JP6434342B2 - 免震構造物における地中熱利用システム - Google Patents

免震構造物における地中熱利用システム Download PDF

Info

Publication number
JP6434342B2
JP6434342B2 JP2015050268A JP2015050268A JP6434342B2 JP 6434342 B2 JP6434342 B2 JP 6434342B2 JP 2015050268 A JP2015050268 A JP 2015050268A JP 2015050268 A JP2015050268 A JP 2015050268A JP 6434342 B2 JP6434342 B2 JP 6434342B2
Authority
JP
Japan
Prior art keywords
seismic isolation
heat
metal plate
pit
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050268A
Other languages
English (en)
Other versions
JP2016169909A (ja
Inventor
貴弘 小座野
貴弘 小座野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2015050268A priority Critical patent/JP6434342B2/ja
Publication of JP2016169909A publication Critical patent/JP2016169909A/ja
Application granted granted Critical
Publication of JP6434342B2 publication Critical patent/JP6434342B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Central Air Conditioning (AREA)
  • Ventilation (AREA)
  • Duct Arrangements (AREA)

Description

本発明は、免震構造物における地中熱利用システムに関する。
年間を通じて変動が少ない地中の温度を利用して、外気との熱交換を図り空調エネルギーを削減する試みがなされており、この地中熱を利用する方式として、一般的にはクールチューブまたはアースチューブと称される方式がある。地中の温度は、地上からの深さが深くなるほど外気温度の影響が少なくなり、一般に、5m以深では安定している。そこで、チューブはこのような深さに設置することが望ましい。チューブには、このような深さの土圧にも耐えるコンクリート製のダクトやヒューム管等が使用されることが多い。地中との熱交換を多くするためには、深さとともにチューブの長さが必要であり、チューブを設置する費用がかさむ。
一方、建物地下に設置される湧水ピットの各ピット間を開孔して連続空間とし、そこを空気流通路として利用するクールピット又はアースピットという方式もある。ピット内に溜まった湧水等によりピット内は高湿度になっていることが多く、カビ等が発生して臭いや衛生面に課題がある。そこで、免震建物の未利用空間である免震ピットを地中熱との熱交換の場としたクールピット方式が提案されている(特許文献1)。
特開2003−56885号公報
特許文献1には、地上の外気取入口と免震ピットとをつなぐ外気導入菅体を別途設けることが記載されているが、かかる構成であると、外気導入管体を設置するスペースと費用が発生する。また、梅雨時期や夏季には、高温多湿となる外気がそのまま免震ピット内に侵入すると、侵入空気の温度が低下することで露点温度に達し、結露が生じることがある。さらには、免震建物であるため、建物本体と地下外壁(土圧を支持し地下空間を形成する壁体)はつながっておらず、その隙間から外気が侵入するおそれがあり、高温多湿空気が侵入した場合、免震ピット内の各所で結露を生じる可能性がある。
本発明は、上述のような従来技術の問題に鑑み、免震構造物の未利用空間である免震ピットを利用して地中熱と外気との熱交換および外気の除湿を行うとともに結露水対策を施した地中熱利用システムを提供することを目的とする。
上記目的を達成するための免震構造物における地中熱利用システムは、地下に設置される免震ピットを有する免震構造物における地中熱利用システムであって、免震構造物の躯体底部と免震ピットとの間の外気取入口と、前記免震ピットの地下土壌と接する地下外壁に対し前記外気取入口からの外気が熱交換するように前記免震ピット内の前記地下外壁に沿って全周に配置された熱交換部と、を備え、
前記熱交換部は、前記地下外壁に取り付けられた熱伝導性の板部材と、前記地下外壁と対向する前記躯体底部から前記免震ピットの底部に向けて配置された熱伝導性の板状ガイドと、前記板部材と前記板状ガイドとの少なくともいずれか一方に接続するように前記板部材と前記板状ガイドとの間に配置された熱伝導性の板状のフィン部と、を備え、前記外気が前記熱交換部において前記板部材と前記板状ガイドとの間で前記フィン部に沿って流れることにより熱交換してから前記免震ピットの空間へ導入され、前記空間から前記免震構造物内へと供給されることを特徴とする。
この免震構造物における地中熱利用システムによれば、外気取入口から流入する外気が熱交換部で免震ピット内の地下土壌と接する部分(地下外壁や底部など)と熱交換することで、たとえば、梅雨時期や夏季等における高温多湿の外気温度が低下し、露点温度に達して発生する水分を、たとえば、免震ピットの底部の排水溝へと流すことができる。その後、除湿された空気は、免震ピット内で結露を生じさせず、免震構造物内へと供給されることになるため、免震ピット内が高湿度になることが少なく、その結果、カビ等の発生が抑制され、免震ピットの空間内を衛生的に保つことができる。また、免震構造物内には、外気温度に比べて温度が低く、また、湿度が低い空気が供給される。これにより、途中で空調装置や除湿装置等による空調が不要になるため、省エネルギーに寄与することができる。一方、冬季等においては、外気取入口から流入する冷気が熱交換部で免震ピット内の地下土壌と接する部分と熱交換することで外気温度が上昇するので、免震ピット内の気温が低くならず、地中熱利用システムによる暖房効率が低下することはない。
上記免震構造物における地中熱利用システムにおいて、前記熱交換部は、前記地下外壁に取り付けられた熱伝導性の板部材と、前記地下外壁と対向する前記躯体底部から前記免震ピットの底部に向けて配置された熱伝導性の板状ガイドと、を備える免震構造物の躯体底部から免震ピットの底部に向けて板状ガイドを配置することで、流入した外気が熱交換部を通過し、免震ピットの空間に直接流れ込むことがない。
また、前記熱交換部は、前記板部材と前記板状ガイドとの少なくともいずれか一方に接続するように前記板部材と前記板状ガイドとの間に配置された熱伝導性の板状のフィン部を備えることにより、効率的な熱交換が可能となる。
また、前記地下外壁に取り付けられた板部材がその下部で前記免震ピット内の地下土壌と接する底部まで延長されて設けられるとともに、前記板状ガイドが前記底部の上方に延長されて設けられることが好ましい。これにより、熱交換の接触面積、接触時間をより大きく確保できるので、地中熱をより伝えることができ、熱交換がより効率的になる。
また、前記板状のフィン部に結露水を前記底部へと導くように結露水排水路が設けられることが好ましい。これにより、結露水を効率的に排出することができる。
また、前記熱交換部からの結露水が前記免震ピットに設けられた排水溝に流れ込んで排出されることが好ましい。これにより、結露水を効率的に免震ピットの外部に排出することができる。
また、前記板状ガイドの外側には断熱材が配置されることが好ましい。これにより、効率的な熱交換が可能となる。
また、前記熱交換部をボックス状のユニットから構成し、そのユニットを複数配置することで、免震構造物の免震ピットにおいて地中熱利用システムを容易に構築することができる。
また、前記外気取入口として前記躯体底部と前記免震ピットとの間に形成される隙間を利用することで、特別に外気取入口を設置する必要がない。
本発明によれば、免震構造物の未利用空間である免震ピットを利用して地中熱と外気との熱交換および外気の除湿を行うとともに結露水対策を施した地中熱利用システムを提供することができる。
第1実施形態による免震建物における地中熱利用システムの全体を概略的に示す縦断面図である。 図1の免震ピットの地下外壁に配置した熱交換部を示す要部縦断面図(a)および方向Bから見た図(b)である。 第1実施形態の変形例による熱交換部を示す要部縦断面図である。 第2実施形態による熱交換部を示す要部縦断面図(a)および方向BBから見た図(b)である。 図4の熱交換部を一部破断して示す要部斜視図である。 第2実施形態の変形例による熱交換部を示す部分平面図である。 第2実施形態の別の変形例による熱交換部を示す要部縦断面図である。 図7の免震ピットの底部に配置した熱交換部を一部破断して示す要部斜視図である。 第3実施形態による熱交換部を示す要部縦断面図(a)、その一部拡大縦断面図(b)および方向Cから見た図(c)である。 図9の免震ピットの地下外壁に配置した熱交換部を一部破断して示す要部斜視図である。 第3実施形態の変形例による熱交換部の要部縦断面図である。
以下、本発明を実施するための形態について図面を用いて説明する。
〈第1実施形態〉
図1は第1実施形態による免震建物における地中熱利用システムの全体を概略的に示す縦断面図である。
図1のように、免震建物1は、地面Gの下部に形成した免震ピット10を有し、免震ピット10内に配置された複数の免震装置3により支持されて免震構造となっている。免震ピット10は、地中に設けられた地下外壁11と底部12とにより構成され、地下外壁11と底部12とがそれらの外面で周囲の土壌と接している。地中は、年間を通じて温度変動が少ないため、免震ピット10の空間14は、時期や時間に関わらず、ほぼ一定の温度になっている。
図1の免震建物1における地中熱利用システムは、免震建物1の躯体底部5と免震ピット10との間の隙間である外気取入口21と、免震ピット10の地下土壌に接する地下外壁11側の熱と外気取入口21からの外気とが熱交換するように設けられた熱交換部23と、を備える。外気取入口21から空間22を通して流入した外気が熱交換部23で熱交換してから免震ピット10の空間14へ導入され、空間14から供給口4a、供給管4を通して免震建物1の居室等の各空間2へと供給されるようになっている。
熱交換部23は、免震建物1の躯体底部5と地下外壁11との間の空間22であって、その空間22の底部12側に縦方向に配置されている。外気取入口21からの外気は空間22から直接免震ピット10側の空間14へと流れず、熱交換部23へと流れるようになっている。外気は、熱交換部23において地下外壁11側の熱と熱交換され、高温のときに冷やされ、低温のときに暖められる。
次に、図1の熱交換部23について図2を参照しながらさらに説明する。図2は、図1の免震ピットの地下外壁に配置した熱交換部を示す要部縦断面図(a)および方向Bから見た図(b)である。
図1,図2(a)(b)のように、熱交換部23は、地下土壌と接する地下外壁11に取り付けられた金属板25と、地下外壁11と対向する免震建物1の躯体底部5から免震ピット10の底部12に向けて吊り下げるようにして配置された金属板ガイド26と、金属板25から金属板ガイド26に向けて設けられた多数の金属板からなるフィン部27と、金属板ガイド26の外側(免震ピット10側)に配置された断熱材28と、を備える。金属板25と金属板ガイド26とフィン部27とは、熱伝導性のよい金属材料、たとえば、鉄鋼材料、銅材料、アルミニウム材料等から構成される。断熱材28は、たとえば、押し出し発泡ポリスチレン板等から構成できる。
フィン部27は、図2(a)(b)のように、金属板25に接続し直交するようにして金属板ガイド26の近傍まで延びた金属板からなる縦長のフィン27aを多数備える。フィン27aは縦方向に延び、上部の空間22から流入する空気がフィン27a,金属板25,金属板ガイド26に沿って下部へと流れる。
図2(a)(b)の熱交換部23を金属板25が地下外壁11に接するようにして免震ピット10内の地下外壁11に沿って全周に配置する。なお、熱交換部23の金属板25とフィン部27とは、折り曲げ加工や溶接等によって接続構造にすることができる。
熱交換部23によれば、地中土壌に接する地下外壁11からの温度が金属板25から各フィン27aへと伝熱し、各フィン27aおよび金属板25の全体に地中熱からの熱が伝導するため、熱交換部23は地中熱に近似したほぼ一定温度に維持される。外気がフィン27aおよび金属板25に接触することで、効率よく熱交換が行われる。このため、梅雨時期や夏季等には、高温多湿の外気が地中熱で常に冷やされた熱交換部23により熱交換されて低温になり、外気中の水分が除湿されやすいため、免震ピット10内で結露が生じる可能性が少なくなる。
図1,図2の免震建物1における地中熱利用システムによれば、梅雨時期や夏季等においては、高温多湿の外気が、吸気により方向aに外気取入口21から流入し、その気流は、空間22から下方向bへ熱交換部23へと流入し、金属板25と金属板ガイド26との間で各フィン27aに沿って流れ、その際、フィン27a,金属板25および金属板ガイド26との熱交換により流入空気の温度が低下し、露点温度に達して発生する水滴wが、フィン27a、金属板25および金属板ガイド26に付着し、重力により下部に流れ、結露水となって免震ピット10の排水溝15へと流れる。
上述のようにして除湿された空気は、熱交換部23の下方から横方向cへ流れ、免震ピット10内の空間14でさらに熱交換されるが、免震ピット10で結露を生じさせず、図1の供給口4aから吸われ、供給管4を通って免震建物1内の居室等の各空間2へと供給される。このため、免震ピット10が高湿度になることが少なく、その結果、カビ等の発生が抑制され、免震ピット10内を衛生的に保つことができる。また、居室等の各空間2内には、外気温度に比べ温度が低く、また、湿度が低い空気が供給されるので、免震建物1の居室等の各空間2には低温で除湿された快適な空気を供給できる。これにより、途中で空調装置や除湿装置等による空調が不要になるため、省エネルギーに寄与することができる。
一方、冬季等においては、外気取入口21から流入する冷気が熱交換部23で免震ピット10の地下土壌と接する地下外壁11と熱交換することで外気温度が上昇するので、免震ピット10内の気温が低くならず、地中熱利用システムによる暖房効率が低下せず、省エネルギーに寄与できる。
また、本実施形態の地中熱利用システムによれば、免震ピット10を利用するので、地中熱利用のために新たに構造物を設ける必要がなく、また、外気取入口21は、免震建物1の躯体底部5と免震ピット10との間に必然的に形成される隙間を利用できるので、コスト的に有利である。
また、金属板ガイド26を躯体底部5に設けたので、外気取入口21からの外気が空間22から免震ピット10側に直接に流れず、熱交換部23へと流れる。このため、外気が熱交換部23で必ず熱交換されるので、本実施形態による上記効果を確実に得ることができる。
次に、第1実施形態の変形例について図3を参照して説明する。図3は、第1実施形態の変形例による熱交換部を示す要部縦断面図である。図3では、金属板ガイド26の上端と免震建物1の躯体底部5との間にゴム等の弾性体からなる緩衝材29を配置するとともに、その下端を免震ピット10の底部12上に設けた複数の脚部29aにより支持するようにした点が図2と相違し、これ以外の点は図2と同様である。緩衝材29と脚部29aにより、金属板ガイド26が支持されるとともに、緩衝材29により、外気取入口21から流入した空気が直接免震ピット10の空間14へ流れない。また、緩衝材29は、躯体底部5には接着されずに、地震時等における躯体底部5の横方向変位に対し多少摺動するものの、躯体底部5の同変位では追随しない。
〈第2実施形態〉
次に、第2実施形態による熱交換部について図4,図5を参照して説明する。図4は、第2実施形態による熱交換部を示す要部縦断面図(a)および方向BBから見た図(b)である。図5は、図4の熱交換部を一部破断して示す要部斜視図である。
図4(a)(b),図5のように、熱交換部23Aは、図1の熱交換部23と基本的に同様に構成され、免震ピット10内に設置される。熱交換部23Aは、地下土壌と接する地下外壁11に取り付けられた金属板31と、地下外壁11と対向する免震建物1の躯体底部5から免震ピット10の底部12に向けてゴム等の弾性体からなる緩衝材36を介して配置された金属板ガイド32と、金属板31と金属板ガイド32との間に配置され金属板31と金属板ガイド32との少なくともいずれか一方に接続した金属板からなるフィン部33と、金属板ガイド32の外側(免震ピット10側)に配置された断熱材34と、を備える。金属板31と金属板ガイド32とフィン部33とは、熱伝導性のよい金属材料、たとえば、鉄鋼材料、銅材料、アルミニウム材料等から構成される。断熱材34は、たとえば、押し出し発泡ポリスチレン板等から構成できる。また、緩衝材36は、躯体底部5には接着されずに、地震時等における躯体底部5の横方向変位に対し多少摺動するものの、躯体底部5の同変位では追随しない。
フィン部33は、図5のように、金属板31に接続し直交するように金属板ガイド32の近傍まで延びた縦長のフィン33aと、金属板ガイド32に接続し直交するように金属板31の近傍まで延びた縦長のフィン33bと、金属板31と金属板ガイド32とに接続し直交するように延びた縦長のフィン33cと、を備える。フィン33a〜33cは、周期的に並べられ、たとえば、フィン33cと33cとの間に二枚のフィン33aと二枚のフィン33bとが一枚ずつ交互に配置されている。各フィン33a,33b,33cは縦方向に延び、上部から流入する空気は、各フィン33a〜33c,金属板31,金属板ガイド32に沿って下部へと流れる。
熱交換部23Aの金属板31と金属板ガイド32とフィン部33とは、具体的には、たとえば、ボックス状に構成できる。すなわち、図5の破線で示すように、金属板から四角形状の角筒を構成し、その角筒内に二枚のフィン33aと二枚のフィン33bとを一枚ずつ交互に配置することで、金属ボックス30を独立して構成する。金属ボックス30を1ユニットとして、複数のユニットを地下外壁11と躯体底部5との間に地下外壁11に接するようにして免震ピット10内の地下外壁11に沿って全周に配置する。
なお、金属ボックス30の幅(金属板31と金属板ガイド32との距離)Wは、地下外壁11と躯体底部5との距離に対応し、たとえば、0.5〜1m程度である。また、金属ボックス30から熱交換部23Aを構成した場合、フィン部33のフィン33cは二重壁構造となる。また、金属ボックス30は、たとえば、折り曲げ加工や溶接等によって製造することができる。
熱交換部23Aによれば、地中土壌に接する地下外壁11からの温度が金属板31からフィン33a〜33c,金属板ガイド32へと伝熱し、フィン33a〜33c,金属板31,金属板ガイド32の全体に地中熱からの熱が伝導するため、熱交換部23は地中熱に近似したほぼ一定温度に維持される。外気がフィン33a〜33c,金属板31,金属板ガイド32に接触することで、効率よく熱交換が行われる。このため、梅雨時期や夏季等には、高温多湿の外気が地中熱で常に冷やされた熱交換部23により熱交換されて低温になり、外気中の水分が除湿されやすいため、ピット内で結露が生じる可能性が少なくなる。また、金属板ガイド32を躯体底部5に設けたので、外気取入口21からの外気が空間22から免震ピット10側に直接に流れず、熱交換部23Aへと流れる。
第2実施形態によれば、外気が吸気により方向aに外気取入口21から流入し、その気流は、下方向bへ流れて熱交換部23Aへと流入し、その内部でフィン33a〜33c,金属板31および金属板ガイド32に沿って流れ、その際、フィン33a〜33c,金属板31および金属板ガイド32との熱交換により流入空気の温度が低下し、露点温度に達して発生する水滴wが、フィン33a〜33c,金属板31および金属板ガイド32に付着し、重力により下部に流れて結露水になって、免震ピット10の排水溝15に流れる。したがって、第2実施形態によれば、図1〜図3と同様の作用効果を奏する。
図4(a)(b)の熱交換部23Aは、図6のように、フィン部33の配置をさらに密になるようにして熱交換の効率を向上させるようにしてもよい。すなわち、図6のフィン部33は、金属板31と金属板ガイド32とに直交して接続するフィン33c,33cの間に同様のフィン33dを設け、フィン33c,33cに直交して接続するフィン33eを設け、金属板31とフィン33cと金属板ガイド32とフィン33cとによって形成される四角形状の角筒内に4つの小さな四角形状の角筒を形成し、この小さな四角形状の角筒内に、金属板31とフィン33eから延びるフィン33f、および、金属板ガイド32とフィン33eから延びるフィン33gを交互に位置したものである。なお、金属板31とフィン33cと金属板ガイド32とフィン33cとによって形成される四角形状の角筒を、図5と同様の金属ボックスから構成してもよい。
次に、第2実施形態の別の変形例による熱交換部について図7,図8を参照して説明する。図7は、第2実施形態の別の変形例による熱交換部を示す要部縦断面図である。図8は、図7の免震ピットの底部に配置した熱交換部を一部破断して示す要部斜視図である。
図7,図8の例は、図4,図5の地下外壁11に接するように縦方向に配置した熱交換部23Aに加えて、免震ピット10の底部12に接するように熱交換部24を横方向に配置し、熱交換部23Aからの空気がさらに熱交換部24内に流れるように構成したものである。
図7,図8のように、熱交換部24は、基本的に熱交換部23Aと同様に構成され、地下土壌と接する底部12に取り付けられた金属板41と、金属板41と対向してその上部に配置された金属板ガイド42と、金属板41と金属板ガイド42との間に配置され金属板41と金属板ガイド42との少なくともいずれか一方に接続した金属板からなるフィン部43と、金属板ガイド32の外側(免震ピット10側)に配置された断熱材44と、を備える。
フィン部43は、図8のように、金属板41に接続し直交するように金属板ガイド42の近傍まで延びた横長のフィン43aと、金属板ガイド42に接続し直交するように金属板41の近傍まで延びた横長のフィン43bと、金属板41と金属板ガイド42とに接続し直交するように延びた縦長のフィン43cと、を備える。フィン43a〜43cは、周期的に並べられ、たとえば、フィン43cと43cとの間に四枚のフィン43aと四枚のフィン43bとが一枚ずつ交互に配置されている。各フィン43a,43b,43cは横方向に延び、熱交換部23の下部から流入する空気は、各フィン43a〜43c,金属板41,金属板ガイド42に沿って横方向dへと流れる。
熱交換部24の金属板41と金属板ガイド42とフィン部43とは、具体的には、たとえば、ボックス状に構成できる。すなわち、図8の破線で示すように、金属板から四角形状の角筒を構成し、その角筒内に四枚のフィン43aと四枚のフィン43bとを一枚ずつ交互に配置することで、金属ボックス40を1ユニットに構成する。複数のユニットを熱交換部23の下部からの空気が流入するように免震ピット10の底部12に横方向に配置する。
熱交換部24によれば、地中土壌に接する底部12からの温度が金属板41からフィン43a〜43c,金属板ガイド42へと伝熱し、フィン43a〜43c,金属板41,金属板ガイド42の全体に地中熱からの熱が伝導するため、熱交換部24は地中熱に近似したほぼ一定温度に維持される。熱交換部23から流入する空気がフィン43a〜43c,金属板41,金属板ガイド42に接触することで効率よく熱交換が行われる。
上述のように、図7,図8の例では、地下外壁11に縦方向に配置した熱交換部23に加えて底部12に横方向に熱交換部24を配置することで、全体として熱交換の接触面積、接触時間をより大きく確保できるので、地中熱をより伝えることができ、熱交換がより効率的になる。
なお、図7のように、底部12に接する金属板41を排水溝15に向けて傾斜するように構成しているので、熱交換部24内で生じる結露水を排出することができる。また、熱交換部24を金属ボックス40から構成する場合、熱交換部23の金属ボックス30と接続して組み合わせてもよい。また、熱交換部24を熱交換部23の金属ボックス30から構成してもよい。
〈第3実施形態〉
次に、第3実施形態による熱交換部について図9,図10を参照して説明する。図9は、第3実施形態による熱交換部を示す要部縦断面図(a)、その一部拡大縦断面図(b)および方向Cから見た図(c)である。図10は、図9の免震ピットの地下外壁に配置した熱交換部を一部破断して示す要部斜視図である。
図9,図10の第3実施形態は、図1,図2の熱交換部23に代えて、金属板の内側にフィンをらせん状に配置しフィンに結露水排水路を設けた熱交換部25を配置したものである。
図9(a)〜(c),図10のように、熱交換部25は、図1の熱交換部23と基本的に同様に構成され、免震ピット10内に設置される。熱交換部25は、地下土壌と接する地下外壁11に取り付けられた金属板51と、地下外壁11と対向する免震建物1の躯体底部5から免震ピット10の底部12に向けてゴム等の弾性体からなる緩衝材36を介して配置された金属板ガイド52と、金属板51と金属板ガイド52とに接続し直交するように延びた縦長の金属板53と、金属板51と金属板ガイド52と金属板53,53の各内面にらせん状に形成されたフィン部54と、金属板ガイド52の外側(免震ピット10側)に配置された断熱材56と、を備える。フィン部54は、熱伝導性のよい金属材料、たとえば、鉄鋼材料、銅材料、アルミニウム材料等から構成される。
フィン部54は、図10のように、金属板51と金属板ガイド52と金属板53,53の四角形状の内面において、下向きの勾配を持つようにらせん状に上側から下側へと連続して形成された細帯状のフィン55を有する。フィン55は、底部55aと側部55bとからL字形状に構成され、流入する空気と接触して熱交換を行うとともに、熱交換で生じた結露水を受けて下側へと流す結露水排水路を形成している。
熱交換部25の金属板51と金属板ガイド52と金属板53,53とフィン部54とは、具体的には、たとえば、ボックス状に構成できる。すなわち、図10の破線で示すように、金属板から四角形状の角筒を構成し、その角筒内にフィン部54を設けることで、金属ボックス50を1ユニットに構成する。
第3実施形態例によれば、熱交換部25のフィン部54が熱交換と結露水排水路とを兼用することで、熱交換部25へ上部から流入する空気が金属板51〜53、フィン55と接触することで生じた水滴wが集まって結露水となって、底部55aと側部55bとからなる結露水排水路を図9(c)の方向eへと流れることにより結露水が媒体となって、金属板51〜53への伝熱効果を増すことができる。これにより熱交換部25における熱交換の効率が向上する。また、結露水排水路の下部から結露水は免震ピット10の排水溝15へと流れる。
また、図11のように、らせん状配置のフィン55の底部55aの幅を、上から下に向かうにしたがって大きくするように構成してもよい。これにより、結露水排水路の側部55bで生じた結露水の落下水も受けることができる。
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本実施形態では、住居やオフィスや病院等のための免震建物を例にして説明したが、本発明の地中熱利用システムは、これに限定されず、各種の免震構造物に適用できることはもちろんである。
本発明の免震構造物における地中熱利用システムによれば、免震構造物の未利用空間である免震ピットを利用して地中熱と外気との熱交換および外気の除湿を行うとともに結露水対策を施したので、免震構造物内の空間に、梅雨時期や夏季等であっても、低温で除湿された快適な空気を供給でき、また、省エネルギーにも寄与できる。
1 免震構造物
3 免震装置
4 供給管
4a 供給口
5 躯体底部
10 免震ピット
11 地下外壁
12 底部
14 空間
15 排水溝
21 外気取入口
22 空間
23、23A、24、25 熱交換部
30,40,50 金属ボックス
25,31 金属板
26,32 金属板ガイド
27,33 フィン部
27a,33a,33b,33c フィン
28,34 断熱材
G 地面

Claims (5)

  1. 地下に設置される免震ピットを有する免震構造物における地中熱利用システムであって、
    免震構造物の躯体底部と免震ピットとの間の外気取入口と、
    前記免震ピットの地下土壌と接する地下外壁に対し前記外気取入口からの外気が熱交換するように前記免震ピット内の前記地下外壁に沿って全周に配置された熱交換部と、を備え、
    前記熱交換部は、前記地下外壁に取り付けられた熱伝導性の板部材と、前記地下外壁と対向する前記躯体底部から前記免震ピットの底部に向けて配置された熱伝導性の板状ガイドと、前記板部材と前記板状ガイドとの少なくともいずれか一方に接続するように前記板部材と前記板状ガイドとの間に配置された熱伝導性の板状のフィン部と、を備え、
    前記外気が前記熱交換部において前記板部材と前記板状ガイドとの間で前記フィン部に沿って流れることにより熱交換してから前記免震ピットの空間へ導入され、前記空間から前記免震構造物内へと供給されることを特徴とする免震構造物における地中熱利用システム。
  2. 前記地下外壁に取り付けられた板部材がその下部で前記免震ピットの地下土壌と接する底部まで延長されて設けられるとともに、前記板状ガイドが前記底部の上方に延長されて設けられる請求項に記載の免震構造物における地中熱利用システム。
  3. 前記板状のフィン部に結露水を前記底部へと導くように結露水排水路が設けられる請求項に記載の免震構造物における地中熱利用システム。
  4. 前記熱交換部からの結露水が前記免震ピットに設けられた排水溝に流れ込んで排出される請求項1乃至のいずれか1項に記載の免震構造物における地中熱利用システム。
  5. 前記外気取入口として前記躯体底部と前記免震ピットとの間に形成される隙間を利用する請求項1乃至のいずれか1項に記載の免震構造物における地中熱利用システム。
JP2015050268A 2015-03-13 2015-03-13 免震構造物における地中熱利用システム Active JP6434342B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050268A JP6434342B2 (ja) 2015-03-13 2015-03-13 免震構造物における地中熱利用システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050268A JP6434342B2 (ja) 2015-03-13 2015-03-13 免震構造物における地中熱利用システム

Publications (2)

Publication Number Publication Date
JP2016169909A JP2016169909A (ja) 2016-09-23
JP6434342B2 true JP6434342B2 (ja) 2018-12-05

Family

ID=56982215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050268A Active JP6434342B2 (ja) 2015-03-13 2015-03-13 免震構造物における地中熱利用システム

Country Status (1)

Country Link
JP (1) JP6434342B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230858B (zh) * 2019-06-10 2021-08-17 西安航天神舟建筑设计院有限公司 地坑控温系统及地坑构筑物系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816824U (ja) * 1981-07-26 1983-02-02 ナショナル住宅産業株式会社 地中温度を利用する空調装置
JPS5816848U (ja) * 1981-07-26 1983-02-02 ナショナル住宅産業株式会社 地中温度を利用する空調装置
JP3032891U (ja) * 1995-06-08 1997-01-17 正勝 伊藤 住宅の地中熱利用冷暖房装置
JP2001289518A (ja) * 2000-04-05 2001-10-19 S X L Corp 建物の外気導入装置
JP2003056885A (ja) * 2001-08-14 2003-02-26 Taisei Corp 免震建物における熱利用システム
JP2003090565A (ja) * 2001-09-20 2003-03-28 Takenaka Komuten Co Ltd 空調設備
JP2004212038A (ja) * 2002-12-20 2004-07-29 Toko Kogyo:Kk 建物の空調換気システム
JP2010019462A (ja) * 2008-07-09 2010-01-28 Shimizu Corp 地熱利用空調システム
JP3150025U (ja) * 2008-08-27 2009-04-30 保弘 福田 地下熱を利用した空調機
JP5601068B2 (ja) * 2010-07-26 2014-10-08 富士通株式会社 空調システムおよび空調システム制御方法
JP2013245913A (ja) * 2012-05-29 2013-12-09 Shimizu Corp サーバー室の空調設備
JP6236254B2 (ja) * 2013-08-21 2017-11-22 株式会社高垣製作所 地中熱交換器及びこれを用いた空調システム

Also Published As

Publication number Publication date
JP2016169909A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
JP2009250581A (ja) 地中熱利用冷暖房システム
JP2011147836A (ja) 除湿装置
JP2007032910A (ja) 地熱交換器及び空調装置
JP6838923B2 (ja) 地中埋設の管状構造物を利用する熱交換装置
KR101014241B1 (ko) 열교환장치
CN103683050A (zh) 一种室内变压器/电抗器隔音降温装置
JP6434342B2 (ja) 免震構造物における地中熱利用システム
ES2603386T3 (es) Elemento de suelo para fabricar suelos con espacio hueco con tubos de calefacción para la calefacción de habitaciones o con tubos de calefacción y refrigeración para una calefacción y refrigeración combinadas de habitaciones
JP2005061786A (ja) 地温を利用した室内温度調整構造
KR20130038711A (ko) 냉난방 및 제습기능을 가지는 벽체매립형 패널을 이용한 냉난방 환기 시스템 및 복사 냉난방 방법
JP3562527B1 (ja) 地熱利用の空調システム
JP2008101855A (ja) 天井輻射システム
JP5810451B2 (ja) 無風冷房方法
JP2012251677A (ja) 蓄熱空調システム
JP2014105988A (ja) ヒートパイプを用いた住宅の空調装置
WO2017069704A1 (en) Passive chilled panel
WO2019150720A1 (ja) 空気調和装置の室外機
JP6936160B2 (ja) 空気調和装置の室外機
JP2015124940A (ja) 蓄熱構造体及びそれを用いた住宅
KR101180319B1 (ko) 지열을 이용한 냉난방시스템
CN219177946U (zh) 柜式无风空调末端
JP6890366B1 (ja) 放射パネル
CN219199342U (zh) 自然对流的空调末端装置及空调墙
KR101181075B1 (ko) 벽체 패널 매립형 폐열회수 환기장치 및 이를 구비한 벽체 패널
JP6211018B2 (ja) 建築物構造、及び建築物構造の形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181108

R150 Certificate of patent or registration of utility model

Ref document number: 6434342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150