JP6361315B2 - Cold plate - Google Patents

Cold plate Download PDF

Info

Publication number
JP6361315B2
JP6361315B2 JP2014130033A JP2014130033A JP6361315B2 JP 6361315 B2 JP6361315 B2 JP 6361315B2 JP 2014130033 A JP2014130033 A JP 2014130033A JP 2014130033 A JP2014130033 A JP 2014130033A JP 6361315 B2 JP6361315 B2 JP 6361315B2
Authority
JP
Japan
Prior art keywords
storage material
heat storage
internal pressure
cooling plate
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014130033A
Other languages
Japanese (ja)
Other versions
JP2016008785A (en
Inventor
昂大 田坂
昂大 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014130033A priority Critical patent/JP6361315B2/en
Publication of JP2016008785A publication Critical patent/JP2016008785A/en
Application granted granted Critical
Publication of JP6361315B2 publication Critical patent/JP6361315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、電気部品を有した電子機器を冷却する冷却板に関する。   The present invention relates to a cooling plate for cooling an electronic device having an electrical component.

近年、マイクロ波で動作する高周波半導体を複数個集積したマイクロ波回路は、高集積化され、単位面積当たりの発熱量が増加傾向にある。また、窒化ガリウム(GaN)半導体からなる増幅器は、単位面積当たりの発熱量が特に大きく、マイクロ波回路の冷却板に高い放熱能力が望まれている。通常の冷却板は、アルミ、銅等の金属板に複数の突起(ヒートシンク)を設けることで、放熱面積を増やし、放熱能力を向上させている。   In recent years, microwave circuits in which a plurality of high-frequency semiconductors operating with microwaves are integrated are highly integrated, and the amount of heat generated per unit area tends to increase. Further, an amplifier made of a gallium nitride (GaN) semiconductor has a particularly large calorific value per unit area, and a high heat dissipation capability is desired for a cooling plate of a microwave circuit. A normal cooling plate is provided with a plurality of protrusions (heat sinks) on a metal plate such as aluminum or copper, thereby increasing the heat dissipation area and improving the heat dissipation capability.

また、マイクロ波回路で構成されるアクティブフェーズドアレイアンテナは、その高出力化及び信号処理の高速化に伴い発熱量が増加する一方で、小型化及び軽量化が求められている。発熱量増分に応じて冷却能力を向上させると、冷却板が必然的に大型化、重量化せざるを得ず、要求仕様を満足しない。従来の冷却板は放熱能力に限度があり、放熱能力を上げるには冷却板の面積を増大する必要がある。   In addition, an active phased array antenna composed of a microwave circuit is required to be reduced in size and weight while increasing its heat output as its output is increased and signal processing speed is increased. If the cooling capacity is improved in accordance with the heat generation increment, the cooling plate inevitably increases in size and weight, and the required specifications are not satisfied. Conventional cooling plates have a limited heat dissipation capability, and the area of the cooling plate needs to be increased to increase the heat dissipation capability.

しかしながら、短時間の冷却であれば、冷却能力が高くかつ軽量な冷却器が知られている。この冷却器は、蓄熱材と呼ばれる所要温度で固体から液体へ状態変化を起こす相変化物質を封入することで、蓄熱材の潜熱を利用し、マイクロ波回路のような電気部品を有した電子機器について、その温度上昇を抑制する。   However, a cooler having a high cooling capacity and a light weight is known for short-time cooling. This cooler encloses a phase change material that changes state from a solid to a liquid at a required temperature called a heat storage material, and uses the latent heat of the heat storage material to provide an electronic device with an electrical component such as a microwave circuit. Suppresses the temperature rise.

特許文献1は、蓄熱材に低温融解塩を利用し、冷却器の内部に蓄熱材を封じ込め、蓄熱材の潜熱を利用して、電子機器からの発熱を抑えることが示されている。   Patent Document 1 discloses that a low-temperature molten salt is used as a heat storage material, the heat storage material is enclosed in a cooler, and latent heat of the heat storage material is used to suppress heat generation from an electronic device.

また、特許文献2は、蓄熱材を融解させた状態で冷却器の内部に密閉し、凝固する際に体積が収縮することを利用して、冷却器内部を低圧にする。これにより、電子機器の動作時に蓄熱材が融解し、体積が膨張する際に冷却器内部は大気圧以上の圧力にならず、冷却器に内圧による負荷が加わらないようにしている。   Moreover, patent document 2 seals the inside of a cooler in the state which fuse | melted the thermal storage material, and makes the inside of a cooler low pressure using the shrinkage | contraction of a volume when solidifying. As a result, when the heat storage material is melted during operation of the electronic device and the volume expands, the inside of the cooler does not become a pressure higher than the atmospheric pressure, and the load due to the internal pressure is not applied to the cooler.

特開平10−135381号公報JP-A-10-135381 特開2004−247423号公報JP 2004-247423 A

冷却板の内部に蓄熱材を封入し、電子機器の発熱部に冷却板を接触させることで、電子機器の放熱能力を向上するとともに、軽量化することができる。蓄熱材を封入した従来の冷却器は、蓄熱材が固体から液体へ溶融する際に、体積の増加を伴う。一方、液化した蓄熱材を冷却板の外部に漏出させてしまうと、電気部品に悪影響を与える可能性がある。このため液化した蓄熱材を構造体内部で保持する。   By encapsulating a heat storage material inside the cooling plate and bringing the cooling plate into contact with the heat generating part of the electronic device, the heat dissipation capability of the electronic device can be improved and the weight can be reduced. A conventional cooler enclosing a heat storage material is accompanied by an increase in volume when the heat storage material melts from a solid to a liquid. On the other hand, if the liquefied heat storage material leaks out of the cooling plate, there is a possibility of adversely affecting the electrical components. For this reason, the liquefied heat storage material is held inside the structure.

しかしながら、体積膨張が著しい蓄熱材を利用した場合、特許文献1は蓄熱材の融解時に冷却器を破壊する。また、特許文献2は蓄熱材が融解している高い温度を維持しながら、高い気密性を持って密閉する必要があり、製造コストが大きくなる。また、特許文献2は、冷却器内部の大気圧が所定以上に上がらないよう、冷却器に所定容量の空間を形成することから、冷却器が大きくなる。このため小型かつ軽量な冷却板を得るには限界があった。   However, when a heat storage material having a significant volume expansion is used, Patent Document 1 destroys the cooler when the heat storage material melts. Further, Patent Document 2 needs to be sealed with high airtightness while maintaining a high temperature at which the heat storage material is melted, resulting in an increase in manufacturing cost. Moreover, since the patent document 2 forms the space of a predetermined capacity | capacitance in a cooler so that atmospheric pressure inside a cooler may not rise more than predetermined, a cooler becomes large. For this reason, there was a limit in obtaining a small and lightweight cooling plate.

この発明は係る課題を解決するためになされたものであって、より小型で軽量な冷却板を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a smaller and lighter cooling plate.

この発明による冷却板は、蓄熱材を収容した保持部と、当該保持部に連通し当該蓄熱材の融解による体積膨張を吸収する気相部とを内部空間に有した構造体と、上記構造体の側面に取り付けられ、上記気相部に連通する複数の孔を有した内圧調整部と、上記内圧調整部のそれぞれの孔を覆い、気体を外部に透過し上記蓄熱材を外部に透過しない素材とを備え、上記気相部は上記蓄熱材の融解による体積膨張を吸収する容積を有したものである。   A cooling plate according to the present invention includes a structure having an internal space having a holding part that contains a heat storage material, a gas phase part that communicates with the holding part and absorbs volume expansion due to melting of the heat storage material, and the structure. An internal pressure adjusting part having a plurality of holes communicating with the gas phase part, and a material that covers each hole of the internal pressure adjusting part and that transmits gas to the outside and does not transmit the heat storage material to the outside The gas phase part has a volume that absorbs volume expansion due to melting of the heat storage material.

この発明によれば、冷却板に収容した蓄熱材が融解により体積膨張した場合でも、気体を透過し蓄熱材を透過しない素材で穴を覆った内圧調整部を設けることによって、冷却板の内圧増大を抑制することができる。   According to this invention, even when the heat storage material accommodated in the cooling plate expands due to melting, the internal pressure of the cooling plate is increased by providing the internal pressure adjusting unit that covers the hole with the material that transmits gas and does not transmit the heat storage material. Can be suppressed.

実施の形態1による電子機器の構成を示す斜視図である。1 is a perspective view illustrating a configuration of an electronic device according to a first embodiment. 実施の形態1による冷却板の外観斜視図である。2 is an external perspective view of a cooling plate according to Embodiment 1. FIG. 実施の形態1による冷却板の構造を示す断面図である。3 is a cross-sectional view showing a structure of a cooling plate according to Embodiment 1. FIG. 実施の形態1による蓄熱材融解後の冷却板の状態を示す断面図である。It is sectional drawing which shows the state of the cooling plate after the thermal storage material fusion | melting by Embodiment 1. FIG. 実施の形態1による蓄熱材融解後に内圧調整部の機能が無効化した冷却板の状態を示す断面図である。It is sectional drawing which shows the state of the cooling plate which the function of the internal pressure adjustment part became invalid after the thermal storage material melting | fusing by Embodiment 1. FIG. 実施の形態1による蓄熱材融解後に電子機器の姿勢が変化したことで内圧調整部の機能が無効化した冷却板の状態を示す断面図である。It is sectional drawing which shows the state of the cooling plate which the function of the internal pressure adjustment part became invalid because the attitude | position of the electronic device changed after heat storage material melting | fusing by Embodiment 1. FIG. 実施の形態1による蓄熱材融解後に電子機器の姿勢が変化しても内圧調整部が機能する冷却板の状態を示す断面図である。It is sectional drawing which shows the state of the cooling plate with which an internal pressure adjustment part functions even if the attitude | position of an electronic device changes after the thermal storage material melting | fusing by Embodiment 1. FIG.

実施の形態1.
図1は、この発明に係る実施の形態1による電子機器の構成を示す斜視図である。図2は実施の形態1による冷却板の外観斜視図である。図3は実施の形態1による冷却板1の構造を示す断面図である。図4は実施の形態1による蓄熱材融解後の冷却板1の状態を示す断面図である。
Embodiment 1 FIG.
1 is a perspective view showing a configuration of an electronic apparatus according to Embodiment 1 of the present invention. FIG. 2 is an external perspective view of the cooling plate according to the first embodiment. FIG. 3 is a cross-sectional view showing the structure of the cooling plate 1 according to the first embodiment. FIG. 4 is a cross-sectional view showing the state of the cooling plate 1 after melting the heat storage material according to the first embodiment.

図1において、実施の形態1による電子機器は、冷却板1と、複数の発熱体2と、保持部材12から構成される。複数の発熱体2は、冷却板1の上下面に接触して実装される。保持部材12は、冷却板1の端面に取り付けられる。保持部材12は、内圧調整穴13が形成されている。図1の例において、保持部材12は冷却板1の側面に取り付けられている。   In FIG. 1, the electronic device according to the first embodiment includes a cooling plate 1, a plurality of heating elements 2, and a holding member 12. The plurality of heating elements 2 are mounted in contact with the upper and lower surfaces of the cooling plate 1. The holding member 12 is attached to the end face of the cooling plate 1. The holding member 12 has an internal pressure adjusting hole 13 formed therein. In the example of FIG. 1, the holding member 12 is attached to the side surface of the cooling plate 1.

図2において、冷却板1は、金属部材からなる構造体100によって構成され、当該構造体100は内部空間を形成する。構造体100の内部空間の一部は保持部22の内部空間を形成している。また、構造体100の内部空間の一部は気相部21を形成する。保持部22の内部空間と気相部21は、間仕切りを介して隣接している。気相部21は内圧調整穴13に連通している。   In FIG. 2, the cooling plate 1 is comprised by the structure 100 which consists of metal members, and the said structure 100 forms internal space. A part of the internal space of the structure 100 forms an internal space of the holding unit 22. Further, a part of the internal space of the structure 100 forms a gas phase portion 21. The internal space of the holding unit 22 and the gas phase unit 21 are adjacent to each other through a partition. The gas phase portion 21 communicates with the internal pressure adjusting hole 13.

図3において、保持部22は、内部空間に蓄熱材3を収容している。保持部22は、内部空間に複数の冷却フィンを挿入し、冷却フィンと冷却フィンの間(すなわち隣接する冷却フィンの間)に蓄熱材3を収容するようにしている。保持部22の内部空間は、複数の蓄熱材通し穴5を介して気相部21に連通している。保持部材12は、素材11を冷却板1に保持する。素材11は、例えば多孔質物質から形成され、気体を透過し蓄熱材を透過しない素材から構成される。保持部材12は、内圧調整部6が設けられている。内圧調整部6は、複数の内圧調整穴13が形成されている。気相部21は、内圧調整穴13を介して外部空気と連通している。素材11は内圧調整穴13を覆い、保持部材12に保持される。気相部21は、蓄熱材3の融解による体積膨張を吸収する容積を有している。   In FIG. 3, the holding | maintenance part 22 has accommodated the thermal storage material 3 in internal space. The holding part 22 inserts a plurality of cooling fins into the internal space, and accommodates the heat storage material 3 between the cooling fins (ie, between adjacent cooling fins). The internal space of the holding unit 22 communicates with the gas phase unit 21 through the plurality of heat storage material through holes 5. The holding member 12 holds the material 11 on the cooling plate 1. The material 11 is made of, for example, a porous material and is made of a material that transmits gas and does not transmit heat storage material. The holding member 12 is provided with an internal pressure adjusting unit 6. The internal pressure adjusting unit 6 has a plurality of internal pressure adjusting holes 13 formed therein. The gas phase part 21 communicates with external air through the internal pressure adjusting hole 13. The material 11 covers the internal pressure adjusting hole 13 and is held by the holding member 12. The gas phase part 21 has a volume that absorbs volume expansion due to melting of the heat storage material 3.

次に動作について説明する。
冷却板1は、上下面に設置された発熱体2の発熱により温度が上昇する。その温度上昇に伴う熱は蓄熱材3に伝達し、蓄熱材3は融解温度に達する。融解した蓄熱材3は液化蓄熱材4に相変化し、構造体100内部の蓄熱材3の保持部22と気相部21の間に設けられた蓄熱材とおし穴5を通り抜け、図4に示すように気相部21に移動する。気相部21に移動した液化蓄熱材4の体積により、気相部21の内部圧力は増加する。液化蓄熱材4は、冷却板1の構造体100の側面に設けた内圧調整穴13をとおり、気相部21から気体が抜け出し、過大な圧力が構造体100に印加されることがなくなる。
Next, the operation will be described.
The temperature of the cooling plate 1 rises due to the heat generated by the heating elements 2 installed on the upper and lower surfaces. The heat accompanying the temperature rise is transferred to the heat storage material 3, and the heat storage material 3 reaches the melting temperature. The melted heat storage material 3 undergoes a phase change to the liquefied heat storage material 4 and passes through the heat storage material provided between the holding portion 22 and the gas phase portion 21 of the heat storage material 3 inside the structure 100 and the through hole 5, and is shown in FIG. It moves to the gas phase part 21 as follows. Due to the volume of the liquefied heat storage material 4 moved to the gas phase portion 21, the internal pressure of the gas phase portion 21 increases. The liquefied heat storage material 4 passes through the internal pressure adjusting hole 13 provided on the side surface of the structure 100 of the cooling plate 1, so that gas escapes from the gas phase portion 21 and excessive pressure is not applied to the structure 100.

内圧調整部6は、気体を透過する素材11を設置している。気体を透過する素材11は、気体を通すが表面張力が一定以上の液体を通さない性質がある。このため気相部21に移動した液化蓄熱材4は構造体100に保持されたままであって、気相部21の気体だけが構造体100の外部に排出される。これにより、構造体100の内部圧力が極端に高くなることはないので、圧力による構造体100の破壊を防ぐことができる。   The internal pressure adjusting unit 6 is provided with a material 11 that transmits gas. The gas-permeable material 11 has the property of allowing gas to pass but not allowing liquid with a surface tension above a certain level. For this reason, the liquefied heat storage material 4 that has moved to the gas phase part 21 remains held in the structure 100, and only the gas in the gas phase part 21 is discharged to the outside of the structure 100. Thereby, since the internal pressure of the structure 100 does not become extremely high, destruction of the structure 100 due to the pressure can be prevented.

図5は、蓄熱材3が融解した後に、内圧調整部6の機能が無効化した場合における冷却板1の断面図である。また、図6は、蓄熱材3が融解した後に電子機器の姿勢が変化したことで、内圧調整部6の機能が無効化した場合における冷却板1の断面図である。また、図7は、蓄熱材3が融解した後に電子機器の姿勢が変化しても内圧調整部6が機能する冷却板1の断面図である。   FIG. 5 is a cross-sectional view of the cooling plate 1 when the function of the internal pressure adjusting unit 6 is invalidated after the heat storage material 3 is melted. FIG. 6 is a cross-sectional view of the cooling plate 1 when the function of the internal pressure adjusting unit 6 is invalidated because the posture of the electronic device is changed after the heat storage material 3 is melted. FIG. 7 is a cross-sectional view of the cooling plate 1 in which the internal pressure adjusting unit 6 functions even if the posture of the electronic device changes after the heat storage material 3 is melted.

図5に示すように、例えば構造体100の底面のみに液化蓄熱材4が流れ、内圧調整穴13を覆ってしまうと気相部21の気体は排出されなくなり、構造体100の内圧が増加し、構造体100および気体を透過する素材11、保持部材12を破壊する懸念がある。また、図5の状態を回避するため、図6に示すように構造体100の側面に内圧調整穴13を開けた場合も、気体が排出されない状況が生じる。飛しょう体、船舶等の移動体に搭載される電子機器は、移動体が時々刻々と移動方向および姿勢を変化させることから、液化蓄熱材4に働く慣性力23の作用により液面が傾き、すべての蓄熱材3が融解する前に、液化蓄熱材4の内圧調整穴13を塞いでしまう可能性がある。   As shown in FIG. 5, for example, when the liquefied heat storage material 4 flows only on the bottom surface of the structure 100 and covers the internal pressure adjusting hole 13, the gas in the gas phase portion 21 is not discharged, and the internal pressure of the structure 100 increases. There is a concern that the structure 100, the gas permeable material 11, and the holding member 12 may be destroyed. Moreover, in order to avoid the state of FIG. 5, when the internal pressure adjustment hole 13 is opened in the side surface of the structure 100 as shown in FIG. The electronic device mounted on a moving body such as a flying body or a ship changes its moving direction and posture from moment to moment, so that the liquid surface is tilted by the action of the inertial force 23 acting on the liquefied heat storage material 4, There is a possibility that the internal pressure adjusting hole 13 of the liquefied heat storage material 4 is blocked before all the heat storage material 3 is melted.

そこで実施の形態1による冷却板1は、図5、図6の状態を回避するために、直方体形状の空間をなした気相部21の多面あるいは隅部に穴を設ける。   Therefore, the cooling plate 1 according to the first embodiment is provided with holes on many faces or corners of the gas phase portion 21 that forms a rectangular parallelepiped space in order to avoid the states of FIGS. 5 and 6.

図7において、液化蓄熱材4の様々な方向に慣性力23が働くため、内圧調整部6の設置位置によっては液化蓄熱材4の液面が傾斜し、内圧調整穴13を塞ぐ状態が生じ得る。しかしながら、実施の形態1による冷却板1は、直方体形状をした気相部21の8つの隅に内圧調整穴13を設けることで、液化蓄熱材4の液面傾斜により内圧調整穴13が完全に塞がれる状態を回避する。気相部21の8つの隅に内圧調整穴13を設置すると、移動体が姿勢を変化させても、液化蓄熱材4に覆われない内圧調整穴13を確保することが可能となるので、液化蓄熱材4の圧力による構造体100の破壊を防ぐことができる。   In FIG. 7, the inertial force 23 acts in various directions of the liquefied heat storage material 4, so that depending on the installation position of the internal pressure adjustment unit 6, the liquid surface of the liquefied heat storage material 4 may be inclined and the internal pressure adjustment hole 13 may be blocked. . However, the cooling plate 1 according to Embodiment 1 is provided with the internal pressure adjusting holes 13 at the eight corners of the gas phase portion 21 having a rectangular parallelepiped shape, so that the internal pressure adjusting holes 13 are completely formed by the liquid surface inclination of the liquefied heat storage material 4. Avoid being blocked. If the internal pressure adjusting holes 13 are installed at the eight corners of the gas phase portion 21, the internal pressure adjusting holes 13 that are not covered by the liquefied heat storage material 4 can be secured even if the moving body changes its posture. The destruction of the structure 100 due to the pressure of the heat storage material 4 can be prevented.

なお、蓄熱材3の融解後に蓄熱材3が気相部21で凝固した場合、構造体100を気相部21の上向きに立てながら再加熱することで、蓄熱材3は再び融解する。再度凝固する際に、蓄熱材3は気相部21から初期状態において、元々蓄熱材3が封入されていた保持部22に戻り、加熱前の初期状態が再現される。かくして、構造体100を再利用することができる。   When the heat storage material 3 is solidified in the gas phase portion 21 after the heat storage material 3 is melted, the heat storage material 3 is melted again by reheating the structure 100 while standing upward. When solidifying again, the heat storage material 3 returns from the gas phase portion 21 to the holding portion 22 in which the heat storage material 3 was originally sealed in the initial state, and the initial state before heating is reproduced. Thus, the structure 100 can be reused.

以上説明した実施の形態1による電子機器は、冷却板1に蓄熱材3を収容するとともに内圧調整部6を設けることで、コストを抑えながら冷却板1の小型及び軽量化を図るとともに、蓄熱材3が液化蓄熱材4に相変化し、その融解により体積膨張した場合でも、冷却板1に内圧増大による負荷を与えない蓄熱材封入型の冷却板1を提供することができる。これにより、冷却板1の構造体100に内圧調整部6を設けることによって、冷却性能を低下させることなく小型化、軽量化を実現しながら、蓄熱材3の相変化に伴った内圧膨張による構造体100、あるいは内圧調整部6自体の破壊を防ぎ、また蓄熱材3の構造体100の外部への漏出を防止することができる。   In the electronic device according to the first embodiment described above, the heat storage material 3 is accommodated in the cooling plate 1 and the internal pressure adjusting unit 6 is provided, thereby reducing the size and weight of the cooling plate 1 while reducing the cost, and the heat storage material. Even when 3 changes to a liquefied heat storage material 4 and undergoes volume expansion due to its melting, it is possible to provide a heat storage material-enclosed cooling plate 1 that does not apply a load to the cooling plate 1 due to an increase in internal pressure. Thereby, by providing the internal pressure adjusting unit 6 in the structure 100 of the cooling plate 1, the structure by the internal pressure expansion accompanying the phase change of the heat storage material 3 while realizing a reduction in size and weight without reducing the cooling performance. The body 100 or the internal pressure adjusting unit 6 itself can be prevented from being destroyed, and the heat storage material 3 can be prevented from leaking out of the structure 100.

また、内圧調整部6は、気体を透過できる素材11を用いるとともに、移動体の姿勢変化により、内圧調整部6のいずれの方向に慣性力が付与されても、液化蓄熱材4の液面傾斜によって内圧調整穴13が塞がれることのない構造にしている。   Further, the internal pressure adjusting unit 6 uses the material 11 that can transmit gas, and the liquid surface inclination of the liquefied heat storage material 4 is applied regardless of the direction of the internal pressure adjusting unit 6 due to the change in posture of the moving body. Therefore, the internal pressure adjusting hole 13 is not blocked.

かくして、アンテナの高出力化及び信号処理の高速化に伴い、アンテナを構成する電子機器の発熱量の増加、小型化、軽量化を図るとともに、電子機器を冷却する冷却板1における蓄熱材3の相変化に伴う破壊を防ぐことができる。   Thus, as the output of the antenna is increased and the signal processing speed is increased, the heat generation amount of the electronic device constituting the antenna is increased, the size is reduced, and the weight of the heat storage material 3 in the cooling plate 1 for cooling the electronic device is improved. Destruction caused by phase change can be prevented.

1 冷却板、2 発熱体、3 蓄熱材、4 液化蓄熱材、5 蓄熱材とおし穴、6 内圧調整部、11 気体を透過する素材、12 保持部材、13 内圧調整穴、21 気相部、22 保持部、23 慣性力、100 構造体。   DESCRIPTION OF SYMBOLS 1 Cooling plate, 2 Heat generating body, 3 Thermal storage material, 4 Liquefaction thermal storage material, 5 Thermal storage material and through hole, 6 Internal pressure adjustment part, 11 Gas-permeable material, 12 Holding member, 13 Internal pressure adjustment hole, 21 Gas phase part, 22 Holding part, 23 inertial force, 100 structure.

Claims (2)

電子機器の発熱体の発熱が伝達する蓄熱材を収容するとともに複数のとおし穴のある間仕切りを有した保持部と、当該保持部のとおし穴に連通する直方体形状の内部空間を有し当該蓄熱材の融解による体積膨張を吸収する気相部を有した構造体と、
上記構造体の側面に取り付けられ、上記気相部に連通する複数の孔を有した内圧調整部と、
上記内圧調整部のそれぞれの孔を覆い、気体を外部に透過し上記蓄熱材を外部に透過しない素材と、
を備え、
上記気相部の内部空間は、上記蓄熱材の融解による体積膨張により上記とおし穴を介して保持部から移動する液化蓄熱材を収容する容積を有し
上記内圧調整部は、上記気相部の8隅に内圧調整穴を設けた冷却板。
A holding portion having a plurality of through partitions with holes with heating of the heating element of the electronic device housing a heat storage material which transmits, Yes and the heat storage of the inner space of rectangular parallelepiped that communicates with the through hole of the holding portion a structure having a gas phase portion to absorb the volume expansion due to melting of the timber,
An internal pressure adjusting unit attached to a side surface of the structure and having a plurality of holes communicating with the gas phase unit;
Covering each hole of the internal pressure adjustment unit, a material that transmits gas to the outside and does not transmit the heat storage material to the outside,
With
The internal space of the gas phase portion has a volume that accommodates the liquefied heat storage material that moves from the holding portion through the hole through the volume expansion due to melting of the heat storage material ,
The internal pressure adjusting part is a cooling plate provided with internal pressure adjusting holes at eight corners of the gas phase part.
上記保持部の内部空間は、複数の冷却フィンを有し、隣接する冷却フィンの間の空間に蓄熱材を備えたことを特徴とする請求項1記載の冷却板。 2. The cooling plate according to claim 1 , wherein the internal space of the holding portion includes a plurality of cooling fins, and a heat storage material is provided in a space between adjacent cooling fins.
JP2014130033A 2014-06-25 2014-06-25 Cold plate Active JP6361315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130033A JP6361315B2 (en) 2014-06-25 2014-06-25 Cold plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130033A JP6361315B2 (en) 2014-06-25 2014-06-25 Cold plate

Publications (2)

Publication Number Publication Date
JP2016008785A JP2016008785A (en) 2016-01-18
JP6361315B2 true JP6361315B2 (en) 2018-07-25

Family

ID=55226456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130033A Active JP6361315B2 (en) 2014-06-25 2014-06-25 Cold plate

Country Status (1)

Country Link
JP (1) JP6361315B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365370B2 (en) * 2015-03-25 2018-08-01 三菱電機株式会社 Cold plate
JP6906440B2 (en) * 2017-12-26 2021-07-21 三菱電機株式会社 Flying body
JP7129935B2 (en) * 2019-03-18 2022-09-02 三菱電機株式会社 Cooling plate and projectile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215786U (en) * 1988-07-15 1990-01-31
JP2845221B2 (en) * 1996-10-25 1999-01-13 日本電気株式会社 Latent heat type heat sink
US6202739B1 (en) * 1998-11-25 2001-03-20 Motorola, Inc. Apparatus including a heat-dissipating apparatus, and method for forming same
JP2004247423A (en) * 2003-02-12 2004-09-02 Koyo Seiko Co Ltd Cooler
JP4863811B2 (en) * 2006-08-02 2012-01-25 オムロンオートモーティブエレクトロニクス株式会社 Electronics
CN103608638B (en) * 2011-06-08 2015-11-25 夏普株式会社 Thermal storage member

Also Published As

Publication number Publication date
JP2016008785A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6403664B2 (en) Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
US8937383B2 (en) Direct semiconductor contact ebullient cooling package
JP2004259941A (en) Casing structure of electronic device and radiation method therefor
US20140015119A1 (en) Semiconductor device/electronic component mounting structure
US9362199B2 (en) Chip thermal dissipation structure
US20060060952A1 (en) Heat spreader for non-uniform power dissipation
JP6361315B2 (en) Cold plate
JP2009026818A (en) Electronic apparatus
US10930579B2 (en) Self-contained liquid cooled semiconductor packaging
US20090151905A1 (en) Heat sink with vapor chamber
JPWO2019194089A1 (en) Electronics
JP6365370B2 (en) Cold plate
JP6115264B2 (en) Cold plate
JP2008004688A (en) Semiconductor package
JP4351185B2 (en) Semiconductor module cooling device
JP6701701B2 (en) Inverter device
JPH01248551A (en) Semiconductor package
JP2007115965A (en) Electronic apparatus
JP4863811B2 (en) Electronics
JP6848417B2 (en) Cooling system
US20230207422A1 (en) Heat spreader for a semiconductor package
TWM531580U (en) Heat dissipation fins
JP2018181973A (en) Electronics device
JP6849118B2 (en) Inverter device
JP2006073744A (en) Heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250