JP6370885B2 - Electrode including a coating layer for preventing reaction with electrolyte - Google Patents

Electrode including a coating layer for preventing reaction with electrolyte Download PDF

Info

Publication number
JP6370885B2
JP6370885B2 JP2016513888A JP2016513888A JP6370885B2 JP 6370885 B2 JP6370885 B2 JP 6370885B2 JP 2016513888 A JP2016513888 A JP 2016513888A JP 2016513888 A JP2016513888 A JP 2016513888A JP 6370885 B2 JP6370885 B2 JP 6370885B2
Authority
JP
Japan
Prior art keywords
electrode
battery
lithium
coating layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016513888A
Other languages
Japanese (ja)
Other versions
JP2016521906A (en
Inventor
イン・スン・ウム
ジェ・ヨン・キム
ジ・ヨン・クォン
キョン・ホ・キム
ホー・ジン・ハー
イル・ホン・キム
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2016521906A publication Critical patent/JP2016521906A/en
Application granted granted Critical
Publication of JP6370885B2 publication Critical patent/JP6370885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電解液との反応を抑制するコーティング層が形成されている電極に関する。   The present invention relates to an electrode on which a coating layer that suppresses a reaction with an electrolytic solution is formed.

モバイル機器に対する技術開発及び需要の増加に伴い、エネルギー源としての二次電池の需要が急増しており、そのような二次電池の中でも、高いエネルギー密度と電圧を有し、サイクル寿命が長く、自己放電率の低いリチウム二次電池が商用化されて広く使用されている。   With the development of technology and increasing demand for mobile devices, the demand for secondary batteries as energy sources has increased rapidly. Among such secondary batteries, it has a high energy density and voltage, has a long cycle life, Lithium secondary batteries with a low self-discharge rate have been commercialized and widely used.

このようなリチウム二次電池には、主にリチウム含有コバルト酸化物(LiCoO)が使用されており、その他に層状結晶構造のLiMnO、スピネル結晶構造のLiMnなどのリチウム含有マンガン酸化物、及びリチウム含有ニッケル酸化物(LiNiO)の使用も検討されている。 In such lithium secondary batteries, lithium-containing cobalt oxide (LiCoO 2 ) is mainly used. In addition, lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure are used. And the use of lithium-containing nickel oxide (LiNiO 2 ) is also being considered.

特に、LiMnO、LiMnなどのリチウムマンガン酸化物は、原料として、資源が豊富であり、環境に優しいマンガンを使用するという利点を有しているので、LiCoOを代替し得る正極活物質として多くの関心を集めている。 In particular, lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage that they use abundant resources and use environmentally friendly manganese as a raw material, so that a positive electrode active that can replace LiCoO 2 is used. Has attracted a lot of interest as a substance

しかし、LiMnO、LiMnなどのリチウムマンガン酸化物は、サイクルが続くことにより電解液と反応して、電解液を急激に枯渇させるところ、二次電池の寿命及びサイクル特性が低下するという問題がある。また、多量のガス生成及びマンガンの溶出などによって二次電池の体積が膨張するようになる。 However, lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 react with the electrolyte solution as the cycle continues, and the electrolyte solution is rapidly depleted, resulting in a decrease in the life and cycle characteristics of the secondary battery. There's a problem. In addition, the volume of the secondary battery expands due to a large amount of gas generation and manganese elution.

一方、リチウム含有マンガン酸化物の中にはLiMnO、LiMn以外に、LiMnOがある。LiMnOは、構造的安定性が非常に優れているが、電気化学的に不活性であるため、それ自体としては二次電池の正極活物質として使用できない。したがって、一部の先行技術では、LiMnOをLiMO(M=Co、Ni、Ni0.5Mn0.5、Mn)と固溶体を形成して正極活物質として使用する技術を提示している。このような固溶体正極活物質は、4.4Vの高電圧でLiとOが結晶構造から離脱して電気化学的活性を示すようになるが、高電圧で電解液と反応しやすいため、電解液が枯渇し、二次電池の体積が膨張するという問題は解消できない。 On the other hand, lithium-containing manganese oxide includes Li 2 MnO 3 in addition to LiMnO 2 and LiMn 2 O 4 . Li 2 MnO 3 is very excellent in structural stability, but is electrochemically inactive, and cannot itself be used as a positive electrode active material for a secondary battery. Accordingly, some prior arts present a technique for using Li 2 MnO 3 as a positive electrode active material by forming a solid solution with LiMO 2 (M = Co, Ni, Ni 0.5 Mn 0.5 , Mn). ing. Such a solid solution positive electrode active material is liable to react with the electrolyte at a high voltage because Li and O are detached from the crystal structure at a high voltage of 4.4 V and become electrochemically active. The problem that the battery is depleted and the volume of the secondary battery expands cannot be solved.

したがって、活物質と電解液の反応を抑制し、窮極的に二次電池の寿命及びサイクルを向上させることができる技術に対する必要性が高い実情である。   Therefore, there is a high need for a technique that can suppress the reaction between the active material and the electrolyte and can significantly improve the life and cycle of the secondary battery.

本発明は、上記のような従来技術の問題点及び過去から要請されてきた技術的課題を解決することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and technical problems that have been requested from the past.

本出願の発明者らは、鋭意研究と様々な実験を重ねた結果、後述するように、電極合剤層上にアルミニウム(Al)及び/又はアルミナ(Al)を含むコーティング層を形成させることによって、所望の効果を達成できることを確認し、本発明を完成するに至った。 As a result of intensive research and various experiments, the inventors of the present application formed a coating layer containing aluminum (Al) and / or alumina (Al 2 O 3 ) on the electrode mixture layer as described later. As a result, it was confirmed that the desired effect could be achieved, and the present invention was completed.

したがって、本発明に係る二次電池用電極は、電極活物質を含む電極合剤層が電極集電体上に塗布されており、前記電極合剤層上には、アルミニウム(Al)及び/又はアルミナ(Al)を含むコーティング層が形成されていることを特徴とする。 Therefore, in the electrode for a secondary battery according to the present invention, an electrode mixture layer containing an electrode active material is applied on an electrode current collector, and aluminum (Al) and / or on the electrode mixture layer. A coating layer containing alumina (Al 2 O 3 ) is formed.

このようなコーティング層は、電極活物質が電解液と反応することを抑制できるので、上述した従来の問題点を解消することができる。   Such a coating layer can suppress the reaction of the electrode active material with the electrolytic solution, and thus can solve the conventional problems described above.

前記コーティング層は、0.5nm以上〜100nm以下の厚さに形成されてもよく、前記コーティング層は、電極合剤層の表面の全部又は一部に形成されてもよい。   The coating layer may be formed to a thickness of 0.5 nm to 100 nm, and the coating layer may be formed on all or part of the surface of the electrode mixture layer.

ここで、前記コーティング層が0.5nm以下である場合には、コーティング層による効果が極めて小さく、100nm以上である場合には、むしろリチウムイオンの移動を制限して、電極の性能を低下させることがある。   Here, when the coating layer is 0.5 nm or less, the effect of the coating layer is extremely small. When the coating layer is 100 nm or more, rather, the movement of the lithium ion is limited to lower the electrode performance. There is.

また、前記コーティング層は、電極合剤層の表面の全部又は一部に形成されてもよく、詳細には、電極合剤層の表面積対比100%の面積〜50%の面積で形成されてもよい。   The coating layer may be formed on all or part of the surface of the electrode mixture layer. Specifically, the coating layer may be formed with an area of 100% to 50% of the surface area of the electrode mixture layer. Good.

前記コーティング層の面積が50%以下である場合には、酸素とアルミニウムとの間の反応距離が増加し、発生した酸素を捕えることができないだけでなく、高電圧での電解液の酸化反応を抑制できないため好ましくない。   When the area of the coating layer is 50% or less, the reaction distance between oxygen and aluminum increases, and not only the generated oxygen cannot be captured but also the oxidation reaction of the electrolyte solution at a high voltage. It is not preferable because it cannot be suppressed.

一つの非制限的な例において、前記コーティング層は、アルミニウム及びアルミナの両方を含むことができる。   In one non-limiting example, the coating layer can include both aluminum and alumina.

この場合、前記コーティング層は、厚さ方向を基準としてアルミニウム及びアルミナが濃度勾配(gradient)をなす構造であってもよい。   In this case, the coating layer may have a structure in which aluminum and alumina form a gradient with respect to the thickness direction.

前記構造の一例として、前記コーティング層のアルミニウムの含量は、電極合剤層との接触面から電極の表面部に行くほど減少し、アルミナの含量は増加し得る。   As an example of the structure, the aluminum content of the coating layer may decrease from the contact surface with the electrode mixture layer to the surface of the electrode, and the alumina content may increase.

一方、前記構造の更に他の例として、前記コーティング層のアルミニウムの含量は、コーティング層の中心部から電極合剤層との接触面及び電極の表面部に行くほど減少し、アルミナの含量は増加してもよい。   Meanwhile, as still another example of the structure, the aluminum content of the coating layer decreases from the center of the coating layer toward the contact surface with the electrode mixture layer and the surface of the electrode, and the alumina content increases. May be.

一つの非制限的な例において、前記コーティング層は、電気分解を通じて均一に形成させることができ、前記電気分解は、アルミニウム前駆体が電気分解のための溶液でイオン化され、電解電極でアルミニウム金属に還元され得る。   In one non-limiting example, the coating layer can be uniformly formed through electrolysis, where the aluminum precursor is ionized with a solution for electrolysis and the electrolytic electrode is converted to aluminum metal. Can be reduced.

前記電解電極は、アルミニウム金属を表面に析出させる還元電極であって、本発明に係る二次電池用電極とは区別される。   The electrolytic electrode is a reduction electrode for depositing aluminum metal on the surface, and is distinguished from the secondary battery electrode according to the present invention.

前記溶液は、アルミニウム前駆体を溶解することができ、リチウム対比4.6V未満、1.5V未満で酸化/還元されない安定した物質であって、詳細には、環状カーボネート(cyclic carbonate)、環状エステル(cyclic ester)、線状カーボネート(linear carbonate)または線状エステル(linear ester)から選択される1つ以上の溶媒であってもよい。   The solution is a stable material that can dissolve an aluminum precursor and is not oxidized / reduced at less than 4.6 V and less than 1.5 V compared to lithium, and more specifically, a cyclic carbonate, a cyclic ester It may be one or more solvents selected from (cyclic esters), linear carbonates or linear esters.

前記アルミニウム前駆体はAlClであってもよいが、これに限定されるものではない。 The aluminum precursor may be AlCl 3 , but is not limited thereto.

一つの非制限的な例において、前記電気分解は、触媒を通じて行われてもよく、前記触媒の例は、ZnCl系、CoCl系、MnCl系、NiCl系、及びSnCl系からなる群から選択される1つ以上の触媒であってもよいが、これらに限定されるものではない。 In one non-limiting example, the electrolysis may be performed through a catalyst, and examples of the catalyst include a ZnCl 2 system, a CoCl 2 system, a MnCl 2 system, a NiCl 2 system, and a SnCl 2 system. The catalyst may be one or more selected from the group, but is not limited thereto.

一方、前記電極は正極であってもよく、前記電極活物質は、下記化学式1又は2で表されるリチウム遷移金属酸化物を含むことができる。   Meanwhile, the electrode may be a positive electrode, and the electrode active material may include a lithium transition metal oxide represented by the following chemical formula 1 or 2.

LiMn2−y4−z (1)
上記式中、
Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される1つ以上の元素であり、
Aは、−1又は−2価の1つ以上のアニオンであり、
0.9≦x≦1.2、0<y<2、0≦z<0.2である。
(1−x)LiM’O2−y −xLiMnO3−y’y’ (2)
上記式中、
M’は、Mnであり、
は、Ni、Ti、Co、Al、Cu、Fe、Mg、B、Cr、Zr、Zn及び2周期の遷移金属からなる群から選択される1つ以上であり、
Aは、PO、BO、CO、F及びNOのアニオンからなる群から選択される1つ以上であり、
0<x<1、0<y≦0.02、0<y’≦0.02、0.3≦a≦1.0、0≦b≦0.7、a+b=1である。
Li x M y Mn 2-y O 4-z A z (1)
In the above formula,
M is selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi 1 Two or more elements,
A is one or more anions of -1 or -2 valence,
0.9 ≦ x ≦ 1.2, 0 <y <2, and 0 ≦ z <0.2.
(1-x) LiM′O 2-y A y -xLi 2 MnO 3-y ′ A y ′ (2)
In the above formula,
M ′ is Mn a M b
M b is one or more selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn, and two-period transition metals,
A is one or more selected from the group consisting of PO 4 , BO 3 , CO 3 , F and NO 3 anions,
0 <x <1, 0 <y ≦ 0.02, 0 <y ′ ≦ 0.02, 0.3 ≦ a ≦ 1.0, 0 ≦ b ≦ 0.7, and a + b = 1.

本発明はまた、前記二次電池用電極を製造する方法を提供する。   The present invention also provides a method of manufacturing the secondary battery electrode.

具体的に、前記二次電池用電極を製造する方法であって、
(i)電極活物質を含む電極合剤を集電体上に塗布する過程と、
(ii)アルミニウム前駆体を含む溶液を準備する過程と、
(iii)前記過程(ii)の溶液を使用して電気分解を通じて、過程(i)の電極合剤層上にアルミニウムをコーティングする過程と、
を含むことができる。
Specifically, a method for producing the secondary battery electrode,
(I) a process of applying an electrode mixture containing an electrode active material on a current collector;
(Ii) preparing a solution containing an aluminum precursor;
(Iii) coating aluminum on the electrode mixture layer of step (i) through electrolysis using the solution of step (ii);
Can be included.

前記アルミニウム前駆体はAlClであってもよいが、これに限定されるものではない。 The aluminum precursor may be AlCl 3 , but is not limited thereto.

前記過程(iii)の電気分解は、アルミニウム前駆体が電気分解のための溶液でイオン化され、電解電極でアルミニウム金属に還元され得る。   In the electrolysis in the step (iii), the aluminum precursor can be ionized with a solution for electrolysis and reduced to aluminum metal with an electrolytic electrode.

本発明の一実施例に係る電気分解装置の模式図である。It is a schematic diagram of the electrolyzer based on one Example of this invention. 実験例1による結果を示すグラフである。10 is a graph showing the results of Experimental Example 1.

これと関連して、図1には、本発明の一実施例に係る電気分解装置を模式的を示している。   In this connection, FIG. 1 schematically shows an electrolyzer according to an embodiment of the present invention.

図1を参照すると、電気分解装置100は、正極シートをローリングする第1ローラー120及び第2ローラー121、アルミニウム前駆体が含まれた電解液102、電解液102を収容する電解槽101、電解液102に含有された2種以上の金属を分離するためにLi又は水素基準電極からなる基準電極110、Clが酸化されるカーボン素材の正極122、正極122に電流を供給する第1電池109、電解槽の内部に位置し、Alを還元して正極シートの表面に析出させ、正極シートを電解槽の内部でローリングするリチウム二次電池正極素材の負極106、及び負極106に電流を供給する第2電池108からなっている。   Referring to FIG. 1, an electrolysis apparatus 100 includes a first roller 120 and a second roller 121 that roll a positive electrode sheet, an electrolytic solution 102 that contains an aluminum precursor, an electrolytic bath 101 that contains the electrolytic solution 102, and an electrolytic solution. 102, a reference electrode 110 made of Li or a hydrogen reference electrode to separate two or more metals contained in 102, a positive electrode 122 made of carbon material that oxidizes Cl, a first battery 109 that supplies current to the positive electrode 122, electrolysis A second electrode for supplying current to the negative electrode 106 and the negative electrode 106 of the lithium secondary battery positive electrode material, which is located inside the cell, reduces Al and deposits on the surface of the positive electrode sheet, and rolls the positive electrode sheet inside the electrolytic cell. It consists of a battery 108.

正極122は、リチウム対比4.5Vの電圧が第1電池109から供給され、負極106は、リチウム対比1.4Vの電圧が第2電池108から供給され、正極シートは、第1ローラー120によって電解槽101の内部に投入され、電解槽101の内部に位置した移動ローラーは、正極シートを電解槽101の内部で移動させ、正極シートは、電解槽101の下端に位置した負極106で還元されたAlが表面にコーティングされた後、移動ローラーを通じて、電解槽101の外部に位置した第2ローラー121に巻き取られる。   The positive electrode 122 is supplied with a voltage of 4.5 V compared to lithium from the first battery 109, the negative electrode 106 is supplied with a voltage of 1.4 V compared to lithium from the second battery 108, and the positive electrode sheet is electrolyzed by the first roller 120. The moving roller placed inside the tank 101 and positioned inside the electrolytic cell 101 moved the positive electrode sheet inside the electrolytic cell 101, and the positive electrode sheet was reduced by the negative electrode 106 positioned at the lower end of the electrolytic cell 101. After Al is coated on the surface, it is wound around a second roller 121 located outside the electrolytic cell 101 through a moving roller.

正極では、Cl(g)+2e→Cl反応が起こり、Clイオンが酸化され、負極では、Al3+(g)+3e→Al反応が起こり、Alが析出されて正極シートの表面にコーティングされる。 In the positive electrode, Cl (g) + 2e → Cl reaction occurs, Cl ions are oxidized, and in the negative electrode, Al 3+ (g) + 3e → Al reaction occurs, and Al is deposited to coat the surface of the positive electrode sheet. Is done.

一方、上述したように、本発明に係る二次電池用電極は、アルミニウム(Al)及び/又はアルミナ(Al)がコーティングされた電極合剤が電極集電体上に塗布されていることを特徴とし、本発明は、電極を含む二次電池を提供する。このとき、二次電池は、リチウムイオン電池、リチウムイオンポリマー電池、またはリチウムポリマー電池であってもよい。 On the other hand, as described above, in the secondary battery electrode according to the present invention, an electrode mixture coated with aluminum (Al) and / or alumina (Al 2 O 3 ) is applied on the electrode current collector. The present invention provides a secondary battery including an electrode. At this time, the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.

一具体例において、リチウム二次電池は、一般に、正極、負極、正極と負極との間に介在する分離膜、及びリチウム塩含有非水電解質で構成されており、リチウム二次電池のその他の成分について、以下で説明する。   In one specific example, the lithium secondary battery is generally composed of a positive electrode, a negative electrode, a separation membrane interposed between the positive electrode and the negative electrode, and a lithium salt-containing non-aqueous electrolyte, and other components of the lithium secondary battery. Will be described below.

一般に、正極は、正極集電体上に正極活物質、導電材及びバインダーの混合物である電極合剤を塗布した後、乾燥して製造され、必要に応じて、混合物に充填剤をさらに添加することもある。   Generally, a positive electrode is manufactured by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, and then drying, and if necessary, further adding a filler to the mixture Sometimes.

正極活物質は、化学式1又は2で表されるリチウム遷移金属酸化物以外に、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)などの層状化合物や、1つまたはそれ以上の遷移金属で置換された化合物;化学式Li1+xMn2−x(ここで、xは0〜0.33である)、LiMnO、LiMn、LiMnOなどのリチウムマンガン酸化物;リチウム銅酸化物(LiCuO);LiV、LiFe、V、Cuなどのバナジウム酸化物;化学式LiNi1−x(ここで、M=Co、Mn、Al、Cu、Fe、Mg、BまたはGaであり、x=0.01〜0.3である)で表されるNiサイト型リチウムニッケル酸化物;化学式LiMn2−x(ここで、M=Co、Ni、Fe、Cr、ZnまたはTaであり、x=0.01〜0.1である)またはLiMnMO(ここで、M=Fe、Co、Ni、CuまたはZnである)で表されるリチウムマンガン複合酸化物;LiNiMn2−xで表されるスピネル構造のリチウムマンガン複合酸化物;化学式のLiの一部がアルカリ土金属イオンで置換されたLiMn;ジスルフィド化合物;Fe(MoOなどを含むことができるが、これらに限定されるものではない。 The positive electrode active material includes a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) in addition to the lithium transition metal oxide represented by the chemical formula 1 or 2, and one or more Compounds substituted with transition metals; chemical formula Li 1 + x Mn 2−x O 4 (where x is 0 to 0.33), lithium manganese oxides such as LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium Copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 ; chemical formula LiNi 1-x M x O 2 (where, M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x = 0.01 to 0.3). Formula LiMn 2-x M x O 2 ( where a M = Co, Ni, Fe, Cr, Zn or Ta, is x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Ni, Cu, or Zn); a lithium manganese composite oxide represented by LiNi x Mn 2−x O 4 ; a lithium manganese composite oxide having a spinel structure represented by LiNi x Mn 2−x O 4 ; May include LiMn 2 O 4 partially substituted with alkaline earth metal ions; disulfide compounds; Fe 2 (MoO 4 ) 3, etc., but is not limited thereto.

正極集電体は、一般に3〜500μmの厚さに製造される。このような正極集電体は、当該電池に化学的変化を誘発せずに高い導電性を有するものであれば、特に制限されるものではなく、例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、またはアルミニウムやステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したものなどを使用することができる。集電体は、その表面に微細な凹凸を形成して正極活物質の接着力を高めることもでき、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの様々な形態が可能である。   The positive electrode current collector is generally manufactured to a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without inducing a chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, fired The surface of carbon or aluminum or stainless steel that has been surface-treated with carbon, nickel, titanium, silver, or the like can be used. The current collector can also form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and various forms such as films, sheets, foils, nets, porous bodies, foams, nonwoven fabrics, etc. Is possible.

導電材は、通常、正極活物質を含んだ混合物の全重量を基準として1〜50重量%で添加される。このような導電材は、当該電池に化学的変化を誘発せずに導電性を有するものであれば特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維や金属繊維などの導電性繊維;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などを使用することができる。   The conductive material is usually added at 1 to 50% by weight based on the total weight of the mixture containing the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without inducing chemical change in the battery. For example, graphite such as natural graphite or artificial graphite; carbon black, acetylene black , Carbon black such as ketjen black, channel black, furnace black, lamp black, thermal black, etc .; conductive fiber such as carbon fiber and metal fiber; metal powder such as carbon fluoride, aluminum, nickel powder; zinc oxide, titanic acid Conductive whiskers such as potassium; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives can be used.

バインダーは、活物質と導電材などの結合及び集電体に対する結合を助ける成分であって、通常、正極活物質を含む混合物の全重量を基準として1〜50重量%で添加される。このようなバインダーの例としては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、様々な共重合体などを挙げることができる。   The binder is a component that assists the binding between the active material and the conductive material and the current collector, and is usually added at 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, various copolymers and the like.

充填剤は、正極の膨張を抑制する成分として選択的に使用され、当該電池に化学的変化を誘発せずに繊維状材料であれば特に制限されるものではなく、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質が使用される。   The filler is selectively used as a component that suppresses the expansion of the positive electrode and is not particularly limited as long as it is a fibrous material without inducing a chemical change in the battery. For example, polyethylene, polypropylene, etc. Olefin polymer: Fibrous materials such as glass fiber and carbon fiber are used.

本発明はまた、電極を含む二次電池を提供し、二次電池は、リチウムイオン電池、リチウムイオンポリマー電池、またはリチウムポリマー電池であってもよい。   The present invention also provides a secondary battery including an electrode, and the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.

負極は、負極集電体上に負極活物質を塗布、乾燥及びプレスして製造され、必要に応じて、前述のような導電材、バインダー、充填剤などが選択的にさらに含まれてもよい。   The negative electrode is manufactured by applying a negative electrode active material on a negative electrode current collector, drying and pressing, and may optionally further include a conductive material, a binder, a filler, and the like as described above. .

負極活物質は、例えば、難黒鉛化炭素、黒鉛系炭素などの炭素;LiFe(0≦x≦1)、LiWO(0≦x≦1)、SnMe1-xMe’(Me:Mn、Fe、Pb、Ge;Me’:Al、B、P、Si、周期律表の1族、2族、3族元素、ハロゲン;0<x≦1;1≦y≦3;1≦z≦8)などの金属複合酸化物;リチウム金属;リチウム合金;ケイ素系合金;錫系合金;SnO、SnO、PbO、PbO、Pb、Pb、Sb、Sb、Sb、GeO、GeO、Bi、Bi、Biなどの金属酸化物;ポリアセチレンなどの導電性高分子;Li−Co−Ni系材料;チタン酸化物;リチウムチタン酸化物などを使用することができ、詳細には、炭素系物質及び/又はSiを含むことができる。 Examples of the negative electrode active material include carbon such as non-graphitizable carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1− x Me ′ y O z (Me: Mn, Fe, Pb, Ge; Me ′: Al, B, P, Si, Group 1, Group 2, Group 3, Halogen of the Periodic Table; 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8), etc .; lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 Metal oxides such as O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 ; conductive polymers such as polyacetylene Li-Co-Ni-based material; titanium oxide; use lithium titanium oxide In detail, the carbon-based material and / or Si may be included.

負極集電体は、一般に3〜500μmの厚さに製造される。このような負極集電体は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特に制限されるものではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、銅やステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの、アルミニウム−カドミウム合金などを使用することができる。また、正極集電体と同様に、表面に微細な凹凸を形成して負極活物質の結合力を強化させることもでき、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの様々な形態で使用することができる。   The negative electrode current collector is generally manufactured to a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has conductivity without inducing chemical changes in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, A surface of calcined carbon, copper or stainless steel, which is surface-treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. Also, like the positive electrode current collector, it is possible to reinforce the binding force of the negative electrode active material by forming fine irregularities on the surface, such as films, sheets, foils, nets, porous bodies, foams, nonwoven fabric bodies, etc. It can be used in various forms.

分離膜は、正極と負極との間に介在し、高いイオン透過度及び機械的強度を有する絶縁性の薄い薄膜が使用される。一般に、分離膜の気孔径は0.01〜10μmで、厚さは5〜300μmである。このような分離膜としては、例えば、耐化学性及び疎水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維またはポリエチレンなどで作られたシートや不織布などが使用される。電解質としてポリマーなどの固体電解質が使用される場合には、固体電解質が分離膜を兼ねることもできる。   As the separation membrane, a thin insulating thin film having high ion permeability and mechanical strength is used between the positive electrode and the negative electrode. Generally, the pore size of the separation membrane is 0.01 to 10 μm and the thickness is 5 to 300 μm. As such a separation membrane, for example, a chemically resistant and hydrophobic olefin polymer such as polypropylene; a sheet or a nonwoven fabric made of glass fiber or polyethylene is used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte can also serve as a separation membrane.

リチウム塩含有非水電解質は、非水電解質とリチウムからなっており、非水電解質としては、非水系有機溶媒、有機固体電解質、無機固体電解質などが使用されるが、これらに限定されるものではない。   The lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and lithium. As the non-aqueous electrolyte, a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used. Absent.

非水系有機溶媒としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン(franc)、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ホルム酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒を使用することができる。   Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran (franc), 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1 , 3-Dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propion It can be used aprotic organic solvent such as ethyl.

有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリエジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などを使用することができる。   Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, aggregation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, and heavy ions containing ionic dissociation groups. Coalescence etc. can be used.

無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩などを使用することができる。 As the inorganic solid electrolytes, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li nitrides such as Li 3 PO 4 -Li 2 S- SiS 2, halides, etc. can be used sulfate.

リチウム塩は、非水系電解質に溶解しやすい物質であって、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、イミドなどを使用することができる。 Lithium salt is a substance that is easily dissolved in a non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6. LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenylborate, imide, and the like can be used.

また、リチウム塩含有非水電解質には、充放電特性、難燃性などの改善を目的として、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが添加されてもよい。場合によっては、不燃性を付与するために、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒をさらに含ませることもでき、高温保存特性を向上させるために二酸化炭酸ガスをさらに含ませることもでき、FEC(Fluoro−Ethylene Carbonate)、PRS(Propene sultone)などをさらに含ませることができる。   For the lithium salt-containing non-aqueous electrolyte, for the purpose of improving charge / discharge characteristics and flame retardancy, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexalin Acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like may be added. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart incombustibility, and a carbon dioxide gas may be further included to improve high-temperature storage characteristics. Further, FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), and the like can be further included.

一具体例において、LiPF、LiClO、LiBF、LiN(SOCFなどのリチウム塩を、高誘電性溶媒であるEC又はPCの環状カーボネートと、低粘度溶媒であるDEC、DMC又はEMCの線状カーボネートとの混合溶媒に添加し、リチウム塩含有非水系電解質を製造することができる。 In one embodiment, a lithium salt such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , EC or PC cyclic carbonate as a high dielectric solvent, and DEC, DMC as low viscosity solvents. Or it can add to the mixed solvent with the linear carbonate of EMC, and lithium salt containing non-aqueous electrolyte can be manufactured.

本発明は、前述の二次電池を単位電池として含む電池モジュール、電池モジュールを含む電池パック、及び電池パックを電源として含むデバイスを提供する。   The present invention provides a battery module including the above-described secondary battery as a unit battery, a battery pack including the battery module, and a device including the battery pack as a power source.

このとき、デバイスの具体的な例としては、電池的モーターによって動力を受けて動くパワーツール(power tool);電気自動車(Electric Vehicle、EV)、ハイブリッド電気自動車(Hybrid Electric Vehicle、HEV)、プラグインハイブリッド電気自動車(Plug−in Hybrid Electric Vehicle、PHEV)などを含む電気車;電気自転車(E−bike)、電気スクーター(E−scooter)を含む電気二輪車;電気ゴルフカート(electric golf cart);電力貯蔵用システムなどを挙げることができるが、これに限定されるものではない。   At this time, specific examples of the device include a power tool that is powered by a battery motor; an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in Electric vehicles including a hybrid electric vehicle (Plug-in Hybrid Electric Vehicle, PHEV), etc .; an electric bicycle (E-bike), an electric motorcycle including an electric scooter (E-scooter); an electric golf cart (electric golf cart); However, the present invention is not limited to this.

以下、実施例などを参照して本発明をより詳細に説明するが、本発明の範疇がこれらによって限定されないことはもちろんである。   Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited thereto.

<実施例1>
0.5LiMnO*0.5LiNi0.32Mn0.32Co0.24を活物質として使用し、導電材(Denka black)、バインダー(PVdF)をそれぞれ95:2.5:2.5の重量比でNMPに入れてミキシングした合剤を20μmの厚さのアルミニウムホイルにコーティングし、圧延及び乾燥した電極シートを、アルミニウム前駆体であるAlCl及び触媒であるZnClが溶解した電解溶液に投入した後、アルミニウムの還元のために電気分解を行って、合剤層上にアルミニウム及びアルミナからなる10nmの厚さのコーティング層を形成させて、正極を製造した。
<Example 1>
0.5Li 2 MnO 3 * 0.5LiNi 0.32 Mn 0.32 Co 0.24 O 2 was used as an active material, and conductive material (Denka black) and binder (PVdF) were respectively 95: 2.5: 2. The mixture mixed in NMP at a weight ratio of 0.5 was coated on 20 μm thick aluminum foil, and the rolled and dried electrode sheet was dissolved with AlCl 3 as an aluminum precursor and ZnCl 2 as a catalyst. After being put into the electrolytic solution, electrolysis was performed for the reduction of aluminum, and a coating layer having a thickness of 10 nm made of aluminum and alumina was formed on the mixture layer, thereby manufacturing a positive electrode.

また、負極としては、天然黒鉛/Si系活物質を使用し、導電材(carbon black)、バインダー(SBR)、増粘剤(CMC)をそれぞれ94:2:3:1の重量比でNMPに入れてミキシングした合剤を20μmの厚さの銅ホイルにコーティングし、圧延及び乾燥して、負極を製造した。   Moreover, as a negative electrode, a natural graphite / Si-based active material is used, and conductive material (carbon black), binder (SBR), and thickener (CMC) are each made into NMP at a weight ratio of 94: 2: 3: 1. The mixture prepared by mixing was coated on a 20 μm thick copper foil, rolled and dried to produce a negative electrode.

このように製造された負極と正極との間に、ポリエチレン(PE)で製造された多孔性分離膜を使用して電極組立体を製造した。電極組立体をパウチ型ケースに入れ、電極リードを接続した後、LiPF 1M及びエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)を1:2(体積%)で含む電解液を注入した後、密封して、リチウムポリマー電池を製造した。 An electrode assembly was manufactured using a porous separation membrane made of polyethylene (PE) between the negative electrode and the positive electrode thus manufactured. After placing the electrode assembly in a pouch-type case and connecting the electrode leads, an electrolyte solution containing LiPF 6 1M and ethylene carbonate (EC) / ethyl methyl carbonate (EMC) at 1: 2 (volume%) was injected, Sealed to produce a lithium polymer battery.

<比較例1>
電極シートを電解溶液で電気分解を行っていないこと以外は、実施例1と同様の方法でリチウムポリマー電池を製造した。
<Comparative Example 1>
A lithium polymer battery was produced in the same manner as in Example 1 except that the electrode sheet was not electrolyzed with an electrolytic solution.

<比較例2>
コーティング層の厚さを200nmで形成したこと以外は、実施例1と同様の方法でリチウムポリマー電池を製造した。
<Comparative example 2>
A lithium polymer battery was produced in the same manner as in Example 1 except that the thickness of the coating layer was 200 nm.

<実験例1>
実施例1及び比較例1、2で製造されたリチウムポリマー電池のサイクル特性を確認するために、充電電流密度0.33C、充電電圧4.2V、CC−CV(Constant Current−Constant Voltage)、5%電流カットオフ(cut−off)の条件で充電し、放電電流密度0.33C、放電電圧2.5V、電圧カットオフ(cut−off)で放電する充放電試験を100回行った。100サイクルの試験の間の容量変化率を測定し、下記の図2に示した。
<Experimental example 1>
In order to confirm the cycle characteristics of the lithium polymer batteries manufactured in Example 1 and Comparative Examples 1 and 2, a charging current density of 0.33 C, a charging voltage of 4.2 V, and a CC-CV (Constant Current-Constant Voltage), 5 A charge / discharge test was performed 100 times by charging under the condition of% current cut-off (cut-off) and discharging with a discharge current density of 0.33 C, a discharge voltage of 2.5 V, and a voltage cut-off (cut-off). The capacity change rate during the 100-cycle test was measured and is shown in FIG. 2 below.

図2を参照すると、正極合剤層上にアルミニウム及びアルミナが10nmの厚さでコーティングされた実施例1のリチウムポリマー電池の場合、正極合剤層上にコーティング層が形成されていない比較例1のリチウムポリマー電池と比較して、改善された寿命特性及び高い可逆容量を有することがわかる。反面、アルミニウム及びアルミナが実施例1のリチウムポリマー電池と比較して厚くコーティングされた比較例2のリチウムポリマー電池は、寿命特性の改善にもかかわらず、非常に低い可逆容量を有することがわかる。これは、厚いコーティング層が、合剤層に塗布された電極活物質が電解液と反応することを大きく抑制する一方、リチウムイオンの移動も抑制するため、低い容量を有するものである。   Referring to FIG. 2, in the case of the lithium polymer battery of Example 1 in which aluminum and alumina were coated on the positive electrode mixture layer with a thickness of 10 nm, Comparative Example 1 in which no coating layer was formed on the positive electrode mixture layer. It can be seen that it has improved lifetime characteristics and high reversible capacity as compared to the lithium polymer battery. On the other hand, it can be seen that the lithium polymer battery of Comparative Example 2 in which aluminum and alumina are coated thicker than the lithium polymer battery of Example 1 has a very low reversible capacity, despite the improvement of the life characteristics. This is because the thick coating layer largely suppresses the reaction of the electrode active material applied to the mixture layer with the electrolytic solution, and also suppresses the movement of lithium ions, and thus has a low capacity.

本発明の属する分野における通常の知識を有する者であれば、上記内容に基づいて本発明の範疇内で様々な応用及び変形を行うことが可能であろう。   A person having ordinary knowledge in the field to which the present invention belongs can make various applications and modifications within the scope of the present invention based on the above contents.

以上で説明したように、本発明に係る二次電池用電極は、電極合剤層上にはアルミニウム(Al)及び/又はアルミナ(Al)を含むコーティング層が形成されているので、高電圧下で電極活物質が電解液と反応するのをかなり抑制できるだけでなく、伝導性の高いAlコーティングを通じて電極活物質の伝導性を向上させることができる。また、酸素と容易に反応するAlが電極内の酸素を除去してAlに変換され、電極活物質に含まれた遷移金属が電極の表面に析出されることを根本的に防止できるという効果がある。 As described above, since the electrode for a secondary battery according to the present invention has a coating layer containing aluminum (Al) and / or alumina (Al 2 O 3 ) formed on the electrode mixture layer, Not only can the electrode active material react with the electrolyte under a high voltage, but also the conductivity of the electrode active material can be improved through a highly conductive Al coating. Further, Al that easily reacts with oxygen is converted into Al 2 O 3 by removing oxygen in the electrode, and the transition metal contained in the electrode active material can be fundamentally prevented from being deposited on the surface of the electrode. There is an effect.

100 電気分解装置
101 電解槽
102 電解液
106 負極
108 第2電極
109 第1電極
110 基準電極
120 第1ローラー
121 第2ローラー
122 正極
DESCRIPTION OF SYMBOLS 100 Electrolyzer 101 Electrolysis tank 102 Electrolyte 106 Negative electrode 108 2nd electrode 109 1st electrode 110 Reference electrode 120 1st roller 121 2nd roller 122 Positive electrode

Claims (7)

電極活物質を含む電極合剤層が電極集電体上に塗布されており、前記電極活物質が、下記化学式1又は2で表されるリチウム遷移金属酸化物であり、前記電極合剤層上には、前記電極合剤層の面積の50%よりも大きな面積にアルミニウム(Al)及びアルミナ(Al)からなるコーティング層が形成されており、
前記コーティング層が、0.5nm以上〜100nm以下の厚さに形成されることを特徴とする、リチウムイオン電池またはリチウムポリマー電池である二次電池用電極
Li Mn 2−y 4−z (1)
上記式中、
Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される1つ以上の元素であり、
Aは、−1又は−2価の1つ以上のアニオンであり、
0.9≦x≦1.2、0<y<2、0≦z<0.2であり、
(1−x’)LiM’O 2−y’ A’ y’ −x’Li MnO 3−y’’ A’ y’’ (2)
上記式中、
M’は、Mn であり、
は、Ni、Ti、Co、Al、Cu、Fe、Mg、B、Cr、Zr及びZnからなる群から選択される1つ以上であり、
A’は、PO 、BO 、CO 、F及びNO のアニオンからなる群から選択される1つ以上であり、
0<x’<1、0≦y’≦0.02、0≦y’’≦0.02、0.3≦a≦1.0、0≦b≦0.7、a+b=1である。
An electrode mixture layer containing an electrode active material is coated on an electrode current collector, and the electrode active material is a lithium transition metal oxide represented by the following chemical formula 1 or 2, and the electrode mixture layer The coating layer made of aluminum (Al) and alumina (Al 2 O 3 ) is formed in an area larger than 50% of the area of the electrode mixture layer ,
The coating layer, characterized in that it is formed in a thickness of less than 0.5nm over ~ 100 nm, the lithium-ion battery or a lithium polymer battery electrode for a secondary battery:
Li x M y Mn 2-y O 4-z A z (1)
In the above formula,
M is selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi 1 Two or more elements,
A is one or more anions of -1 or -2 valence,
0.9 ≦ x ≦ 1.2, 0 <y <2, 0 ≦ z <0.2,
(1-x ′) LiM′O 2-y ′ A ′ y ′ −x Li 2 MnO 3-y ″ A ′ y ″ (2)
In the above formula,
M 'is a Mn a M b,
M b is one or more selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr and Zn,
A ′ is one or more selected from the group consisting of PO 4 , BO 3 , CO 3 , F and NO 3 anions,
0 <x ′ <1, 0 ≦ y ′ ≦ 0.02, 0 ≦ y ″ ≦ 0.02, 0.3 ≦ a ≦ 1.0, 0 ≦ b ≦ 0.7, and a + b = 1.
前記電極が正極であることを特徴とする、請求項1に記載の二次電池用電極。   The electrode for a secondary battery according to claim 1, wherein the electrode is a positive electrode. 請求項1又は2に記載の電極を含むことを特徴とする、二次電池。 A secondary battery comprising the electrode according to claim 1 . 請求項に記載の二次電池を単位電池として含むことを特徴とする、電池モジュール。 A battery module comprising the secondary battery according to claim 3 as a unit battery. 請求項に記載の電池モジュールを含むことを特徴とする、電池パック。 A battery pack comprising the battery module according to claim 4 . 請求項に記載の電池パックを電源として含むことを特徴とする、デバイス。 A device comprising the battery pack according to claim 5 as a power source. 前記デバイスが、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、または電力貯蔵用システムであることを特徴とする、請求項に記載のデバイス。 The device according to claim 6 , wherein the device is an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system.
JP2016513888A 2013-07-30 2014-07-29 Electrode including a coating layer for preventing reaction with electrolyte Active JP6370885B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20130090027 2013-07-30
KR10-2013-0090027 2013-07-30
PCT/KR2014/006911 WO2015016563A1 (en) 2013-07-30 2014-07-29 Electrode including coating layer for preventing reaction with electrolyte

Publications (2)

Publication Number Publication Date
JP2016521906A JP2016521906A (en) 2016-07-25
JP6370885B2 true JP6370885B2 (en) 2018-08-08

Family

ID=52432033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016513888A Active JP6370885B2 (en) 2013-07-30 2014-07-29 Electrode including a coating layer for preventing reaction with electrolyte

Country Status (6)

Country Link
US (1) US9899682B2 (en)
EP (1) EP2985816B1 (en)
JP (1) JP6370885B2 (en)
KR (2) KR101592993B1 (en)
CN (1) CN105229825B (en)
WO (1) WO2015016563A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
NO20151278A1 (en) 2015-09-29 2017-03-30 Elkem As Silicon-carbon composite anode for lithium-ion batteries
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
US11594757B2 (en) 2016-04-07 2023-02-28 StoreDot Ltd. Partly immobilized ionic liquid electrolyte additives for lithium ion batteries
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
EP3440726A4 (en) 2016-04-07 2019-09-11 StoreDot Ltd. Lithium-ion cells and anodes therefor
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
JP6696692B2 (en) * 2016-09-20 2020-05-20 株式会社東芝 Electrodes, non-aqueous electrolyte batteries, battery packs and vehicles
KR102383229B1 (en) 2016-12-13 2022-04-05 현대자동차 주식회사 Method and apparatus for learning clutch pedal
KR20180068194A (en) 2016-12-13 2018-06-21 현대자동차주식회사 Fuel reforming system and method of controlling flow rate of exhaust gas recirculation gas in a fuel reformer
US11588142B2 (en) 2017-06-20 2023-02-21 Coreshell Technologies, Inc. Solution-phase deposition of thin films on solid-state electrolytes
KR102501600B1 (en) 2017-06-20 2023-02-17 코어쉘 테크놀로지스 인코포레이티드 Methods, systems, and compositions for liquid-phase deposition of thin films on the surface of battery electrodes
KR102251748B1 (en) * 2017-11-02 2021-05-14 한국전기연구원 Anode of Li Secondary Batteries Capable of Rapid Charging And Manufacturing Methods Thereof
WO2020109360A1 (en) * 2018-11-29 2020-06-04 Basf Se Process for making a partially coated electrode active material
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911996A (en) 1988-03-11 1990-03-27 Eic Laboratories, Inc. Electrochemical cell
US5505823A (en) * 1994-09-02 1996-04-09 Solv-Ex Corporation Method for the electrolytic production of aluminum
KR100454030B1 (en) 2002-08-07 2004-10-20 삼성에스디아이 주식회사 Positive electrode for lithium-sulfur battery, method of preparing same, and lithium-sulfur battery comprising same
JP3750117B2 (en) * 2002-11-29 2006-03-01 三井金属鉱業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US20040173468A1 (en) 2003-03-05 2004-09-09 Global Ionix Electrodeposition of aluminum and refractory metals from non-aromatic organic solvents
CN1784512A (en) * 2003-03-05 2006-06-07 环球爱奥尼克斯公司 Electrodeposition of aluminum and refractory metals from non-aromatic organic solvents
JP4249727B2 (en) * 2005-05-13 2009-04-08 株式会社東芝 Nonaqueous electrolyte battery and lithium titanium composite oxide
KR20080105162A (en) * 2006-03-17 2008-12-03 산요덴키가부시키가이샤 Nonaqueous electrolyte battery and method for manufacturing same
KR100801637B1 (en) * 2006-05-29 2008-02-11 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
WO2007142275A1 (en) 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
CN101675544A (en) 2007-07-17 2010-03-17 松下电器产业株式会社 Secondary cell and secondary cell manufacturing method
KR100923442B1 (en) * 2007-08-01 2009-10-27 주식회사 엘 앤 에프 New cathode active material
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR100983161B1 (en) 2008-01-11 2010-09-20 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the same
JP5200585B2 (en) 2008-02-29 2013-06-05 Tdk株式会社 Electrochemical device and method for producing electrochemical device
JP5213534B2 (en) 2008-06-17 2013-06-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN102171861A (en) 2009-03-16 2011-08-31 松下电器产业株式会社 Electrode plate for nonaqueous-electrolyte secondary battery, process for producing same, and nonaqueous-electrolyte secondary battery
EP2541654B1 (en) 2010-02-24 2014-11-19 LG Chem, Ltd. High-capacity positive electrode active material and lithium secondary battery comprising same
JP2011210549A (en) 2010-03-30 2011-10-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery, vehicle, and device using the battery
DE112012000901B4 (en) * 2011-02-18 2021-10-21 Sumitomo Electric Industries, Ltd. A current collector using an aluminum porous body having a three-dimensional network, an electrode using the current collector and non-aqueous electrolyte battery, capacitor and lithium ion capacitor with non-aqueous electrolytic solution each using the electrode, and method for producing the electrode
EP2565972B1 (en) 2011-06-09 2019-07-31 LG Chem, Ltd. Electrode assembly and lithium secondary battery comprising same
KR101669111B1 (en) * 2011-10-11 2016-10-26 삼성에스디아이 주식회사 Electrode active material for lithium secondary battery, preparing method thereof, electrode for lithium secondary battery including the same, and lithium secondary battery using the same
US10115962B2 (en) * 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings

Also Published As

Publication number Publication date
KR20160016986A (en) 2016-02-15
EP2985816B1 (en) 2020-09-02
CN105229825B (en) 2018-10-19
EP2985816A1 (en) 2016-02-17
KR101592993B1 (en) 2016-02-15
US9899682B2 (en) 2018-02-20
WO2015016563A1 (en) 2015-02-05
KR101722996B1 (en) 2017-04-04
JP2016521906A (en) 2016-07-25
US20160149220A1 (en) 2016-05-26
CN105229825A (en) 2016-01-06
EP2985816A4 (en) 2016-12-21
KR20150014875A (en) 2015-02-09

Similar Documents

Publication Publication Date Title
JP6370885B2 (en) Electrode including a coating layer for preventing reaction with electrolyte
JP6284626B2 (en) Prelithiation method for negative electrode
JP6579530B2 (en) Secondary battery containing silicon compound
JP6254258B2 (en) Positive electrode mixture for secondary battery containing irreversible additive
US20160181593A1 (en) Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material
JP6130051B2 (en) Electrode active material with improved energy density and lithium secondary battery including the same
JP6484895B2 (en) Secondary battery electrode with improved energy density and lithium secondary battery including the same
JP6058038B2 (en) Secondary battery manufacturing method and secondary battery manufactured using the same
JP2015513182A (en) Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same
JP6566584B2 (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured using the same
JP2015510249A (en) Multi-layered electrode and method of manufacturing the same
JP6483723B2 (en) Positive electrode active material and lithium secondary battery including the same
JP5860174B2 (en) Method for producing electrode for lithium secondary battery
JP6204581B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5944572B2 (en) Secondary battery electrode and secondary battery including the same
JP6240100B2 (en) High performance lithium secondary battery
JP6192145B2 (en) Negative electrode for preventing manganese precipitation and battery cell including the same
US9761864B2 (en) Cathode active material for high voltage lithium secondary battery and lithium secondary battery including the same
US11121374B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery including same
KR20130117722A (en) The method of preparing electrodes for secondary battery and the electrodes prepared by using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170706

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6370885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250