JP6475346B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6475346B2
JP6475346B2 JP2017538476A JP2017538476A JP6475346B2 JP 6475346 B2 JP6475346 B2 JP 6475346B2 JP 2017538476 A JP2017538476 A JP 2017538476A JP 2017538476 A JP2017538476 A JP 2017538476A JP 6475346 B2 JP6475346 B2 JP 6475346B2
Authority
JP
Japan
Prior art keywords
refrigerant
supercooling
degree
appropriate
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017538476A
Other languages
English (en)
Other versions
JPWO2017042649A1 (ja
Inventor
横関 敦彦
敦彦 横関
坪江 宏明
宏明 坪江
正記 宇野
正記 宇野
植田 英之
英之 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Publication of JPWO2017042649A1 publication Critical patent/JPWO2017042649A1/ja
Application granted granted Critical
Publication of JP6475346B2 publication Critical patent/JP6475346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷凍サイクル装置の技術に関する。
例えば特許文献1には、「運転容量を調節可能な圧縮機(21)と熱源側熱交換器(23)と前記熱源側熱交換器に対する冷却熱源の冷却作用を調節可能な冷却熱源調節手段(27)とを有する熱源ユニット(2)と、利用側熱交換器(41)を有する利用ユニット(4)と、膨張機構(33)と、前記熱源ユニットと前記利用ユニットとを接続する液冷媒連絡配管(6)及びガス冷媒連絡配管(7)を含み、前記熱源側熱交換器を前記圧縮機において圧縮される冷媒の凝縮器として、かつ、前記利用側熱交換器を前記熱源側熱交換器において凝縮される冷媒の蒸発器として機能させる冷房運転を少なくとも行うことが可能な冷媒回路(10)と、前記利用ユニットの運転負荷に応じて前記熱源ユニット及び前記利用ユニットの各機器の制御を行う通常運転モードから、前記冷房運転を行い前記利用側熱交換器の出口における冷媒の過熱度が正値になるように前記利用側膨張機構を制御する冷媒量判定運転モードへ切り換えるモード切替手段と、前記冷媒量判定運転モードにおいて、前記熱源側熱交換器の出口における冷媒の過冷却度を、検出値として検出する検出手段と、前記検出手段が検出した前記過冷却度を凝縮温度から室外温度を差し引いた値によって除して得られる値を過冷却度補正値として導出する過冷却度補正手段と前記冷媒量判定運転モードにおいて、前記過冷却度補正値に基づいて、前記冷媒回路内に充填されている冷媒量の適否の判定を冷媒量適否判定として行う冷媒量適否判定手段と、を備える空気調和装置(1)。」が記載されている(特許請求の範囲参照)。
特許第5505477号明細書
特許文献1に記載の空気調和装置は、まず、冷房運転時の蒸発器出口の冷媒過熱度が正値になるように制御を行う冷媒判定運転モードに移行する。そして、空気調和機は凝縮器出口の冷媒過冷却度を検出するとともに、凝縮温度から室外空気温度を差し引いた値で過冷却度を除した相対過冷却度値を過冷却度補正値として導出する。その後、空気調和機は、過冷却度補正値(相対過冷却度値)に基づいて、冷媒回路内の冷媒量適否判定を行う。
特許文献1による空気調和機によれば、外気温度や室外熱交換器の汚れ等の外乱の影響を受けることなく高精度に冷媒量適否を判定できる。
特許文献1に記載の空気調和機における冷媒量適否判定方法では、過冷却度の検知手段である温度センサや圧力センサの誤差を考慮すると、凝縮器過冷却度を一定値(たとえば、6〜10℃)以上に大きくしなければ、検知精度が確保できない。しかし、検知精度を確保するために、過冷却度を増加させると、過冷却度の増加は圧縮機における吐出圧力の上昇につながるため、高効率運転ができない課題がある。つまり、凝縮器の出口における過冷却度を基に冷媒の漏えいを判定することは難しい。
また、特許文献1に記載の技術における冷媒量判定モードでは、蒸発器の過熱度を一定値に安定させなければ、凝縮器過冷却度での冷媒量適否判定ができない。そのため、蒸発器の過熱度を熱源機側からコントロールできないコンデンシングユニット等の冷媒量判定には用いることができない。
さらに、特許文献1では、外気温度や凝縮温度で補正した過冷却度を用いることで、判定精度を向上できるとしているが、冷凍サイクルの運転条件がより広範囲になる(極端に変化する)冷凍機等の運転状態に対応するには判定精度が十分でないという課題があった。
このような背景に鑑みて本発明がなされたのであり、本発明は、冷媒量を高い精度で判定することを課題とする。
前記した課題を解決するため、本発明は、ガス状の冷媒を圧縮する圧縮機と、前記圧縮された冷媒を凝縮する凝縮器と、前記凝縮された冷媒を減圧する減圧器と、前記減圧された冷媒を蒸発させる蒸発器と、前記凝縮器で凝縮された前記冷媒を過冷却する過冷却器と、前記圧縮機の吐出側から、前記凝縮器、前記過冷却器を循環する冷媒循環量に関する値を基に、前記過冷却器の出口における前記冷媒の適正過冷却度に関する値を推定する適正過冷却度推定部と、前記推定された適正過冷却度に関する値を基に、冷媒量を判定するための判定閾値を算出する判定閾値算出部と、実測された過冷却度に関する値と、前記判定閾値とを比較することで、前記冷媒量を判定する判定処理部と、を有することを特徴とする。
その他の解決手段については、実施形態中に記載する。
本発明によれば、冷媒量を高い精度で判定することができる。
第1実施形態に係る空気調和機の構成例を示す図である。 第1実施形態に係る制御装置の構成例を示す図である。 第1実施形態に係る空気調和機のモリエル線図(P−H線図)である。 冷媒循環量Grと、各部位における過冷却度を示した特性図である。 冷媒循環量の推定値と、冷媒循環量の実測値との関係を示すグラフである。 第1実施形態に係る冷媒漏えい判定処理の手順を示すフローチャートである。 室外ファン回転速度を様々に変化させた場合における冷媒循環量と、過冷却器の出口における過冷却度との関係を示す特性図である。 室外ファン回転速度を様々に変化させた場合における、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)と、過冷却器の出口における過冷却度との関係を示す特性図である。 室外ファン回転速度を様々に変化させた場合における、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)と、過冷却器の出口における過冷却度効率との関係を示す特性図である。 室外ファン回転速度を様々に変化させた場合における冷媒循環量と、過冷却器の出口における過冷却度効率との関係を示す特性図である。 第2実施形態に係る空気調和機の構成例を示す図である。 第2実施形態に係る空気調和機のモリエル線図(P−H線図)である。 冷媒循環量と、エコノマイザ出口過冷却度との関係を示す特性図である。 第3実施形態に係る冷媒漏えい判定処理の手順を示すフローチャートである。
次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、本実施形態では、室内を冷房する場合について説明する。
[第1実施形態]
まず、本発明の第1実施形態について説明する。
(空気調和機1の構成)
図1は、第1実施形態に係る空気調和機の構成例を示す図である。
本実施形態の空気調和機(冷凍サイクル装置)1は、室外機10、室内機20、制御装置100及び表示装置200を含んで構成される。なお、表示装置200は省略可能である。室外機10は、凝縮器として動作する室外熱交換器11、レシーバ(余剰冷媒貯留器)13、過冷却器16、室外ファン12、液インジェクション弁17、圧縮機14、アキュムレータ15,ガス阻止弁18a及び液阻止弁18bを含んで構成される。一方、室内機20は、蒸発器として動作する室内熱交換器21、室内ファン22、室内膨張弁(減圧器)23を含んで構成される。
そして、室外機10と室内機20は、冷媒が流れる配管30,31で接続されている。なお、室外機10はガス阻止弁18aを介して配管31と接続し、液阻止弁18bを介して配管30と接続している。
また、本実施形態の空気調和機1は、圧縮機14、室外熱交換器11、レシーバ13、過冷却器16、液インジェクション弁17、室内熱交換器21、室内膨張弁23で冷凍サイクルを構成している。
制御装置100は、室外機10における室外ファン12の起動や停止、液インジェクション弁17における開度の調節、圧縮機14の回転速度Frの調節等によって室外機10を制御する。また、制御装置100は、室内機20における室内ファン22の起動や停止、室内膨張弁23における開度の調節等によって室内機20を制御する。なお、これらの制御に関する制御線については、図1での図示を適宜省略している。
圧縮機14で圧縮された冷媒(気体、ガス状)は、凝縮器としての室外熱交換器11に流入し、室外ファン12で送風される外気との熱交換で冷却されて凝縮する。室外熱交換器11で凝縮した冷媒(液体)は、レシーバ13にて余剰冷媒分が貯留されつつ通過し、過冷却器16で過冷却された後、配管30を流通して室内機20に導入される。また、過冷却器16を通過後の冷媒の一部(第1の経路)は、液インジェクション弁17で所定流量に調整され、圧縮機14の圧縮室中間部にインジェクションされる。これにより圧縮機14の吐出温度Tdが適正値に制御される。
液インジェクション弁17に流入せずに室内機20に導入された冷媒(液体:第2の経路)は室内膨張弁23で減圧されて、蒸発器としての室内熱交換器21に流入する。室内熱交換器21に流入した冷媒(気液二相状態又は液体)は、室内ファン22で送風される室内空気との熱交換で気化(蒸発)する。このとき、室内熱交換器21で気化する冷媒(液体)が室内空気から気化熱を奪って室内空気を冷却する。
室内熱交換器21で気化した冷媒(気体、ガス状)は、配管31を流通して室外機10に導入され、アキュムレータ15に流入する。アキュムレータ15は、過渡的に液冷媒が過剰に流入した際に冷媒(液体)を貯留するバッファタンクとして機能し、これによって圧縮機14での液圧縮が防止される。したがって、アキュムレータ15において冷媒の乾き度が調整され、圧縮機14には適正な乾き度の冷媒が流入することで圧縮機14の液圧縮等が防止されて信頼性が確保される。
なお、室外機10には、圧縮機14で吐出される冷媒の温度(吐出温度Td)を測定する吐出温度センサ10taと、圧縮機14の出口側での冷媒の圧力(吐出圧力Pd)を測定する吐出圧力センサ10paと、圧縮機14の入口側での冷媒の圧力(吸入圧力Ps)を測定する吸入圧力センサ10pbと、が備わっている。
また、室外機10には、室外熱交換器11での冷媒の凝縮温度Tcを測定するための温度センサ10tb、過冷却器16の出口温度Tscを測定する温度センサ10tcが備わっている。さらに、室外機10にはガス阻止弁18aの出口温度Ts(アキュムレータ15の入口温度)を測定する温度センサ10tdが備わっている。さらに、室外機10には、凝縮器(室外熱交換器11)の出口における冷媒の温度を測定する温度センサ10te、及び外気の温度を測定する外気温度センサ10tfが備わっている。また、室外機10には、室外熱交換器11の気液二相部分の配管に備えられ、気液二相部分の温度を測定する温度センサ10tgが備わっている。
室内機20には、室内熱交換器21での冷媒の蒸発温度Teを測定するための温度センサ20taが備わっている。さらに、室内機20には室内熱交換器21の入口温度を測定するための温度センサ20tb及び室内熱交換器21の出口温度を測定するための温度センサ20tcが備わっている。
なお、吐出温度Tdに替えて、圧縮機14のチャンバ上部温度を測定して使用する構成としても良い。
制御装置100は、各種センサ10ta,10tb,10tc,10td,10te,10tf,10tg,10pa,10pb,20ta,20tb,20tcや、液インジェクション弁17、室内膨張弁23等から取得した情報を基に、過冷却器16の出口における過冷却度を算出し、該過冷却度と後記する手法で算出される判定閾値とを比較することで、冷凍サイクルにおける冷媒量を判定する。冷媒量の判定については、後記して説明する。制御装置100は、冷媒量の判定結果を表示装置200等に表示する。
(制御装置100の構成)
図2は、第1実施形態に係る制御装置の構成例を示す図である。
制御装置100は、メモリ110、CPU(Central Processing Unit)120、HD(Hard Disk)等の記憶装置130、通信装置140を有している。
そして、メモリ110にはプログラムが展開され、このプログラムがCPU120によって実行されることで、処理部111、処理部111を構成する運転情報取得部112、運転状態判定部113、過冷却度算出部(適正過冷却度推定部、判定閾値算出部)114、冷媒量判定部(判定処理部)115及び出力処理部116が具現化している。
運転情報取得部112は、記憶装置130を介して、図1における各種センサ10ta,10tb,10tc,10td,10te,10tf,10tg,10pa,10pb,20ta,20tb,20tc等から情報を取得したり、液インジェクション弁17や、室内膨張弁23から弁の開度情報を取得したりする。
運転状態判定部113は、空気調和機1の状態が冷媒漏えい状態に適した状態であるか否かを判定する。
過冷却度算出部114は、後記する判定閾値や、過冷却器16の出口における実測過冷却度を算出する。
冷媒量判定部115は、過冷却度算出部114が算出した判定閾値及び実測過冷却度を基に、冷媒量が適切であるか否かを判定する。
出力処理部116は、冷媒量判定部115によって冷媒量が適切でない(異常である)場合、冷媒量が適切でない旨の情報を出力する。
なお、各部111〜116が行う処理の詳細については後記する。
(モリエル線図)
図3は、第1実施形態に係る空気調和機のモリエル線図(P−H線図)である。適宜、図1を参照する。
空気調和機1が室内を冷房するとき、状態301にある冷媒(気体、ガス状)は、圧縮機14で圧縮されることにより冷媒の温度(比エンタルピ)と圧力とが上昇して、圧縮機14の中間圧力点の状態302になる。ここで、液インジェクション弁17から比エンタルピが低い状態307の状態の冷媒がインジェクションされて、冷媒は状態303となる。さらに、冷媒は、圧縮機14によって状態303から高圧圧力Pdまで圧縮されて状態304となることで、吐出温度Tdとなり、圧縮機14から高温高圧ガスとして吐出される。
その後、冷媒は、冷房運転時に凝縮器として動作する室外熱交換器11に導入され、室外ファン12によって送風された室外空気により冷却されて凝縮し、状態305(液体)になり、レシーバ13に導入される。レシーバ13には液面が存在するため、飽和状態に維持されており、その下部から冷媒が排出されて過冷却器16に導入され、室外ファン12にて送風される室外空気により、冷媒は状態306の過冷却液状態となる。
状態306となっている冷媒の一部(破線)は、液インジェクション弁17にて点307まで減圧される。そして、状態307の冷媒は所定量だけ圧縮機14の中間圧力にインジェクションされて状態303となることで、吐出温度Tdの制御を行う。
残りのメイン回路(実線)では、液接続配管30によって室内機20へと液冷媒が送られ、室内膨張弁23で液冷媒が減圧される。ここで、冷媒は点308の状態になり、低温の気液二相状態となって、室内熱交換器21に導入される。ここで、室内ファン22で送られる室内空気と熱交換して、冷媒が蒸発することでガス冷媒となり、室内空気に対して冷却作用をなす。
室内熱交換器21で蒸発したガス冷媒は状態301となり、ガス側接続配管31を通して、室外機10へと戻され、アキュムレータ15を通って、圧縮機14へと戻される一連の冷凍サイクルをなしている。
このとき、冷凍サイクル中には、適正な量の冷媒が封入されており、図3の状態306で表される室外機10の出口における過冷却度Scが適正値となっている。これにより、蒸発器(室内熱交換器21)での比エンタルピ差(状態308→状態301)が十分大きくなって、冷却能力が確保されている。
冷媒量が適正である場合の運転状態は、レシーバ13に液面が存在する状態で説明することができる。液面がレシーバ13の下端にまで低下した場合は冷媒不足状態であり、逆にレシーバ13がすべて液で満たされている場合は冷媒過多状態であるということができる。
例えば、冷媒過多の場合、レシーバ13内が過冷却液でいっぱいとなり、その上流に位置する凝縮器である室外熱交換器11の出口状態が過冷却となる。この状態では、室外熱交換器11の内部が液冷媒で満たされて、凝縮圧力が過冷却度の分だけ上昇することとなる。
この圧力上昇が過剰であれば、圧縮機14の吐出圧力Pdの上昇により圧縮機14での圧縮動力が増加して、成績係数が低下する問題が生じる。
また、冷媒の漏えい等による冷媒不足状態の場合、レシーバ13内では液面が下端まで低下する。その結果、凝縮器出口で気液二相状態となって、図3の状態305で示される点が、飽和線の内側になることになり、比エンタルピが高くなる。結果として蒸発器(室内熱交換器21)での比エンタルピ差(状態308→状態301)が小さくなって、冷凍能力及び成績係数の低下に至る。
つまり、レシーバ13内に液面が存在する状態にあり、冷媒量が適正であることは、高効率な冷房運転に寄与することができる。また、見方を変えれば、運転経過によって、レシーバ13内の冷媒が過少側に変化することが判定できれば、冷媒漏えいが判断でき、冷媒漏えいによる地球温暖化の防止や、微燃性冷媒による火災事故の防止に寄与することができるため、これを判定できれば、非常に有用な機能といえる。
そこで、本実施形態では、冷媒過不足の判定方法として、図4に示す冷媒循環量と過冷却器16の出口における過冷却度の特性を利用した判定を行う。なお、本実施形態では、冷凍サイクル全体における冷媒の量を冷媒量と称し、単位時間あたりに流れる冷媒の量(質量流量)を冷媒循環量と称する。
図4は冷媒循環量Grと、各部位における過冷却度を示した特性図である。なお、ここでの冷媒循環量Grは圧縮機14の吐出側から室外熱交換器11、レシーバ13、過冷却器16を循環する冷媒循環量を示している。「□」で表される点は凝縮器(室外熱交換器11)出口の過冷却度(図3の状態304)、「◇」で表される点が過冷却器16の出口における過冷却度(図3の状態306)である。なお、図4における「△」については後記する。
また、図4で示している点は、レシーバ13内に液面が存在する状態、つまり適正冷媒量での運転状態を示しており、蒸発温度Teや外気温度、室外ファン回転速度、圧縮機回転速度等の運転状態がさまざまに変化した場合の状態を示している。具体的には、レシーバ13における余剰冷媒がある状態で、蒸発温度Teが−40〜0℃、圧縮機回転速度40〜85rps、外気温度16〜36℃、室外ファン回転速度60〜100%の間で運転状態を変化させた場合の状態を示している。
図4のグラフから、運転状態の変化にもかかわらず、凝縮器(室外熱交換器11)の出口における過冷却度(「□」)と、過冷却器16の出口における過冷却度「◇」は、ともに、ほぼ、冷媒循環量の増加に応じて増加する傾向がみられる。
しかし、凝縮器の出口における過冷却度(「□」)は、その値が2[K]以下と小さいことから、その検知手段の精度が不十分であると考えられる。つまり、凝縮器(室外熱交換器11)の出口温度と、凝縮温度Tcとの差分で過冷却度が算出される。そのため、凝縮器の出口温度を測定する温度センサ10teと、凝縮温度Tcを測定する温度センサ10tbの2つのセンサの検知誤差が合計されてしまい、このような2[K]以下での冷媒過不足を判定することが困難である。
それに比べて、過冷却器16の出口における過冷却度(「◇」)は、ほぼ飽和状態で通過するレシーバ13の後流における過冷却度である。このため、5〜10[K]程度の値を示しており、温度センサ10tcの検知誤差を考慮しても、冷媒量の過不足の判定に使用できる適正値となっていることを発明者は見出した。
点「◇」を近似した線401が適正な過冷却度(適正過冷却度)であるとすると、冷媒循環量に対する適正過冷却度は線401を式として表わした式(1)となる。
Sc1s=A1・Ln(Gr)−A2 ・・・ (1)
ここで、A1、A2は、図4に示す線401から求められる値である。より具体的に説明すると、A1、A2は冷媒循環量に対する過冷却器16の出口における過冷却度をフィッティングした結果得られる値である。特に、A2は冷媒循環量が定格循環量であるときの適正過冷却度である。また、Grは冷媒循環量である。
図4の例ではA1=5.83、A2=24.54となる。A1、A2の値は、実験や、シミュレーション条件によって変化してくる値であるが、A1を5〜7の範囲の値とすることが望ましい。
さらに、冷媒漏えい率が15%での過冷却度を線402で表わすと、この線402は過冷却度が6割程度に低下した状態となっている。これを利用して、冷媒漏えいのための判定閾値Sc1thを以下の式(2)で表すことができる。
Sc1th=Sc1s×A3 ・・・ (2)
A3は、冷媒漏えいが生じている際における過冷却度の低下率であり、冷媒漏えい率が15%であれば、過冷却度が6割程度低下するので、A3=0.6となる。従って、A3は1未満の正の整数となる。なお、A3=0.6は一例であり、A3の値は、冷媒の漏えい判定にふさわしい値であれば0.6に限らない。
ここで、冷媒循環量Grを直接測定することは、コスト面で現実的ではないことから、式(3)で示す近似式により推定冷媒循環量が求められることが望ましい。
Grp=(a1・Fr+a2)(b1・Ps+b2)(c1・MV+c2)・・・(3)
ここで、Grpは冷媒循環量の推定値[kg/h]であり、Frは圧縮機回転速度[rps]であり、Psは圧縮機14の吸入圧力Ps[MPa]であり、MVは液インジェクション弁17の開度である。また、a1、a2、b1、b2、c1、c2は、実験や、シミュレーション等によってそれぞれ求められる係数である。
図5は、式(3)で求められた冷媒循環量の推定値と、冷媒循環量の実測値との関係を示すグラフである。
図5において、横軸は冷媒循環量の実測値Grを示し、縦軸は冷媒循環量の推定値Grpを示している。そして、図5において実線501は冷媒循環量の実測値Grと、冷媒循環量の推定値Grpが一致していることを示す線である。また破線502は、冷媒循環量の推定値Grpが冷媒循環量の実測値Grに対し+5%のずれが生じていることを示す線である。そして、破線503は、冷媒循環量の推定値Grpが冷媒循環量の実測値Grに対し−5%のずれが生じていることを示す線である。また、図5において「□」で示されるプロット点は、実測冷媒循環量Grが得られたときの条件で式(2)を用いて算出された冷媒循環量の推定値Grpをプロットしたものである。
図5で示すように、冷媒循環量の実測値Gr(横軸)に対し、冷媒循環量の推定値Grp(縦軸)は±5%以下の精度を有している。従って、式(3)を用いて推定した冷媒循環量Grpを式(1)の冷媒循環量Grに代入して算出した過冷却器16の出口における過冷却度は、ほぼ正確であると考えられる。よって、冷媒循環量の推定値Grpを用いて式(2)によって算出された判定閾値も有用であると考えられる。
(フローチャート)
図6は、第1実施形態に係る冷媒漏えい判定処理の手順を示すフローチャートである。適宜、図1及び図2を参照する。
なお、図6に示す処理は、判定のために過冷却を大きくする冷媒判定モード等、特別なモードに移行せず、通常運転中に行うことができる。
まず、制御装置100における処理部111が冷媒漏えい検知を開始すると、運転情報取得部112が、空気調和機1における各部位の運転状態に関する情報(運転状態情報)を取得する(S101)。運転状態情報は、各種センサ10ta,10tb,10tc,10td,10te,10tf,10tg,10pa,10pb,20ta,20tb,20tc等からの情報や、液インジェクション弁17や、室内膨張弁23から得られる弁の開度情報、圧縮機14から得られる圧縮機回転速度Fr等である。
次に、運転状態判定部113が、運転状態情報を基に冷媒漏えいの判定が可能な状態であるか否かを判定する(S102)。冷媒漏えい状態を判定可能な状態としては、例えば、吸入圧力センサ10pbから取得される吸入圧力Psと、温度センサ10tdが測定したガス阻止弁18aの出口温度Tsから求められる圧縮機14における吸入過熱度SHが適正(たとえば吸入過熱度SHが5K以上かつ、温度センサ10tdが測定したガス阻止弁18aの出口温度Tsが20℃以下)であり、外気温度センサ10tfで測定された外気温度が適正(たとえば、外気0〜35℃)であるか、圧縮機回転速度Frが適正(たとえば、定格回転速度の50%以上)であるか等、各状態の変化が一定値以内に安定しているか否かである。つまり、運手状態判定部113は、ステップS102において、運転状態に関する値が冷媒状態の判定を可能な状態にあるか否かを判定している。なお、ガス阻止弁18aの出口温度Tsの代わりに、圧縮機14の吸入温度が用いられても良い。
運転状態判定部113は、冷媒循環量Gr(又は冷媒循環量の推定値Grp)が、所定の範囲(例えば、150kg/h〜550kg/hの間)にある場合に、冷媒漏えいの判定が可能と判定しても良い。このようにすることで、運転状態が通常運転状態と著しく異なっているときに冷媒漏えいの判定を行うことを防止することができる。
ステップS102の結果、冷媒漏えいの判定が可能な状態ではない場合(S102→NO)、処理部111はステップS101へ処理を戻す。
ステップS102の結果、冷媒漏えいの判定が可能な状態である場合(S102→YES)、運転状態判定部113は、所定時間(例えば、15分間程度)経過したか否かを判定する(S103)。
なお、ここでは、時刻毎に運転状態情報を基に冷媒漏えいの判定が可能であるか否かを判定しているが、運転状態判定部113は、所定時間、空気調和機1の運転状態に関する情報を蓄積し、蓄積された運転状態に関する情報を基に、冷媒漏えいの判定が可能な状態であるか否かを判定しても良い。
ステップS103の結果、所定時間経過していない場合(S103→NO)、処理部111はステップS101へ処理を戻す。
ステップS103の結果、所定時間経過している場合(S103→YES)、過冷却度算出部114が、式(1)〜(3)を用いて、判定閾値Sc1thを算出する(S111)。
そして、過冷却度算出部114は、過冷却器16の出口における実測過冷却度Sc1を算出する(S112)。過冷却度算出部114は、吐出圧力センサ10paで検出した吐出圧力Pdから、予め、記憶装置130に保持されている冷媒物性の特性情報に基づいて凝縮温度Tcを算出する。そして、過冷却度算出部114は、過冷却器16の出口に設置されている温度センサ10tcから取得された過冷却器16の出口温度Tscと、凝縮温度Tcとの差である式(4)により、過冷却器16の出口における実測過冷却度Sc1を算出する。
Sc1=Tc−Tsc ・・・ (4)
なお、吐出圧力Pdを基に求められる凝縮温度Tcの代わりに、室外熱交換器11の気液二相部分の配管温度を温度センサ10tg又は、凝縮器(室外熱交換器11)出口の温度センサ10teで測定し、この温度を凝縮温度Tcとしても、同様に過冷却器16の出口における実測過冷却度Sc1の算出を行うことができる。
凝縮器(室外熱交換器11)出口の温度センサ10teを用いた場合、圧縮機14から凝縮器11までの冷媒流路の圧力損失分の影響を除いた、実際の凝縮温度の算出が可能となる。これにより、過冷却器16出口での過冷却度Sc1の算出精度を高くすることができる。
また、凝縮器(室外熱交換器11)出口の温度センサ10teによって測定された温度が用いられ、かつ、冷媒の種類として非共沸混合冷媒が用いられる場合、冷媒の組成変化が生じても、正しく沸点側の温度を測定することができる。そのため、過冷却器16での過冷却度を正確に算出することができる。
そして、冷媒量判定部115は、ステップS112で算出した過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th未満であるか否かを判定する(S113)ことにより、冷媒の漏えい(冷媒量の不足)が生じているか否かを判定する。
ステップS113の結果、過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th以上である場合(S113→NO)、冷媒量判定部115は冷媒の漏えいが生じていない(冷媒量の不足が生じていない)と判定し、処理部111がステップS101へ処理を戻す。
ステップS113の結果、過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th未満である場合(S113→YES)、冷媒量判定部115は所定時間が経過したか否かを判定する(S114)。つまり、冷媒量判定部115は、実測過冷却度Sc1が、判定閾値Sc1th未満である状態が長時間続いているか否かを判定する。
ステップS114の結果、所定時間が経過していない場合(S114→NO)、処理部111はステップS112へ処理を戻す。なお、所定時間が経過していない場合、処理部111はステップS111へ処理を戻しても良い。
ステップS114の結果、所定時間が経過している場合(S114→YES)、冷媒量判定部115は冷媒の漏えいが生じている(冷媒量が不足している)と判定する(S121)。このように、過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th未満である状態が所定時間経過した後、漏えいが生じている(冷媒量が不足している)と判定することで、一時的なノイズ等をひろって判定することを防止することができる。
そして、出力処理部116が、冷媒漏えい判定フラグを、表示装置200や、図示しない警報機、集中監視装置等へと出力する(S122)。例えば、表示装置200が、「冷媒の漏えいが生じている可能性があります」等の警告表示を行う。
ここまでが、冷媒漏えい判定の制御方法であるが、この処理により冷媒漏えいが判明した場合における対応は、空気調和機1の種類や用途に応じて異なってくる。
例えば、空気調和機1の冷却対象が、食品や飲料等の場合、運転停止により冷却物の品質低下が問題となる。このような用途では、空気調和機1の運転を直ちに停止するのではなく、図示しない遠隔監視装置を通して、図示しないサービスセンタ等への緊急連絡の通信を行い、サービスマンを現地へ派遣するよう促す。このようにすることで、迅速な対応につなげることできる。
また、冷却対象が食品であっても、使用している冷媒が微燃性冷媒である場合、制御装置100は、空気調和機1の運転停止を行い、周囲への警報や遮断弁の閉止、換気装置の駆動等安全性確保を最優先に行う。
さらに、使用用途が対人空調である場合、制御装置100は、空気調和機1の運転停止とともに室内膨張弁23や、ガス阻止弁18a、液阻止弁18b等を閉止して、室内への冷媒の漏えいを防止する。
なお、本実施形態では、適正過冷却度Sc1sが式(1)を用いて算出されているが、これに限らず、例えば、図5に示す冷媒循環量と、過冷却器16の出口における冷媒の過冷却度との関係をマップとして保持しておき、該マップを基に適正過冷却度Sc1sが算出されても良い。
なお、このマップはシミュレーションによって作成されても良いし、実測値を基に作成されても良い。
本実施形態に係る空気調和機1の制御装置100は、冷媒循環量を基に過冷却器16の出口における適正過冷却度を算出する。そして、制御装置100は、適正過冷却度を基に判定閾値を算出すると、該判定閾値と、実測過冷却度とを比較することで、冷媒量、具体的には冷媒の漏えいによる冷媒量の不足を判定する。このようにすることで、過冷却度を大きくすることなく、高精度に冷媒量を判定することができる。
つまり、図4で説明したように、冷媒循環量と、過冷却器16の出口における過冷却度との関係は、蒸発温度Teや外気温度、室外ファン回転速度、圧縮機回転速度等の運転状態がさまざまに変化した場合でも安定している。従って、本実施形態に係る空気調和機1によれば、さまざまな運転状態(外乱、誤差要因)が生じても、冷媒量を安定して判定することができる。つまり、本実施形態に係る空気調和機1は、冷媒量の判定の確実性及び精度を向上させることができる。
そして、これまでは、冷媒判定モードとして過冷却度を大きくするために運転状態を固定する等、特別なモードでしか行えなかった冷媒量の判定が、本実施形態の方法によれば、通常運転中にも行うことが可能となる。これにより、本実施形態に係る空気調和機1は、負荷側の冷却温度が影響されることがなくなり、汎用的に冷媒量の判定、具体的には冷媒量の不足(冷媒の漏えい)の判定を行うことができるようになる。
さらに、本実施形態に係る空気調和機1によれば、様々な運転状態においても、高精度の冷媒量の不足(冷媒の漏えい)判定が実施できることから、冷媒量不足(漏えい)時の速やかな対応が可能となり、点検の省力化や、省コスト化、地球温暖化の防止に効果的な対策として運用することが可能となる。
また、本実施形態に係る空気調和機1は、過冷却器16の上流にレシーバ13を備えている。このようにレシーバ13が備えられることで、過冷却器16の出口における過冷却度が安定するため、冷媒量の判定精度を高めることができる。
さらに、本実施形態に係る空気調和機1は、実測過冷却度が判定閾値より小さい状態が所定時間継続した場合、冷媒量の不足(冷媒の漏えい)が生じていると判定する。このようにすることで、ノイズ等が原因で実測過冷却度が一時的に低下したときに、冷媒量が不足(漏えい)していると誤判定することを防止することができる。
そして、本実施形態に係る空気調和機1は、式(1)を基に適正過冷却度を算出する。このようにすることで、本実施形態に係る空気調和機1は、適正過冷却度を算出するために必要な記憶領域を小さくすることができる。
また、本実施形態に係る空気調和機1は、式(2)を基に判定閾値を算出する。このようにすることで、本実施形態に係る空気調和機1は、判定閾値を算出するために必要な記憶領域を小さくすることができる。
さらに、本実施形態に係る空気調和機1は、式(3)によって冷媒循環量を推定する。このようにすることで、本実施形態に係る空気調和機1は、冷媒循環量の算出をコスト面等から実現可能とすることができる。
また、本実施形態に係る空気調和機1は、図6のステップS102に示すように、運転状態情報が冷媒状態の判定を可能な状態にある場合、適正過冷却度の算出等を行っている。このようにすることで、冷媒状態の判定精度を向上させることができる。
また、冷媒循環量Grに代わって、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)を用いると、さらに精度の良い判定が可能である。ここで、冷媒循環量比Grr及び室外ファン回転速度比Forは下記の式(5)、(6)で算出される。
Grr=Gr/Grc ・・・ (5)
ここで、Grcは、冷媒の定格循環量[kg/h]である。定格循環量とは、例えば、蒸発温度−10℃における圧縮機最大回転速度時の冷媒循環量である。
For=Fo/Foc ・・・ (6)
ここで、Foは室外ファン12の現在の回転速度[rpm]である。また、Focは、室外ファン12の定格ファン回転速度[rpm]である。定格ファン回転速度は、例えば、室外ファン12の最大回転速度である。
ここで、室外ファン回転速度をさまざまに変化させた場合における冷媒漏えいの判定方式を図7〜図9を参照して説明する。
図7は、室外ファン回転速度を様々に変化させた場合における冷媒循環量と、過冷却器の出口における過冷却度との関係を示す特性図である。
ここで、図7は、様々な室外ファン回転速度の条件下での過冷却度Sc1を縦軸に示し、横軸に冷媒循環量Grで示した場合を示している。また、図7において、「▲」で表わされる点は冷媒漏えい率0%を示している。また、「●」で表わされる点は漏えい率10%を示している。そして、「◆」で表わされる点は漏えい率15%を示している。
なお、図4は、室外ファン回転速度が標準的な回転速度である場合を示しているが、図7は、室外ファン12が省エネ(省エネルギ)モードや、標準モード、低騒音モード等、様々な回転速度である場合における、冷媒循環量と、過冷却度との関係を示している。
また、図7の線601は点「▲」の回帰直線であり、線602は点「●」の回帰直線であり、線603は点「◆」の回帰直線である。また、線601は、適正過冷却度を示す線でもある。
なお、ここでの漏えい率は、負荷側機器の動作状態や、外気温度による必要冷媒量の変化を除くために、レシーバ13の液面が下端になる際を基準(0%)としている。つまり、過冷却器16の入口が気液二相になる前のギリギリの状態からの冷媒漏えい率を算出したものである。
図7では判定閾値の線を示していないが、判定閾値は前記した式(2)に従って算出すれば良い。
このような手法では、漏えい率0%であっても、漏えい率10%程度と同様に過冷却度が小さい条件が発生し、漏えい有無の判別ができないことが分かる。すなわち、「▲」の点と、「●」の点とが重複している冷媒循環量の領域が存在する。
この原因としては、室外ファン回転速度が極端に大きい条件や、極端に小さい条件があることである。つまり、室外ファン回転速度は、凝縮圧力が適正になるように制御されているが、冷媒循環量や、外気温度に加えて、設置状況に応じた凝縮圧力目標値の変更によって制御される。具体的には、省エネ(省エネルギ)モード、標準モード、静音モード等の各モードが変更できるようになっている場合、特に室外ファン回転速度の変化幅が大きくなる。
このため、冷媒循環量だけでは、過冷却度Sc1での冷媒漏えい判定が困難となる。
そこで、冷媒循環量の代わりに前記した指標Grr/Forを用いた場合の過冷却度Sc1を図8のグラフに示す。
図8は、室外ファン回転速度を様々に変化させた場合における、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)と、過冷却器の出口における過冷却度との関係を示す特性図である。冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)は、例えば、図6のステップS112で算出されるものである。
図8では、様々な条件下での過冷却度Sc1を縦軸に示し、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)を横軸に示している。
図8においても、「▲」で表わされる点は冷媒漏えい率が0%を示している。また、「●」で表わされる点は冷媒漏えい率が10%を示している。そして、「◆」で表わされる点は冷媒漏えい率が冷媒漏えい率15%を示している。
また、図8の線611は点「▲」の回帰直線であり、線612は点「●」の回帰直線であり、線613は点「◆」の回帰直線である。また、線611は、適正過冷却度を示す線でもある。
ちなみに、線611が示す適正過冷却度Sc3は以下の式(11)で示される。
Sc3=A4・(Grr/For)+A5・・・(11)
ここで、A4、A5は、冷媒漏えい率0%における点「▲」のフィッティングを行った結果、得られる値であり、室外熱交換器11、室外ファン12、室内熱交換器21、室内ファン22等の仕様により変化するものである。
判定閾値を示す線701は判定閾値Sc3thを示す線であり、以下の式(12)で示される。
Sc3th=Sc3×A6・・・(12)
ここで、A6は冷媒漏えいが生じている際における過冷却度の低下率である。
この冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)を用いた場合、漏えい率0%と、漏えい率10%及び漏えい率15%とが判別容易となっている。
そして、この方式を導入することにより、室外ファン12のモード設定や、外気温度、蒸発温度、圧縮機回転速度等が広く変化した場合においても、正確に冷媒量の判定をすることが可能となる。
ここで、図8の縦軸を過冷却度効率にしたグラフを図9に示す。
図9は、室外ファン回転速度を様々に変化させた場合における、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)と、過冷却器の出口における過冷却度効率との関係を示す特性図である。
ここで、過冷却度効率とは、冷却器16の出口における過冷却度Sc1を凝縮温度と外気温度の差で除したものである。
さらに、図9は、縦軸に過冷却度効率SCefを示し、横軸にGrr/Forを示している。
図9において、「▲」で表わされる点は冷媒漏えい率が0%を示している。また、「●」で表わされる点は冷媒漏えい率が10%を示している。そして、「◆」で表わされる点は冷媒漏えい率が冷媒漏えい率15%を示している。
また、図9の線621は点「▲」の回帰直線であり、線622は点「●」の回帰直線であり、線623は点「◆」の回帰直線である。また、線621は、適正過冷却度を示す線でもある。
ちなみに、線621が示す適正過冷却度効率Scefは以下の式(21)で示される。
Scef=A7・(Grr/For)+A8・・・(21)
ここで、A7、A8は、冷媒漏えい率0%における点「▲」のフィッティングを行った結果、得られる値であり、室外熱交換器11、室外ファン12、室内熱交換器21、室内ファン22等の仕様により変化するものである。
判定閾値を示す線711は判定閾値Scefthを示す線であり、以下の式(22)で示される。
Scefth=Scef×A9・・・(22)
ここで、A9は冷媒漏えいが生じている際における過冷却度の低下率である。
図9に示すグラフにおいても、漏えい率0%と漏えい率10%及び15%の判別が可能となっている。
また、式(11)、(12)、(21)、(22)を用いることにより、冷媒循環量比Grrを室外ファン回転速度比Forで除した値(Grr/For)を基にした適正過冷却度、適正過冷却度効率や、これらの値を基づいた判定閾値を定量的に算出することができる。
また、図8と図9とを比較すると、Grr/Forが大きいときは、図8による判別が容易になり、小さいときは、図9による判別が容易になることが分かる。つまり、漏えい率が0%と10%との差が大きくなるほど、判定精度が高くなる。よって、Grr/Forの値が例えば1以上では図8による方式を用い、1未満では図9による方式を用いることにより、さらに高精度の判定が可能となる。
また、冷媒循環量比Grrは下記の式(7)で求めると演算負荷の低減を実現することができ、製品への実装が容易になると共に、実用上の精度も確保できる。
Grr=(Ft/Ftmax)(Ps/Psc) ・・・ (7)
ここで、Ftは、現在の圧縮機回転速度[rps]である。また、Ftmaxは、圧縮機回転速度上限値[rps]である。そして、Psは、現在の圧縮機14の吸入圧力又は室内機10全体の吸込圧力[MPaA]である。さらに、Pscは、基準となる蒸発温度(例えば−10℃)でのPsである。
ここで、図7における縦軸を過冷却度効率とした図を図10に示す。
図10は、室外ファン回転速度を様々に変化させた場合における冷媒循環量と、過冷却器の出口における過冷却度効率との関係を示す特性図である。
ここで、過冷却器16の出口における過冷却度効率は、前記したように過冷却器16の出口における過冷却度Sc1を凝縮温度と外気温度の差で除したものである。
ここで、図10は、様々な室外ファン回転速度の条件下での過冷却度効率Scefを縦軸とし、横軸に冷媒循環量Grで示した場合を示している。また、図10において、「▲」で表わされる点は冷媒漏えい率が0%を示している。また、「●」で表わされる点は冷媒漏えい率10%を示している。そして、「◆」で表わされる点は冷媒漏えい率15%を示している。
また、図10の線631は点「▲」の回帰直線であり、線632は点「●」の回帰直線であり、線633は点「◆」の回帰直線である。また、線631は、適正過冷却度を示す線でもある。
図10では判定閾値の線を示していないが、判定閾値は前記した式(2)の過冷却度Sc1sを適正過冷却度効率(線631)として算出すれば良い。
図10のように、冷媒循環量を基に、適正過冷却度効率を算出し、この適正過冷却度効率を基に、冷媒漏えいの判定を行うことにより、空気調和機1は、冷媒循環量を基に、適正過冷却度を算出し、この適正過冷却度を基に、冷媒漏えいの判定を行う場合と同様の効果を得ることができる。
図7と、図10とを比較すると、図8及び図9と同様に、冷媒循環量が大きいときは、図7による判別が容易になり、小さいときは、図10による判別が容易になることが分かる。つまり、漏えい率が0%と10%との差が大きくなるほど、判定精度が高くなる。よって、冷媒循環量の値が例えば100(kg/h)以上では図7による方式を用い、00(kg/h)未満では図10による方式を用いることにより、さらに高精度の判定が可能となる。
なお、過冷却度の代わりに過冷却度効率が用いられた場合、図6のステップS112では、実測された過冷却度を凝縮温度と外気温度の差で除した実測過冷却度効率が算出される。
[第2実施形態]
次に、本実施形態の第2実施形態について説明する。第1実施形態に係る空気調和機1ではエコノマイザが備えられていないのに対し、第2実施形態ではエコノマイザが備えられた空気調和機が対象となる。
(空気調和機1aの構成)
図11は、第2実施形態に係る空気調和機の構成例を示す図である。
なお、図11において、図1と同様の構成要素に対しては、同一の符号を付して説明を省略する。
図11における空気調和機1aの室外機10aは、エコノマイザ41と、このエコノマイザ41に低温冷圧冷媒を流すエコノマイザ弁(エコノマイザ減圧器)42、更に、エコノマイザ41の出口における冷媒(液冷媒)温度を測定する温度センサ10thを追加した構成である点が図1における空気調和機1と異なる点である。
エコノマイザ41の上流側で過冷却器16から流出した過冷却液(過冷却された冷媒)は、液インジェクション弁17に流入する第1の経路、エコノマイザ41に流入する第3の経路(主流経路)及びエコノマイザ弁42に流入する第4の経路(バイパス経路)に分流される。つまり、第1実施形態における第2の経路が、第3の経路及び第4の経路に分流される。
第4の経路(バイパス経路)における過冷却液はエコノマイザ弁42に流入し、エコノマイザ弁42で減圧され、さらに低温となった後、エコノマイザ41に流入する。
第3の経路(主流経路)の過冷却液は、エコノマイザ弁42によって減圧された低温の第4の経路の過冷却液と熱交換することによって、さらに過冷却される。エコノマイザ41によって過冷却された第3の経路における冷媒は配管30を介して室内機20における蒸発器としての室内熱交換器21へ送られる。
一方、第4の経路(バイパス経路)における過冷却液は、エコノマイザ41で蒸発し、エコノマイザ41から流出した後、液インジェクション弁17から流出した第1の経路における冷媒と合流する。合流した冷媒は、圧縮機14の中間圧部に流入し、圧縮機14で吐出圧力Pdまで圧縮される。
図12は、第2実施形態に係る空気調和機のモリエル線図(P−H線図)である。適宜、図11を参照する。また、図12において図3と同様の構成については、同一の符号を付して説明を省略する。
図12に示すエコノマイザ41を有する冷凍サイクルの運転状態では、エコノマイザ41による過冷却の結果、図3に示すモリエル線図に対して状態306から状態311までの過冷却度が増加している。空気調和機1aは、状態306から状態311までの過冷却度の増加による冷凍能力の増加(状態312→状態301)を、吸入圧力Psと中間圧までの動力増加なしに実現できることから、成績係数を向上させることができる。
このような空気調和機1aでは、過冷却器16の出口における過冷却度の代わりに、エコノマイザ41の出口における過冷却度を用いることが考えられる。
次に、図4を参照して、エコノマイザ41の出口における過冷却度について説明する。
また、図4において、「△」の記号が、エコノマイザ41の出口における過冷却度を示している。図4で示されているのは、前記した条件で外気温度や蒸発温度Te等がさまざまに変化した場合の値である。ちなみに、エコノマイザ弁42の開度は、圧縮機14の吐出温度Tdで制御されている。すなわち、吐出温度Tdが高くなる高圧力比条件ではエコノマイザ弁42の開度を大きくする等といった制御が行われるため、吐出温度Tdによってエコノマイザ41へのバイパス流での流量が変化する。
その結果、エコノマイザ41の主流側出口(配管30に接続している出口)の冷媒循環量に対する過冷却度は、図4に示されるようにばらついてしまい、冷媒循環量だけでは、冷媒漏えいの判定ができない。すなわち、「△」と、「◇」とが重複している箇所が存在している。従って、エコノマイザ41の主流側出口における過冷却度は、第1実施形態のように冷媒循環量を用いたシンプルな判定指標としては使用することが困難である。
従って、第1実施形態のように過冷却器16の出口における過冷却度を用いるのが有用である。
しかしながら、第2実施形態に係る空気調和機1aでは、過冷却器16と液インジェクション弁17との間で冷媒が分流してしまっているので、前記した式(3)における液インジェクション弁17の開度MVをそのまま使用することはできない。
そこで、第2実施形態では、前記した式(3)で冷媒循環量を求める際に、エコノマイザ弁42の開度比と液インジェクション弁17の開度比とを合計した開度比としてMVを算出し、冷媒循環量を推定する。すなわち、式(3)のMVを、MV=エコノマイザ弁42の開度比MV1+液インジェクション弁17の開度比MV2とし、このMVを式(3)に代入して冷媒循環量の推定値を算出する。
このようにすることにより、制御装置100は、第1実施形態と同様、式(1)〜式(3)から算出される過冷却器16の出口における過冷却度の判定閾値を用いて冷媒量の適否を判定することが可能となる。これにより制御装置100は、様々な運転条件下でも安定して冷媒漏えいを判定することが可能となる。
さらに、エコノマイザ41を備えたサイクルにおいては、エコノマイザ41にて過冷却された液阻止弁18bでの過冷却度(以下、適宜エコノマイザ出口過冷却度と称する)を用いた判定も利用することができる。
図13は、冷媒循環量と、エコノマイザ出口過冷却度との関係を示す特性図である。
図13は、縦軸にエコノマイザ出口過冷却度SCecoを示し、横軸に冷媒循環量Grを示している。
図13において、「▲」で表わされる点は冷媒漏えい率が0%を示している。また、「●」で表わされる点は冷媒漏えい率が10%を示している。そして、「◆」で表わされる点は冷媒漏えい率が冷媒漏えい率15%を示している。
また、図13の線641は点「▲」の回帰直線であり、線642は点「●」の回帰直線であり、線643は点「◆」の回帰直線である。また、線641は、適正過冷却度を示す線でもある。
なお、線641は、適正エコノマイザ出口過冷却度を示す線でもある。なお、判定閾値を示す線は、線641に限らない。
また、図13において、判定閾値の線を示していないが、判定閾値は前記した式(2)の過冷却度Sc1sを適正エコノマイザ出口過冷却度(線641)として算出すれば良い。
なお、適正エコノマイザ出口過冷却度Sは、以下の式(31)によって算出できる
SCeco=A10・Gr+A11 ・・・ (31)
ここで、A10、A11は、例えば、冷媒漏えい率0%の線641から決まる計数である。なお、A10、A11は、室外熱交換器11、室外ファン12、室内熱交換器21、室内ファン22等の仕様により変化する。
図13に示すように、冷媒漏えい率が0%から10%、15%と増えていくに従って、エコノマイザ出口過冷却度SCecoは低下する傾向にある。ただし、冷媒循環量の小さい領域等で、明確に冷媒漏えいの有無の判別ができない状態も存在している。この原因は、冷媒循環量が少ない状態では相対的にエコノマイザ41を流れるバイパス経路の流量が多くなり、液阻止弁18bを通る冷媒流量が少なくなることが原因である。つまり、冷媒不足の場合においても、液阻止弁18bを通る主流経路を流れる液冷媒を十分過冷却できる場合が存在するためである。
したがって、第1実施形態における過冷却器16の過冷却度を用いた判定を主とした判定とするとともに、第2実施形態におけるエコノマイザ41の過冷却度を補助的な判定に利用することが望ましい。エコノマイザ41の過冷却度を補助的な判定に使用する際の手順については下記の方法がある。この判定手順は、図6のステップS113で行われるものである。
<手順1>
冷媒量判定部115が、(空冷)過冷却器16の過冷却度(図4)又は過冷却度効率(図9)を用いて冷媒不足(漏えい)か否かを判定(第1実施形態)する。
<手順2>
冷媒量判定部115が、エコノマイザ出口過冷却度SCecoにて冷媒不足(漏えい)か否かを判定(第2実施形態)する。
<手順3>
手順1で「冷媒不足(漏えい)と判定」、かつ、手順2で「冷媒不足(漏えい)と判定」されると、冷媒量判定部115は、ステップS113で「Yes」と判定する。手順1及び手順2のどちらか一方で、「冷媒不足(漏えい)ではないと判定」されれば、冷媒量判定部115は、ステップS113で「No」と判定する。
このような手順1〜3を実施することで、センサ誤差や運転状態の変動による影響による誤判定を防止することができる。
つまり、エコノマイザ出口過冷却度を用いることにより、空気調和機1aは冷媒漏えい判定の精度を向上させるための判定閾値を得ることができる。
[第3実施形態]
次に、図14を参照して、本発明の第3実施形態を説明する。第1実施形態及び第2実施形態に係る制御装置100は冷媒が漏えいしているか否かの判定を行っているが、冷媒封入時の冷媒量が適正であるか否かの判定にも用いることができる。第3実施形態では、このように冷媒量が適正であるか否かの判定手法について説明する。なお、第3実施形態では、第1実施形態の空気調和機1、第2実施形態の空気調和機1aのどちらにも適用することができる。
図14は、第3実施形態に係る冷媒漏えい判定処理の手順を示すフローチャートである。図14において、図6と同様の処理については、同一のステップ番号を付して説明を省略する。
冷媒量が適正であるか否かを判定する場合、式(2)のA3を、第1実施形態の0.6より大き目に設定することが望ましい。たとえば、冷媒充足に近いA3=0.8程度とすることで、必要な冷媒量をほぼ適正に判定することが可能となる。
なお、A3=0.8は一例であり、A3の値は、冷媒の適正量を判定するのにふさわしい値であれば、0.8に限らない。
ちなみに、式(2)の係数A3を1.2等と、1以上に設定し、判定閾値Sc1thが理想的な過冷却度(適正過冷却度)Sc1sを超えた値とすることも可能である。このような場合、実測過冷却度が、判定閾値Sc1thを超えたことを判定すると、冷媒量判定部115はレシーバ13が満液状態(冷媒過多)であると判定する。このようにすることで、レシーバ13の満液状態(冷媒過多)の検知を行うことが可能となる。
そして、図6のステップS113に相当するステップS113aで、冷媒量判定部115はステップS112で算出した過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th以上であるか否かを判定することにより、冷媒量が適正であるか否かを判定する。
ステップS113aの結果、過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th以上である場合(S113a→YES)、冷媒量判定部115は冷媒量が適正であると判定し、処理部111はステップS101へ処理を戻す。
ステップS113aの結果、過冷却器16の出口における実測過冷却度Sc1が、判定閾値Sc1th未満である場合(S113a→NO)、冷媒量判定部115は所定時間が経過したか否かを判定する(S114)。
ステップS114の結果、所定時間が経過していない場合(S114→NO)、処理部111はステップS112へ処理を戻す。なお、所定時間が経過していない場合、処理部111はステップS111へ処理を戻しても良い。
ステップS114の結果、所定時間が経過している場合(S114→YES)、冷媒量判定部115は冷媒量が異常であると判定する(S121a)。そして、出力処理部116が、冷媒異常フラグを、表示装置200や、図示しない警報機、集中監視装置へと出力する。例えば、表示装置200が、「冷媒量が異常である可能性があります」等の警告表示を行う。その後、追加充填量として、レシーバ13の容量に応じた所定量の冷媒量の算出及び算出した量の冷媒を追加する(追加充填量の算出・追加:S122a)。なお、追加充填量の算出、冷媒の追加は、図6で漏えいが生じている判定された際に行われても良い。なお、ステップS122aの処理は省略されても良い。
このようにすることで、第3実施形態に係る空気調和機1は、冷媒量の不足(漏えい)だけでなく、冷媒量が適切であるか否かの判定を行うことができる。
[冷媒について]
第1〜第3実施形態における空気調和機1,1aに循環する冷媒として、例えば、R404A、R407C、R407F、R407E、R410A、R134a、R507A、R448A、R449A、R450A、R452A、R513A等の地球温暖化係数GWP(Global Warming Potential)が1000以上の不燃性冷媒等が使用される。
なお、このように地球温暖化係数GWPが1000以上の冷媒を使用すると、成績係数COP(Coefficient Of Performance)を高くでき、ランニングコストを小さくすることができるとともに、稼働時の電力消費に伴う温暖化影響を小さくできる。また、不燃性冷媒のため、冷媒の漏えい時に備えた安全対策に対する費用が低減できることから、イニシャルコストも低く抑えられるメリットがある。しかし、地球温暖化係数GWPが1000以上と比較的大きいため、温暖化防止の観点から冷媒漏えい時にはいち早くそれを検知して、速やかな対処を要することから、本実施形態の技術による冷媒漏えい判定の有用性が高い。
また、他の冷媒として、地球温暖化係数GWPが低い(例えば、地球温暖化係数GWPが750以下)が微燃性を有する冷媒を使用した場合、冷媒漏えい時の温暖化影響を比較的小さくできるが、微燃性を有することから冷媒漏えいの早期判定の実施が望ましい。このため、後者の微燃性冷媒使用時にも、本実施形態の技術によって冷媒漏えいを判定することができれば、その有用性が高い。
したがって、本実施形態の空気調和機1に使用される冷媒は、GWPが750以下の冷媒、例えば、R32、R1123、R1234yf、R1234ze(E)、R454A、R454B、R444B等の微燃性冷媒であっても良い。
なお、本発明は前記した実施形態に限定されるものではない。例えば、前記した実施形態は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。
また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、さらに、ある実施形態の構成に他の実施形態の構成を加えることも可能である。
例えば、以上の説明は、空気調和機1,1aが室内冷房を行う場合であるが、空気調和機1が室内暖房を行う場合も、暖房運転される凝縮器(室内熱交換器21)側にレシーバ13と過冷却器16を構成し、室外熱交換器11の入口に膨張弁を設置すれば、本実施形態に係る空気調和機1,1aを利用することができる。なお、この場合、レシーバ13が室内機20側に備えられていても良い。
また、レシーバ13が室外機10側にも室外機20側にも備えられていなくても良い。
さらに、本実施形態に係る空気調和機1,1aは、冷凍機や、パッケージエアコン、ルームエアコン等に適用することができる。
本実施形態に係る空気調和機1,1aを冷凍機に適用する場合、室内機20に相当する部分が、ユニットクーラであれば、冷凍倉庫の冷却に利用され、ショーケースの場合には、陳列される食品や飲料品の冷却に用いられるが、冷却対象はこれらに限定されない。
ここで、制御装置100は室外機10に設けられても良いし、室内機20に設けられても良いし、室外機10及び室外機20とは別の装置として設けられても良い。
本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した各構成、機能、各部111〜116、記憶装置130等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現しても良い。また、図5に示すように、前記した各構成、機能等は、CPU120等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDに格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えて良い。
1,1a 空気調和機(冷凍サイクル装置)
10,10a 室外機
10ta 吐出温度センサ
10tb〜10th 温度センサ
10pa 吐出圧力センサ
10pb 吸入圧力センサ
11 室外熱交換器(凝縮器)
12 室外ファン
13 レシーバ(余剰冷媒貯留器)
14 圧縮機
15 アキュムレータ
16 過冷却器
17 液インジェクション弁
18a ガス阻止弁
18b 液阻止弁
20 室内機
21 室内熱交換器(蒸発器)
22 室内ファン
23 室内膨張弁(減圧器)
41 エコノマイザ
42 エコノマイザ弁(エコノマイザ減圧器)
111 処理部
112 運転情報取得部
113 運転状態判定部
114 過冷却度算出部(適正過冷却度推定部、判定閾値算出部)
115 冷媒量判定部(判定処理部)
116 出力処理部

Claims (21)

  1. ガス状の冷媒を圧縮する圧縮機と、
    前記圧縮された冷媒を凝縮する凝縮器と、
    前記凝縮された冷媒を減圧する減圧器と、
    前記減圧された冷媒を蒸発させる蒸発器と、
    前記凝縮器で凝縮された前記冷媒を過冷却する過冷却器と、
    前記圧縮機の吐出側から、前記凝縮器、前記過冷却器を循環する冷媒循環量に関する値を基に、前記過冷却器の出口における前記冷媒の適正過冷却度に関する値を推定する適正過冷却度推定部と、
    前記推定された適正過冷却度に関する値を基に、冷媒量を判定するための判定閾値を算出する判定閾値算出部と、
    実測された過冷却度に関する値と、前記判定閾値とを比較することで、前記冷媒量を判定する判定処理部と、
    を有することを特徴とする冷凍サイクル装置。
  2. 請求項1に記載の冷凍サイクル装置であって、
    前記冷媒循環量に関する値は、
    前記冷媒循環量である
    ことを特徴とする冷凍サイクル装置。
  3. 求項2に記載の冷凍サイクル装置であって、
    前記過冷却器から流出した冷媒の経路が、第1の経路及び第2の経路に分流され、
    前記第1の経路は、液インジェクション減圧器によって減圧された後、前記圧縮機の中間圧力にインジェクションされ、
    前記第2の経路は、前記減圧器へ送られ、
    前記適正過冷却度推定部は、
    以下の式(1)を基に推定された推定冷媒循環量を、前記冷媒循環量の値とする
    ことを特徴とする冷凍サイクル装置。
    Gr=(a1・Fr+a2)(b1・Ps+b2)(c1・MV+c2)・・・(1)
    ここで、Grは前記冷媒循環量の推定値であり、Frは圧縮機回転速度であり、Psは圧縮機の吸入圧力であり、MVは前記液インジェクション減圧器の開度である。また、a1、a2、b1、b2、c1、c2は、実験もしくはシミュレーションによってそれぞれ求められる係数である。
  4. 求項3に記載の冷凍サイクル装置であって、
    前記過冷却器と、前記減圧器との間に、エコノマイザ及びエコノマイザ減圧器が備えられ、
    前記第2の経路は、前記エコノマイザに流入する第3の経路及び前記エコノマイザ減圧器に流入する第4の経路に分流され、
    前記第4の経路に流入した冷媒は、前記エコノマイザ減圧器によって減圧された後、前記エコノマイザに流入し、前記エコノマイザから流出した後、前記第1の経路における冷媒と合流し、該合流した冷媒は前記圧縮機の中間圧にインジェクションされ、
    前記第3の経路に流入した冷媒は、前記エコノマイザにおいて、前記第4の経路における冷媒と熱交換することによって過冷却された後、前記減圧器に送られ、
    前記適正過冷却度推定部は、
    前記式(1)における、前記液インジェクション減圧器の開度を、前記液インジェクション減圧器の開度と、前記エコノマイザ減圧器の開度とを加算した値とする
    ことを特徴とする冷凍サイクル装置。
  5. 請求項2に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、
    前記適正過冷却度であり、
    前記実測された過冷却度に関する値は、
    前記実測された過冷却度である
    ことを特徴とする冷凍サイクル装置。
  6. 請求項2に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、
    前記過冷却器の出口における前記冷媒の適正過冷却度を外気温度と凝縮温度との差で除した適正過冷却度効率であり、
    前記実測された過冷却度に関する値は、
    前記過冷却器の出口における、実測された前記冷媒の過冷却度を外気温度と凝縮温度との差で除した実測過冷却度効率である
    ことを特徴とする冷凍サイクル装置。
  7. 求項2に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、前記適正過冷却度及び前記過冷却器の出口における前記冷媒の適正過冷却度を外気温度と凝縮温度との差で除した適正過冷却度効率であり、
    前記実測された過冷却度に関する値は、
    前記過冷却器の出口における、実測された前記冷媒の過冷却度及び当該実測された過冷却度を外気温度と凝縮温度との差で除した実測過冷却度効率であり、
    前記判定処理部は、
    前記冷媒循環量が、所定値以上では前記適正過冷却度に基づいた判定閾値にて判定し、所定値未満では前記適正過冷却度効率に基づいた判定閾値を用いて前記冷媒量を判定する
    ことを特徴とする冷凍サイクル装置。
  8. 請求項2に記載の冷凍サイクル装置であって、
    前記過冷却器と、前記減圧器との間に、エコノマイザ及びエコノマイザ減圧器が備えられ、
    前記適正過冷却度に関する値は、
    前記エコノマイザの出口における適正な過冷却度である適正エコノマイザ出口過冷却度であり、
    前記実測された過冷却度に関する値は、
    前記エコノマイザの出口における、実測された過冷却度である実測エコノマイザ出口過冷却度である
    ことを特徴とする冷凍サイクル装置。
  9. 求項2に記載の冷凍サイクル装置であって、
    前記適正過冷却度推定部は、
    以下の式(2)を基に、前記冷媒の適正過冷却度を算出する
    ことを特徴とする冷凍サイクル装置。
    Sc1s=A1・Ln(Gr)−A2 ・・・ (2)
    ただし、Sc1sは適正過冷却度、Grは冷媒循環量、A1及びA2は、冷媒循環量と適正過冷却度との関係から求められる所定の係数である。
  10. 請求項1に記載の冷凍サイクル装置であって、
    室外ファンを有し、
    前記冷媒循環量に関する値は、
    前記冷媒循環量の定格比を前記室外ファンの回転速度の定格比で除した値である
    こと特徴とする冷凍サイクル装置。
  11. 請求項10に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、
    前記適正過冷却度であり、
    前記実測された過冷却度に関する値は、
    前記実測された過冷却度である
    ことを特徴とする冷凍サイクル装置。
  12. 請求項10に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、
    前記過冷却器の出口における前記冷媒の適正過冷却度を外気温度と凝縮温度との差で除した適正過冷却度効率であり、
    前記実測された過冷却度に関する値は、
    前記過冷却器の出口における、実測された前記冷媒の過冷却度を外気温度と凝縮温度との差で除した実測過冷却度効率である
    ことを特徴とする冷凍サイクル装置。
  13. 求項10に記載の冷凍サイクル装置であって、
    前記適正過冷却度推定部は、
    以下の式(3)を基に、前記冷媒の適正過冷却度を算出する
    ことを特徴とする冷凍サイクル装置。
    Sc2c=A3・(Grr/For)+A4 ・・・ (3)
    ただし、Sc2cは適正過冷却度、Grrは冷媒循環量定格比、Forは室外ファンの回転速度の定格比、A3及びA4は、冷媒循環量定格比を室外ファンの回転速度の定格比で除した値と、適正過冷却度との関係から求められる所定の係数である。
  14. 求項10に記載の冷凍サイクル装置であって、
    前記適正過冷却度に関する値は、前記適正過冷却度及び前記過冷却器の出口における前記冷媒の適正過冷却度を外気温度と凝縮温度との差で除した適正過冷却度効率であり、
    前記実測された過冷却度に関する値は、
    前記過冷却器の出口における、実測された前記冷媒の過冷却度及び当該実測された過冷却度を外気温度と凝縮温度との差で除した実測過冷却度効率であり、
    前記判定処理部は、
    前記冷媒循環量の定格比を室外ファンの回転速度の定格比で除した値が、所定値以上では前記適正過冷却度に基づいた判定閾値にて判定し、所定値未満では前記適正過冷却度効率に基づいた判定閾値を用いて前記冷媒量を判定する
    ことを特徴とする冷凍サイクル装置。
  15. 請求項1に記載の冷凍サイクル装置であって、
    前記凝縮器と、前記過冷却器と、の間に、前記凝縮器で凝縮された前記冷媒を貯留する余剰冷媒貯留器を備える
    ことを特徴とする冷凍サイクル装置。
  16. 請求項1に記載の冷凍サイクル装置であって、
    前記判定処理部は、
    前記実測された過冷却度が、前記判定閾値より小さい値の場合、前記冷媒量の不足が生じていると判定する
    ことを特徴とする冷凍サイクル装置。
  17. 請求項1に記載の冷凍サイクル装置であって、
    前記判定処理部は、
    前記実測された過冷却度に関する値について、前記判定閾値より小さい状態が、所定時間継続した場合、前記冷媒量の不足が生じていると判定する
    ことを特徴とする冷凍サイクル装置。
  18. 請求項1に記載の冷凍サイクル装置であって、
    前記判定処理部は、
    前記実測された過冷却度が、前記判定閾値より大きい値の場合、前記冷媒量が適正であると判定する
    ことを特徴とする冷凍サイクル装置。
  19. 請求項1に記載の冷凍サイクル装置であって、
    前記判定処理部は、
    前記実測された過冷却度に関する値が、前記判定閾値より小さい値の場合、前記冷媒の追加充填量を算出し、該追加充填量の冷媒を追加する前記冷媒量が適正に対して一定割合有すると判定し、その後残りの追加封入量を算出し、指示する
    ことを特徴とする冷凍サイクル装置。
  20. 請求項1に記載の冷凍サイクル装置であって、
    前記冷媒は、地球温暖化係数が1000以上である
    ことを特徴とする冷凍サイクル装置。
  21. 請求項1に記載の冷凍サイクル装置であって、
    前記冷媒は、地球温暖化係数が750以下である
    ことを特徴とする冷凍サイクル装置。
JP2017538476A 2015-09-10 2016-08-10 冷凍サイクル装置 Active JP6475346B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015178773A JP2017053566A (ja) 2015-09-10 2015-09-10 冷凍サイクル装置
JP2015178773 2015-09-10
PCT/IB2016/054799 WO2017042649A1 (ja) 2015-09-10 2016-08-10 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2017042649A1 JPWO2017042649A1 (ja) 2018-06-28
JP6475346B2 true JP6475346B2 (ja) 2019-02-27

Family

ID=58240630

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015178773A Pending JP2017053566A (ja) 2015-09-10 2015-09-10 冷凍サイクル装置
JP2017538476A Active JP6475346B2 (ja) 2015-09-10 2016-08-10 冷凍サイクル装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015178773A Pending JP2017053566A (ja) 2015-09-10 2015-09-10 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3348939B1 (ja)
JP (2) JP2017053566A (ja)
CN (1) CN108027188B (ja)
WO (1) WO2017042649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084713A1 (ja) * 2019-10-31 2021-05-06 三菱電機株式会社 室外ユニットおよび冷凍サイクル装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392304B (zh) * 2017-06-12 2021-04-20 日立江森自控空调有限公司 空调系统、空调方法以及控制装置
JP2019045002A (ja) * 2017-08-30 2019-03-22 アイシン精機株式会社 ヒートポンプの制御方法
WO2019065635A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷媒量推定方法及び空気調和装置
JP6555315B2 (ja) 2017-10-16 2019-08-07 ダイキン工業株式会社 HFO−1234ze(E)及びHFC−134を含有する冷媒組成物及びその使用
CN108266856B (zh) * 2017-12-07 2020-07-10 宁波奥克斯电气股份有限公司 一种多联机智能优化运行方法及装置
CN110375466B (zh) 2018-04-13 2022-10-28 开利公司 用于空气源热泵系统的制冷剂泄露的检测装置和方法
CN110375468B (zh) * 2018-04-13 2022-10-11 开利公司 风冷热泵系统、用于其的制冷剂泄漏检测方法及检测系统
CN110375467B (zh) * 2018-04-13 2022-07-05 开利公司 用于空气源单制冷系统的制冷剂泄露的检测装置和方法
JP6628833B2 (ja) * 2018-05-22 2020-01-15 三菱電機株式会社 冷凍サイクル装置
EP3819555A4 (en) * 2018-07-05 2021-07-21 Mitsubishi Electric Corporation REFRIGERATION CYCLE EQUIPMENT
CN110857804B (zh) * 2018-08-24 2021-04-27 奥克斯空调股份有限公司 一种空调器冷媒泄漏故障的检测方法及其空调器
CN110887167A (zh) * 2018-09-10 2020-03-17 奥克斯空调股份有限公司 一种空调器冷媒泄露的检测方法及其空调器
JP6777180B2 (ja) 2019-03-19 2020-10-28 ダイキン工業株式会社 冷媒量推定装置、方法、およびプログラム
CN113710972B (zh) 2019-04-09 2023-06-06 三菱电机株式会社 制冷装置
EP3760955A1 (en) 2019-07-02 2021-01-06 Carrier Corporation Distributed hazard detection system for a transport refrigeration system
CN110304086B (zh) * 2019-07-09 2020-09-08 石家庄国祥运输设备有限公司 轨道车辆空调机组
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control
ES2950759T3 (es) * 2019-09-09 2023-10-13 Mitsubishi Electric Corp Unidad exterior y aparato de ciclo de refrigeración
JP6791429B1 (ja) * 2019-09-09 2020-11-25 ダイキン工業株式会社 冷媒量判定装置、方法、およびプログラム
CN110895017B (zh) * 2019-12-09 2021-03-05 宁波奥克斯电气股份有限公司 一种空调器缺制冷剂的保护方法及空调器
JP6793862B1 (ja) * 2020-01-14 2020-12-02 三菱電機株式会社 冷凍サイクル装置
JP7516806B2 (ja) * 2020-03-27 2024-07-17 株式会社富士通ゼネラル 空気調和機
CN111457550B (zh) * 2020-04-20 2022-01-21 宁波奥克斯电气股份有限公司 空调缺冷媒检测方法、装置及空调器
CN112178868B (zh) * 2020-09-23 2022-02-08 科华恒盛股份有限公司 空调故障检测方法及装置
CN114593045B (zh) * 2020-12-04 2023-05-26 广东美的暖通设备有限公司 压缩机回气干度检测方法、装置、设备及存储介质
JP7197814B2 (ja) * 2021-05-21 2022-12-28 ダイキン工業株式会社 冷媒漏洩検知システム
CN113959078B (zh) * 2021-09-16 2023-02-28 青岛海尔空调电子有限公司 用于压缩机的控制方法、装置、设备及存储介质
WO2024047830A1 (ja) * 2022-09-01 2024-03-07 三菱電機株式会社 冷凍サイクル装置および空気調和装置
WO2024047831A1 (ja) * 2022-09-01 2024-03-07 三菱電機株式会社 冷凍サイクル装置および空気調和装置
WO2024047833A1 (ja) * 2022-09-01 2024-03-07 三菱電機株式会社 冷凍サイクル装置および空気調和装置
WO2024047832A1 (ja) * 2022-09-01 2024-03-07 三菱電機株式会社 冷凍サイクル装置および空気調和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090451A1 (ja) * 2005-02-24 2006-08-31 Mitsubishi Denki Kabushiki Kaisha 空気調和装置
CN100580347C (zh) * 2005-04-07 2010-01-13 大金工业株式会社 空调装置的制冷剂量判定系统
JP4317878B2 (ja) * 2007-01-05 2009-08-19 日立アプライアンス株式会社 空気調和機及びその冷媒量判定方法
JP5326488B2 (ja) * 2008-02-29 2013-10-30 ダイキン工業株式会社 空気調和装置
JP5318099B2 (ja) * 2008-06-13 2013-10-16 三菱電機株式会社 冷凍サイクル装置、並びにその制御方法
JP2010007995A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
JP2010007994A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置および空気調和装置の冷媒量判定方法
JP5334909B2 (ja) * 2010-04-20 2013-11-06 三菱電機株式会社 冷凍空調装置並びに冷凍空調システム
JP5525965B2 (ja) * 2010-08-25 2014-06-18 日立アプライアンス株式会社 冷凍サイクル装置
US9188376B2 (en) * 2012-12-20 2015-11-17 Mitsubishi Electric Corporation Refrigerant charge assisting device, air-conditioning apparatus, and refrigerant charge assisting program
JP6291774B2 (ja) * 2013-10-07 2018-03-14 ダイキン工業株式会社 冷凍装置
WO2015056704A1 (ja) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084713A1 (ja) * 2019-10-31 2021-05-06 三菱電機株式会社 室外ユニットおよび冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2017042649A1 (ja) 2018-06-28
WO2017042649A1 (ja) 2017-03-16
JP2017053566A (ja) 2017-03-16
EP3348939A4 (en) 2019-04-17
CN108027188A (zh) 2018-05-11
EP3348939B1 (en) 2022-03-23
CN108027188B (zh) 2020-08-14
EP3348939A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6475346B2 (ja) 冷凍サイクル装置
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
JP4975052B2 (ja) 冷凍サイクル装置
US8555703B2 (en) Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
JP5147889B2 (ja) 空気調和装置
JP6341808B2 (ja) 冷凍空調装置
JP2007255818A (ja) 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP5808410B2 (ja) 冷凍サイクル装置
JPWO2019053858A1 (ja) 冷凍サイクル装置および冷凍装置
JP2008249239A (ja) 冷却装置の制御方法、冷却装置および冷蔵倉庫
EP3404345B1 (en) Refrigeration cycle device
US20180038621A1 (en) Refrigeration cycle apparatus
JP6588626B2 (ja) 冷凍装置
JP2019002639A (ja) 空気調和機の冷媒漏洩検知方法、および、空気調和機
WO2015111222A1 (ja) 冷凍装置
JP5487831B2 (ja) 漏洩診断方法、及び漏洩診断装置
JP7058657B2 (ja) 冷凍空調装置及び制御装置
WO2016135904A1 (ja) 冷凍装置
JP6590945B2 (ja) 冷凍装置
JP4548502B2 (ja) 冷凍装置
JP6758075B2 (ja) 空気調和機及び冷媒量判定方法
WO2020255355A1 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
JP2019207103A (ja) 冷凍装置
JP2008020189A (ja) 冷凍装置

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20180228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190131

R150 Certificate of patent or registration of utility model

Ref document number: 6475346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150