooling air of the internal cooling passages of said battery case It is comprised from what was arrange | positioned only upstream of the downstream side rather than the center of the upstream / downstream direction .

このように本発明によれば、上流側吸気ダクト内を流れる冷却風を、下流側吸気ダクトの分岐部で第1冷却通路と第2冷却通路とに分流させて、電装部品とバッテリケースとにそれぞれ流すことができる。   As described above, according to the present invention, the cooling air flowing in the upstream intake duct is divided into the first cooling passage and the second cooling passage at the branch portion of the downstream intake duct, so that the electrical component and the battery case are separated. Each can be flowed.

このため、従来のようにバッテリケースを冷却して暖められた冷却風を電装部品に流通させることがなくなるため、冷却風取入れ口から取入れられた低温な冷却風を電装部品およびバッテリケースに直接的に流し込むことができ、バッテリケースおよび電装部品の冷却性能を向上できる。   For this reason, since the cooling air heated by cooling the battery case as in the conventional case is not circulated to the electrical components, the low-temperature cooling air introduced from the cooling air intake is directly applied to the electrical components and the battery case. The cooling performance of the battery case and the electrical parts can be improved.

また、下流側冷却通路を第1冷却通路と第2冷却通路とに分岐させたため、下流側吸気ダクトの全長を短縮できるので、バッテリパックを簡素化および小型化できる。   In addition, since the downstream cooling passage is branched into the first cooling passage and the second cooling passage, the overall length of the downstream intake duct can be shortened, so that the battery pack can be simplified and downsized.

さらに、従来に比べて、下流側吸気ダクトにおける冷却風の圧力損失を低減できるので、圧力損失を勘案して冷却ファンの性能を高くするために冷却ファンを大型化する必要がなくなる。したがって、構造を小型化できる。この結果、構造を小型化しつつ、バッテリケースおよび電装部品の冷却性能を向上させることができる。   Furthermore, since the pressure loss of the cooling air in the downstream side intake duct can be reduced as compared with the conventional case, it is not necessary to increase the size of the cooling fan in order to improve the performance of the cooling fan in consideration of the pressure loss. Therefore, the structure can be reduced in size. As a result, it is possible to improve the cooling performance of the battery case and the electrical component while reducing the size of the structure.

図1は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、車両の後部のフロアパネルに搭載されたバッテリパックを車両右方から見た側面図である。FIG. 1 is a diagram showing an embodiment of a cooling structure for a vehicle battery pack according to the present invention, and is a side view of a battery pack mounted on a floor panel at the rear of the vehicle as viewed from the right side of the vehicle. 図2は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、車両の後部のフロアパネルに搭載されたバッテリパックを車両後方から見た後面図である。FIG. 2 is a view showing an embodiment of the cooling structure for a vehicle battery pack of the present invention, and is a rear view of the battery pack mounted on the floor panel at the rear of the vehicle as viewed from the rear of the vehicle. 図3は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、車両の後部のフロアパネルに搭載されたバッテリパックを車両上方から見た正面図である。FIG. 3 is a view showing an embodiment of the cooling structure for a vehicle battery pack according to the present invention, and is a front view of the battery pack mounted on the floor panel at the rear of the vehicle as viewed from above the vehicle. 図4は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、バッテリパックの斜視図である。FIG. 4 is a diagram showing an embodiment of the cooling structure for a vehicle battery pack according to the present invention, and is a perspective view of the battery pack. 図5は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、バッテリパックの背面図である。FIG. 5 is a view showing an embodiment of the cooling structure for a vehicle battery pack of the present invention, and is a rear view of the battery pack. 図6は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、バッテリパックの側面図である。FIG. 6 is a view showing an embodiment of a cooling structure for a vehicle battery pack according to the present invention, and is a side view of the battery pack. 図7は、本発明の車両用バッテリパックの冷却構造の一実施形態を示す図であり、図6のVII−VII矢視断面図である。7 is a view showing an embodiment of the cooling structure for a vehicle battery pack according to the present invention, and is a cross-sectional view taken along arrow VII-VII in FIG.

以下、本発明に係る車両用バッテリパックの冷却構造の実施形態について、図面を用いて説明する。図1から図7は、本発明に係る一実施形態の車両用バッテリパックの冷却構造を示す図である。   Hereinafter, an embodiment of a cooling structure for a vehicle battery pack according to the present invention will be described with reference to the drawings. 1 to 7 are views showing a cooling structure for a vehicle battery pack according to an embodiment of the present invention.

まず、構成を説明する。図1、図3において、車両1の車両後部2には、フロアパネル4の上面にリヤシート3が設けられており、このリヤシート3の後方には荷室5が形成されている。本実施形態では、車両1の運転席に着座した運転者から見た前後方向、左右方向、および上下方向と一致するように、図中で前後、左右、上下の方向を矢印で示している。   First, the configuration will be described. 1 and 3, a rear seat 3 is provided on the upper surface of a floor panel 4 at the vehicle rear portion 2 of the vehicle 1, and a luggage compartment 5 is formed behind the rear seat 3. In the present embodiment, the front and rear, left and right, and up and down directions are indicated by arrows in the drawing so as to coincide with the front and rear direction, the left and right direction, and the up and down direction as viewed from the driver seated in the driver's seat of the vehicle 1.

荷室5内のフロアパネル4には、バッテリパック10と、吸気ダクト30と、冷却ファン20とが配置されている。バッテリパック10は、リヤシート3の背もたれ3Aの下方に配置されている。   A battery pack 10, an intake duct 30, and a cooling fan 20 are arranged on the floor panel 4 in the luggage compartment 5. The battery pack 10 is disposed below the backrest 3 </ b> A of the rear seat 3.

吸気ダクト30の上流側端部には冷却風取入れ口41が設けられ、吸気ダクト30の下流側端部はバッテリパック10に連結されている。冷却風取入れ口41は、リヤシート3の座面3Bの下方に配置されている。吸気ダクト30は、冷却風取入れ口41から取り入れた冷却風をバッテリパック10に導入している。   A cooling air intake 41 is provided at the upstream end of the intake duct 30, and the downstream end of the intake duct 30 is connected to the battery pack 10. The cooling air intake 41 is disposed below the seat surface 3 </ b> B of the rear seat 3. The intake duct 30 introduces the cooling air taken from the cooling air intake 41 into the battery pack 10.

冷却ファン20は、吸気ダクト30の途中に設けられており、吸気ダクト30を通してバッテリパック10内に冷却風を送風している。車両1は、バッテリパック10から供給される電力により図示しないモータを駆動して走行する。   The cooling fan 20 is provided in the middle of the intake duct 30 and blows cooling air into the battery pack 10 through the intake duct 30. The vehicle 1 travels by driving a motor (not shown) with electric power supplied from the battery pack 10.

図5、図7において、バッテリパック10はケース11を有し、このケース11の内部に、バッテリモジュール12を内蔵したバッテリケース13と、電装部品14とを収納している。バッテリモジュール12は、複数のバッテリセル12A(図7参照)が連結された組電池として構成されている。電装部品14は、インバータ等の高圧電装部品から構成されている。電装部品14は、支持部材14Aにより下方から支持されている。   5 and 7, the battery pack 10 has a case 11, in which a battery case 13 containing a battery module 12 and an electrical component 14 are housed. The battery module 12 is configured as an assembled battery in which a plurality of battery cells 12A (see FIG. 7) are connected. The electrical component 14 is composed of a high-voltage electrical component such as an inverter. The electrical component 14 is supported from below by the support member 14A.

図5〜図7において、吸気ダクト30は、上流側吸気ダクト40と、下流側吸気ダクト50とを備えている。上流側吸気ダクト40は、バッテリパック10の外部に配置されており、上流側端部に冷却風取入れ口41を有している。冷却風取入れ口41は、リヤシート3の座面3Bの下方に配置されている。   5 to 7, the intake duct 30 includes an upstream intake duct 40 and a downstream intake duct 50. The upstream intake duct 40 is disposed outside the battery pack 10 and has a cooling air intake 41 at the upstream end. The cooling air intake 41 is disposed below the seat surface 3 </ b> B of the rear seat 3.

下流側吸気ダクト50は、バッテリパック10の内部に配置されている。下流側吸気ダクト50の上流側端部は、上流側吸気ダクト40に接続されている。下流側吸気ダクト50の下流側端部は、電装部品14およびバッテリケース13に接続されている。   The downstream side intake duct 50 is disposed inside the battery pack 10. The upstream end of the downstream intake duct 50 is connected to the upstream intake duct 40. The downstream end of the downstream intake duct 50 is connected to the electrical component 14 and the battery case 13.

下流側吸気ダクト50は、電装部品14およびバッテリケース13の上流側で二股に分岐する分岐部51を有する。また、下流側吸気ダクト50は、分岐部51から電装部品14に向って延びて、電装部品14に冷却風を送る第1冷却通路52を有する。また、下流側吸気ダクト50は、分岐部51から電装部品14に向って延びて、バッテリケース13に冷却風を送る第2冷却通路55を有する。   The downstream intake duct 50 includes a branching portion 51 that branches into two branches on the upstream side of the electrical component 14 and the battery case 13. Further, the downstream side intake duct 50 has a first cooling passage 52 that extends from the branch portion 51 toward the electrical component 14 and sends cooling air to the electrical component 14. Further, the downstream side intake duct 50 includes a second cooling passage 55 that extends from the branch portion 51 toward the electrical component 14 and sends cooling air to the battery case 13.

これにより、下流側吸気ダクト50において、冷却風は、分岐部51で分流し、第1冷却通路52により電装部品14に送られるとともに、第2冷却通路55によりバッテリケース13に送られる。すなわち、本実施形態では、電装部品14とバッテリケース13とに並列的に冷却風を送る、いわゆる並列冷却構造を採用している。   Thereby, in the downstream side intake duct 50, the cooling air is diverted at the branching portion 51, sent to the electrical component 14 by the first cooling passage 52, and sent to the battery case 13 by the second cooling passage 55. That is, in the present embodiment, a so-called parallel cooling structure in which cooling air is sent in parallel to the electrical component 14 and the battery case 13 is adopted.

図7において、バッテリケース13の内部には、内部冷却通路16が形成されている。内部冷却通路16は、第2冷却通路55と連通しており、第2冷却通路55から導入された冷却風を、複数のバッテリセル12Aに流通させている。電装部品14は、内部冷却通路16の下流側端部の上方に配置されている。   In FIG. 7, an internal cooling passage 16 is formed inside the battery case 13. The internal cooling passage 16 communicates with the second cooling passage 55, and the cooling air introduced from the second cooling passage 55 is circulated to the plurality of battery cells 12A. The electrical component 14 is disposed above the downstream end of the internal cooling passage 16.

電装部品14の底部には、第1冷却通路52内へ延びるヒートシンク15が取付けられている。ヒートシンク15は、図示しない放熱フィンを備えており、放熱フィンにより電装部品14の熱を放熱する。バッテリケース13とヒートシンク15との間には、遮熱用の遮熱プレート17が設けられている。   A heat sink 15 extending into the first cooling passage 52 is attached to the bottom of the electrical component 14. The heat sink 15 includes a heat radiating fin (not shown), and radiates heat of the electrical component 14 by the heat radiating fin. Between the battery case 13 and the heat sink 15, a heat shield plate 17 for heat shield is provided.

図5、図7において、第1冷却通路52の上流側端部の近傍には、下流側よりも通路断面積の小さい絞り部53が形成されている。第1冷却通路52は、絞り部53から下流側に向って緩やかに拡径している。   5 and 7, a throttle portion 53 having a passage cross-sectional area smaller than that of the downstream side is formed in the vicinity of the upstream end portion of the first cooling passage 52. The first cooling passage 52 gradually increases in diameter from the throttle portion 53 toward the downstream side.

図2、図4、図5、図7において、上流側吸気ダクト40は、第1上流側吸気ダクト42と、第2上流側吸気ダクト43とを有する。第1上流側吸気ダクト42の一端部としての上流側端部は、冷却風取入れ口41を形成している。また、第1上流側吸気ダクト42の他端部としての下流側端部は、冷却ファン20に接続されている。   2, 4, 5, and 7, the upstream intake duct 40 includes a first upstream intake duct 42 and a second upstream intake duct 43. An upstream end as an end of the first upstream intake duct 42 forms a cooling air intake 41. Further, the downstream end as the other end of the first upstream intake duct 42 is connected to the cooling fan 20.

第2上流側吸気ダクト43の一端部としての上流側端部は、冷却ファン20に接続されている。第2上流側吸気ダクト43の他端部としての下流側端部は、下流側吸気ダクト50の上流側端部に接続されている。   An upstream end as one end of the second upstream intake duct 43 is connected to the cooling fan 20. The downstream end as the other end of the second upstream intake duct 43 is connected to the upstream end of the downstream intake duct 50.

図3、図4において、第1上流側吸気ダクト42は前後方向に延びており、第2上流側吸気ダクト43は左右方向に延びている。具体的には、第1上流側吸気ダクト42は、冷却風取入れ口41から後方に延びて冷却ファン20の上部に接続されており、第2上流側吸気ダクト43は、冷却ファン20の左側面から左方、すなわち車両幅方向の中央側に延びてバッテリパック10の上部の右側面に接続されている。   3 and 4, the first upstream intake duct 42 extends in the front-rear direction, and the second upstream intake duct 43 extends in the left-right direction. Specifically, the first upstream intake duct 42 extends rearward from the cooling air intake 41 and is connected to the upper part of the cooling fan 20, and the second upstream intake duct 43 is connected to the left side surface of the cooling fan 20. To the left side, that is, the center side in the vehicle width direction and connected to the right side surface of the upper part of the battery pack 10.

図5、図7において、下流側吸気ダクト50の第1冷却通路52の上流側端部には第1冷却風導入口54が設けられており、この第1冷却風導入口54は、バッテリパック10の上方に開口している。第2冷却通路55の上流側端部には第2冷却風導入口56が設けられており、この第2冷却風導入口56は、第1冷却風導入口54と並んで配置されている。   5 and 7, a first cooling air inlet 54 is provided at the upstream end of the first cooling passage 52 of the downstream intake duct 50. The first cooling air inlet 54 is connected to the battery pack. 10 is opened above. A second cooling air introduction port 56 is provided at an upstream end portion of the second cooling passage 55, and the second cooling air introduction port 56 is arranged side by side with the first cooling air introduction port 54.

また、第2上流側吸気ダクト43の下流側端部の上側壁面43Aには凸状湾曲面44が形成されている。凸状湾曲面44は、第2上流側吸気ダクト43の外方に向って突出する湾曲形状をなしており、下流側吸気ダクト50の上側部に接続している。   A convex curved surface 44 is formed on the upper wall surface 43 </ b> A at the downstream end of the second upstream intake duct 43. The convex curved surface 44 has a curved shape protruding outward from the second upstream intake duct 43 and is connected to the upper side portion of the downstream intake duct 50.

第1冷却風導入口54は、第2冷却風導入口56よりも凸状湾曲面44側に近接して配置されている。また、第1冷却風導入口54の開口面積は、第2冷却風導入口56の開口面積よりも小さく設定されている。   The first cooling air introduction port 54 is disposed closer to the convex curved surface 44 side than the second cooling air introduction port 56. The opening area of the first cooling air introduction port 54 is set smaller than the opening area of the second cooling air introduction port 56.

図7において、第1冷却通路52の上流側端部と第2冷却通路55の上流側端部との間には、仕切壁57が設けられており、この仕切壁57は、第1冷却風導入口54および第2冷却風導入口56まで延出している。   In FIG. 7, a partition wall 57 is provided between the upstream end portion of the first cooling passage 52 and the upstream end portion of the second cooling passage 55, and the partition wall 57 is provided with the first cooling air. It extends to the introduction port 54 and the second cooling air introduction port 56.

第2上流側吸気ダクト43は、冷却ファン20から第2冷却風導入口56に向ってその軸線46Aが延びる傾斜部46を有する。また、第2上流側吸気ダクト43は、傾斜部46の下端部から水平方向にその軸線47Aが延びて第1冷却風導入口54と第2冷却風導入口56との上方側を覆う水平部47を有する。また、第2上流側吸気ダクト43は、傾斜部46の軸線46Aと水平部47の軸線47Aとが交差する交差部48を有する。   The second upstream intake duct 43 has an inclined portion 46 having an axis 46 </ b> A extending from the cooling fan 20 toward the second cooling air introduction port 56. Further, the second upstream intake duct 43 has a horizontal portion that extends in the horizontal direction from the lower end portion of the inclined portion 46 and covers the upper side of the first cooling air inlet 54 and the second cooling air inlet 56. 47. Further, the second upstream intake duct 43 has an intersecting portion 48 where the axis 46A of the inclined portion 46 and the axis 47A of the horizontal portion 47 intersect.

交差部48の上側壁面43Aには、第2上流側吸気ダクト43の内方、すなわち下方側に向って湾曲する凹状湾曲面45が形成されている。傾斜部46は、この傾斜部46の軸線46Aが第2冷却風導入口56を通過するように傾斜している。   On the upper wall surface 43A of the intersecting portion 48, a concave curved surface 45 that is curved inward, that is, toward the lower side of the second upstream intake duct 43 is formed. The inclined portion 46 is inclined so that the axis 46 </ b> A of the inclined portion 46 passes through the second cooling air introduction port 56.

傾斜部46の上側壁面43Aは、傾斜部46の上側壁面43Aに沿うとともに上側壁面43Aから第2冷却風導入口56側へと延びる仮想平面43Cを設定した場合、仮想平面43Cが第2冷却風導入口56を通過するように傾斜している。   When the upper flat wall surface 43C of the inclined portion 46 is set to a virtual plane 43C that extends along the upper wall surface 43A of the inclined portion 46 and extends from the upper wall surface 43A to the second cooling air introduction port 56 side, the virtual flat surface 43C becomes the second cooling air. It is inclined so as to pass through the inlet 56.

凸状湾曲面44は、冷却風の流れ方向が急激に変化するような小さな曲率半径を有している。凹状湾曲面45の曲率半径は、凸状湾曲面44の曲率半径よりも大きく設定されている。第2上流側吸気ダクト43の下側壁面43Bは、上側壁面43Aと概ね平行を保って延びている。   The convex curved surface 44 has a small radius of curvature such that the flow direction of the cooling air changes rapidly. The radius of curvature of the concave curved surface 45 is set larger than the radius of curvature of the convex curved surface 44. The lower wall surface 43B of the second upstream intake duct 43 extends substantially parallel to the upper wall surface 43A.

次に、作用を説明する。本実施形態の車両用バッテリパックの冷却構造は、吸気ダクト30が上流側吸気ダクト40と下流側吸気ダクト50とを備えており、上流側吸気ダクト40は、バッテリパック10の外部に配置され、冷却風取入れ口41を有し、下流側吸気ダクト50は、バッテリパック10の内部に配置され、上流側吸気ダクト40にその上流側端部が接続されるとともに、電装部品14およびバッテリケース13にその下流側端部が接続されている。   Next, the operation will be described. In the vehicle battery pack cooling structure of the present embodiment, the intake duct 30 includes an upstream intake duct 40 and a downstream intake duct 50, and the upstream intake duct 40 is disposed outside the battery pack 10, A cooling air intake 41 is provided, and the downstream intake duct 50 is disposed inside the battery pack 10, and its upstream end is connected to the upstream intake duct 40, and the electrical component 14 and the battery case 13 are connected to each other. Its downstream end is connected.

また、下流側吸気ダクト50は、電装部品14およびバッテリケース13の上流側で二股に分岐する分岐部51と、分岐部51から電装部品14に向って延びて、電装部品14に冷却風を送る第1冷却通路52と、分岐部51からバッテリケース13に向って延びて、バッテリケース13に冷却風を送る第2冷却通路55と、を有する。   In addition, the downstream side intake duct 50 is branched into a bifurcated portion 51 on the upstream side of the electrical component 14 and the battery case 13, and extends from the branched portion 51 toward the electrical component 14 to send cooling air to the electrical component 14. The first cooling passage 52 includes a second cooling passage 55 that extends from the branch portion 51 toward the battery case 13 and sends cooling air to the battery case 13.

これにより、上流側吸気ダクト40内を流れる冷却風を、下流側吸気ダクト50の分岐部51で第1冷却通路52と第2冷却通路55とに分流させて、電装部品14とバッテリケース13とにそれぞれ流すことができる。   Accordingly, the cooling air flowing in the upstream side intake duct 40 is divided into the first cooling passage 52 and the second cooling passage 55 at the branch portion 51 of the downstream side intake duct 50, and the electrical component 14, the battery case 13, Each can be shed.

このため、従来のようにバッテリケース13を冷却して暖められた冷却風を電装部品14に流通させることがなくなるため、冷却風取入れ口41から取入れられた低温な冷却風を電装部品14およびバッテリケース13に直接的に流し込むことができ、バッテリケース13および電装部品14の冷却性能を向上できる。   For this reason, the cooling air warmed by cooling the battery case 13 as in the prior art is not circulated to the electrical component 14, so the low-temperature cooling air taken in from the cooling air intake 41 is used as the electrical component 14 and the battery. It can be poured directly into the case 13, and the cooling performance of the battery case 13 and the electrical component 14 can be improved.

また、下流側冷却通路を第1冷却通路52と第2冷却通路55とに分岐させたため、下流側吸気ダクト50の全長を短縮できるので、バッテリパック10を簡素化および小型化できる。   In addition, since the downstream cooling passage is branched into the first cooling passage 52 and the second cooling passage 55, the overall length of the downstream intake duct 50 can be shortened, so that the battery pack 10 can be simplified and downsized.

さらに、従来に比べて、下流側吸気ダクト50における冷却風の圧力損失を低減できるので、圧力損失を勘案して冷却ファン20の性能を高くするために冷却ファン20を大型化または複数個設ける必要がなくなる。したがって、構造を小型化できる。   Furthermore, since the pressure loss of the cooling air in the downstream side intake duct 50 can be reduced as compared with the conventional case, it is necessary to increase the size of the cooling fan 20 or to provide a plurality of cooling fans 20 in order to improve the performance of the cooling fan 20 in consideration of the pressure loss. Disappears. Therefore, the structure can be reduced in size.

この結果、構造を小型化しつつ、バッテリケース13および電装部品14の冷却性能を向上させることができる。   As a result, the cooling performance of the battery case 13 and the electrical component 14 can be improved while downsizing the structure.

また、本実施形態の車両用バッテリパックの冷却構造は、バッテリケース13が、その内部に第2冷却通路55と連通する内部冷却通路16を有し、電装部品14を、バッテリケース13の内部冷却通路16の下流側端部の上方に配置した。   Further, in the vehicle battery pack cooling structure of the present embodiment, the battery case 13 has an internal cooling passage 16 communicating with the second cooling passage 55 therein, and the electric component 14 is cooled inside the battery case 13. It was arranged above the downstream end of the passage 16.

この構成により、バッテリケース13よりも比較的小型な電装部品14をバッテリケース13の上方に配置したことで、バッテリケース13の上方のスペースを有効利用することができ、バッテリパック10が大型化するのを防止できる。   With this configuration, by arranging the electrical component 14 that is relatively smaller than the battery case 13 above the battery case 13, the space above the battery case 13 can be used effectively, and the battery pack 10 becomes larger. Can be prevented.

また、電装部品14とバッテリケース13とを上下方向に重ねて配置できるため、バッテリパック10が水平方向(車両前後方向または車両幅方向)に拡大するのを防止できる。   Moreover, since the electrical component 14 and the battery case 13 can be arranged in the vertical direction, the battery pack 10 can be prevented from expanding in the horizontal direction (the vehicle longitudinal direction or the vehicle width direction).

また、電装部品14は、バッテリケース13内のバッテリモジュール12よりも発熱量が多いため、電装部品14をバッテリケース13の内部冷却通路16の下流側端部の上方に配置したことで、バッテリケース13の上流側の領域で、電装部品14の発生する熱の影響を受け難くできる。その結果、バッテリケース13内の内部冷却通路16に、電装部品14の発生する熱の影響を受けない冷却風を上流側から下流側へと流すことができ、バッテリモジュール12の冷却性能を高めることができる。   Further, since the electrical component 14 generates more heat than the battery module 12 in the battery case 13, the electrical component 14 is arranged above the downstream end of the internal cooling passage 16 of the battery case 13, so that the battery case In the region upstream of 13, it is difficult to be affected by the heat generated by the electrical component 14. As a result, the cooling air that is not affected by the heat generated by the electrical component 14 can flow from the upstream side to the downstream side in the internal cooling passage 16 in the battery case 13, thereby improving the cooling performance of the battery module 12. Can do.

また、本実施形態の車両用バッテリパックの冷却構造は、電装部品14の底部に、第1冷却通路52内へ延びるヒートシンク15を取付け、バッテリケース13とヒートシンク15との間に遮熱用の遮熱プレート17を設けた。   In the vehicle battery pack cooling structure of the present embodiment, the heat sink 15 extending into the first cooling passage 52 is attached to the bottom of the electrical component 14, and the heat shield is provided between the battery case 13 and the heat sink 15. A heat plate 17 was provided.

この構成により、電装部品14の発生する熱が、遮熱プレート17により遮熱されるので、電装部品14からバッテリケース13に伝達される熱を低減することができる。   With this configuration, the heat generated by the electrical component 14 is shielded by the heat shield plate 17, so that the heat transmitted from the electrical component 14 to the battery case 13 can be reduced.

これにより、バッテリモジュール12を収納するバッテリケース13が電装部品14の熱の影響を受け難くなるので、バッテリの出力性能を高めることができる。   Thereby, since the battery case 13 which accommodates the battery module 12 becomes difficult to receive the influence of the heat | fever of the electrical component 14, the output performance of a battery can be improved.

また、第1冷却通路52を通過する冷却風が遮熱プレート17に沿って流れることで、冷却風をヒートシンク15に直接当てることができるので、電装部品14の冷却性能を確実に高めることができる。   In addition, since the cooling air passing through the first cooling passage 52 flows along the heat shield plate 17, the cooling air can be directly applied to the heat sink 15, so that the cooling performance of the electrical component 14 can be reliably improved. .

また、本実施形態の車両用バッテリパックの冷却構造は、第1冷却通路52が、その上流側端部の近傍に、下流側よりも通路断面積の小さい絞り部53を有する。   In the vehicle battery pack cooling structure of the present embodiment, the first cooling passage 52 has a throttle portion 53 having a passage cross-sectional area smaller than that of the downstream side in the vicinity of the upstream end portion thereof.

この構成により、分岐部51から第1冷却通路52内に導入された冷却風は、絞り部53において流速が高くなるため、絞り部53より下流側の電装部品14へ冷却風を流れやすくできる。これにより、電装部品14の冷却性能を向上させることができる。   With this configuration, the cooling air introduced from the branch portion 51 into the first cooling passage 52 has a high flow velocity in the throttle portion 53, so that the cooling air can easily flow to the electrical component 14 on the downstream side of the throttle portion 53. Thereby, the cooling performance of the electrical component 14 can be improved.

また、本実施形態の車両用バッテリパックの冷却構造は、上流側吸気ダクト40が、その一端部が冷却風取入れ口41を形成するとともにその他端部が冷却ファン20に接続される第1上流側吸気ダクト42と、その一端部が冷却ファン20に接続されるとともにその他端部が下流側吸気ダクト50の上流側端部に接続される第2上流側吸気ダクト43と、を有する。   Further, in the cooling structure for the vehicle battery pack of the present embodiment, the upstream intake duct 40 has a first upstream side in which one end portion forms a cooling air intake 41 and the other end portion is connected to the cooling fan 20. The intake duct 42 includes a second upstream intake duct 43 having one end connected to the cooling fan 20 and the other end connected to the upstream end of the downstream intake duct 50.

また、下流側吸気ダクト50において、第1冷却通路52の上流側端部に、バッテリパック10の上方に開口する第1冷却風導入口54を設け、第2冷却通路55の上流側端部に、第1冷却風導入口54と並んで配置される第2冷却風導入口56を設けた。   Further, in the downstream side intake duct 50, a first cooling air introduction port 54 that opens above the battery pack 10 is provided at an upstream end portion of the first cooling passage 52, and an upstream end portion of the second cooling passage 55 is provided. The second cooling air introduction port 56 arranged side by side with the first cooling air introduction port 54 is provided.

さらに、第2上流側吸気ダクト43の下流側端部の上側壁面43Aに、湾曲形状をなし下流側吸気ダクト50の上側部に接続する凸状湾曲面44を形成し、第1冷却風導入口54を、第2冷却風導入口56よりも凸状湾曲面44側に近接して配置し、第1冷却風導入口54の開口面積を、第2冷却風導入口56の開口面積よりも小さく設定した。   Furthermore, a convex curved surface 44 that forms a curved shape and is connected to the upper portion of the downstream intake duct 50 is formed on the upper wall surface 43A of the downstream end portion of the second upstream intake duct 43, and the first cooling air inlet port is formed. 54 is arranged closer to the convex curved surface 44 side than the second cooling air introduction port 56, and the opening area of the first cooling air introduction port 54 is smaller than the opening area of the second cooling air introduction port 56. Set.

この構成により、第2上流側吸気ダクト43の下流側端部の上側壁面43Aに凸状湾曲面44を形成したので、冷却風は、第2上流側吸気ダクト43の下流側端部で凸状湾曲面44に当たった後、凸状湾曲面44に沿って流速を速めて、下流側吸気ダクト50へと流れる。   With this configuration, since the convex curved surface 44 is formed on the upper wall surface 43A of the downstream end of the second upstream intake duct 43, the cooling air is convex at the downstream end of the second upstream intake duct 43. After hitting the curved surface 44, the flow velocity is increased along the convex curved surface 44 and flows to the downstream side intake duct 50.

また、第1冷却風導入口54を第2冷却風導入口56よりも凸状湾曲面44側に近接して配置し、第1冷却風導入口54の開口面積を第2冷却風導入口56の開口面積よりも小さく設定したので、凸状湾曲面44に沿って流れることで流速を速めた冷却風を、第1冷却風導入口54を介して第1冷却通路52に流入させることができる。   Further, the first cooling air introduction port 54 is arranged closer to the convex curved surface 44 side than the second cooling air introduction port 56, and the opening area of the first cooling air introduction port 54 is the second cooling air introduction port 56. Therefore, the cooling air whose flow velocity is increased by flowing along the convex curved surface 44 can be caused to flow into the first cooling passage 52 through the first cooling air inlet 54. .

一方、凸状湾曲面44から離れた位置では、凸状湾曲面44に沿って流れる冷却風よりも流速が遅い冷却風を、第2冷却風導入口56を介して第2冷却通路55に流し込むことができる。   On the other hand, at a position away from the convex curved surface 44, the cooling air having a slower flow velocity than the cooling air flowing along the convex curved surface 44 flows into the second cooling passage 55 through the second cooling air introduction port 56. be able to.

したがって、バッテリケース13よりも高温となる電装部品14に流速の速い冷却風を当てることができるとともに、バッテリケース13により多くの冷却風を流し込んで、各バッテリモジュール12に均等に冷却風を流し込むことができる。   Therefore, it is possible to apply cooling air having a high flow rate to the electrical component 14 that is hotter than the battery case 13, and to flow a large amount of cooling air into the battery case 13 so that the cooling air is evenly supplied to each battery module 12. Can do.

この結果、バッテリケース13および電装部品14を同時に効率良く冷却できる。   As a result, the battery case 13 and the electrical component 14 can be efficiently cooled at the same time.

また、本実施形態の車両用バッテリパックの冷却構造は、第1冷却通路52の上流側端部と第2冷却通路55の上流側端部との間に、仕切壁57を設け、仕切壁57を、第1冷却風導入口54および第2冷却風導入口56まで延出させた。   Further, the cooling structure for the vehicle battery pack of the present embodiment is provided with a partition wall 57 between the upstream end of the first cooling passage 52 and the upstream end of the second cooling passage 55. Was extended to the first cooling air inlet 54 and the second cooling air inlet 56.

この構成により、下流側吸気ダクト50の上流側端部において、第1冷却通路52の第1冷却風導入口54に流入する冷却風と、第2冷却通路55の第2冷却風導入口56に流入する冷却風とが混ざり合って流れが乱れるのを防止できる。   With this configuration, the cooling air flowing into the first cooling air introduction port 54 of the first cooling passage 52 and the second cooling air introduction port 56 of the second cooling passage 55 at the upstream end of the downstream intake duct 50. It is possible to prevent the flow from being disturbed by mixing with the incoming cooling air.

これにより、流速の速い冷却風を確実に第1冷却風導入口54を介して第1冷却通路52へと流し込むことができる。   As a result, the cooling air having a high flow velocity can be reliably poured into the first cooling passage 52 via the first cooling air inlet 54.

この結果、第1冷却通路52および第2冷却通路55の両方に冷却風をスムーズに流し込むことができ、電装部品14およびバッテリケース13の冷却性能を高めることができる。   As a result, the cooling air can smoothly flow into both the first cooling passage 52 and the second cooling passage 55, and the cooling performance of the electrical component 14 and the battery case 13 can be enhanced.

また、本実施形態の車両用バッテリパックの冷却構造は、第2上流側吸気ダクト43が、冷却ファン20から第2冷却風導入口56に向ってその軸線が延びる傾斜部46と、傾斜部46の下端部から水平方向にその軸線が延びて第1冷却風導入口54と第2冷却風導入口56との上方側を覆う水平部47と、傾斜部46の軸線と水平部47の軸線とが交差する交差部48と、を有する。   Further, in the vehicle battery pack cooling structure of the present embodiment, the second upstream intake duct 43 has an inclined portion 46 whose axis extends from the cooling fan 20 toward the second cooling air introduction port 56, and the inclined portion 46. A horizontal portion 47 that extends in the horizontal direction from the lower end portion of the first and second cooling air introduction ports 54 and 56 and covers the upper side of the first cooling air introduction port 54 and the second cooling air introduction port 56; And an intersecting portion 48 that intersects.

そして、交差部48の上部に、下方側に向って湾曲する凹状湾曲面45を形成した。また、傾斜部46の軸線46Aが第2冷却風導入口56を通過するように傾斜部46を傾斜させた。   And the concave curved surface 45 which curves toward the downward side was formed in the upper part of the cross | intersection part 48. As shown in FIG. Further, the inclined portion 46 is inclined so that the axis 46 </ b> A of the inclined portion 46 passes through the second cooling air introduction port 56.

この構成により、傾斜部46を流れる冷却風のうち凹状湾曲面45から剥離した冷却風を、第1冷却風導入口54より開口面積の大きい第2冷却風導入口56に流入させることができる。   With this configuration, the cooling air separated from the concave curved surface 45 out of the cooling air flowing through the inclined portion 46 can be introduced into the second cooling air introduction port 56 having a larger opening area than the first cooling air introduction port 54.

これに加え、凹状湾曲面45から水平部47の上側壁面43Aに沿って流れる冷却風を、凸状湾曲面44に沿って流れることで流速を速めさせ、第1冷却風導入口54へと流入させることができる。   In addition, the cooling air flowing from the concave curved surface 45 along the upper wall surface 43 </ b> A of the horizontal portion 47 flows along the convex curved surface 44 to increase the flow velocity, and flows into the first cooling air introduction port 54. Can be made.

これにより、第2上流側吸気ダクト43において、冷却風を流速の速い冷却風と流速の遅い冷却風とに分けることができ、第1冷却風導入口54と第2冷却風導入口56とにそれぞれ必要に応じた量の冷却風を適切に分配して流し込むことができる。   Thus, in the second upstream intake duct 43, the cooling air can be divided into a cooling air having a high flow velocity and a cooling air having a low flow velocity, and the first cooling air introduction port 54 and the second cooling air introduction port 56 are separated. The cooling air of the amount necessary for each can be appropriately distributed and poured.

また、本実施形態の車両用バッテリパックの冷却構造は、傾斜部46の上側壁面43Aに沿うとともに上側壁面43Aから第2冷却風導入口56側へと延びる仮想平面43Cを設定した場合、仮想平面43Cが第2冷却風導入口56を通過するように、傾斜部46の上側壁面43Aを傾斜させた。   Further, the cooling structure for the vehicle battery pack of the present embodiment has a virtual plane 43 </ b> C that extends along the upper wall surface 43 </ b> A of the inclined portion 46 and extends from the upper wall surface 43 </ b> A to the second cooling air introduction port 56 side. The upper wall surface 43 </ b> A of the inclined portion 46 is inclined so that 43 </ b> C passes through the second cooling air introduction port 56.

この構成により、傾斜部46の上側壁面43Aに沿って流れて凹状湾曲面45から剥離した冷却風を、確実に第2冷却風導入口56に流し込むことができる。   With this configuration, the cooling air that flows along the upper wall surface 43 </ b> A of the inclined portion 46 and peels off from the concave curved surface 45 can be reliably poured into the second cooling air inlet 56.

これにより、凹状湾曲面45から剥離して流速の低下した冷却風が第1冷却風導入口54に流れ込むことを防止できる。   As a result, it is possible to prevent the cooling air peeled off from the concave curved surface 45 and having a reduced flow velocity from flowing into the first cooling air introduction port 54.

また、開口面積が小さい第1冷却風導入口54の近傍で、流速の速い冷却風と流速の遅い冷却風とが衝突して流れが乱れるのを防止できるので、流速の速い冷却風を第1冷却風導入口54に流すことができるとともに、流速の遅い冷却風を多く第2冷却風導入口56へと流し込むことができる。   Further, in the vicinity of the first cooling air introduction port 54 having a small opening area, it is possible to prevent the cooling air having a high flow velocity and the cooling air having a low flow velocity from colliding with each other, thereby preventing the flow from being disturbed. While being able to flow into the cooling air introduction port 54, a large amount of cooling air having a low flow rate can be poured into the second cooling air introduction port 56.

この結果、バッテリケース13よりも高温となる電装部品14に流速の速い冷却風を流し込んで、電装部品14の冷却性能を高めることができる。   As a result, it is possible to increase the cooling performance of the electrical component 14 by flowing cooling air having a high flow velocity into the electrical component 14 that is hotter than the battery case 13.

また、多量の冷却風が必要なバッテリケース13に、より多くの冷却風を流し込んで、複数のバッテリモジュール12に必要な量の冷却風を流すことができ、バッテリケース13の冷却性能を高めることができる。   Further, it is possible to flow a larger amount of cooling air into the battery case 13 that requires a large amount of cooling air, and to flow a necessary amount of cooling air to the plurality of battery modules 12, thereby improving the cooling performance of the battery case 13. Can do.

また、本実施形態の車両用バッテリパックの冷却構造は、凸状湾曲面44が、冷却風の流れ方向が急激に変化する曲率半径を有し、凹状湾曲面45の曲率半径を、凸状湾曲面44の曲率半径よりも大きく設定した。   In the vehicle battery pack cooling structure of the present embodiment, the convex curved surface 44 has a radius of curvature in which the flow direction of the cooling air changes abruptly, and the curvature radius of the concave curved surface 45 is changed to a convex curve. The radius of curvature of the surface 44 was set larger.

この構成により、凹状湾曲面45が緩やかな湾曲面となるため、凹状湾曲面45から剥離する冷却風の量を抑えることができ、冷却風の一部を確実に凹状湾曲面45に沿って流すことができる。   With this configuration, since the concave curved surface 45 becomes a gentle curved surface, the amount of cooling air that peels from the concave curved surface 45 can be suppressed, and a part of the cooling air flows reliably along the concave curved surface 45. be able to.

また、凸状湾曲面44が急な湾曲面となるため、凸状湾曲面44により、凹状湾曲面45に沿って流れてきた冷却風の流速を速めることができるとともに、冷却風の流れの方向を第1冷却風導入口54へと向けることができるので、開口面積が小さい第1冷却風導入口54にスムーズに冷却風を流し込むことができる。   Further, since the convex curved surface 44 becomes a steep curved surface, the convex curved surface 44 can increase the flow velocity of the cooling air flowing along the concave curved surface 45, and the direction of the flow of the cooling air. Can be directed to the first cooling air introduction port 54, so that the cooling air can smoothly flow into the first cooling air introduction port 54 having a small opening area.

本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。   While embodiments of the invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

10... バッテリパック、12...バッテリモジュール、13...バッテリケース、14...電装部品、15...ヒートシンク、16...内部冷却通路、17...遮熱プレート、20...冷却ファン、30...吸気ダクト、40...上流側吸気ダクト、41...冷却風取入れ口、42...第1上流側吸気ダクト、43...第2上流側吸気ダクト、43A...上側壁面、44...凸状湾曲面、45...凹状湾曲面、46...傾斜部、46A...軸線(傾斜部の軸線)、47...水平部、47A...軸線(水平部の軸線)、48...交差部、50...下流側吸気ダクト、51...分岐部、52...第1冷却通路、53...絞り部、54...第1冷却風導入口、55...第2冷却通路、56...第2冷却風導入口、57...仕切壁
DESCRIPTION OF SYMBOLS 10 ... Battery pack, 12 ... Battery module, 13 ... Battery case, 14 ... Electrical component, 15 ... Heat sink, 16 ... Internal cooling passage, 17 ... Heat shield plate, 20 ... Cooling fan, 30 ... Intake duct, 40 ... Upstream intake duct, 41 ... Cooling air intake, 42 ... First upstream intake duct, 43 ... Second upstream Side air intake duct, 43A ... upper wall surface, 44 ... convex curved surface, 45 ... concave curved surface, 46 ... inclined portion, 46A ... axis (axis of inclined portion), 47 .. Horizontal part, 47A ... axis (horizontal part axis), 48 ... intersection, 50 ... downstream intake duct, 51 ... branch part, 52 ... first cooling passage, 53. ..Throttle section, 54 ... first cooling air inlet, 55 ... second cooling passage, 56 ... second cooling air inlet, 57 ... partition wall

Claims (6)

バッテリモジュールを内蔵したバッテリケースと、電装部品とを収納するバッテリパックと、
前記バッテリパックに連結され、前記バッテリパックに冷却風を導入する吸気ダクトと、
前記吸気ダクトを通して前記バッテリパック内に冷却風を送風する冷却ファンと、を備えた車両用バッテリパックの冷却構造であって
前記吸気ダクトは、
前記バッテリパックの外部に配置され、冷却風取入れ口を有する上流側吸気ダクトと、
前記バッテリパックの内部に配置され、前記上流側吸気ダクトにその上流側端部が接続されるとともに、前記電装部品および前記バッテリケースにその下流側端部が接続される下流側吸気ダクトと、を備え、
前記下流側吸気ダクトは、
前記電装部品および前記バッテリケースの上流側で二股に分岐する分岐部と、
前記分岐部から前記電装部品に向って延びて、前記電装部品に冷却風を送る第1冷却通路と、
前記分岐部から前記バッテリケースに向って延びて、前記バッテリケースに冷却風を送る第2冷却通路と、を有し、
前記バッテリケースは、その内部に前記第2冷却通路と連通する内部冷却通路を有し、
前記電装部品を、前記バッテリケースの前記内部冷却通路の前記冷却風の上下流方向の中央よりも下流側の上方のみに配置したことを特徴とする車両用バッテリパックの冷却構造。
A battery case containing a battery module, a battery pack for storing electrical components,
An intake duct connected to the battery pack for introducing cooling air into the battery pack;
A cooling structure for a vehicle battery pack and a cooling fan for blowing cooling air into the battery pack through the intake duct,
The intake duct is
An upstream air intake duct disposed outside the battery pack and having a cooling air intake;
A downstream air intake duct that is disposed inside the battery pack, has an upstream end connected to the upstream air intake duct, and has a downstream end connected to the electrical component and the battery case. Prepared,
The downstream intake duct is
A branching portion bifurcated on the upstream side of the electrical component and the battery case;
A first cooling passage extending from the branch portion toward the electrical component and sending cooling air to the electrical component;
It extends toward the battery case from the branch portion, possess a second cooling passage for sending cooling air, to the battery case,
The battery case has an internal cooling passage communicating with the second cooling passage in the interior thereof.
The cooling structure for a vehicle battery pack, wherein the electrical component is disposed only above the downstream side of the center of the cooling air in the upstream / downstream direction of the internal cooling passage of the battery case .
前記電装部品の底部に、前記第1冷却通路内へ延びるヒートシンクを取付け、
前記バッテリケースと前記ヒートシンクとの間に遮熱用の遮熱プレートを設けたことを特徴とする請求項1に記載の車両用バッテリパックの冷却構造。
A heat sink that extends into the first cooling passage is attached to the bottom of the electrical component,
The cooling structure for a vehicle battery pack according to claim 1, wherein a heat shield plate for heat insulation is provided between the battery case and the heat sink .
バッテリモジュールを内蔵したバッテリケースと、電装部品とを収納するバッテリパックと、
前記バッテリパックに連結され、前記バッテリパックに冷却風を導入する吸気ダクトと、
前記吸気ダクトを通して前記バッテリパック内に冷却風を送風する冷却ファンと、を備えた車両用バッテリパックの冷却構造であって、
前記吸気ダクトは、
前記バッテリパックの外部に配置され、冷却風取入れ口を有する上流側吸気ダクトと、
前記バッテリパックの内部に配置され、前記上流側吸気ダクトにその上流側端部が接続されるとともに、前記電装部品および前記バッテリケースにその下流側端部が接続される下流側吸気ダクトと、を備え、
前記下流側吸気ダクトは、
前記電装部品および前記バッテリケースの上流側で二股に分岐する分岐部と、
前記分岐部から前記電装部品に向って延びて、前記電装部品に冷却風を送る第1冷却通路と、
前記分岐部から前記バッテリケースに向って延びて、前記バッテリケースに冷却風を送る第2冷却通路と、を有し、
前記第1冷却通路は、その上流側端部の近傍に、下流側よりも通路断面積の小さい絞り部を有することを特徴とする車両用バッテリパックの冷却構造。
A battery case containing a battery module, a battery pack for storing electrical components,
An intake duct connected to the battery pack for introducing cooling air into the battery pack;
A cooling structure for a vehicle battery pack, comprising: a cooling fan that blows cooling air into the battery pack through the intake duct;
The intake duct is
An upstream air intake duct disposed outside the battery pack and having a cooling air intake;
A downstream air intake duct that is disposed inside the battery pack, has an upstream end connected to the upstream air intake duct, and has a downstream end connected to the electrical component and the battery case. Prepared,
The downstream intake duct is
A branching portion bifurcated on the upstream side of the electrical component and the battery case;
A first cooling passage extending from the branch portion toward the electrical component and sending cooling air to the electrical component;
A second cooling passage extending from the branch portion toward the battery case and sending cooling air to the battery case;
The cooling structure for a vehicle battery pack, wherein the first cooling passage has a throttle portion having a smaller passage cross-sectional area than the downstream side in the vicinity of the upstream end portion thereof .
バッテリモジュールを内蔵したバッテリケースと、電装部品とを収納するバッテリパックと、
前記バッテリパックに連結され、前記バッテリパックに冷却風を導入する吸気ダクトと、
前記吸気ダクトを通して前記バッテリパック内に冷却風を送風する冷却ファンと、を備えた車両用バッテリパックの冷却構造であって、
前記吸気ダクトは、
前記バッテリパックの外部に配置され、冷却風取入れ口を有する上流側吸気ダクトと、
前記バッテリパックの内部に配置され、前記上流側吸気ダクトにその上流側端部が接続されるとともに、前記電装部品および前記バッテリケースにその下流側端部が接続される下流側吸気ダクトと、を備え、
前記下流側吸気ダクトは、
前記電装部品および前記バッテリケースの上流側で二股に分岐する分岐部と、
前記分岐部から前記電装部品に向って延びて、前記電装部品に冷却風を送る第1冷却通路と、
前記分岐部から前記バッテリケースに向って延びて、前記バッテリケースに冷却風を送る第2冷却通路と、を有し、
前記上流側吸気ダクトは、
一端部が前記冷却風取入れ口を形成するとともに他端部が前記冷却ファンに接続される第1上流側吸気ダクトと、
一端部が前記冷却ファンに接続されるとともに他端部が前記下流側吸気ダクトの上流側端部に接続される第2上流側吸気ダクトと、を有し、
前記下流側吸気ダクトにおいて、
前記第1冷却通路の上流側端部に、前記バッテリパックの上方に開口する第1冷却風導入口を設け、
前記第2冷却通路の上流側端部に、前記第1冷却風導入口と並んで配置される第2冷却風導入口を設け、
前記第2上流側吸気ダクトは、
前記冷却ファンから前記第2冷却風導入口に向ってその軸線が延びる傾斜部と、
前記傾斜部の下端部から水平方向にその軸線が延びて前記第1冷却風導入口と前記第2冷却風導入口との上方側を覆う水平部と、
前記傾斜部の軸線と前記水平部の軸線とが交差する交差部と、を有し、
前記交差部の上部に、下方側に向って湾曲する凹状湾曲面を形成し、
前記傾斜部の軸線が前記第2冷却風導入口を通過するように前記傾斜部を傾斜させたことを特徴とする車両用バッテリパックの冷却構造。
A battery case containing a battery module, a battery pack for storing electrical components,
An intake duct connected to the battery pack for introducing cooling air into the battery pack;
A cooling structure for a vehicle battery pack, comprising: a cooling fan that blows cooling air into the battery pack through the intake duct;
The intake duct is
An upstream air intake duct disposed outside the battery pack and having a cooling air intake;
A downstream air intake duct that is disposed inside the battery pack, has an upstream end connected to the upstream air intake duct, and has a downstream end connected to the electrical component and the battery case. Prepared,
The downstream intake duct is
A branching portion bifurcated on the upstream side of the electrical component and the battery case;
A first cooling passage extending from the branch portion toward the electrical component and sending cooling air to the electrical component;
A second cooling passage extending from the branch portion toward the battery case and sending cooling air to the battery case;
The upstream intake duct is
A first upstream intake duct, one end of which forms the cooling air intake and the other end of which is connected to the cooling fan;
A second upstream intake duct having one end connected to the cooling fan and the other end connected to an upstream end of the downstream intake duct;
In the downstream intake duct,
A first cooling air inlet opening that opens above the battery pack is provided at the upstream end of the first cooling passage,
A second cooling air introduction port arranged alongside the first cooling air introduction port is provided at the upstream end of the second cooling passage,
The second upstream intake duct is
An inclined portion whose axis extends from the cooling fan toward the second cooling air introduction port;
A horizontal portion extending in the horizontal direction from the lower end of the inclined portion and covering the upper side of the first cooling air inlet and the second cooling air inlet;
An intersection where the axis of the inclined portion and the axis of the horizontal portion intersect,
A concave curved surface that curves toward the lower side is formed at the top of the intersection,
The cooling structure for a vehicle battery pack , wherein the inclined portion is inclined so that an axis of the inclined portion passes through the second cooling air inlet .
前記傾斜部の上側壁面に沿うとともに前記上側壁面から前記第2冷却風導入口側へと延びる仮想平面を設定した場合、
前記仮想平面が前記第2冷却風導入口を通過するように、前記傾斜部の前記上側壁面を傾斜させたことを特徴とする請求項4に記載の車両用バッテリパックの冷却構造。
When setting a virtual plane along the upper wall surface of the inclined portion and extending from the upper wall surface to the second cooling air inlet side,
The cooling structure for a vehicle battery pack according to claim 4 , wherein the upper wall surface of the inclined portion is inclined so that the virtual plane passes through the second cooling air introduction port .
前記第2上流側吸気ダクトの下流側端部の上側壁面に、湾曲形状をなし前記下流側吸気ダクトの上側部に接続する凸状湾曲面を形成し、
前記凹状湾曲面の曲率半径を、前記凸状湾曲面の曲率半径よりも大きく設定したことを特徴とする請求項4に記載の車両用バッテリパックの冷却構造。
Forming a curved curved surface on the upper wall surface of the downstream end of the second upstream intake duct, forming a curved shape and connecting to the upper portion of the downstream intake duct;
5. The cooling structure for a vehicle battery pack according to claim 4, wherein a radius of curvature of the concave curved surface is set larger than a radius of curvature of the convex curved surface .
JP2015010910A 2015-01-23 2015-01-23 Cooling structure for vehicle battery pack Active JP6476906B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015010910A JP6476906B2 (en) 2015-01-23 2015-01-23 Cooling structure for vehicle battery pack
CN201610022118.3A CN105826631B (en) 2015-01-23 2016-01-13 The cooling structure of vehicle battery packet
DE102016200600.2A DE102016200600B4 (en) 2015-01-23 2016-01-19 Cooling mechanism for a battery pack for use in vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010910A JP6476906B2 (en) 2015-01-23 2015-01-23 Cooling structure for vehicle battery pack

Publications (2)

Publication Number Publication Date
JP2016135621A JP2016135621A (en) 2016-07-28
JP6476906B2 true JP6476906B2 (en) 2019-03-06

Family

ID=56364718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010910A Active JP6476906B2 (en) 2015-01-23 2015-01-23 Cooling structure for vehicle battery pack

Country Status (3)

Country Link
JP (1) JP6476906B2 (en)
CN (1) CN105826631B (en)
DE (1) DE102016200600B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017007039U1 (en) * 2017-01-26 2019-04-03 Benteler Automobiltechnik Gmbh Battery carrier for an electric motor vehicle
JP7314705B2 (en) * 2019-08-08 2023-07-26 スズキ株式会社 vehicle battery pack
JP7314706B2 (en) * 2019-08-08 2023-07-26 スズキ株式会社 vehicle battery pack
JP7429854B2 (en) 2020-09-14 2024-02-09 スズキ株式会社 Battery pack vibration suppression structure
CN114914633B (en) * 2022-04-12 2024-03-29 深圳市华美兴泰科技股份有限公司 Battery pack, battery module and assembly method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673692B2 (en) * 2005-07-19 2011-04-20 本田技研工業株式会社 Cooling structure for electrical equipment in vehicles
JP4274165B2 (en) * 2005-10-06 2009-06-03 トヨタ自動車株式会社 Cooling device for on-vehicle equipment
JP4297105B2 (en) * 2005-10-14 2009-07-15 トヨタ自動車株式会社 Storage device cooling structure
JP4832225B2 (en) * 2006-09-07 2011-12-07 本田技研工業株式会社 Cooling structure for electrical equipment in vehicles
CN102050009B (en) 2006-09-07 2013-03-13 本田技研工业株式会社 Electrical device cooling structure in vehicle
JP4957492B2 (en) * 2007-09-28 2012-06-20 三菱自動車工業株式会社 Electric vehicle battery unit cooling duct structure
JP2010018156A (en) 2008-07-10 2010-01-28 Toyota Motor Corp Vehicle
JP4919102B2 (en) * 2008-11-17 2012-04-18 本田技研工業株式会社 Cooling structure for power supply unit for vehicle
WO2011145380A1 (en) * 2010-05-19 2011-11-24 スズキ株式会社 Vehicle battery cooling system
JP5198522B2 (en) * 2010-08-31 2013-05-15 トヨタ自動車株式会社 Power storage device and vehicle
JP2013005576A (en) * 2011-06-16 2013-01-07 Calsonic Kansei Corp Dc/dc converter and battery cooling device

Also Published As

Publication number Publication date
DE102016200600B4 (en) 2022-06-09
DE102016200600A1 (en) 2016-07-28
CN105826631A (en) 2016-08-03
JP2016135621A (en) 2016-07-28
DE102016200600A8 (en) 2016-09-15
CN105826631B (en) 2019-05-10

Similar Documents

Publication Publication Date Title
JP6476906B2 (en) Cooling structure for vehicle battery pack
JP5240444B2 (en) Cooling device for fuel cell vehicle
JP5277362B1 (en) In-vehicle structure of battery pack
US10106025B2 (en) High voltage battery cooling plenum
US8556017B2 (en) Vehicular power supply system
JP5655952B2 (en) Vehicle front structure
JP5024353B2 (en) Cooling system for electrical equipment
JP2006318820A (en) Cooling structure of battery box
JP2013001383A (en) Battery cooling structure of eco-friendly vehicle
US9738331B2 (en) Vehicle lower portion structure
JP2013107420A (en) Cooling system for vehicular battery
JP6343686B2 (en) Vehicle power supply
CN108290492A (en) Motorcycle engine cools down equipment
JP6511279B2 (en) Battery unit
JP2006347385A (en) Front part structure for vehicle body
JP2008125963A (en) Vehicle seat structure
JP2005247168A (en) Battery cooling structure for vehicle
EP3782835B1 (en) Vehicle battery pack
US9108527B2 (en) Cooling of electric storage units in a vehicle
JP5947071B2 (en) Battery cooling system
JP2015145150A (en) vehicle front structure
JP2015048009A (en) Cooling device for vehicular battery
KR100962881B1 (en) Duct structure for Integrated Package Module of hybrid vehicle
EP3772770B1 (en) Vehicle battery pack
JP2020040562A (en) Vehicle front part structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6476906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151