JP6468241B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6468241B2
JP6468241B2 JP2016095290A JP2016095290A JP6468241B2 JP 6468241 B2 JP6468241 B2 JP 6468241B2 JP 2016095290 A JP2016095290 A JP 2016095290A JP 2016095290 A JP2016095290 A JP 2016095290A JP 6468241 B2 JP6468241 B2 JP 6468241B2
Authority
JP
Japan
Prior art keywords
egr
internal combustion
combustion engine
passage
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016095290A
Other languages
Japanese (ja)
Other versions
JP2017203413A (en
Inventor
広矩 伊藤
広矩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016095290A priority Critical patent/JP6468241B2/en
Priority to DE102017106620.9A priority patent/DE102017106620A1/en
Priority to CN201710251758.6A priority patent/CN107366589A/en
Priority to US15/589,241 priority patent/US20170328291A1/en
Publication of JP2017203413A publication Critical patent/JP2017203413A/en
Application granted granted Critical
Publication of JP6468241B2 publication Critical patent/JP6468241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の制御装置に関し、詳しくは、排気還流装置を備えた内燃機関の制御装置に関する。   The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device including an exhaust gas recirculation device.

例えば、特許文献1には、燃費改善を目的として触媒通過後の排気ガスを吸気へ還流させる排気還流装置(以下、「EGR(Exhaust Gas Recirculation)装置」とも称する)を備える内燃機関が開示されている。このようなEGR装置付き内燃機関では、燃費改善効果を運転条件に応じて最大にするためにEGRの量を制御する必要があり、この制御には排気を還流させる通路に配置されたEGR弁が使用されている。   For example, Patent Document 1 discloses an internal combustion engine that includes an exhaust gas recirculation device (hereinafter also referred to as an “EGR (Exhaust Gas Recirculation) device”) that recirculates exhaust gas that has passed through a catalyst to intake air for the purpose of improving fuel efficiency. Yes. In such an internal combustion engine with an EGR device, it is necessary to control the amount of EGR in order to maximize the fuel efficiency improvement effect according to the operating conditions. For this control, an EGR valve arranged in a passage for recirculating exhaust gas is required. It is used.

特開2010−150930号公報JP 2010-150930 A 特開2013−162663号公報JP 2013-162663 A 特開2005−069136号公報JP-A-2005-069136

EGR装置では、排気通路と吸気通路の圧力差を利用して排気ガスを還流させている。このため、例えば排気通路の排気口が浸水した場合には、背圧の上昇によって必要以上の排気ガスが吸気へ還流され、燃焼が不安定になるおそれがある。   In the EGR device, exhaust gas is recirculated using a pressure difference between the exhaust passage and the intake passage. For this reason, for example, when the exhaust port of the exhaust passage is submerged, exhaust gas more than necessary is recirculated to the intake air due to an increase in back pressure, and combustion may become unstable.

本発明は、上述のような課題に鑑みてなされたもので、EGR装置を備えた内燃機関において、排気通路の浸水に起因する燃焼不安定を抑制することのできる制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a control device capable of suppressing combustion instability caused by water in an exhaust passage in an internal combustion engine equipped with an EGR device. And

第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
内燃機関の吸気通路と排気通路とを接続するEGR通路と、
前記EGR通路の途中に設けられたEGR弁と、
前記内燃機関の運転状態に基づいて前記EGR弁の開度を制御する開度制御装置と、を備え、
前記開度制御装置は、
前記排気通路の排気口が浸水する可能性があるか否かを判定し、
前記排気口が浸水する可能性があると判定された場合には、前記EGR弁の開度を全閉に操作する
ように構成されていることを特徴としている。
In order to achieve the above object, a first invention is a control device for an internal combustion engine,
An EGR passage connecting the intake passage and the exhaust passage of the internal combustion engine;
An EGR valve provided in the middle of the EGR passage;
An opening degree control device that controls the opening degree of the EGR valve based on the operating state of the internal combustion engine,
The opening control device is:
Determining whether the exhaust port of the exhaust passage is likely to be flooded;
When it is determined that the exhaust port may be submerged, the opening degree of the EGR valve is operated to be fully closed .

第2の発明は、第1の発明において、
前記開度制御装置は、前記内燃機関が搭載された車両の走行抵抗を算出し、前記走行抵抗が閾値以上である場合に、前記排気口が浸水する可能性があると判定することを特徴としている。
According to a second invention, in the first invention,
The opening degree control device calculates a running resistance of a vehicle on which the internal combustion engine is mounted, and determines that the exhaust port may be flooded when the running resistance is equal to or greater than a threshold value. Yes.

第1の発明によれば、排気通路の排気口が浸水する可能性があると判定された場合にEGR弁が全閉に操作される。これにより、排気ガスの吸気への還流を完全に停止させることができるので、排気通路が浸水したときの燃焼不安定を確実に抑止することが可能となる。 According to the first invention, the EGR valve is operated to be fully closed when it is determined that the exhaust port of the exhaust passage may be submerged. As a result, the recirculation of the exhaust gas to the intake air can be completely stopped, so that combustion instability when the exhaust passage is submerged can be reliably suppressed.

第2の発明によれば、内燃機関が搭載された車両の走行抵抗が閾値以上であるか否かによって排気口が浸水する可能性があるか否かが判定される。浸水深さが深いほど車両の走行抵抗は増加する。このため、車両の走行抵抗は、排気通路の排気口が浸水するか否かの指標となり得る。このため、本発明によれば、排気通路への浸水の可能性を高精度に判定することが可能となる。   According to the second aspect of the invention, it is determined whether or not there is a possibility that the exhaust port is inundated depending on whether or not the running resistance of the vehicle on which the internal combustion engine is mounted is greater than or equal to a threshold value. The running resistance of the vehicle increases as the inundation depth increases. For this reason, the running resistance of the vehicle can be an indicator of whether or not the exhaust port of the exhaust passage is submerged. For this reason, according to the present invention, it is possible to determine the possibility of flooding into the exhaust passage with high accuracy.

本発明の実施の形態1としての制御装置が適用される内燃機関が搭載されたシステムの概略構成を示す図である。It is a figure which shows schematic structure of the system by which the internal combustion engine with which the control apparatus as Embodiment 1 of this invention is applied is mounted. エンジンを搭載した車両が浸水した際の各種状態量の変化を示すタイムチャートである。It is a time chart which shows the change of various state quantities when the vehicles carrying an engine are flooded. 通常のEGR制御におけるEGR弁の開度マップの一例を示している。An example of an opening degree map of an EGR valve in normal EGR control is shown. 浸水時のEGR制御におけるEGR弁の開度マップの一例を示している。The example of the opening degree map of the EGR valve in the EGR control at the time of flooding is shown. 本発明の実施の形態1でECUにより実行される制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine performed by ECU in Embodiment 1 of this invention.

実施の形態1.
本発明の実施の形態1について図を参照して説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to the drawings.

[実施の形態1の構成]
図1は、本発明の実施の形態1としての制御装置が適用される内燃機関(以下、単にエンジンという)が搭載されたシステムの概略構成を示す図である。図1に示すエンジン10は、火花点火式の4ストロークレシプロエンジンであり車両に搭載される。エンジン10は、各気筒の燃焼室内に空気を供給するための吸気系、排気ガスを排出するための排気系、排気系の排気ガスの一部を吸気系へ還流させるEGR系、およびエンジン10の運転を制御するための制御系の構成を有している。以下、これらの構成についてそれぞれ詳細に説明する。
[Configuration of Embodiment 1]
FIG. 1 is a diagram showing a schematic configuration of a system in which an internal combustion engine (hereinafter simply referred to as an engine) to which a control device as Embodiment 1 of the present invention is applied is mounted. An engine 10 shown in FIG. 1 is a spark ignition type four-stroke reciprocating engine and is mounted on a vehicle. The engine 10 includes an intake system for supplying air into the combustion chamber of each cylinder, an exhaust system for discharging exhaust gas, an EGR system that recirculates part of the exhaust gas in the exhaust system to the intake system, and the engine 10 It has a configuration of a control system for controlling operation. Hereinafter, each of these configurations will be described in detail.

エンジン10の吸気系は吸気通路12を備えている。吸気通路12の入口側にはエアクリーナ14が取り付けられている。吸気通路12におけるエアクリーナ14の下流側には、吸気通路12に吸入される空気の流量に応じた信号を出力するエアフローメータ16が取り付けられている。吸気通路12の出口側は、吸気マニホールド18を介して各気筒の燃焼室に接続されている。   The intake system of the engine 10 includes an intake passage 12. An air cleaner 14 is attached to the inlet side of the intake passage 12. An air flow meter 16 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 12 is attached to the intake passage 12 downstream of the air cleaner 14. The outlet side of the intake passage 12 is connected to the combustion chamber of each cylinder via an intake manifold 18.

吸気通路12におけるエアフローメータ16の下流側にはターボ過給機22のコンプレッサ22aが配置されている。コンプレッサ22aの下流側の吸気通路12には、コンプレッサ22aによって圧縮された吸気を冷却するためのインタークーラ24が配置されている。インタークーラ24の下流側の吸気通路には、エンジン10内に供給される空気量を調整するためのスロットルバルブ26が配置されている。   A compressor 22 a of the turbocharger 22 is disposed downstream of the air flow meter 16 in the intake passage 12. An intercooler 24 for cooling the intake air compressed by the compressor 22a is disposed in the intake passage 12 on the downstream side of the compressor 22a. A throttle valve 26 for adjusting the amount of air supplied into the engine 10 is disposed in the intake passage on the downstream side of the intercooler 24.

エンジン10の排気系は排気通路30を備えている。排気通路30の一端側は排気マニホールド28を介して各気筒の燃焼室に接続されている。排気通路30の途中には、ターボ過給機22のタービン22bが配置されている。タービン22bの下流側の排気通路30には、上流側触媒32および下流側触媒34がこの順に配置されている。また、下流側触媒34の下流側の排気通路30には、消音のためのマフラー36が配置されている。排気通路30の排気口38は、地面から所定の高さの位置において、車両の後方に向かって開口している。   The exhaust system of the engine 10 includes an exhaust passage 30. One end side of the exhaust passage 30 is connected to the combustion chamber of each cylinder via an exhaust manifold 28. In the middle of the exhaust passage 30, a turbine 22 b of the turbocharger 22 is disposed. An upstream side catalyst 32 and a downstream side catalyst 34 are arranged in this order in the exhaust passage 30 on the downstream side of the turbine 22b. Further, a muffler 36 for noise reduction is disposed in the exhaust passage 30 on the downstream side of the downstream catalyst 34. The exhaust port 38 of the exhaust passage 30 is open toward the rear of the vehicle at a predetermined height from the ground.

また、エンジン10のEGR系はEGR通路40を備えている。EGR通路40は、その一端が上流側触媒32と下流側触媒34との間の排気通路30に接続され、他端がエアフローメータ16とコンプレッサ22aとの間の吸気通路12に接続されている。EGR通路40の途中には、EGRガスを冷却するためのEGRクーラ42、EGRガス中の微粒子を除去するためのEGRフィルタ44および当該EGR通路40を開閉するためのEGR弁46が、排気通路30との連通側から順に設けられている。   Further, the EGR system of the engine 10 includes an EGR passage 40. One end of the EGR passage 40 is connected to the exhaust passage 30 between the upstream catalyst 32 and the downstream catalyst 34, and the other end is connected to the intake passage 12 between the air flow meter 16 and the compressor 22a. In the middle of the EGR passage 40, an EGR cooler 42 for cooling the EGR gas, an EGR filter 44 for removing particulates in the EGR gas, and an EGR valve 46 for opening and closing the EGR passage 40 are provided in the exhaust passage 30. Are provided in order from the communication side.

本実施形態のエンジン10は、その制御系としてECU(Electronic Control Unit)50を備えている。ECU50は、少なくとも入出力インタフェースとメモリとCPU(プロセッサ)とを備えている。入出力インタフェースは、内燃機関に取り付けられた各種センサからセンサ信号を取り込むとともに、内燃機関が備えるアクチュエータに対して操作信号を出力するために設けられている。ECU50が信号を取り込むセンサには、上述したエアフローメータ16の他、クランク角センサやアクセルポジションセンサ等、内燃機関の制御に必要な各種のセンサが含まれる。ECU50が操作信号を出すアクチュエータには、上述したスロットルバルブ26、EGR弁46等の各種アクチュエータが含まれる。メモリには、内燃機関を制御するための各種の制御プログラム、マップ等が記憶されている。CPU(プロセッサ)は、制御プログラム等をメモリから読み出して実行し、取り込んだセンサ信号に基づいて操作信号を生成する。   The engine 10 of the present embodiment includes an ECU (Electronic Control Unit) 50 as its control system. The ECU 50 includes at least an input / output interface, a memory, and a CPU (processor). The input / output interface is provided to capture sensor signals from various sensors attached to the internal combustion engine and to output operation signals to an actuator provided in the internal combustion engine. In addition to the airflow meter 16 described above, the sensors that the ECU 50 captures signals include various sensors necessary for controlling the internal combustion engine, such as a crank angle sensor and an accelerator position sensor. The actuators from which the ECU 50 outputs operation signals include various actuators such as the throttle valve 26 and the EGR valve 46 described above. The memory stores various control programs, maps, and the like for controlling the internal combustion engine. The CPU (processor) reads out and executes a control program or the like from the memory, and generates an operation signal based on the acquired sensor signal.

[実施の形態1の動作]
次に、図面を参照して実施の形態1の動作について説明する。図1に示すように、本実施の形態のエンジン10は燃費改善等を目的として、上流側触媒32を通過して圧力が低下した排気ガスの一部を吸気系へ還流させるEGR装置を備えている。EGR装置は、主にEGR通路40、EGR弁46及びEGR弁46の開度を制御する開度制御装置によって構成されている。開度制御装置は、ECU50の処理回路の一部であり、吸気通路12へと還流させる排気ガスの割合を調整するための機能を実現するためのものである。EGR弁46の開度は、エンジン回転速度とエンジントルクにより定まる運転条件に関連付けて開度制御装置に記憶されている。これにより、燃費改善効果を最大にするためのEGR率が運転状態に応じて実現される仕組みになっている。
[Operation of Embodiment 1]
Next, the operation of Embodiment 1 will be described with reference to the drawings. As shown in FIG. 1, the engine 10 of the present embodiment includes an EGR device that recirculates a part of the exhaust gas that has passed through the upstream catalyst 32 and has decreased in pressure to the intake system for the purpose of improving fuel efficiency. Yes. The EGR device is mainly configured by an opening degree control device that controls the opening degree of the EGR passage 40, the EGR valve 46, and the EGR valve 46. The opening control device is a part of the processing circuit of the ECU 50 and is for realizing a function for adjusting the ratio of the exhaust gas recirculated to the intake passage 12. The opening degree of the EGR valve 46 is stored in the opening degree control device in association with the operating conditions determined by the engine speed and the engine torque. Thereby, the EGR rate for maximizing the fuel efficiency improvement effect is realized according to the driving state.

ここで、EGR装置では、上流側触媒32と下流側触媒34との間の排気通路30の圧力と、エアクリーナ14とコンプレッサ22aの間の吸気通路12圧力との差圧を利用してEGR通路40を通過するEGRガスを吸気通路12へと導入する。このため、排気通路30の排気口38が浸水した場合、排気通路30の圧力の上昇によってEGRガスの還流量が過多になり燃焼が不安定になるおそれがある。そこで、本実施の形態1のシステムでは、排気口38から水が浸水する可能性がある場合に、同一の運転状態における通常時よりもEGR弁46を閉じ側に操作する。以下、排気口38の浸水時のEGR弁46の開度制御方法について詳細に説明する。   Here, in the EGR device, the EGR passage 40 is utilized by utilizing a pressure difference between the pressure in the exhaust passage 30 between the upstream catalyst 32 and the downstream catalyst 34 and the pressure in the intake passage 12 between the air cleaner 14 and the compressor 22a. EGR gas passing through the intake passage 12 is introduced into the intake passage 12. For this reason, when the exhaust port 38 of the exhaust passage 30 is submerged, there is a possibility that the recirculation amount of the EGR gas becomes excessive due to the increase in the pressure of the exhaust passage 30 and the combustion becomes unstable. Therefore, in the system according to the first embodiment, when there is a possibility that water may be infiltrated from the exhaust port 38, the EGR valve 46 is operated closer to the closing side than during normal operation in the same operating state. Hereinafter, the opening degree control method of the EGR valve 46 when the exhaust port 38 is flooded will be described in detail.

図2は、エンジン10を搭載した車両が浸水した際の各種状態量の変化を示すタイムチャートである。この図において1段目のチャートは車両の走行抵抗fの時間変化を、2段目のチャートはEGR弁開度の時間変化を、3段目のチャートは車両の車速の時間変化を、4段目のチャートは車両の浸水深さの時間変化を、5段目のチャートはEGR率の時間変化を、そして6段目のチャートはエンジン負荷の時間変化を、それぞれ示している。 FIG. 2 is a time chart showing changes in various state quantities when a vehicle equipped with the engine 10 is submerged. The travel time variation of resistance f 2 of the first stage of the chart in this figure a vehicle, the second stage chart the time variation of the EGR valve opening, the third stage chart the time change of the vehicle speed of the vehicle, 4 The chart in the second row shows the time change of the inundation depth of the vehicle, the chart in the fifth row shows the time change in the EGR rate, and the chart in the sixth row shows the time change of the engine load.

図2に示すチャートでは、時間t1において車両の浸水が開始され、時間とともに浸水深さが深くなっている場合を示している。1段目のチャートの走行抵抗fは、車両の速度の二乗に比例する抵抗であり、水の抵抗や空気の抵抗がこれに含まれる。時間t1以降浸水深さが深くなると水の抵抗が増大するため、これに伴い走行抵抗fが増大している。また、図2に示すチャートでは、この間の車速を一定に保つべく時間t1以降のエンジン負荷が上昇している。 The chart shown in FIG. 2 shows a case where the vehicle starts to be flooded at time t1 and the flooding depth increases with time. Running resistance f 2 of the first stage of the chart is the resistance which is proportional to the square of the speed of the vehicle, the water resistance of the resistor and the air contained therein. Since the time t1 after immersion depth is the water resistance increases deep, running resistance f 2 is increased accordingly. Further, in the chart shown in FIG. 2, the engine load after time t1 is increased so as to keep the vehicle speed constant during this period.

浸水深さが排気口38の地上高となる時間t3に到達すると、排気口38からの浸水によって背圧が上昇してしまう。この際EGR弁46の通常の制御を継続すると、5段目のチャートの点線で示すようにEGR率が上昇し、エンジン10の燃焼が失火限界に到達してしまうおそれがある。   When the inundation depth reaches time t3 when the exhaust port 38 reaches the ground level, the back pressure increases due to the inundation from the exhaust port 38. At this time, if normal control of the EGR valve 46 is continued, the EGR rate increases as indicated by the dotted line in the fifth stage chart, and the combustion of the engine 10 may reach the misfire limit.

そこで、本実施の形態1のシステムでは、排気口38が浸水する時間t3の前の時間t2において、EGR弁46の開度を閉じ側に操作している。このような制御によれば、5段目のチャートに実線で示すように、EGR率を時間t2において低下させることができるので、その後の時間t3において背圧が上昇したとしても、EGR過多による燃焼不安定を抑制することが可能となる。   Therefore, in the system according to the first embodiment, the opening degree of the EGR valve 46 is operated to the close side at time t2 before time t3 when the exhaust port 38 is submerged. According to such control, as indicated by the solid line in the fifth chart, the EGR rate can be reduced at time t2, so even if the back pressure increases at subsequent time t3, combustion due to excessive EGR Instability can be suppressed.

なお、時間t2のタイミングは、排気口38が浸水する可能性があるタイミングに相当する。上述したように、走行抵抗fは浸水深さが深くなるほど大きくなる。このため、浸水深さが排気口38の高さに到達する直前となる場合の走行抵抗fを閾値として予め実験等により特定しておき、走行抵抗fがこの閾値を超えるか否かによって排気口38が浸水する可能性があるか否かを判定することができる。 Note that the timing of the time t2 corresponds to a timing at which the exhaust port 38 may be submerged. As described above, the running resistance f 2 increases as immersion depth increases. Therefore, immersion depth leave specified in advance by experiments or the like as a threshold running resistance f 2 when the immediately before reaching the height of the exhaust port 38, running resistance f 2 is depending on whether exceeds this threshold It can be determined whether or not the exhaust port 38 is likely to be submerged.

また、浸水を判定した場合にEGR弁46の開度を閉じ側に操作する方法としては種々の方法が考えられるが、例えば、EGR弁46の開度マップを切り替えることにより実現することができる、図3は、通常のEGR制御におけるEGR弁の開度マップの一例を示している。また、図4は、浸水時のEGR制御におけるEGR弁の開度マップの一例を示している。図3及び図4に示すマップは、EGR弁開度がエンジン回転速度とエンジントルクに関連付けられて記憶されている。図4に示すマップでは、図3に示すマップよりも同運転条件でのEGR弁開度が小開度に設定されている。このため、EGR弁の開度制御において浸水の可能性があることを判定した場合に図3に示すマップから図4に示すマップへと切り替えることとすれば、排気口38が浸水する前にEGR弁46の開度を閉じ側の開度とすることが可能となる。   In addition, various methods can be considered as a method of operating the opening degree of the EGR valve 46 to the closed side when the inundation is determined. For example, it can be realized by switching the opening degree map of the EGR valve 46. FIG. 3 shows an example of an opening map of the EGR valve in normal EGR control. FIG. 4 shows an example of an opening map of the EGR valve in the EGR control at the time of flooding. The maps shown in FIGS. 3 and 4 store the EGR valve opening degree in association with the engine speed and the engine torque. In the map shown in FIG. 4, the EGR valve opening degree under the same operating condition is set to a smaller opening degree than in the map shown in FIG. For this reason, if it is determined that there is a possibility of inundation in the opening control of the EGR valve, if the map shown in FIG. 3 is switched to the map shown in FIG. 4, the EGR before the exhaust port 38 is submerged. The opening of the valve 46 can be set to the opening on the closing side.

[実施の形態1の具体的処理]
次に、図5を参照して本実施の形態1のシステムにおいて実行されるEGR弁46の開度制御の具体的処理について説明する。図5は、本実施の形態でECU50により実行される制御ルーチンを示すフローチャートである。なお、図5に示すルーチンは、エンジン10の運転中に所定の制御周期で繰り返し実行される。
[Specific Processing in First Embodiment]
Next, specific processing for opening degree control of the EGR valve 46 executed in the system of the first embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing a control routine executed by the ECU 50 in the present embodiment. The routine shown in FIG. 5 is repeatedly executed at a predetermined control cycle while the engine 10 is operating.

図5に示す制御ルーチンでは、先ず、エンジン10の運転状態に基づいて車両の走行抵抗fが算出される(ステップS2)。ここでは、具体的には、次式(1)に従い走行抵抗fが算出される。なお、次式(1)において、Mは車重[Kg]を示し、vは車速[m/s]を示し、aは車両の加速度[m/s2]を示し、Fは車両のタイヤから地面に伝わる力[N]を示し、gは重力加速度[m/s2]を示し、θは車両の傾斜角[rad]を示し、fは速度にかかわらず発生する抵抗[N]を示し、fは速度の二乗に比例する抵抗[N・s2/m2]を示し、Teはエンジントルク[Nm]を示し、Ntは車両のタイヤの回転速度[rpm]を示し、そしてNeはエンジン回転速度[rpm]を示している。なお、何れの値も公知のセンサの検出値や、予め記憶された設計値や実験値から求めることができる。 In the control routine shown in FIG. 5, first, the running resistance f 2 of the vehicle is calculated based on the operating state of the engine 10 (step S2). Here, specifically, the running resistance f 2 is calculated according to the following equation (1). In the following equation (1), M represents the vehicle weight [Kg], v represents the vehicle speed [m / s], a represents the vehicle acceleration [m / s 2 ], and F t represents the vehicle tire. Indicates the force [N] transmitted from the ground to the ground, g indicates the gravitational acceleration [m / s 2 ], θ indicates the vehicle inclination angle [rad], and f 1 indicates the resistance [N] generated regardless of the speed. F 2 represents resistance [N · s 2 / m 2 ] proportional to the square of speed, Te represents engine torque [Nm], Nt represents vehicle tire rotational speed [rpm], and Ne Indicates the engine speed [rpm]. In addition, any value can be calculated | required from the detection value of a well-known sensor, the design value previously stored, and the experimental value.

Figure 0006468241
Figure 0006468241

次に、算出された走行抵抗fが閾値よりも小さいか否かが判定される(ステップS4)。ECU50は、浸水深さが排気口38の高さに到達する直前となる場合の走行抵抗fの値を閾値として記憶している。ここでは、ECU50に記憶されている閾値が読み込まれ、ステップS2において算出された走行抵抗fと比較される。その結果、走行抵抗f<閾値の成立が認められた場合には、浸水深さが排気口38の高さに到達するおそれがないと判断されて、次のステップに移行し、通常のEGR制御が行われる(ステップS6)。ここでは、具体的には、図3に示すマップを用いたEGR制御が行われる。 Next, whether or not the running resistance f 2 that is calculated is smaller than the threshold is determined (Step S4). ECU50 is flooded depth stores the value of the running resistance f 2 when the immediately before reaching the height of the exhaust port 38 as the threshold value. Here, is read threshold value stored in the ECU 50, it is compared with the running resistance f 2 calculated in step S2. As a result, when it is recognized that the running resistance f 2 <threshold value is established, it is determined that there is no possibility that the inundation depth reaches the height of the exhaust port 38, and the process proceeds to the next step, and normal EGR Control is performed (step S6). Here, specifically, EGR control using the map shown in FIG. 3 is performed.

一方、上記ステップS4において、走行抵抗f<閾値の成立が認められない場合には、浸水深さが排気口38の高さに到達する直前であると判断されて、浸水が判定される(ステップS8)。浸水が判定されると、次に浸水時のEGR制御が行われる(ステップS10)。ここでは、具体的には、図4に示すマップを用いたEGR制御が行われる。 On the other hand, if the running resistance f 2 <threshold is not satisfied in step S4, it is determined that the water immersion depth is just before reaching the height of the exhaust port 38, and water immersion is determined ( Step S8). If inundation is determined, EGR control at the time of inundation is performed (step S10). Here, specifically, EGR control using the map shown in FIG. 4 is performed.

このように、本実施の形態1のEGR装置によれば、排気通路30の排気口38が浸水することによるEGR過多、およびこれに伴う燃焼不安定を有効に抑制することが可能となる。   As described above, according to the EGR device of the first embodiment, it is possible to effectively suppress excessive EGR due to the exhaust port 38 of the exhaust passage 30 being submerged and combustion instability associated therewith.

以上、本発明の実施の形態1のシステムについて説明したが、実施の形態1のシステムは更に以下のように変形して実施してもよい。   Although the system according to the first embodiment of the present invention has been described above, the system according to the first embodiment may be further modified as follows.

上述した実施の形態1のシステムでは、コンプレッサ22aの上流側にEGRガスを還流させるいわゆるLPL−EGRを行う装置について説明したが、排気マニホールド28の排気ガスを吸気マニホールド18へと還流させるHPL−EGRを行うEGR装置において本発明を適用することとしてもよい。また、エンジン10は火花点火式のガソリンエンジンに限らず、ディーゼルエンジン等、他の内燃機関に対して本発明を適用してもよい。   In the system of the first embodiment described above, an apparatus that performs so-called LPL-EGR that recirculates EGR gas upstream of the compressor 22 a has been described. However, HPL-EGR that recirculates exhaust gas from the exhaust manifold 28 to the intake manifold 18. The present invention may be applied to an EGR apparatus that performs the above. The engine 10 is not limited to a spark ignition gasoline engine, and the present invention may be applied to other internal combustion engines such as a diesel engine.

また、上述した実施の形態1のシステムでは、浸水判定を行う際の指標として走行抵抗fを用いることとした。しかしながら、浸水の判定方法はこれに限られず、例えば液滴センサや光学センサを用いて水の浸水状況を直接検知する構成でもよい。また、エンジン出力と車両の傾斜角と車速の関係を予めマップ等に記憶しておき、実際の車速が当該マップにより特定される現在のエンジン出力及び傾斜角に対応する車速に対して想定以上に低い場合に浸水していると判定することとしてもよい。さらに、車両に搭載されている車載カメラの情報から浸水を判定する構成や、地図情報や気象情報等の外部情報から浸水を判定する構成でもよい。 Further, in the first embodiment described above system, we decided to use the running resistance f 2 as an indicator when performing a flooding determination. However, the method for determining inundation is not limited to this, and for example, a configuration in which the inundation state of water is directly detected using a droplet sensor or an optical sensor may be used. Further, the relationship between the engine output, the vehicle inclination angle, and the vehicle speed is stored in advance in a map or the like, and the actual vehicle speed is higher than expected with respect to the vehicle speed corresponding to the current engine output and the inclination angle specified by the map. It is good also as determining with being inundated when it is low. Furthermore, the structure which determines inundation from the information of the vehicle-mounted camera mounted in the vehicle, and the structure which determines inundation from external information, such as map information and weather information, may be sufficient.

また、上述した実施の形態1のシステムでは、浸水時のEGR制御としてEGR弁開度マップを切り替えることとしたが、浸水時のEGR制御はこれに限られない。すなわち、通常時のEGR弁開度に対して閉側の開度に操作されるのであれば、例えば浸水時にEGR弁開度を全閉にすることとしてもよいし、また、所定の割合でEGR弁開度を制限する構成でもよい。   Moreover, in the system of Embodiment 1 mentioned above, although the EGR valve opening degree map was switched as EGR control at the time of flooding, the EGR control at the time of flooding is not restricted to this. That is, if the opening is operated to the closing side with respect to the normal EGR valve opening, the EGR valve opening may be fully closed at the time of flooding, or the EGR valve may be closed at a predetermined rate. The structure which restrict | limits a valve opening degree may be sufficient.

車両が上り坂を走行している場合には、走行抵抗fから判断するまでもなく排気口38が浸水するおそれがないと判断することができる。そこで、実施の形態1のシステムでは、車両が上り坂を走行していることを傾斜センサ等によって検知した場合に、上記ステップS4の浸水判定を行なわずに上記ステップS6の処理へと移行し、通常のEGR制御を行うこととしてもよい。これにより、浸水の誤判定が行われる可能性を下げることが可能となる。 Vehicle when the vehicle is traveling uphill, the exhaust port 38 even without determining the running resistance f 2 can be determined that there is no risk of flooding. Therefore, in the system of the first embodiment, when it is detected by an inclination sensor or the like that the vehicle is traveling uphill, the process proceeds to the process of step S6 without performing the water immersion determination of step S4. Ordinary EGR control may be performed. As a result, it is possible to reduce the possibility of erroneous determination of flooding.

車両が後退している場合には、排気口38が突然浸水するおそれがある。また、車両が後退時にはEGRガスを還流させる必要性も乏しい。そこで、実施の形態1のシステムでは、車両が後退している場合にEGR弁46を全閉に制御することとしてもよい。これにより、車両の後退時における突然の浸水にも備えることが可能となる。   When the vehicle is moving backward, the exhaust port 38 may suddenly flood. Further, it is not necessary to recirculate the EGR gas when the vehicle moves backward. Therefore, in the system of the first embodiment, the EGR valve 46 may be controlled to be fully closed when the vehicle is moving backward. As a result, it is possible to prepare for sudden flooding when the vehicle is moving backward.

10 内燃機関(エンジン)
12 吸気通路
16 エアフローメータ
22 ターボ過給機
22a コンプレッサ
22b タービン
26 スロットルバルブ
30 排気通路
32 上流側触媒
34 下流側触媒
38 排気口
40 EGR通路
46 EGR弁
50 ECU(Electronic Control Unit)
10 Internal combustion engine
12 intake passage 16 air flow meter 22 turbocharger 22a compressor 22b turbine 26 throttle valve 30 exhaust passage 32 upstream side catalyst 34 downstream side catalyst 38 exhaust port 40 EGR passage 46 EGR valve 50 ECU (Electronic Control Unit)

Claims (2)

内燃機関の吸気通路と排気通路とを接続するEGR通路と、
前記EGR通路の途中に設けられたEGR弁と、
前記内燃機関の運転状態に基づいて前記EGR弁の開度を制御する開度制御装置と、を備え、
前記開度制御装置は、
前記排気通路の排気口が浸水する可能性があるか否かを判定し、
前記排気口が浸水する可能性があると判定された場合には、前記EGR弁の開度を全閉に操作する
ように構成されていることを特徴とする内燃機関の制御装置。
An EGR passage connecting the intake passage and the exhaust passage of the internal combustion engine;
An EGR valve provided in the middle of the EGR passage;
An opening degree control device that controls the opening degree of the EGR valve based on the operating state of the internal combustion engine,
The opening control device is:
Determining whether the exhaust port of the exhaust passage is likely to be flooded;
A control device for an internal combustion engine configured to operate the opening of the EGR valve to be fully closed when it is determined that the exhaust port may be submerged.
前記開度制御装置は、前記内燃機関が搭載された車両の走行抵抗を算出し、前記走行抵抗が閾値以上である場合に、前記排気口が浸水する可能性があると判定することを特徴とする請求項1記載の内燃機関の制御装置。   The opening degree control device calculates a running resistance of a vehicle on which the internal combustion engine is mounted, and determines that the exhaust port may be flooded when the running resistance is equal to or greater than a threshold value. The control apparatus for an internal combustion engine according to claim 1.
JP2016095290A 2016-05-11 2016-05-11 Control device for internal combustion engine Expired - Fee Related JP6468241B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016095290A JP6468241B2 (en) 2016-05-11 2016-05-11 Control device for internal combustion engine
DE102017106620.9A DE102017106620A1 (en) 2016-05-11 2017-03-28 Control device for an internal combustion engine
CN201710251758.6A CN107366589A (en) 2016-05-11 2017-04-18 The control device of internal combustion engine
US15/589,241 US20170328291A1 (en) 2016-05-11 2017-05-08 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095290A JP6468241B2 (en) 2016-05-11 2016-05-11 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017203413A JP2017203413A (en) 2017-11-16
JP6468241B2 true JP6468241B2 (en) 2019-02-13

Family

ID=60163328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095290A Expired - Fee Related JP6468241B2 (en) 2016-05-11 2016-05-11 Control device for internal combustion engine

Country Status (4)

Country Link
US (1) US20170328291A1 (en)
JP (1) JP6468241B2 (en)
CN (1) CN107366589A (en)
DE (1) DE102017106620A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072483A (en) 2017-10-20 2020-06-22 스미토모덴키고교가부시키가이샤 Synthetic single crystal diamond, tool and method for manufacturing synthetic single crystal diamond
JP7127306B2 (en) * 2018-03-16 2022-08-30 トヨタ自動車株式会社 Vehicle and its control method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW530788U (en) * 2002-05-30 2003-05-01 Sin Etke Technology Co Ltd Vehicular alarming device for outside water level
JP4128502B2 (en) 2003-08-26 2008-07-30 本田技研工業株式会社 Internal combustion engine automatic start / stop control device
US8220843B2 (en) * 2008-07-30 2012-07-17 Parker-Hannifin Corporation Sealing joint for connecting adjoining duct pieces in an engine exhaust system
US7889087B2 (en) * 2008-10-06 2011-02-15 International Business Machines Corporation Immersion detection
JP2010150930A (en) 2008-12-24 2010-07-08 Toyota Motor Corp Internal combustion engine
US8480444B2 (en) * 2009-10-15 2013-07-09 Tracker Marine, L.L.C. Rotary engine jet boat
US9163588B2 (en) * 2011-03-10 2015-10-20 Ford Global Technologies, Llc Method and system for humidity sensor diagnostics
EP2686647A1 (en) * 2011-03-15 2014-01-22 Jaguar Land Rover Limited Vehicle under-body mounted sensor and control system
JP2013162663A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Vehicle
KR101992490B1 (en) * 2012-04-05 2019-06-24 두산인프라코어 주식회사 Exhaust Gas Recirculation of Engine
WO2014024609A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Control device and control method for internal combustion engine
US9239016B2 (en) * 2012-09-10 2016-01-19 Ford Global Technologies, Llc Catalyst heating with exhaust back-pressure
CN104500218B (en) * 2014-11-26 2017-01-11 上海交通大学 System capable of simultaneously improving low-speed working condition performance, high-speed working condition fuel efficiency, NOx emission and transient performance of internal combustion engine

Also Published As

Publication number Publication date
US20170328291A1 (en) 2017-11-16
DE102017106620A1 (en) 2017-11-16
CN107366589A (en) 2017-11-21
JP2017203413A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP4124143B2 (en) Control device for supercharger with electric motor
US10731576B2 (en) Control apparatus for internal combustion engine
JP6041753B2 (en) Engine exhaust gas recirculation system
EP2211044B1 (en) EGR controller and EGR control method for internal combustion engine
JP5649343B2 (en) Intake throttle control method for internal combustion engine
US20170276083A1 (en) Misfire detecting system for engine
JP2009281144A (en) Control device for internal combustion engine with turbocharger
JP7093636B2 (en) Supercharging pressure control method and supercharging pressure control device
JP6468241B2 (en) Control device for internal combustion engine
KR20180053356A (en) Control device of internal combustion engine and control method of internal combustion engine
JP6679554B2 (en) Control device for internal combustion engine
CN108026840B (en) Control device for internal combustion engine and control method for internal combustion engine
JP5056953B2 (en) Control device for internal combustion engine
JP2010236516A (en) Abnormality diagnostic device of exhaust recirculation device
JP2018155167A (en) Control device of internal combustion engine
JP6458480B2 (en) Exhaust gas recirculation control device
KR20190031589A (en) Control method and apparatus for internal combustion engine
JP4222167B2 (en) Control device for internal combustion engine
JP6855328B2 (en) Internal combustion engine throttle valve controller
JP4742970B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6330836B2 (en) Engine exhaust system
JP6107876B2 (en) Control device for turbocharged engine
JP4013816B2 (en) Control device for supercharger with electric motor
JP2010174818A (en) Control device of internal combustion engine
JP5858864B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R151 Written notification of patent or utility model registration

Ref document number: 6468241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees