JP6414700B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6414700B2
JP6414700B2 JP2015212330A JP2015212330A JP6414700B2 JP 6414700 B2 JP6414700 B2 JP 6414700B2 JP 2015212330 A JP2015212330 A JP 2015212330A JP 2015212330 A JP2015212330 A JP 2015212330A JP 6414700 B2 JP6414700 B2 JP 6414700B2
Authority
JP
Japan
Prior art keywords
electrode body
safety valve
battery
secondary battery
flat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212330A
Other languages
Japanese (ja)
Other versions
JP2017084630A (en
Inventor
健作 宮澤
健作 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015212330A priority Critical patent/JP6414700B2/en
Publication of JP2017084630A publication Critical patent/JP2017084630A/en
Application granted granted Critical
Publication of JP6414700B2 publication Critical patent/JP6414700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池)等の非水電解質二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます普及していくことが期待されている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used as a power source. In particular, lithium-ion secondary batteries that are lightweight and provide high energy density will become increasingly popular as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). It is expected to do.

非水電解質二次電池の一形態として、扁平形状の電極体が、扁平形状の電池ケースに収容された形態が挙げられる。電極体は、充放電に伴って膨張および収縮を起こし得る。この電極体の充放電に伴う膨張および収縮は、電池性能の低下を招き得る。そこで、電池ケースと電極体との間に圧迫部材を配置したり、非水電解質二次電池を複数集めて組電池とする際に、拘束部材により電池ケースに拘束圧を印加することによって、電極体に荷重を掛けることにより、電極体の膨張および収縮を抑制して電池性能の低下を防止することが行われている(例えば、特許文献1参照)。   As one form of the nonaqueous electrolyte secondary battery, a form in which a flat electrode body is accommodated in a flat battery case can be mentioned. The electrode body can expand and contract with charge / discharge. The expansion and contraction associated with charging / discharging of the electrode body may cause a decrease in battery performance. Therefore, when a compression member is disposed between the battery case and the electrode body, or when a plurality of nonaqueous electrolyte secondary batteries are assembled into an assembled battery, the electrode is applied by applying a restraining pressure to the battery case by the restraining member. By applying a load to the body, the expansion and contraction of the electrode body is suppressed to prevent a decrease in battery performance (see, for example, Patent Document 1).

また、非水電解質二次電池は、通常、電池ケースの内圧が所定レベル以上に上昇した場合に当該内圧を開放するように設定された安全弁が設けられている。非水電解質二次電池が、内部短絡等によって温度上昇を起こした場合には、電解質や電極の分解ガス、電解質の気化ガス等によって電池ケースの内圧が上昇する。安全弁は、電池ケースの破裂圧力以下の圧力で開弁するように設計されており、内部短絡等により電池ケースの内圧が急激に上昇した場合には、ガスが安全弁から排煙されることよって電池ケースの破裂が抑制される。   In addition, a non-aqueous electrolyte secondary battery is usually provided with a safety valve that is set to release the internal pressure when the internal pressure of the battery case rises above a predetermined level. When the temperature of the nonaqueous electrolyte secondary battery increases due to an internal short circuit or the like, the internal pressure of the battery case increases due to the electrolyte, electrode decomposition gas, electrolyte vaporized gas, or the like. The safety valve is designed to open at a pressure lower than the burst pressure of the battery case, and when the internal pressure of the battery case suddenly increases due to an internal short circuit, etc., the gas is exhausted from the safety valve, causing the battery Case rupture is suppressed.

特開2014−110190号公報JP 2014-110190 A

非水電解質二次電池が、内部短絡等を起こした際、発生ガス量が多い場合には、安全弁が開弁した後であってもガスが安全弁から完全に排煙されずに電池ケースの内圧が上昇し、電池ケースの膨張が起こるおそれがある。ここで、電池ケースをこの内圧上昇に耐え得るようにするには、電池ケースの大型化や耐久性の向上等が必要であり、コストやスペース面で問題が生じる。そのため、内部短絡を起こした場合に、発生したガスが安全弁からより確実に排煙されることが望まれている。   When a non-aqueous electrolyte secondary battery causes an internal short circuit, etc., and the amount of gas generated is large, even after the safety valve is opened, the gas is not completely exhausted from the safety valve and the internal pressure of the battery case May rise and the battery case may expand. Here, in order to be able to withstand the increase in internal pressure of the battery case, it is necessary to increase the size of the battery case, improve the durability, and the like, causing problems in terms of cost and space. For this reason, when an internal short circuit occurs, it is desired that the generated gas is more reliably exhausted from the safety valve.

そこで本発明の目的は、内部短絡を起こした場合に、発生ガスの安全弁からの排煙をより確実に行うことができる非水電解質二次電池を提供することにある。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can more reliably exhaust the generated gas from the safety valve when an internal short circuit occurs.

ここに開示される非水電解質二次電池は、扁平形状を有する電極体と、前記電極体を収容し、扁平形状を有するケースと、U字形状の拘束板とを備える。前記ケースは、前記ケースの扁平面外に安全弁を備えている。前記拘束板は、非水電解質二次電池の内部短絡時に前記安全弁より排煙可能なように、U字の開口部が前記安全弁のある方向を向くように前記ケースの少なくとも一方の扁平面に配置されて、前記電極体の扁平面の、前記安全弁に最も近い端部以外の端部に荷重を印加している。
このような構成によれば、電極体から発生したガスが非水電解質二次電池の内部から安全弁を通って排出される際の排煙経路が従来技術に比べて短くなる。その結果、非水電解質二次電池は、従来技術と比べて発生したガスを安全弁からより確実に排煙することができる。
The nonaqueous electrolyte secondary battery disclosed herein includes an electrode body having a flat shape, a case having the flat shape and containing the electrode body, and a U-shaped restraining plate. The case includes a safety valve outside the flat surface of the case. The constraining plate is arranged on at least one flat surface of the case so that the U-shaped opening portion faces a direction of the safety valve so that smoke can be discharged from the safety valve when an internal short circuit of the nonaqueous electrolyte secondary battery is performed. Then, a load is applied to an end portion of the flat surface of the electrode body other than the end portion closest to the safety valve.
According to such a configuration, the smoke exhaust path when the gas generated from the electrode body is exhausted from the inside of the non-aqueous electrolyte secondary battery through the safety valve is shorter than that in the prior art. As a result, the nonaqueous electrolyte secondary battery can more reliably exhaust the generated gas from the safety valve than the conventional technology.

本発明の一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the lithium ion secondary battery which concerns on one Embodiment of this invention. 図1中のII−II線に沿う断面構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the cross-sectional structure which follows the II-II line | wire in FIG. 本発明の一実施形態に係るリチウムイオン二次電池に用いられる捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the wound electrode body used for the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の内部を模式的に示す透視図である。1 is a perspective view schematically showing the inside of a lithium ion secondary battery according to an embodiment of the present invention. (a)は、従来のリチウムイオン二次電池の構成を模式的に示す斜視図であり、(b)は、本発明の一実施形態に係るリチウムイオン二次電池の構成を模式的に示す斜視図である。(A) is a perspective view which shows typically the structure of the conventional lithium ion secondary battery, (b) is the perspective view which shows typically the structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. FIG. (a)はNo.1に係る評価用電池を模式的に示す斜視図であり、(b)はNo.2に係る評価用電池を模式的に示す斜視図であり、(c)はNo.3に係る評価用電池を模式的に示す斜視図であり、(d)はNo.4に係る評価用電池を模式的に示す斜視図であり、(e)はNo.5に係る評価用電池を模式的に示す斜視図である。(A) No. 1 is a perspective view schematically showing a battery for evaluation according to No. 1; 2 is a perspective view schematically showing a battery for evaluation according to No. 2; 3 is a perspective view schematically showing a battery for evaluation according to No. 3; 4 is a perspective view schematically showing a battery for evaluation according to No. 4; 6 is a perspective view schematically showing a battery for evaluation according to FIG.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解質二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Note that matters other than the matters specifically mentioned in this specification and necessary for the implementation of the present invention (for example, a general configuration and manufacturing process of a nonaqueous electrolyte secondary battery that does not characterize the present invention) Can be understood as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
以下、扁平形状の電極体と扁平形状の電池ケースとを有する扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor.
Hereinafter, the present invention will be described in detail by taking a flat rectangular lithium ion secondary battery having a flat electrode body and a flat battery case as an example. However, the present invention is described in this embodiment. It is not intended to be limited to.

図1および図2に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解質(図示せず)とが扁平形状(扁平角型)の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型のリチウムイオン二次電池100である。電池ケース30は、一対の扁平面(幅広面)32を有する。電池ケース30には外部接続用の正極端子42および負極端子44が設けられている。また、電池ケース30の扁平面32外である、電池ケース30の上面の中央部付近には、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解質を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。   A lithium ion secondary battery 100 shown in FIGS. 1 and 2 includes a battery case (that is, an exterior container) 30 in which a flat wound electrode body 20 and a nonaqueous electrolyte (not shown) are flat (flat rectangular). This is a sealed lithium ion secondary battery 100 constructed by being housed in a battery. The battery case 30 has a pair of flat surfaces (wide surfaces) 32. The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection. Further, in the vicinity of the central portion of the upper surface of the battery case 30 outside the flat surface 32 of the battery case 30, a thin wall set so as to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. The safety valve 36 is provided. In addition, the battery case 30 is provided with an inlet (not shown) for injecting a nonaqueous electrolyte. The positive terminal 42 is electrically connected to the positive current collector 42a. The negative electrode terminal 44 is electrically connected to the negative electrode current collector plate 44a. As the material of the battery case 30, for example, a light metal material having good thermal conductivity such as aluminum is used.

捲回電極体20は、図2および図3に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。捲回電極体は、一対の扁平面22を有する。捲回電極体20の捲回軸方向(上記長手方向に直交するシート幅方向をいう。)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。   As shown in FIGS. 2 and 3, the wound electrode body 20 has a positive electrode active material layer 54 formed along the longitudinal direction on one side or both sides (here, both sides) of an elongated positive electrode current collector 52. The positive electrode sheet 50 and the negative electrode sheet 60 in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62 are two long shapes. The separator sheet 70 is overlapped and wound in the longitudinal direction. The wound electrode body has a pair of flat surfaces 22. The positive electrode active material layer non-forming portion 52a (that is, the positive electrode active material) formed so as to protrude outward from both ends in the winding axis direction of the wound electrode body 20 (referred to as the sheet width direction orthogonal to the longitudinal direction). A portion where the positive electrode current collector 52 is exposed without forming the layer 54) and a negative electrode active material layer non-forming portion 62a (that is, a portion where the negative electrode active material layer 64 is not formed and the negative electrode current collector 62 is exposed). Are respectively joined to the positive electrode current collector plate 42a and the negative electrode current collector plate 44a.

正極シート50および負極シート60には、従来のリチウムイオン二次電池に用いられているものと同様のものを特に制限なく使用することができる。典型的な一態様を以下に示す。   As the positive electrode sheet 50 and the negative electrode sheet 60, the same ones used in conventional lithium ion secondary batteries can be used without particular limitation. One typical embodiment is shown below.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode sheet 50 include aluminum foil. Examples of the positive electrode active material included in the positive electrode active material layer 54 include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O). 4 , LiNi 0.5 Mn 1.5 O 4 etc.), lithium transition metal phosphate compounds (eg, LiFePO 4 etc.) and the like. The positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, for example, carbon black such as acetylene black (AB) and other (eg, graphite) carbon materials can be suitably used. As the binder, for example, polyvinylidene fluoride (PVDF) can be used.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   Examples of the negative electrode current collector 62 constituting the negative electrode sheet 60 include copper foil. As the negative electrode active material contained in the negative electrode active material layer 64, for example, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode active material layer 64 can include components other than the active material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR) can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解質は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 The non-aqueous electrolyte can be the same as that of a conventional lithium ion secondary battery, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Examples thereof include monofluoromethyl difluoromethyl carbonate (F-DMC) and trifluorodimethyl carbonate (TFDMC). Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 (preferably LiPF 6 ) can be suitably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.

なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。   In addition, the non-aqueous electrolyte is, for example, a gas generating agent such as biphenyl (BP) or cyclohexylbenzene (CHB); an oxalato complex compound containing a boron atom and / or a phosphorus atom, as long as the effects of the present invention are not significantly impaired. Various additives such as a film forming agent such as vinylene carbonate (VC); a dispersant; a thickener may be included.

リチウムイオン二次電池100は、図4に示すようにU字形状の拘束板80を備える。本実施形態においては、拘束板80は、電池ケース30の扁平面32の内壁側に備えられている。この拘束板80は、リチウムイオン二次電池100が内部短絡時に安全弁36より排煙可能なように、構成および配置されている。具体的には、拘束板80は、U字の開口部が安全弁36の方向を向くように配置されている。拘束板80は、電池ケース30の扁平面32と電極体20の扁平面22との間に挟持されることにより、電極体20の扁平面22の、安全弁36に最も近い端部以外の端部に荷重を印加している。適切に荷重を印加するために、リチウムイオン二次電池に拘束部材、拘束バンド等を備えさせることによりさらに荷重を印加してもよい。拘束部材、拘束バンド等による荷重の印加は、特にリチウムイオン二次電池を複数組み合わせて組電池を構成する場合に効果的に行うことができるが、単独のリチウムイオン二次電池に対しても行うことができる。なお、電極体20の扁平面22の安全弁36に最も近い端部の一部にも、U字形状の拘束板80の上端部により、荷重が印加される。   The lithium ion secondary battery 100 includes a U-shaped restraining plate 80 as shown in FIG. In the present embodiment, the restraining plate 80 is provided on the inner wall side of the flat surface 32 of the battery case 30. The restraint plate 80 is configured and arranged so that the lithium ion secondary battery 100 can exhaust smoke from the safety valve 36 when an internal short circuit occurs. Specifically, the restraint plate 80 is arranged so that the U-shaped opening faces the direction of the safety valve 36. The restraint plate 80 is sandwiched between the flat surface 32 of the battery case 30 and the flat surface 22 of the electrode body 20, so that the end portions of the flat surface 22 of the electrode body 20 other than the end portion closest to the safety valve 36. A load is applied to In order to apply a load appropriately, a load may be further applied by providing the lithium ion secondary battery with a restraining member, a restraining band, or the like. The application of a load by a restraining member, a restraining band or the like can be effectively performed particularly when a battery pack is configured by combining a plurality of lithium ion secondary batteries, but it is also performed on a single lithium ion secondary battery. be able to. A load is also applied to a part of the end portion of the flat surface 22 of the electrode body 20 closest to the safety valve 36 by the upper end portion of the U-shaped restraining plate 80.

なお、本明細書において「非水電解質二次電池(リチウムイオン二次電池)が内部短絡時に安全弁より排煙可能」であるとは、例えば、非水電解質二次電池(リチウムイオン二次電池)の扁平面の中央部に、25℃の温度環境下で直径3mmの鉄製の釘を10mm/secの速度で貫通させて、内部短絡させた際に、電池ケースが膨張することなく安全弁より発生したガスを放出できることをいう。   In this specification, “non-aqueous electrolyte secondary battery (lithium ion secondary battery) can be discharged from a safety valve when an internal short circuit occurs” means, for example, a non-aqueous electrolyte secondary battery (lithium ion secondary battery) When a steel nail with a diameter of 3 mm was penetrated at a speed of 10 mm / sec in a central part of the flat surface of the plate at a speed of 10 mm / sec, and the internal short circuit occurred, the battery case did not expand and was generated from the safety valve It means that gas can be released.

図5(a)は、従来のリチウムイオン二次電池200の構成を模式的に示す図である。図5(a)において、斜線で示された領域は、電極体120上に荷重が印加されている拘束部位184を示す。このように、従来のリチウムイオン二次電池200では、電極体120の扁平面122のほぼ全体に荷重が印加されている。そのため、電極体120から発生したガスがリチウムイオン二次電池200の内部から安全弁136を通って排出される際の排煙経路は、図5(a)の破線矢印のようになる。すなわち、典型的には、発生したガスは、電極体120の幅方向(図における左右方向)の端部から電極体120の上方の安全弁136へと排煙される。   FIG. 5A is a diagram schematically showing a configuration of a conventional lithium ion secondary battery 200. In FIG. 5A, the hatched area indicates the restrained portion 184 where a load is applied on the electrode body 120. As described above, in the conventional lithium ion secondary battery 200, a load is applied to almost the entire flat surface 122 of the electrode body 120. Therefore, the smoke exhaust path when the gas generated from the electrode body 120 is exhausted from the inside of the lithium ion secondary battery 200 through the safety valve 136 is as shown by a broken line arrow in FIG. That is, typically, the generated gas is exhausted from the end of the electrode body 120 in the width direction (the left-right direction in the drawing) to the safety valve 136 above the electrode body 120.

これに対し、本実施形態においては、U字形状の拘束板80が用いられることによって、図5(b)において斜線で示された領域が電極体20上に荷重が印加されている拘束部位84となる。このように、本実施形態に係るリチウムイオン二次電池100では、電極体20の扁平面22の安全弁36に最も近い端部以外の端部に荷重が印加されており、荷重が印加された拘束部位84の形状はU字形状である。そして、U字の開口部が安全弁36の方向を向いている。そのため、電極体20から発生したガスがリチウムイオン二次電池100の内部から安全弁36を通って排出される際の排煙経路は、図5(b)の破線矢印のようになる。すなわち、電極体20の幅方向(図における左右方向)の端部と、リチウムイオン二次電池100の底面(図における下面)に近接する端部に荷重が印加されることにより、発生したガスは、電極体20の上方から安全弁36へと排煙される。   On the other hand, in this embodiment, by using the U-shaped restraint plate 80, a restraint portion 84 where a load is applied to the electrode body 20 in a region indicated by hatching in FIG. It becomes. As described above, in the lithium ion secondary battery 100 according to the present embodiment, a load is applied to the end other than the end closest to the safety valve 36 of the flat surface 22 of the electrode body 20, and the constraint to which the load is applied is applied. The shape of the part 84 is U-shaped. The U-shaped opening faces the direction of the safety valve 36. Therefore, the smoke exhaust path when the gas generated from the electrode body 20 is exhausted from the inside of the lithium ion secondary battery 100 through the safety valve 36 is as indicated by a broken line arrow in FIG. That is, when a load is applied to the end of the electrode body 20 in the width direction (left-right direction in the drawing) and the end close to the bottom surface (lower surface in the drawing) of the lithium ion secondary battery 100, the generated gas is The smoke is exhausted from above the electrode body 20 to the safety valve 36.

したがって、図5(a)の破線矢印と図5(b)の破線矢印の比較より明らかなように、本実施形態においては、従来技術と比べて排煙経路が短くなっている。このため、本実施形態においては、従来技術と比べて発生したガスを安全弁からより確実に排煙することができる。   Therefore, as is clear from the comparison between the broken line arrow in FIG. 5A and the broken line arrow in FIG. 5B, in this embodiment, the flue gas path is shorter than in the prior art. For this reason, in this embodiment, the generated gas can be more reliably exhausted from the safety valve than in the prior art.

拘束板80は、図4のようにU字形状の開口部が上になるように配置した場合に、U字形状の縦棒部の幅が、電極体20の幅(図の左右方向の長さ;縦棒部の幅方向に沿う長さ)の1/4以下であることが好ましい。またU字形状の横棒部の幅が、電極体20の高さ(図の上下方向の長さ;横棒部の幅方向に沿う長さ)の1/4以下であることが好ましい。拘束板80のU字形状の縦棒部の幅が、電極体20の幅の1/4より大きい場合や拘束板80のU字形状の横棒部の幅が、電極体20の高さの1/4より大きい場合には、電極体20に荷重が印加される範囲が広くなりすぎて、図5(b)の破線矢印以外の排煙経路が生じて、内部短絡により発生したガスを安全弁36から完全に排煙できないおそれがある。   When the constraining plate 80 is arranged so that the U-shaped opening is on the top as shown in FIG. 4, the width of the U-shaped vertical bar is equal to the width of the electrode body 20 (the length in the horizontal direction in the figure). It is preferable that it is 1/4 or less of the length along the width direction of the vertical bar portion. Moreover, it is preferable that the width of the U-shaped horizontal bar portion is ¼ or less of the height of the electrode body 20 (length in the vertical direction in the figure; length along the width direction of the horizontal bar portion). The width of the U-shaped vertical bar portion of the constraining plate 80 is larger than ¼ of the width of the electrode body 20 or the width of the U-shaped horizontal bar portion of the constraining plate 80 is equal to the height of the electrode body 20. If it is larger than 1/4, the range in which the load is applied to the electrode body 20 becomes too wide, and a smoke exhaust path other than the broken line arrow in FIG. 36 may not be able to exhaust smoke completely.

拘束板80によって、電極体20の扁平面22の、安全弁36に最も近い端部以外の端部に荷重を印加しているが、この荷重の大きさは10kgf(98.0665N)以上であることが好ましい。この荷重が10kgf未満だと、図5(b)の破線矢印以外の排煙経路が生じて、内部短絡により発生したガスを安全弁36から完全に排煙できないおそれがある。   The restraint plate 80 applies a load to the end of the flat surface 22 of the electrode body 20 other than the end closest to the safety valve 36, and the magnitude of this load is 10 kgf (98.0665N) or more. Is preferred. If this load is less than 10 kgf, a smoke exhaust path other than the dashed arrow in FIG. 5B is generated, and there is a possibility that the gas generated by the internal short circuit cannot be completely exhausted from the safety valve 36.

拘束板80の形状は、U字形状であればよく、図4に示すような角型の縦棒と角型の横棒が接続されたU字形状に限られない。例えば、U字の縦棒部の下端とU字の横棒部の両端の接続部分が曲線形状を有していてもよい。   The shape of the restraint plate 80 may be U-shaped, and is not limited to a U-shape in which a square vertical bar and a square horizontal bar are connected as shown in FIG. For example, the connecting portion between the lower end of the U-shaped vertical bar portion and both ends of the U-shaped horizontal bar portion may have a curved shape.

拘束板80の位置は、U字形状の縦棒部の外端および横棒部の外端の位置が、電極体20の扁平面22の安全弁36に最も近い端部以外の端部の最端と必ずしも一致していなくてもよい。本発明の効果が得られる範囲内でU字形状の縦棒部の外端および横棒部の外端の位置が、電極体20の扁平面22の安全弁36に最も近い端部以外の端部の最端よりも、やや外側またはやや内側にあってよい。例えば、U字形状の縦棒部の外端の位置が、電極体20の幅方向の端部の最端よりも、電極体20の幅方向の長さの1/10程度内側または外側にあってもよい。同様に例えば、例えば、U字形状の横棒部の外端の位置が、電極体20のリチウムイオン二次電池100の底面に近接する端部の最端よりも、電極体20の高さ方向の長さの1/10程度内側または外側にあってもよい。   The position of the restraint plate 80 is the outermost end of the U-shaped vertical bar portion and the outer end of the horizontal bar portion, except for the end closest to the safety valve 36 of the flat surface 22 of the electrode body 20. Does not necessarily match. Ends other than the end closest to the safety valve 36 on the flat surface 22 of the electrode body 20 are located at the outer ends of the U-shaped vertical bar and the outer bar within the range in which the effect of the present invention is obtained. It may be slightly outside or slightly inside than the extreme end. For example, the position of the outer end of the U-shaped vertical bar is on the inside or outside of the outermost end of the width direction of the electrode body 20 by about 1/10 of the length in the width direction of the electrode body 20. May be. Similarly, for example, the position of the outer end of the U-shaped horizontal bar is higher in the height direction of the electrode body 20 than the outermost end of the electrode body 20 near the bottom surface of the lithium ion secondary battery 100. It may be on the inside or outside about 1/10 of the length.

拘束板80は、電池ケース30の一つの扁平面22のみに設けても、二つの扁平面22の両方に設けてもよい。拘束板80を電池ケース30の一つの扁平面22のみに設けた場合でも、本発明の効果を得ることができる。   The restraint plate 80 may be provided only on one flat surface 22 of the battery case 30 or may be provided on both of the two flat surfaces 22. Even when the restraint plate 80 is provided only on one flat surface 22 of the battery case 30, the effect of the present invention can be obtained.

以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium ion secondary battery 100 configured as described above can be used for various applications. Suitable applications include driving power sources mounted on vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). The lithium ion secondary battery 100 can also be used in the form of a battery pack typically formed by connecting a plurality of lithium ion secondary batteries 100 in series and / or in parallel.

次に、本実施形態に係るリチウムイオン二次電池100の変形例について説明する。上述した実施形態の例では、拘束板を電池ケースの扁平面の内壁側に設置したが、本変形例では、拘束板を電池ケースの扁平面の外壁側に設置する。拘束板を電池ケースの扁平面の外壁側に設置しても、図5(b)において斜線で示したような領域、すなわちU字形状の拘束部位を形成でき、図5(b)の破線矢印で示したような、排煙経路を形成することができる。よって、本変形例においても、従来技術と比べて、発生したガスを安全弁からより確実に排煙することができる。   Next, a modified example of the lithium ion secondary battery 100 according to this embodiment will be described. In the example of the embodiment described above, the restraint plate is installed on the inner wall side of the flat surface of the battery case. However, in this modification, the restraint plate is installed on the outer wall side of the flat surface of the battery case. Even if the restraint plate is installed on the outer wall side of the flat surface of the battery case, a region as shown by hatching in FIG. 5B, that is, a U-shaped restraint portion can be formed, and a broken line arrow in FIG. It is possible to form a smoke exhaust path as shown in FIG. Therefore, also in this modification, compared with the prior art, the generated gas can be more reliably discharged from the safety valve.

拘束板を電池ケースの扁平面の外壁側に設置する以外の点については、上述した実施形態の例と同様とすることができる。ただし、本変形例では、リチウムイオン二次電池の電池ケースの扁平面の外壁側に拘束板を配置し、拘束バンド等を用いて荷重を印加する。あるいは、リチウムイオン二次電池の電池ケースの二つの扁平面の外壁側に拘束板をそれぞれ配置し、拘束板同士を結束することにより、荷重を印加する。また、組電池の形態としてリチウムイオン二次電池を用いる場合には、単電池と単電池のとの間に配置される冷却板やスペーサーに代えて、あるいは冷却板やスペーサーに加えて、拘束板を配置する。組電池は、拘束バンド、拘束部材等により拘束されるので、単電池と単電池との間に配置された拘束板により、単電池内部の電極体にU字形状に荷重を印加することができる。   About the point except installing a restraint board in the outer wall side of the flat surface of a battery case, it can be the same as that of the example of embodiment mentioned above. However, in this modification, a restraint plate is arranged on the outer wall side of the flat surface of the battery case of the lithium ion secondary battery, and a load is applied using a restraint band or the like. Or a restraint board is arrange | positioned at the outer wall side of two flat surfaces of the battery case of a lithium ion secondary battery, respectively, and a load is applied by binding restraint boards. In addition, in the case of using a lithium ion secondary battery as the form of the assembled battery, instead of the cooling plate or the spacer disposed between the single cells or the spacer, or in addition to the cooling plate or the spacer, the restraint plate Place. Since the assembled battery is constrained by a restraining band, a restraining member, or the like, a U-shaped load can be applied to the electrode body inside the unit cell by a constraining plate disposed between the unit cell. .

上記では、一例として扁平形状の電極体20と扁平形状の電池ケース30とを有する扁平角型のリチウムイオン二次電池100について説明した。扁平形状を有するラミネート型リチウムイオン二次電池として構成することも可能である。   In the above, the flat rectangular lithium ion secondary battery 100 having the flat electrode body 20 and the flat battery case 30 has been described as an example. It can also be configured as a laminated lithium ion secondary battery having a flat shape.

例えば、ラミネート型リチウムイオン二次電池は、扁平形状を有する電極体と、当該電極体を収容し扁平形状を有するラミネートケースとを備える。ラミネートケースは、その扁平面外に安全弁を備える。当該安全弁は、ラミネートケースの扁平面のうちの一辺の中央部付近に配置されている。U字形状の拘束板が、電池の内部短絡時に安全弁より排煙可能なように、U字の開口部が前記安全弁のある方向を向くように、ラミネートケースの少なくとも一方の扁平面に配置されている。拘束板は、ラミネートケースの内側と外側のいずれに配置されていてもよい。拘束板は、電極体の扁平面の、安全弁に最も近い端部以外の端部に荷重を印加している。   For example, a laminate-type lithium ion secondary battery includes an electrode body having a flat shape and a laminate case that accommodates the electrode body and has a flat shape. The laminate case includes a safety valve outside its flat surface. The safety valve is disposed near the center of one side of the flat surface of the laminate case. The U-shaped restraint plate is disposed on at least one flat surface of the laminate case so that the U-shaped opening portion faces a certain direction of the safety valve so that smoke can be discharged from the safety valve when the battery is short-circuited inside. Yes. The restraint plate may be disposed on either the inside or the outside of the laminate case. The restraint plate applies a load to an end portion of the flat surface of the electrode body other than the end portion closest to the safety valve.

なお、上記では扁平形状の電極体として捲回電極体を例にして説明したが、扁平形状の電極体は、積層型の電極体であってもよい。また、ここに開示される技術は、リチウムイオン二次電池以外の非水電解質二次電池にも適用可能である。   In the above description, the wound electrode body is described as an example of the flat electrode body. However, the flat electrode body may be a stacked electrode body. Moreover, the technique disclosed here is applicable also to nonaqueous electrolyte secondary batteries other than a lithium ion secondary battery.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<試験用電池の作製>
正極活物質としてのLiNi1/3Mn1/3Co1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、これら材料の質量比がLNCM:AB:PVDF=90:8:2となるよう混練機に投入し、N−メチル−2−ピロリドン(NMP)で粘度を調整しながら混練して、正極活物質スラリーを調製した。このスラリーをアルミニウム箔(正極集電体)の両面に塗布し、乾燥後プレスすることによって、正極集電体の両面に正極活物質層を有する正極シートを作製した。
<Production of test battery>
LiNi 1/3 Mn 1/3 Co 1/3 O 2 (LNCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder of these materials A positive electrode active material slurry was prepared by charging into a kneader so that the mass ratio was LNCM: AB: PVDF = 90: 8: 2 and kneading while adjusting the viscosity with N-methyl-2-pyrrolidone (NMP). . The slurry was applied to both surfaces of an aluminum foil (positive electrode current collector), dried and pressed to prepare a positive electrode sheet having a positive electrode active material layer on both surfaces of the positive electrode current collector.

負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、分散剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量比がC:SBR:CMC=98:1:1となるよう混練機に投入し、イオン交換水で粘度を調整しながら混練して、負極活物質スラリーを調製した。このスラリーを厚み銅箔(負極集電体)の両面に塗布し、乾燥後プレスすることによって、負極集電体の両面に負極活物質層を有する負極シートを作製した。   Natural graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a dispersant, the mass ratio of these materials is C: SBR: CMC = 98: 1 : 1 was added to a kneader and kneaded while adjusting the viscosity with ion-exchanged water to prepare a negative electrode active material slurry. This slurry was applied to both sides of a thick copper foil (negative electrode current collector), dried and pressed to prepare a negative electrode sheet having a negative electrode active material layer on both sides of the negative electrode current collector.

上記で作製した正極シートと負極シートとを、2枚のセパレータシート(ここでは、ポリエチレン(PE)の両面にポリプロピレン(PP)が積層された多孔質シート)とともに積層し、捲回した後、側面方向から押圧して拉げさせることによって扁平形状の捲回電極体を作製した。次に、捲回電極体に正極端子および負極端子を接続し、安全弁と電解液注入口を有する扁平角型の電池ケースに収容した。このとき、電池ケースの扁平面の内壁と捲回電極体との間に1枚の拘束板を挿入した。   The positive electrode sheet and the negative electrode sheet prepared above were laminated together with two separator sheets (here, a porous sheet in which polypropylene (PP) was laminated on both sides of polyethylene (PE)), wound, A flat wound electrode body was produced by pressing and rubbing from the direction. Next, the positive electrode terminal and the negative electrode terminal were connected to the wound electrode body and accommodated in a flat rectangular battery case having a safety valve and an electrolyte inlet. At this time, one constraining plate was inserted between the flat inner wall of the battery case and the wound electrode body.

電池ケース内を減圧した後、電解液注入口から非水電解液を注入して、捲回電極体内に非水電解液を含浸させた。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。続いて、電解液注入口を封止して、リチウムイオン二次電池を得た。このリチウムイオン二次電池に拘束部材を用いて電池ケースの扁平面に拘束圧を印加して、拘束板を介して電極体に10kgfの荷重が掛かるようにし、これを試験用電池とした。 After depressurizing the inside of the battery case, a non-aqueous electrolyte solution was injected from the electrolyte solution inlet, and the wound electrode body was impregnated with the non-aqueous electrolyte solution. As a non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 30: 40: 30 is used as a supporting salt. In which LiPF 6 was dissolved at a concentration of 1.0 mol / L was used. Subsequently, the electrolyte injection port was sealed to obtain a lithium ion secondary battery. A restraining member was applied to the flat surface of the battery case using a restraining member for this lithium ion secondary battery so that a load of 10 kgf was applied to the electrode body via the restraining plate, and this was used as a test battery.

なお、試験用電池としては、拘束板の形状または配置が異なる5種類のもの(No.1〜No.5)を作製した。各試験用電池の拘束板について下に記す。また、図6(a)〜(e)に、No.1〜No.5の評価用電池を模式的に示す。図6において実線で記載されたものが評価用電池(の外形)であり、上面中央の楕円は、安全弁を表す。評価用電池内の破線で示された直方体が電極体であり、電極体の扁平面上の斜線は、荷重が掛けられた領域を表す。評価用電池の扁平面の中央の円柱は、下記の釘刺し試験で用いられる釘を表す。また、破線矢印は、想定される排煙経路を表す。   In addition, as a test battery, five types (No. 1 to No. 5) having different shapes or arrangements of restraint plates were produced. The restraint plate of each test battery is described below. Further, in FIGS. 1-No. 5 schematically shows a battery for evaluation. A solid line in FIG. 6 is an evaluation battery (outer shape thereof), and an ellipse at the center of the upper surface represents a safety valve. A rectangular parallelepiped indicated by a broken line in the evaluation battery is an electrode body, and a diagonal line on the flat surface of the electrode body represents a region where a load is applied. The cylinder at the center of the flat surface of the evaluation battery represents a nail used in the following nail penetration test. Moreover, a broken line arrow represents the assumed smoke exhaust path.

(試験用電池No.1)
U字形状の拘束板を使用。U字の開口部が安全弁のある方向を向くように電池ケースの扁平面に配置し、電極体の扁平面の、安全弁に最も近い端部以外の端部に荷重を印加。U字形状の縦棒部の幅は、電極体の幅の1/4。U字形状の横棒部の幅は、電極体の高さの1/4。
(試験用電池No.2)
電極体の扁平面よりやや小さい寸法の長方形状の拘束板を使用。電極体の扁平面のほぼ全面に荷重を印加。
(試験用電池No.3)
2枚の長方形状の拘束板を使用。各拘束板の長辺の一つが電極体の幅方向のそれぞれの端部に沿うように拘束板を配置し、電極体の幅方向の両端部に荷重を印加。
(試験用電池No.4)
U字形状の拘束板を使用。U字の開口部が電池の底面を向くように電池ケースの扁平面に配置し、電極体の扁平面の、安全弁に最も近い端部と幅方向の両端部に荷重を印加。U字形状の縦棒部の幅は、電極体の幅の1/4。U字形状の横棒部の幅は、電極体の高さの1/4。
(試験用電池No.5)
U字形状の拘束板を使用。U字の開口部が安全弁のある方向を向くように電池ケースの扁平面に配置し、電極体の扁平面の、安全弁に最も近い端部以外の端部に荷重を印加。U字形状の縦棒部の幅は、電極体の幅の1/3。U字形状の横棒部の幅は、電極体の高さの1/3。
(Test battery No. 1)
U-shaped restraint plate is used. The U-shaped opening is placed on the flat surface of the battery case so that it faces the direction of the safety valve, and a load is applied to the end of the flat surface of the electrode body other than the end closest to the safety valve. The width of the U-shaped vertical bar is 1/4 of the width of the electrode body. The width of the U-shaped horizontal bar is 1/4 of the height of the electrode body.
(Test battery No. 2)
A rectangular restraint plate with dimensions slightly smaller than the flat surface of the electrode body is used. A load is applied to almost the entire flat surface of the electrode body.
(Test battery No. 3)
Two rectangular restraint plates are used. Place the constraining plate so that one of the long sides of each constraining plate is along the respective end of the electrode body in the width direction, and apply a load to both ends of the electrode body in the width direction.
(Test battery No. 4)
U-shaped restraint plate is used. The U-shaped opening is placed on the flat surface of the battery case so that it faces the bottom surface of the battery, and a load is applied to the flat surface of the electrode body at the end closest to the safety valve and both ends in the width direction. The width of the U-shaped vertical bar is 1/4 of the width of the electrode body. The width of the U-shaped horizontal bar is 1/4 of the height of the electrode body.
(Test battery No. 5)
U-shaped restraint plate is used. The U-shaped opening is placed on the flat surface of the battery case so that it faces the direction of the safety valve, and a load is applied to the end of the flat surface of the electrode body other than the end closest to the safety valve. The width of the U-shaped vertical bar is 1/3 of the width of the electrode body. The width of the U-shaped horizontal bar is 1/3 of the height of the electrode body.

[釘刺し試験]
各評価用電池をSOC100%まで充電し、各評価用電池の扁平面の中央部に、25℃の温度環境下で直径3mmの鉄製の釘を10mm/secの速度で貫通させて、内部短絡させた。そして、内部短絡による内圧上昇により、電池ケースが膨張するかどうかについて評価した。結果を表1に示す。
[Nail penetration test]
Each evaluation battery is charged to SOC 100%, and an iron nail having a diameter of 3 mm is passed through the central portion of the flat surface of each evaluation battery at a speed of 10 mm / sec in a temperature environment of 25 ° C., thereby internally short-circuiting. It was. And it evaluated whether a battery case expand | swells by the internal pressure rise by an internal short circuit. The results are shown in Table 1.

Figure 0006414700
Figure 0006414700

表1に示されるように、No.1に係る評価用電池では、内部短絡により発生するガスをすべて安全弁から排煙することができた。これは、No.1に係る評価用電池では、排煙経路が電極体の上部から安全弁までと短距離であったためであると考えられる。
一方、No.2に係る評価用電池では、安全弁が開弁した後、発生するガスを安全弁から十分に排煙できずに内圧が上昇し、電池ケースに膨張が見られた。これは、No.2に係る評価用電池では、排煙経路が電極体の幅方向の端部から安全弁までと長距離であったためであると考えられる。
No.3に係る評価用電池でも、安全弁が開弁した後、発生するガスを安全弁から十分に排煙できずに内圧が上昇し、電池ケースに膨張が見られた。これは、No.3に係る評価用電池では、電極体の上部から安全弁までの排煙経路以外にも、電極体の下部から安全弁までという長距離の排煙経路があったためであると考えられる。
No.4に係る評価用電池でも、安全弁が開弁した後、発生するガスを安全弁から十分に排煙できずに内圧が上昇し、電池ケースに膨張が見られた。これは、No.4に係る評価用電池では、排煙経路が、電極体の下部から安全弁までと長距離であったためであると考えられる。
No.5に係る評価用電池でも、安全弁が開弁した後、発生するガスを安全弁から十分に排煙できずに内圧が上昇し、電池ケースに膨張が見られた。これは、拘束板による荷重が電極体に広範囲に印加されることによって、電極体の周囲からガスが発生し、電極体の上部から安全弁までの短距離の排煙経路以外にも、電極体の下部から安全弁まで、あるいは電極体の幅方向の端部から安全弁までといった排煙経路があったためであると考えられる。
As shown in Table 1, no. In the evaluation battery according to No. 1, all the gas generated by the internal short circuit could be exhausted from the safety valve. This is no. In the evaluation battery according to No. 1, it is considered that the smoke exhaust path is a short distance from the upper part of the electrode body to the safety valve.
On the other hand, no. In the evaluation battery according to No. 2, after the safety valve was opened, the generated gas could not be sufficiently exhausted from the safety valve, the internal pressure increased, and the battery case was expanded. This is no. In the evaluation battery according to 2, it is considered that the smoke exhaust path is a long distance from the end in the width direction of the electrode body to the safety valve.
No. Even in the evaluation battery according to No. 3, after the safety valve was opened, the generated gas could not be sufficiently exhausted from the safety valve, the internal pressure increased, and the battery case was expanded. This is no. In the evaluation battery according to No. 3, there is considered to be a long-distance smoke exhaust path from the lower part of the electrode body to the safety valve in addition to the smoke exhaust path from the upper part of the electrode body to the safety valve.
No. Even in the evaluation battery according to No. 4, after the safety valve was opened, the generated gas could not be sufficiently exhausted from the safety valve, the internal pressure increased, and the battery case was expanded. This is no. In the evaluation battery according to No. 4, the smoke exhaust path is considered to be a long distance from the lower part of the electrode body to the safety valve.
No. Even in the evaluation battery according to No. 5, after the safety valve was opened, the generated gas could not be sufficiently exhausted from the safety valve, the internal pressure increased, and the battery case was expanded. This is because gas is generated from the periphery of the electrode body by applying a load from the restraining plate to the electrode body in a wide range, and in addition to the short-distance smoke exhaust path from the upper part of the electrode body to the safety valve, This is probably because there was a smoke exhaust path from the lower part to the safety valve or from the end in the width direction of the electrode body to the safety valve.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
22 扁平面
30 電池ケース
32 扁平面
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
80 拘束板
84 拘束部位
100 リチウムイオン二次電池
20 wound electrode body 22 flat surface 30 battery case 32 flat surface 36 safety valve 42 positive electrode terminal 42a positive electrode current collector plate 44 negative electrode terminal 44a negative electrode current collector plate 50 positive electrode sheet (positive electrode)
52 Positive Electrode Current Collector 52a Positive Electrode Active Material Layer Non-Forming Portion 54 Positive Electrode Active Material Layer 60 Negative Electrode Sheet (Negative Electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator sheet (separator)
80 Restraint plate 84 Restraint part 100 Lithium ion secondary battery

Claims (1)

扁平形状を有する電極体と、
前記電極体を収容し、扁平形状を有するケースと、
U字形状の拘束板と
を備える非水電解質二次電池であって、
前記ケースは、前記ケースの扁平面外に安全弁を備えており、
前記拘束板は、非水電解質二次電池の内部短絡時に前記安全弁より排煙可能なように、U字の開口部が前記安全弁のある方向を向くように前記ケースの少なくとも一方の扁平面に配置されて、前記電極体の扁平面の、前記安全弁に最も近い端部以外の端部に荷重を印加している、
非水電解質二次電池。
An electrode body having a flat shape;
A case having the electrode body and having a flat shape;
A non-aqueous electrolyte secondary battery comprising a U-shaped restraint plate,
The case includes a safety valve outside the flat surface of the case,
The constraining plate is arranged on at least one flat surface of the case so that the U-shaped opening portion faces a direction of the safety valve so that smoke can be discharged from the safety valve when an internal short circuit of the nonaqueous electrolyte secondary battery is performed. The load is applied to the end of the flat surface of the electrode body other than the end closest to the safety valve,
Non-aqueous electrolyte secondary battery.
JP2015212330A 2015-10-28 2015-10-28 Nonaqueous electrolyte secondary battery Active JP6414700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212330A JP6414700B2 (en) 2015-10-28 2015-10-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212330A JP6414700B2 (en) 2015-10-28 2015-10-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2017084630A JP2017084630A (en) 2017-05-18
JP6414700B2 true JP6414700B2 (en) 2018-10-31

Family

ID=58712020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212330A Active JP6414700B2 (en) 2015-10-28 2015-10-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6414700B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118618B2 (en) 2002-05-03 2018-11-06 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US10144352B2 (en) 2010-12-22 2018-12-04 Magna Electronics Inc. Vision display system for vehicle
US10144353B2 (en) 2002-08-21 2018-12-04 Magna Electronics Inc. Multi-camera vision system for a vehicle
US10169926B2 (en) 2011-05-18 2019-01-01 Magna Electronics Inc. Driver assistance system for vehicle
US10187615B1 (en) 2004-04-15 2019-01-22 Magna Electronics Inc. Vehicular control system
US10300856B2 (en) 2009-09-01 2019-05-28 Magna Electronics Inc. Vehicular display system
US10300855B2 (en) 2012-09-26 2019-05-28 Magna Electronics Inc. Trailer driving assist system
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US10406980B2 (en) 2001-07-31 2019-09-10 Magna Electronics Inc. Vehicular lane change system
US10457209B2 (en) 2012-02-22 2019-10-29 Magna Electronics Inc. Vehicle vision system with multi-paned view
US10509972B2 (en) 2004-12-23 2019-12-17 Magna Electronics Inc. Vehicular vision system
US10556542B2 (en) 2004-09-14 2020-02-11 Magna Electronics Inc. Rear backup system for a vehicle
US10569804B2 (en) 2009-07-27 2020-02-25 Magna Electronics Inc. Parking assist system
US10574885B2 (en) 2013-05-06 2020-02-25 Magna Electronics Inc. Method for displaying video images for a vehicular vision system
US10586119B2 (en) 2012-09-26 2020-03-10 Magna Electronics Inc. Vehicular control system with trailering assist function
US10611306B2 (en) 2001-07-31 2020-04-07 Magna Electronics Inc. Video processor module for vehicle
US10623704B2 (en) 2004-09-30 2020-04-14 Donnelly Corporation Driver assistance system for vehicle
US10661716B2 (en) 2002-09-20 2020-05-26 Donnelly Corporation Vehicular exterior electrically variable reflectance mirror reflective element assembly
US10726578B2 (en) 2007-08-17 2020-07-28 Magna Electronics Inc. Vehicular imaging system with blockage determination and misalignment correction
US10787116B2 (en) 2006-08-11 2020-09-29 Magna Electronics Inc. Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
US10793067B2 (en) 2011-07-26 2020-10-06 Magna Electronics Inc. Imaging system for vehicle
US10807515B2 (en) 2007-07-12 2020-10-20 Magna Electronics Inc. Vehicular adaptive headlighting system
US10829053B2 (en) 2005-09-14 2020-11-10 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US10839233B2 (en) 2009-02-27 2020-11-17 Magna Electronics Inc. Vehicular control system
US10858042B2 (en) 2011-01-26 2020-12-08 Magna Electronics Inc. Trailering assist system with trailer angle detection
US10868974B2 (en) 2010-12-01 2020-12-15 Magna Electronics Inc. Method for determining alignment of vehicular cameras
US10875526B2 (en) 2009-07-27 2020-12-29 Magna Electronics Inc. Vehicular vision system
US11091105B2 (en) 2008-07-24 2021-08-17 Magna Electronics Inc. Vehicle vision system
US11277558B2 (en) 2016-02-01 2022-03-15 Magna Electronics Inc. Vehicle vision system with master-slave camera configuration
US11279343B2 (en) 2011-10-27 2022-03-22 Magna Electronics Inc. Vehicular control system with image processing and wireless communication
US11613209B2 (en) 2007-09-11 2023-03-28 Magna Electronics Inc. System and method for guiding reversing of a vehicle toward a trailer hitch
US11970113B2 (en) 2005-11-01 2024-04-30 Magna Electronics Inc. Vehicular vision system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117650327A (en) * 2018-07-31 2024-03-05 松下知识产权经营株式会社 Battery module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220708A (en) * 1994-01-28 1995-08-18 Shin Kobe Electric Mach Co Ltd Battery to be housed in electronic or electric equipment, and electronic or electric equipment
JP4956968B2 (en) * 2005-11-18 2012-06-20 トヨタ自動車株式会社 Battery module
JP5720663B2 (en) * 2012-12-04 2015-05-20 トヨタ自動車株式会社 Power storage device

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611306B2 (en) 2001-07-31 2020-04-07 Magna Electronics Inc. Video processor module for vehicle
US10406980B2 (en) 2001-07-31 2019-09-10 Magna Electronics Inc. Vehicular lane change system
US10351135B2 (en) 2002-05-03 2019-07-16 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US11203340B2 (en) 2002-05-03 2021-12-21 Magna Electronics Inc. Vehicular vision system using side-viewing camera
US10683008B2 (en) 2002-05-03 2020-06-16 Magna Electronics Inc. Vehicular driving assist system using forward-viewing camera
US10118618B2 (en) 2002-05-03 2018-11-06 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US10144353B2 (en) 2002-08-21 2018-12-04 Magna Electronics Inc. Multi-camera vision system for a vehicle
US10661716B2 (en) 2002-09-20 2020-05-26 Donnelly Corporation Vehicular exterior electrically variable reflectance mirror reflective element assembly
US10462426B2 (en) 2004-04-15 2019-10-29 Magna Electronics Inc. Vehicular control system
US10187615B1 (en) 2004-04-15 2019-01-22 Magna Electronics Inc. Vehicular control system
US11847836B2 (en) 2004-04-15 2023-12-19 Magna Electronics Inc. Vehicular control system with road curvature determination
US11503253B2 (en) 2004-04-15 2022-11-15 Magna Electronics Inc. Vehicular control system with traffic lane detection
US10306190B1 (en) 2004-04-15 2019-05-28 Magna Electronics Inc. Vehicular control system
US10735695B2 (en) 2004-04-15 2020-08-04 Magna Electronics Inc. Vehicular control system with traffic lane detection
US10556542B2 (en) 2004-09-14 2020-02-11 Magna Electronics Inc. Rear backup system for a vehicle
US10308180B2 (en) 2004-09-14 2019-06-04 Magna Electronics Inc. Rear backup system for a vehicle
US10800331B1 (en) 2004-09-14 2020-10-13 Magna Electronics Inc. Vehicular vision system including rear backup camera
US11577646B2 (en) 2004-09-14 2023-02-14 Magna Electronics Inc. Vehicular trailer hitching assist system
US10703274B2 (en) 2004-09-14 2020-07-07 Magna Electronics Inc. Vehicular multi-camera vision system including rear backup camera
US11813987B2 (en) 2004-09-14 2023-11-14 Magna Electronics Inc. Vehicular trailer hitching assist system
US11155210B2 (en) 2004-09-14 2021-10-26 Magna Electronics Inc. Vehicular driving assist system including multiple cameras and radar sensor
US10623704B2 (en) 2004-09-30 2020-04-14 Donnelly Corporation Driver assistance system for vehicle
US10509972B2 (en) 2004-12-23 2019-12-17 Magna Electronics Inc. Vehicular vision system
US11308720B2 (en) 2004-12-23 2022-04-19 Magna Electronics Inc. Vehicular imaging system
US10829053B2 (en) 2005-09-14 2020-11-10 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US11285879B2 (en) 2005-09-14 2022-03-29 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US11072288B2 (en) 2005-09-14 2021-07-27 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US11970113B2 (en) 2005-11-01 2024-04-30 Magna Electronics Inc. Vehicular vision system
US11951900B2 (en) 2006-08-11 2024-04-09 Magna Electronics Inc. Vehicular forward viewing image capture system
US11396257B2 (en) 2006-08-11 2022-07-26 Magna Electronics Inc. Vehicular forward viewing image capture system
US11148583B2 (en) 2006-08-11 2021-10-19 Magna Electronics Inc. Vehicular forward viewing image capture system
US10787116B2 (en) 2006-08-11 2020-09-29 Magna Electronics Inc. Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
US11623559B2 (en) 2006-08-11 2023-04-11 Magna Electronics Inc. Vehicular forward viewing image capture system
US10807515B2 (en) 2007-07-12 2020-10-20 Magna Electronics Inc. Vehicular adaptive headlighting system
US11908166B2 (en) 2007-08-17 2024-02-20 Magna Electronics Inc. Vehicular imaging system with misalignment correction of camera
US10726578B2 (en) 2007-08-17 2020-07-28 Magna Electronics Inc. Vehicular imaging system with blockage determination and misalignment correction
US11328447B2 (en) 2007-08-17 2022-05-10 Magna Electronics Inc. Method of blockage determination and misalignment correction for vehicular vision system
US11613209B2 (en) 2007-09-11 2023-03-28 Magna Electronics Inc. System and method for guiding reversing of a vehicle toward a trailer hitch
US12005845B2 (en) 2008-07-24 2024-06-11 Magna Electronics Inc. Vehicular control system
US11091105B2 (en) 2008-07-24 2021-08-17 Magna Electronics Inc. Vehicle vision system
US11288888B2 (en) 2009-02-27 2022-03-29 Magna Electronics Inc. Vehicular control system
US11763573B2 (en) 2009-02-27 2023-09-19 Magna Electronics Inc. Vehicular control system
US10839233B2 (en) 2009-02-27 2020-11-17 Magna Electronics Inc. Vehicular control system
US10569804B2 (en) 2009-07-27 2020-02-25 Magna Electronics Inc. Parking assist system
US10875526B2 (en) 2009-07-27 2020-12-29 Magna Electronics Inc. Vehicular vision system
US11518377B2 (en) 2009-07-27 2022-12-06 Magna Electronics Inc. Vehicular vision system
US11285877B2 (en) 2009-09-01 2022-03-29 Magna Electronics Inc. Vehicular vision system
US10875455B2 (en) 2009-09-01 2020-12-29 Magna Electronics Inc. Vehicular vision system
US10300856B2 (en) 2009-09-01 2019-05-28 Magna Electronics Inc. Vehicular display system
US11794651B2 (en) 2009-09-01 2023-10-24 Magna Electronics Inc. Vehicular vision system
US10868974B2 (en) 2010-12-01 2020-12-15 Magna Electronics Inc. Method for determining alignment of vehicular cameras
US11553140B2 (en) 2010-12-01 2023-01-10 Magna Electronics Inc. Vehicular vision system with multiple cameras
US10589678B1 (en) 2010-12-22 2020-03-17 Magna Electronics Inc. Vehicular rear backup vision system with video display
US10814785B2 (en) 2010-12-22 2020-10-27 Magna Electronics Inc. Vehicular rear backup vision system with video display
US11708026B2 (en) 2010-12-22 2023-07-25 Magna Electronics Inc. Vehicular rear backup system with video display
US12017588B2 (en) 2010-12-22 2024-06-25 Magna Electronics Inc. Vehicular rear backup system with video display
US10486597B1 (en) 2010-12-22 2019-11-26 Magna Electronics Inc. Vehicular vision system with rear backup video display
US11155211B2 (en) 2010-12-22 2021-10-26 Magna Electronics Inc. Vehicular multi-camera surround view system with video display
US10144352B2 (en) 2010-12-22 2018-12-04 Magna Electronics Inc. Vision display system for vehicle
US11548444B2 (en) 2010-12-22 2023-01-10 Magna Electronics Inc. Vehicular multi-camera surround view system with video display
US10336255B2 (en) 2010-12-22 2019-07-02 Magna Electronics Inc. Vehicular vision system with rear backup video display
US11820424B2 (en) 2011-01-26 2023-11-21 Magna Electronics Inc. Trailering assist system with trailer angle detection
US10858042B2 (en) 2011-01-26 2020-12-08 Magna Electronics Inc. Trailering assist system with trailer angle detection
US10957114B2 (en) 2011-05-18 2021-03-23 Magna Electronics Inc. Vehicular backup assistance system
US11842450B2 (en) 2011-05-18 2023-12-12 Magna Electronics Inc. Vehicular backing up assistance system
US10169926B2 (en) 2011-05-18 2019-01-01 Magna Electronics Inc. Driver assistance system for vehicle
US10559134B2 (en) 2011-05-18 2020-02-11 Magna Electronics Inc. Driver backup assistance system for vehicle
US11285873B2 (en) 2011-07-26 2022-03-29 Magna Electronics Inc. Method for generating surround view images derived from image data captured by cameras of a vehicular surround view vision system
US10793067B2 (en) 2011-07-26 2020-10-06 Magna Electronics Inc. Imaging system for vehicle
US11673546B2 (en) 2011-10-27 2023-06-13 Magna Electronics Inc. Vehicular control system with image processing and wireless communication
US11279343B2 (en) 2011-10-27 2022-03-22 Magna Electronics Inc. Vehicular control system with image processing and wireless communication
US12065136B2 (en) 2011-10-27 2024-08-20 Magna Electronics Inc. Vehicular control system with image processing and wireless communication
US11607995B2 (en) 2012-02-22 2023-03-21 Magna Electronics Inc. Vehicular display system with multi-paned image display
US10457209B2 (en) 2012-02-22 2019-10-29 Magna Electronics Inc. Vehicle vision system with multi-paned view
US11007937B2 (en) 2012-02-22 2021-05-18 Magna Electronics Inc. Vehicular display system with multi-paned image display
US10909393B2 (en) 2012-09-26 2021-02-02 Magna Electronics Inc. Vehicular control system with trailering assist function
US10800332B2 (en) 2012-09-26 2020-10-13 Magna Electronics Inc. Trailer driving assist system
US10586119B2 (en) 2012-09-26 2020-03-10 Magna Electronics Inc. Vehicular control system with trailering assist function
US11410431B2 (en) 2012-09-26 2022-08-09 Magna Electronics Inc. Vehicular control system with trailering assist function
US11872939B2 (en) 2012-09-26 2024-01-16 Magna Electronics Inc. Vehicular trailer angle detection system
US10300855B2 (en) 2012-09-26 2019-05-28 Magna Electronics Inc. Trailer driving assist system
US11285875B2 (en) 2012-09-26 2022-03-29 Magna Electronics Inc. Method for dynamically calibrating a vehicular trailer angle detection system
US10574885B2 (en) 2013-05-06 2020-02-25 Magna Electronics Inc. Method for displaying video images for a vehicular vision system
US11616910B2 (en) 2013-05-06 2023-03-28 Magna Electronics Inc. Vehicular vision system with video display
US11050934B2 (en) 2013-05-06 2021-06-29 Magna Electronics Inc. Method for displaying video images for a vehicular vision system
US11318928B2 (en) 2014-06-02 2022-05-03 Magna Electronics Inc. Vehicular automated parking system
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US11277558B2 (en) 2016-02-01 2022-03-15 Magna Electronics Inc. Vehicle vision system with master-slave camera configuration

Also Published As

Publication number Publication date
JP2017084630A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6414700B2 (en) Nonaqueous electrolyte secondary battery
JP6365889B2 (en) Nonaqueous electrolyte secondary battery
CN110137388B (en) Secondary battery and battery pack
JP2018106903A (en) Lithium ion secondary battery
US10541418B2 (en) Nonaqueous electrolyte secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP7169524B2 (en) Non-aqueous electrolyte secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
JP2013206724A (en) Nonaqueous electrolyte secondary battery
JP6536908B2 (en) Lithium ion secondary battery
US20170005368A1 (en) Non-aqueous electrolyte secondary battery and method for producing same
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP7054440B2 (en) Secondary battery
JP2017123236A (en) Nonaqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP6963731B2 (en) Lithium ion secondary battery
JP6562265B2 (en) Lithium ion secondary battery
JP7249988B2 (en) lithium ion secondary battery
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP6928873B2 (en) Non-aqueous electrolyte secondary battery
JP2017021989A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R151 Written notification of patent or utility model registration

Ref document number: 6414700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151