JP6359906B2 - Method for producing fluoromalonic ester derivative - Google Patents

Method for producing fluoromalonic ester derivative Download PDF

Info

Publication number
JP6359906B2
JP6359906B2 JP2014150879A JP2014150879A JP6359906B2 JP 6359906 B2 JP6359906 B2 JP 6359906B2 JP 2014150879 A JP2014150879 A JP 2014150879A JP 2014150879 A JP2014150879 A JP 2014150879A JP 6359906 B2 JP6359906 B2 JP 6359906B2
Authority
JP
Japan
Prior art keywords
fluoromalonate
diethyl
mmol
fluoro
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014150879A
Other languages
Japanese (ja)
Other versions
JP2016023178A (en
Inventor
哲男 柴田
哲男 柴田
香川 巧
巧 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Nagoya Institute of Technology NUC
Original Assignee
Tosoh Finechem Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp, Nagoya Institute of Technology NUC filed Critical Tosoh Finechem Corp
Priority to JP2014150879A priority Critical patent/JP6359906B2/en
Publication of JP2016023178A publication Critical patent/JP2016023178A/en
Application granted granted Critical
Publication of JP6359906B2 publication Critical patent/JP6359906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はフルオロマロン酸エステル誘導体の新規製造方法に関する。フルオロマロン酸エステル誘導体は、電子材料原料や医・農薬の製造中間体として有用な化合物である。   The present invention relates to a novel process for producing a fluoromalonic ester derivative. Fluoromalonate derivatives are useful compounds as raw materials for electronic materials and as intermediates for the production of medicines and agricultural chemicals.

従来より、フッ素ガスにより直接フッ素化しフルオロマロン酸エステル誘導体を得る方法としては、硝酸銅触媒存在下実施する方法(例えば特許文献1、非特許文献1参照)、マロン酸ジエチルを水素化ナトリウムによりナトリウム塩とした後に実施する方法(例えば特許文献2参照)が知られている。
また、クロロマロン酸ジエチルをアミン類のフッ化水素塩により、フッ素置換する方法(例えば特許文献3参照)、トリフルオロアクリル酸塩をエタノールと反応させ得る方法(例えば非特許文献2参照)等が知られている。
Conventionally, as a method of directly fluorinating with fluorine gas to obtain a fluoromalonic ester derivative, a method carried out in the presence of a copper nitrate catalyst (see, for example, Patent Document 1 and Non-Patent Document 1), diethyl malonate is sodium by sodium hydride A method to be carried out after forming a salt (for example, see Patent Document 2) is known.
In addition, a method in which diethyl chloromalonate is fluorine-substituted with a hydrogen fluoride salt of an amine (for example, see Patent Document 3), a method in which trifluoroacrylate can be reacted with ethanol (for example, see Non-Patent Document 2), etc. Are known.

さらに、フッ素化剤として、N−フルオロピリジニウム塩を用いる方法(例えば非特許文献3参照)、二フッ化キセノンを用いる方法(例えば非特許文献4参照)、並びに1−フルオロ−2−ピリドンを用いる方法(例えば非特許文献5参照)が知られている。
このような特許文献1及び非特許文献2に記載の方法はフッ素ガスを用いるために、安全上の課題があり、また多くの場合において低収率である。特許文献2に記載の方法は、生成物の分離が困難なフルオロマロン酸ジエチルとジフルオロマロン酸ジエチルの混合物となる課題がある。
Furthermore, as a fluorinating agent, a method using an N-fluoropyridinium salt (see, for example, Non-Patent Document 3), a method using xenon difluoride (see, for example, Non-Patent Document 4), and 1-fluoro-2-pyridone are used. A method (for example, see Non-Patent Document 5) is known.
Since the methods described in Patent Document 1 and Non-Patent Document 2 use fluorine gas, there are safety problems, and in many cases, the yield is low. The method described in Patent Document 2 has a problem of becoming a mixture of diethyl fluoromalonate and diethyl difluoromalonate, in which separation of the product is difficult.

一方、特許文献3に記載の方法は、あらかじめクロロマロン酸ジエチルを調製する必要があり、多段の反応で製造工程が長くなるという課題がある。非特許文献2に記載の方法は、フッ素原子が3個導入された原料を分解することにより製造しており、高価なフッ素を2個分廃液として廃棄するという課題がある。
さらに、非特許文献3、非特許文献4、非特許文献5に記載の方法は、高価なフッ素化剤を用いるために、工業的規模での生産には適用することができない場合がある。
On the other hand, in the method described in Patent Document 3, it is necessary to prepare diethyl chloromalonate in advance, and there is a problem that the production process becomes long in a multistage reaction. The method described in Non-Patent Document 2 is produced by decomposing a raw material into which three fluorine atoms have been introduced, and has a problem that two expensive fluorines are discarded as waste liquid.
Furthermore, the methods described in Non-Patent Document 3, Non-Patent Document 4, and Non-Patent Document 5 may not be applicable to production on an industrial scale because an expensive fluorinating agent is used.

特表2001−510173号公報Special table 2001-510173 gazette 特表平11−507938号公報Japanese National Patent Publication No. 11-507938 特表2004−537502号公報JP-T-2004-537502

R. D. チャンバース(Chambers)等, ジャーナル オブ フロライン ケミストリー(J. Fluorine Chem.), 1988, 92, 45R. D. Chambers et al., Journal of Fluorine Chem., 1988, 92, 45 T. フチカミ(Fuchikami)等, ケミストリー レターズ(Chemistry Lett.), 1573(1984)T. Fuchikami et al., Chemistry Lett., 1573 (1984) T. ウメモト(Umemoto)等, ジャーナル オブ アメリカン ケミカル ソサエティ(J. Am. Chem. Soc.), 1990, 112, 8563T. Umemoto et al., Journal of American Chemical Society (J. Am. Chem. Soc.), 1990, 112, 8563 T. B. パトリック(Patrick)ら, ジャーナル オブ フロライン ケミストリー(J. Fluorine Chem.), 1988, 39, 415T. B. Patrick et al., Journal of Florine Chem., 1988, 39, 415 S. T. プリントン(Purrington)等, ザ・ジャーナル・オブ・オーガニック・ケミストリー(The Journal of Organic Chemistry), 1983, 48, 761S. T. Purrington et al., The Journal of Organic Chemistry, 1983, 48, 761

本発明の目的は、従来の課題を克服し、工業的に実施可能なモノフルオロマロン酸エステル誘導体の製造方法を提供することにある。   An object of the present invention is to overcome the conventional problems and provide a process for producing a monofluoromalonic ester derivative that can be carried out industrially.

本発明者らは、モノフルオロマロン酸エステル誘導体の製造方法について鋭意検討した結果、ルイス酸存在下、マロン酸エステル誘導体を、安価に調製可能なN−フルオロビス(メタンスルホニル)イミドを反応させることにより、比較的高い収率でモノフルオロマロン酸エステル誘導体が得られる方法を見出し、本発明を完成させるに至った。
すなわち本発明は、下記一般式(1)
As a result of intensive studies on a method for producing a monofluoromalonic acid ester derivative, the present inventors reacted a malonic acid ester derivative with N-fluorobis (methanesulfonyl) imide, which can be prepared at low cost, in the presence of a Lewis acid. Thus, a method for obtaining a monofluoromalonic acid ester derivative with a relatively high yield was found, and the present invention was completed.
That is, the present invention provides the following general formula (1)

Figure 0006359906
Figure 0006359906

(式(1)中、R1及びR2は各々独立して、メチル基、エチル基、炭素数3〜4の直鎖、分岐若しくは環式のアルキル基、フェニル基又はベンジル基を示し、R3は水素原子、メチル基又はエチル基を示す)
で表されるマロン酸エステル誘導体を、ルイス酸存在下、N−フルオロビス(メタンスルホニル)イミドと反応させる、下記一般式(2)
(In the formula (1), R 1 and R 2 each independently represent a methyl group, an ethyl group, a linear, branched or cyclic alkyl group having 3 to 4 carbon atoms, a phenyl group or a benzyl group; 3 represents a hydrogen atom, a methyl group or an ethyl group)
Is reacted with N-fluorobis (methanesulfonyl) imide in the presence of a Lewis acid, and the following general formula (2):

Figure 0006359906
Figure 0006359906

(式(2)中、R1、R2及びR3は前記式(1)に同じ)
で表されるモノフルオロマロン酸エステル誘導体の製造方法に係るものである。
(In the formula (2), R 1 , R 2 and R 3 are the same as the formula (1))
It concerns on the manufacturing method of the monofluoromalonic acid ester derivative represented by these.

本発明により、電子材料原料や医農薬の合成中間体として有用な、フルオロマロン酸エステル誘導体の簡便な製造方法が提供された。   INDUSTRIAL APPLICABILITY According to the present invention, a simple method for producing a fluoromalonic ester derivative useful as an electronic material raw material or a synthetic intermediate for medical and agricultural chemicals is provided.

以下、本発明を詳細に説明する。
本発明のテトラアルキルオルトチタネート類とは、テトラメチルオルトチタネート、テトラエチルオルトチタネート、テトラ−n−プロピルオルトチタネート、テトラ−iso−プロピルオルトチタネート、テトラ−n−ブチルオルトチタネート、テトラ−iso−ブチルオルトチタネートを示す。
Hereinafter, the present invention will be described in detail.
The tetraalkyl orthotitanates of the present invention are tetramethyl orthotitanate, tetraethyl orthotitanate, tetra-n-propyl orthotitanate, tetra-iso-propyl orthotitanate, tetra-n-butyl orthotitanate, tetra-iso-butyl ortho. Titanate is shown.

本発明に用いられる一般式(1)で表されるマロン酸エステル誘導体としては、具体的には例えば、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジ−n−プロピル、マロン酸ジ−iso−プロピル、マロン酸ジ−n−ブチル、マロン酸ジ−iso−ブチル、マロン酸ジ−tert−ブチル、マロン酸ジ−n−ペンチル、マロン酸時ジ−シクロペンチル、マロン酸ジ−n−ヘキシル、マロン酸ジ−シクロヘキシル、マロン酸tert−ブチル−エチル、マロン酸ジフェニル、マロン酸ジベンジル、2−メチルマロン酸ジメチル、2−メチルマロン酸ジエチル、2−メチルマロン酸ジ−n−プロピル、2−メチルマロン酸ジ−iso−プロピル、2−メチルマロン酸ジ−n−ブチル、2−メチルマロン酸ジ−iso−ブチル、2−メチルマロン酸ジ−tert−ブチル、2−メチルマロン酸ジ−n−ペンチル、2−メチルマロン酸時ジ−シクロペンチル、2−メチルマロン酸ジ−n−ヘキシル、2−メチルマロン酸ジ−シクロヘキシル、2−メチルマロン酸tert−ブチル−エチル、2−メチルマロン酸ジフェニル、2−メチルマロン酸ジベンジル2−エチルマロン酸ジメチル、2−エチルマロン酸ジエチル、2−エチルマロン酸ジ−n−プロピル、2−エチルマロン酸ジ−iso−プロピル、2−エチルマロン酸ジ−n−ブチル、2−エチルマロン酸ジ−iso−ブチル、2−エチルマロン酸ジ−tert−ブチル、2−エチルマロン酸ジ−n−ペンチル、2−エチルマロン酸時ジ−シクロペンチル、2−エチルマロン酸ジ−n−ヘキシル、2−エチルマロン酸ジ−シクロヘキシル、2−エチルマロン酸tert−ブチル−エチル、2−エチルマロン酸ジフェニル、2−エチルマロン酸ジベンジル等が挙げられる。   Specific examples of the malonic acid ester derivative represented by the general formula (1) used in the present invention include dimethyl malonate, diethyl malonate, di-n-propyl malonate, and di-iso-propyl malonate. Di-n-butyl malonate, di-iso-butyl malonate, di-tert-butyl malonate, di-n-pentyl malonate, di-cyclopentyl malonate, di-n-hexyl malonate, malonic acid Di-cyclohexyl, tert-butyl-ethyl malonate, diphenyl malonate, dibenzyl malonate, dimethyl 2-methylmalonate, diethyl 2-methylmalonate, di-n-propyl 2-methylmalonate, 2-methylmalonic acid Di-iso-propyl, 2-methylmalonate di-n-butyl, 2-methylmalonate di-iso-butyl, 2-methylmalo Di-tert-butyl acid, di-n-pentyl 2-methylmalonate, di-cyclopentyl at 2-methylmalonic acid, di-n-hexyl 2-methylmalonate, di-cyclohexyl 2-methylmalonate, 2- Tert-butyl-ethyl methylmalonate, diphenyl 2-methylmalonate, dibenzyl 2-methylmalonate, dimethyl 2-ethylmalonate, diethyl 2-ethylmalonate, di-n-propyl 2-ethylmalonate, 2-ethyl Di-iso-propyl malonate, di-n-butyl 2-ethylmalonate, di-iso-butyl 2-ethylmalonate, di-tert-butyl 2-ethylmalonate, di-n-2-ethylmalonate Pentyl, 2-ethylmalonic acid di-cyclopentyl, 2-ethylmalonic acid di-n-hexyl, 2-ethylmalonic acid di-cyclohexyl Le, butyl tert 2-ethyl malonate - ethyl, 2-ethyl malonic acid diphenyl, 2-ethyl malonic acid dibenzyl, and the like.

本発明により得られる一般式(2)で表わされるフルオロマロン酸エステル誘導体としては、具体的には例えば、フルオロマロン酸ジメチル、フルオロマロン酸ジエチル、フルオロマロン酸ジ−n−プロピル、フルオロマロン酸ジ−iso−プロピル、フルオロマロン酸ジ−n−ブチル、フルオロマロン酸ジ−iso−ブチル、フルオロマロン酸ジ−tert−ブチル、フルオロマロン酸ジ−n−ペンチル、フルオロマロン酸時ジ−シクロペンチル、フルオロマロン酸ジ−n−ヘキシル、フルオロマロン酸ジ−シクロヘキシル、フルオロマロン酸tert−ブチル−エチル、フルオロマロン酸ジフェニル、フルオロマロン酸ジベンジル、2−フルオロ−2−メチルマロン酸ジメチル、2−フルオロ−2−メチルマロン酸ジエチル、2−フルオロ−2−メチルマロン酸ジ−n−プロピル、2−フルオロ−2−メチルマロン酸ジ−iso−プロピル、2−フルオロ−2−メチルマロン酸ジ−n−ブチル、2−フルオロ−2−メチルマロン酸ジ−iso−ブチル、2−フルオロ−2−メチルマロン酸ジ−tert−ブチル、2−フルオロ−2−メチルマロン酸ジ−n−ペンチル、2−フルオロ−2−メチルマロン酸ジ−シクロペンチル、2−フルオロ−2−メチルマロン酸ジ−n−ヘキシル、2−フルオロ−2−メチルマロン酸ジ−シクロヘキシル、2−フルオロ−2−メチルマロン酸tert−ブチル−エチル、2−フルオロ−2−メチルマロン酸ジフェニル、2−フルオロ−2−メチルマロン酸ジベンジル、2−フルオロ−2−エチルマロン酸ジメチル、2−フルオロ−2−エチルマロン酸ジエチル、2−フルオロ−2−エチルマロン酸ジ−n−プロピル、2−フルオロ−2−エチルマロン酸ジ−iso−プロピル、2−フルオロ−2−エチルマロン酸ジ−n−ブチル、2−フルオロ−2−エチルマロン酸ジ−iso−ブチル、2−フルオロ−2−エチルマロン酸ジ−tert−ブチル、2−フルオロ−2−エチルマロン酸ジ−n−ペンチル、2−フルオロ−2−エチルマロン酸時ジ−シクロペンチル、2−フルオロ−2−エチルマロン酸ジ−n−ヘキシル、2−フルオロ−2−エチルマロン酸ジ−シクロヘキシル、2−フルオロ−2−エチルマロン酸tert−ブチル−エチル、2−フルオロ−2−エチルマロン酸ジフェニル、2−フルオロ−2−エチルマロン酸ジベンジル等が挙げられる。   Specific examples of the fluoromalonic acid ester derivative represented by the general formula (2) obtained by the present invention include dimethyl fluoromalonate, diethyl fluoromalonate, di-n-propyl fluoromalonate, and difluoromalonate. -Iso-propyl, di-n-butyl fluoromalonate, di-iso-butyl fluoromalonate, di-tert-butyl fluoromalonate, di-n-pentyl fluoromalonate, di-cyclopentyl at fluoromalonic acid, fluoro Di-n-hexyl malonate, di-cyclohexyl fluoromalonate, tert-butyl-ethyl fluoromalonate, diphenyl fluoromalonate, dibenzyl fluoromalonate, dimethyl 2-fluoro-2-methylmalonate, 2-fluoro-2 -Diethyl methylmalonate, 2-fluoro 2-methylmalonate di-n-propyl, 2-fluoro-2-methylmalonate di-iso-propyl, 2-fluoro-2-methylmalonate di-n-butyl, 2-fluoro-2-methylmalon Di-iso-butyl acid, di-tert-butyl 2-fluoro-2-methylmalonate, di-n-pentyl 2-fluoro-2-methylmalonate, di-cyclopentyl 2-fluoro-2-methylmalonate, 2-fluoro-2-methylmalonate di-n-hexyl, 2-fluoro-2-methylmalonate di-cyclohexyl, 2-fluoro-2-methylmalonate tert-butyl-ethyl, 2-fluoro-2-methyl Diphenyl malonate, dibenzyl 2-fluoro-2-methylmalonate, dimethyl 2-fluoro-2-ethylmalonate, 2-fluoro-2-ethylmalonate Diethyl diethyl, 2-fluoro-2-ethylmalonate di-n-propyl, 2-fluoro-2-ethylmalonate di-iso-propyl, 2-fluoro-2-ethylmalonate di-n-butyl, 2 -Fluoro-2-ethylmalonate di-iso-butyl, 2-fluoro-2-ethylmalonate di-tert-butyl, 2-fluoro-2-ethylmalonate di-n-pentyl, 2-fluoro-2- Di-cyclopentyl at the time of ethylmalonic acid, di-n-hexyl 2-fluoro-2-ethylmalonate, di-cyclohexyl 2-fluoro-2-ethylmalonate, tert-butyl-ethyl 2-fluoro-2-ethylmalonate , 2-fluoro-2-ethylmalonate diphenyl, 2-fluoro-2-ethylmalonate dibenzyl and the like.

本発明に用いられるN−フルオロビス(メタンスルホニル)イミドの使用量は、反応に具する一般式(1)で表わされるマロン酸エステル誘導体に対して、1.0モル倍量〜5.0モル倍量とするとよいが、過剰の使用は経済的ではないことがあるため、好ましくは、1.0モル倍量〜3.0モル倍量の範囲である。
本発明に適用可能なルイス酸としては、具体的には例えば、テトラアルキルオルトチタネートとは、テトラメチルオルトチタネート、テトラエチルオルトチタネート、テトラ−n−プロピルオルトチタネート、テトラ−iso−プロピルオルトチタネート、テトラ−n−ブチルオルトチタネート、テトラ−iso−ブチルオルトチタネート等の前記テトラアルキルオルトチタネート類、スカンジウム(III)トリフラート、ランタン(III)トリフラート、イッテルビウム(III)トリフラート等の希土類トリフラート類等が挙げられ、反応に具する一般式(1)で表わされるマロン酸エステル誘導体に対して、0.3モル倍量〜3.0モル倍量使用するとよい。
The amount of N-fluorobis (methanesulfonyl) imide used in the present invention is 1.0 mol times to 5.0 mol with respect to the malonic ester derivative represented by the general formula (1) included in the reaction. The amount is preferably doubled, but since excessive use may not be economical, it is preferably in the range of 1.0 mole-fold to 3.0 mole-fold.
Specific examples of the Lewis acid applicable to the present invention include tetraalkyl orthotitanate, tetramethyl orthotitanate, tetraethyl orthotitanate, tetra-n-propyl orthotitanate, tetra-iso-propyl orthotitanate, tetra -N-butyl orthotitanate, tetraalkyl orthotitanates such as tetra-iso-butyl orthotitanate, scandium (III) triflate, lanthanum (III) triflate, rare earth triflates such as ytterbium (III) triflate, etc. It is good to use 0.3 mol fold amount-3.0 mol fold amount with respect to the malonic ester derivative represented by General formula (1) with which reaction is carried out.

本発明に使用可能な溶剤としては、反応に不活性なものであれば特に制限はないが、具体的には例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン等の塩素化脂肪族炭化水素系溶剤、ベンゼン、トルエン、エチルベンゼン、キシレン、クメン、メシチレン等の芳香族炭化水素系溶剤、ベンゾトリフルオリド等のフッ素化芳香族炭化水素系溶剤等の非極性溶剤が挙げられ、反応に具する一般式(1)で表わされるマロン酸エステル誘導体に対して、5重量倍量〜100重量倍量使用するとよい。   The solvent that can be used in the present invention is not particularly limited as long as it is inert to the reaction. Specifically, for example, chlorinated aliphatic hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane, etc. Non-polar solvents such as benzene, toluene, ethylbenzene, xylene, cumene, mesitylene and other aromatic hydrocarbon solvents, and fluorinated aromatic hydrocarbon solvents such as benzotrifluoride, etc. It is recommended to use 5 to 100 times by weight of the malonic ester derivative represented by 1).

本発明の反応温度及び時間は、0℃〜40℃の温度範囲で、6時間〜24時間反応を行うことにより反応は完結する。
本発明の反応後の後処理としては、周知の方法で実施可能であり、例えば、水や炭酸水素ナトリウム水溶液等を添加の後、ジクロロメタン等の溶剤で抽出、飽和食塩水で洗浄、硫酸ナトリウム等で乾燥、濃縮することにより粗製物を得るとよい。さらに必要に応じてシリカゲルカラムクロマトグラフィー等で精製を行っても良い。
The reaction temperature and time of the present invention are 0 to 40 ° C., and the reaction is completed by carrying out the reaction for 6 to 24 hours.
The post-treatment after the reaction of the present invention can be carried out by a known method. For example, after adding water or an aqueous sodium hydrogen carbonate solution, extraction with a solvent such as dichloromethane, washing with a saturated saline solution, sodium sulfate, etc. The crude product may be obtained by drying and concentrating on. Furthermore, you may refine | purify with silica gel column chromatography etc. as needed.

以下実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
なお収率の算出、化合物の同定には、1H−NMR及び19F−NMRはバリアン社製オックスフォード300(Varian Oxford 300)を使用し、MSスペクトルは島津社製LCMS−2010EV(Shimadzu LCMS−2010EV)を使用した。なお、1H−NMRの測定においては基準物質としてテトラメチルシラン(0.00ppm)を用い、19F−NMRの測定においては、基準及び内部標準物質としてヘキサフルオロベンゼン(−162.2ppm)を用いた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples.
For calculation of yield and identification of compounds, 1 H-NMR and 19 F-NMR used Varian Oxford 300 (Varian Oxford 300), and MS spectrum was Shimadzu LCMS-2010EV (Shimadzu LCMS-2010EV). )It was used. In the measurement of 1 H-NMR, tetramethylsilane (0.00 ppm) was used as the reference substance, and in the measurement of 19 F-NMR, hexafluorobenzene (-162.2 ppm) was used as the reference and internal standard substance. It was.

また、N−フルオロビス(メタンスルホニル)イミドは特表平8−512286号公報に従い、調製した。
実施例1 フルオロマロン酸ジエチル(3)の調製
Further, N-fluorobis (methanesulfonyl) imide was prepared according to JP-A-8-512286.
Example 1 Preparation of diethyl fluoromalonate (3)

Figure 0006359906
Figure 0006359906

撹拌子を備えた試験管にN−フルオロビス(メタンスルホニル)イミド(382.4mg,2.0mmol)及び1,2−ジクロロエタン(10mL)を仕込み、室温下、溶解させた。次いで、同溶液にマロン酸ジエチル(160.2mg,1.0mmol)及びテトラ−iso−プロポキシオルトチタネート(0.16mL,0.5mmol)を添加し、室温下、12時間反応を行った。反応終了後、水を添加、ジクロロメタン抽出(3回)、有機層を合わせて飽和食塩水で洗浄、無水硫酸ナトリウム上で乾燥、ろ過、濃縮し、粗製物を得た。   A test tube equipped with a stirrer was charged with N-fluorobis (methanesulfonyl) imide (382.4 mg, 2.0 mmol) and 1,2-dichloroethane (10 mL) and dissolved at room temperature. Next, diethyl malonate (160.2 mg, 1.0 mmol) and tetra-iso-propoxyorthotitanate (0.16 mL, 0.5 mmol) were added to the solution, and the reaction was performed at room temperature for 12 hours. After completion of the reaction, water was added, dichloromethane extraction (three times), the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率57%で目的物のフルオロマロン酸ジエチル(3)が生成していた。次いで、シリカゲルカラムクロマトグラフィー(トルエン/ジクロロメタン=50/50 vol/vol)で精製し、精製フルオロマロン酸ジエチルを無色透明液体として得た(89.0mg,0.50mmol、収率50%)。
1H−NMR(300MHz,CDCl3)δ1.34(t,J=7.2Hz,6H),4.32(q,J=6.9Hz,4H),5.28(d,J=48.3Hz,1H)。
19F−NMR(282MHz,CDCl3)δ−195.5(d,J=48.5Hz)。
LCMS(ESI,m/z)201[(M+Na)+]。
なお生成物の物性データーはジャナル・オブ・オルガニック・ケミストリー,1991,56,213−277(J.Org.Chem.,1991,56,213−277)に記載のフルオロマロン酸ジエチル(3)の物性値と一致した。
実施例2 フルオロマロン酸ジベンジル(4)の調製
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 57%. Subsequently, the product was purified by silica gel column chromatography (toluene / dichloromethane = 50/50 vol / vol) to obtain purified diethyl fluoromalonate as a colorless transparent liquid (89.0 mg, 0.50 mmol, yield 50%).
1 H-NMR (300 MHz, CDCl 3 ) δ 1.34 (t, J = 7.2 Hz, 6H), 4.32 (q, J = 6.9 Hz, 4H), 5.28 (d, J = 48. 3Hz, 1H).
19 F-NMR (282 MHz, CDCl 3 ) δ-195.5 (d, J = 48.5 Hz).
LCMS (ESI, m / z) 201 [(M + Na) + ].
The physical property data of the product is that of diethyl fluoromalonate (3) described in Janal of Organic Chemistry, 1991, 56, 213-277 (J. Org. Chem., 1991, 56, 213-277). Consistent with physical property values.
Example 2 Preparation of dibenzyl fluoromalonate (4)

Figure 0006359906
Figure 0006359906

実施例1と同じ反応装置を用い、マロン酸ジエチル(160.2mg,1.0mmol)に替えてマロン酸ジベンジル(284.3mg,1.0mmol)を用いた以外、実施例1と同じ操作を行い、粗製物を得た。
得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率63%で目的物のフルオロマロン酸ジベンジル(4)が生成していた。次いで、シリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=50/50 vol/vol)で精製し、精製フルオロマロン酸ジベンジルを無色透明液体として得た(178.4mg,0.59mmol、収率59%)。
1H−NMR(300MHz,CDCl3)δ5.19−5.35(m,5H),7.33(bs,10H)。
19F−NMR(282MHz,CDCl3)δ−192.2(d,J=50.0Hz)。
LCMS(ESI,m/z)325[(M+Na)+]。
なお生成物の物性データーはテトラヘドロン,1991,47,1001−1012(Tetrahedron,1991,47,1001−1012)に記載のフルオロマロン酸ジベンジル(4)の物性値と一致した。
実施例3 フルオロマロン酸ジ−tert−ブチル(5)の調製
Using the same reactor as in Example 1, the same procedure as in Example 1 was performed, except that dibenzyl malonate (284.3 mg, 1.0 mmol) was used instead of diethyl malonate (160.2 mg, 1.0 mmol). A crude product was obtained.
The obtained crude product was subjected to 19 F-NMR measurement using hexafluorobenzene as an internal standard, and the target dibenzyl fluoromalonate (4) was produced in a yield of 63%. Subsequently, the product was purified by silica gel column chromatography (hexane / dichloromethane = 50/50 vol / vol) to obtain purified dibenzyl fluoromalonate as a colorless transparent liquid (178.4 mg, 0.59 mmol, yield 59%).
1 H-NMR (300 MHz, CDCl 3 ) δ 5.19-5.35 (m, 5H), 7.33 (bs, 10H).
19 F-NMR (282 MHz, CDCl 3 ) δ-192.2 (d, J = 50.0 Hz).
LCMS (ESI, m / z) 325 [(M + Na) + ].
The physical property data of the product coincided with the physical property values of dibenzyl fluoromalonate (4) described in Tetrahedron, 1991, 47, 1001-1012 (Tetrahedron, 1991, 47, 1001-1012).
Example 3 Preparation of di-tert-butyl fluoromalonate (5)

Figure 0006359906
Figure 0006359906

実施例1と同じ反応装置を用い、マロン酸ジエチル(160.2mg,1.0mmol)に替えてマロン酸ジ−tert−ブチル(216.3mg,1.0mmol)を用いた以外、実施例1と同じ操作を行い、粗製物を得た。
得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率47%で目的物のフルオロマロン酸ジ−tert−ブチル(5)が生成していた。次いで、シリカゲルカラムクロマトグラフィー(トルエン/ヘキサン=80/20 vol/vol)で精製し、精製フルオロマロン酸ジ−tert−ブチルを無色透明液体として得た(93.7mg,0.40mmol、収率40%)。
1H−NMR(300MHz,CDCl3)δ1.49(s,18H),5.00(d,J=48.9Hz,1H)。
19F−NMR(282MHz,CDCl3)δ−193.2(d,J=49.4Hz)。
LCMS(ESI,m/z)257[(M+Na)+]。
なお生成物の物性データーはテトラヘドロン,1991,47,1001−1012(Tetrahedron,1991,47,1001−1012)に記載のフルオロマロン酸ジ−tert−ブチル(5)の物性値と一致した。
実施例4 フルオロマロン酸ジメチル(6)の調製
The same reactor as in Example 1 was used, except that di-tert-butyl malonate (216.3 mg, 1.0 mmol) was used instead of diethyl malonate (160.2 mg, 1.0 mmol). The same operation was performed to obtain a crude product.
The obtained crude product was subjected to 19 F-NMR measurement using hexafluorobenzene as an internal standard, and the target product, di-tert-butyl fluoromalonate (5), was produced in a yield of 47%. Subsequently, the residue was purified by silica gel column chromatography (toluene / hexane = 80/20 vol / vol) to obtain purified di-tert-butyl fluoromalonate as a colorless transparent liquid (93.7 mg, 0.40 mmol, yield 40). %).
1 H-NMR (300 MHz, CDCl 3 ) δ 1.49 (s, 18 H), 5.00 (d, J = 48.9 Hz, 1 H).
19 F-NMR (282 MHz, CDCl 3 ) δ-193.2 (d, J = 49.4 Hz).
LCMS (ESI, m / z) 257 [(M + Na) + ].
The physical property data of the product was consistent with the physical property values of di-tert-butyl fluoromalonate (5) described in Tetrahedron, 1991, 47, 1001-1012 (Tetrahedron, 1991, 47, 1001-1012).
Example 4 Preparation of dimethyl fluoromalonate (6)

Figure 0006359906
Figure 0006359906

実施例1と同じ反応装置を用い、マロン酸ジエチル(160.2mg,1.0mmol)に替えてマロン酸ジメチル(150.1mg,1.0mmol)を用いた以外、実施例1と同じ操作を行い、粗製物を得た。
得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率45%で目的物のフルオロマロン酸ジメチル(6)が生成していた。
実施例5 2−フルオロ−2−メチルマロン酸ジエチル(7)の調製
Using the same reactor as in Example 1, the same operation as in Example 1 was performed except that dimethyl malonate (150.1 mg, 1.0 mmol) was used instead of diethyl malonate (160.2 mg, 1.0 mmol). A crude product was obtained.
The obtained crude product was subjected to 19 F-NMR measurement using hexafluorobenzene as an internal standard, and the target product, dimethyl fluoromalonate (6), was produced in a yield of 45%.
Example 5 Preparation of diethyl 2-fluoro-2-methylmalonate (7)

Figure 0006359906
Figure 0006359906

撹拌子を備えた試験管にN−フルオロビス(メタンスルホニル)イミド(38.2mg,0.2mmol)及び1,2−ジクロロエタン(1.0mL)を仕込み、室温下、溶解させた。次いで、同溶液に2−メチルマロン酸ジエチル(17.4mg,0.1mmol)及びテトラ−iso−プロポキシオルトチタネート(0.016mL,0.05mmol)を添加し、室温下、12時間反応を行った。反応終了後、水を添加、ジクロロメタン抽出(3回)、有機層を合わせて飽和食塩水で洗浄、無水硫酸ナトリウム上で乾燥、ろ過、濃縮し、粗製物を得た。   A test tube equipped with a stirrer was charged with N-fluorobis (methanesulfonyl) imide (38.2 mg, 0.2 mmol) and 1,2-dichloroethane (1.0 mL) and dissolved at room temperature. Subsequently, diethyl 2-methylmalonate (17.4 mg, 0.1 mmol) and tetra-iso-propoxyorthotitanate (0.016 mL, 0.05 mmol) were added to the solution, and the reaction was performed at room temperature for 12 hours. . After completion of the reaction, water was added, dichloromethane extraction (three times), the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、定量的に目的物の2−フルオロ−2−メチルマロン酸ジエチルが生成していた。
次いで、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=10/90 vol/vol)で精製し、精製2−フルオロ−2−メチルマロン酸ジエチル(7)を無色透明液体として得た(18.7mg,0.097mmol、収率97%)。
1H−NMR(300MHz,CDCl3)δ1.29(t,J=7.2Hz,6H),1.79(d,J=21.9Hz,3H),4.30(q,J=7.2Hz,4H)。
19F−NMR(282MHz,CDCl3)δ−157.9(q,J=21.7Hz)。
LCMS(ESI,m/z)215[(M+Na)+]。
なお生成物の物性データーはダルトン・トランジッション,2005,1637−1643(Dalton Trans.,2005,1637−1643)に記載の2−フルオロ−2−メチルマロン酸ジエチル(7)の物性値と一致した。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl 2-fluoro-2-methylmalonate was produced quantitatively.
Subsequently, the residue was purified by silica gel column chromatography (ethyl acetate / hexane = 10/90 vol / vol) to obtain purified diethyl 2-fluoro-2-methylmalonate (7) as a colorless transparent liquid (18.7 mg, 0 0.097 mmol, 97% yield).
1 H-NMR (300 MHz, CDCl 3 ) δ 1.29 (t, J = 7.2 Hz, 6H), 1.79 (d, J = 21.9 Hz, 3H), 4.30 (q, J = 7. 2Hz, 4H).
19 F-NMR (282 MHz, CDCl 3 ) δ-157.9 (q, J = 21.7 Hz).
LCMS (ESI, m / z) 215 [(M + Na) + ].
The physical property data of the product was consistent with the physical property value of diethyl 2-fluoro-2-methylmalonate (7) described in Dalton Transition, 2005, 1637-1643 (Dalton Trans., 2005, 1637-1643).

実施例6 フルオロマロン酸ジエチル(3)の調製
撹拌子を備えた試験管にN−フルオロビス(メタンスルホニル)イミド(191.2mg,1.0mmol)及びジクロロメタン(10mL)を仕込み、室温下、溶解させた。次いで、同溶液にマロン酸ジエチル(160.2mg,1.0mmol)及びテトラ−iso−プロポキシオルトチタネート(0.10mL,0.3mmol)を添加し、室温下、12時間反応を行った。反応終了後、水を添加、ジクロロメタン抽出(3回)、有機層を合わせて飽和食塩水で洗浄、無水硫酸ナトリウム上で乾燥、ろ過、濃縮し、粗製物を得た。
Example 6 Preparation of diethyl fluoromalonate (3) A test tube equipped with a stir bar was charged with N-fluorobis (methanesulfonyl) imide (191.2 mg, 1.0 mmol) and dichloromethane (10 mL), and dissolved at room temperature. I let you. Next, diethyl malonate (160.2 mg, 1.0 mmol) and tetra-iso-propoxyorthotitanate (0.10 mL, 0.3 mmol) were added to the solution, and the reaction was performed at room temperature for 12 hours. After completion of the reaction, water was added, dichloromethane extraction (three times), the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率36%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例7 フルオロマロン酸ジエチル(3)の調製
実施例6と同じ反応装置を用い、N−フルオロビス(メタンスルホニル)イミド(191.2mg,1.0mmol)の量を(382.4mg,2.0mmmol)に替えた以外、実施例6と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the target diethyl fluoromalonate (3) was produced in a yield of 36%.
Example 7 Preparation of diethyl fluoromalonate (3) Using the same reactor as in Example 6, the amount of N-fluorobis (methanesulfonyl) imide (191.2 mg, 1.0 mmol) was (382.4 mg, 2. Except for changing to 0 mmol), the same reaction operation as in Example 6 was performed to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率49%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例8 フルオロマロン酸ジエチル(3)の調製
実施例6と同じ反応装置を用い、N−フルオロビス(メタンスルホニル)イミド(191.2mg,1.0mmol)の量を(382.4mg,2.0mmmol)に替え、テトラ−iso−プロポキシオルトチタネート(0.10mL,0.3mmol)の量を(0.16mL,0.5mmol)に替えた以外、実施例6と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the target diethyl fluoromalonate (3) was produced in a yield of 49%.
Example 8 Preparation of diethyl fluoromalonate (3) Using the same reactor as in Example 6, the amount of N-fluorobis (methanesulfonyl) imide (191.2 mg, 1.0 mmol) was (382.4 mg, 2. The reaction was performed in the same manner as in Example 6 except that the amount of tetra-iso-propoxyorthotitanate (0.10 mL, 0.3 mmol) was changed to (0.16 mL, 0.5 mmol). Obtained.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率75%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例9 フルオロマロン酸ジエチル(3)の調製
実施例6と同じ反応装置を用い、N−フルオロビス(メタンスルホニル)イミド(191.2mg,1.0mmol)の量を(382.4mg,2.0mmmol)に替え、テトラ−iso−プロポキシオルトチタネート(0.10mL,0.3mmol)の量を(0.36mL,1.0mmol)に替えた以外、実施例6と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 75%.
Example 9 Preparation of diethyl fluoromalonate (3) Using the same reactor as in Example 6, the amount of N-fluorobis (methanesulfonyl) imide (191.2 mg, 1.0 mmol) was (382.4 mg, 2. The reaction was performed in the same manner as in Example 6 except that the amount of tetra-iso-propoxyorthotitanate (0.10 mL, 0.3 mmol) was changed to (0.36 mL, 1.0 mmol). Obtained.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率73%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例10 フルオロマロン酸ジエチル(3)の調製
実施例6と同じ反応装置を用い、N−フルオロビス(メタンスルホニル)イミド(191.2mg,1.0mmol)の量を(382.4mg,2.0mmmol)に替え、テトラ−iso−プロポキシオルトチタネート(0.10mL,0.3mmol)の量を(0.72mL,2.0mmol)に替えた以外、実施例6と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 73%.
Example 10 Preparation of diethyl fluoromalonate (3) Using the same reactor as in Example 6, the amount of N-fluorobis (methanesulfonyl) imide (191.2 mg, 1.0 mmol) was (382.4 mg, 2. The reaction was performed in the same manner as in Example 6 except that the amount of tetra-iso-propoxyorthotitanate (0.10 mL, 0.3 mmol) was changed to (0.72 mL, 2.0 mmol). Obtained.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率76%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例11 フルオロマロン酸ジエチル(3)の調製
撹拌子を備えた試験管にN−フルオロビス(メタンスルホニル)イミド(383.4mg,2.0mmol)及びジクロロエタン(10mL)を仕込み、室温下、溶解させた。次いで、同溶液にマロン酸ジエチル(160.2mg,1.0mmol)及びイッテリビウムトリフラート(310.1mg,0.5mmol)を添加し、室温下、12時間反応を行った。反応終了後、水を添加、ジクロロメタン抽出(3回)、有機層を合わせて飽和食塩水で洗浄、無水硫酸ナトリウム上で乾燥、ろ過、濃縮し、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the target diethyl fluoromalonate (3) was produced in a yield of 76%.
Example 11 Preparation of diethyl fluoromalonate (3) A test tube equipped with a stir bar was charged with N-fluorobis (methanesulfonyl) imide (383.4 mg, 2.0 mmol) and dichloroethane (10 mL) and dissolved at room temperature. I let you. Next, diethyl malonate (160.2 mg, 1.0 mmol) and ytterbium triflate (310.1 mg, 0.5 mmol) were added to the solution, and the reaction was performed at room temperature for 12 hours. After completion of the reaction, water was added, dichloromethane extraction (three times), the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率9%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例12 フルオロマロン酸ジエチル(3)の調製
撹拌子を備えた試験管にN−フルオロビス(メタンスルホニル)イミド(383.4mg,2.0mmol)及びクロロホルム(10mL)を仕込み、室温下、溶解させた。次いで、同溶液にマロン酸ジエチル(160.2mg,1.0mmol)及びテトラ−iso−プロポキシオルトチタネート(0.16mL,0.5mmol)を添加し、室温下、12時間反応を行った。反応終了後、水を添加、ジクロロメタン抽出(3回)、有機層を合わせて飽和食塩水で洗浄、無水硫酸ナトリウム上で乾燥、ろ過、濃縮し、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 9%.
Example 12 Preparation of diethyl fluoromalonate (3) N-fluorobis (methanesulfonyl) imide (383.4 mg, 2.0 mmol) and chloroform (10 mL) were charged into a test tube equipped with a stir bar and dissolved at room temperature. I let you. Next, diethyl malonate (160.2 mg, 1.0 mmol) and tetra-iso-propoxyorthotitanate (0.16 mL, 0.5 mmol) were added to the solution, and the reaction was performed at room temperature for 12 hours. After completion of the reaction, water was added, dichloromethane extraction (three times), the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a crude product.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率75%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例13 フルオロマロン酸ジエチル(3)の調製
実施例12と同じ反応装置を用い、クロロホルム(10mL)に替えてトルエン(10mL)を用いた以外、実施例12と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 75%.
Example 13 Preparation of diethyl fluoromalonate (3) Using the same reaction apparatus as in Example 12, except that toluene (10 mL) was used instead of chloroform (10 mL), the crude product was obtained. Obtained.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率81%で目的物のフルオロマロン酸ジエチル(3)が生成していた。
実施例14 フルオロマロン酸ジエチル(3)の調製
実施例12と同じ反応装置を用い、クロロホルム(10mL)に替えてベンゾトリフルオリド(10mL)を用いた以外、実施例12と同じ反応操作行い、粗製物を得た。
In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate (3) was produced in a yield of 81%.
Example 14 Preparation of diethyl fluoromalonate (3) Using the same reaction apparatus as in Example 12, except that benzotrifluoride (10 mL) was used instead of chloroform (10 mL), the same reaction operation as in Example 12 was performed. I got a thing.

得られた粗製物を、ヘキサフルオロベンゼンを内部標準として用いた19F−NMR測定において、収率77%で目的物のフルオロマロン酸ジエチルが生成していた。 In the 19 F-NMR measurement of the obtained crude product using hexafluorobenzene as an internal standard, the objective diethyl fluoromalonate was produced in a yield of 77%.

本発明により、フルオロマロン酸エステル誘導体の簡便な製造が可能となる。   According to the present invention, it is possible to easily produce a fluoromalonic ester derivative.

Claims (1)

下記一般式(1)
Figure 0006359906
(式(1)中、R及びRは各々独立して、メチル基、エチル基、炭素数3〜4の直鎖、分岐若しくは環式のアルキル基、フェニル基又はベンジル基を示し、Rは水素原子を示す)
で表されるマロン酸エステル誘導体を、テトラアルコキシオルトチタネート類存在下、N−フルオロビス(メタンスルホニル)イミドと反応させる、下記一般式(2)
Figure 0006359906
(式(2)中、R、R及びRは前記式(1)に同じ)
で表されるフルオロマロン酸エステル誘導体の製造方法。
The following general formula (1)
Figure 0006359906
(In Formula (1), R 1 and R 2 each independently represent a methyl group, an ethyl group, a linear, branched or cyclic alkyl group having 3 to 4 carbon atoms, a phenyl group or a benzyl group; 3 is a hydrogen atom)
Is reacted with N-fluorobis (methanesulfonyl) imide in the presence of tetraalkoxy orthotitanates, the following general formula (2)
Figure 0006359906
(In the formula (2), R 1 , R 2 and R 3 are the same as the formula (1))
The manufacturing method of the fluoromalonic acid ester derivative represented by these.
JP2014150879A 2014-07-24 2014-07-24 Method for producing fluoromalonic ester derivative Active JP6359906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150879A JP6359906B2 (en) 2014-07-24 2014-07-24 Method for producing fluoromalonic ester derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150879A JP6359906B2 (en) 2014-07-24 2014-07-24 Method for producing fluoromalonic ester derivative

Publications (2)

Publication Number Publication Date
JP2016023178A JP2016023178A (en) 2016-02-08
JP6359906B2 true JP6359906B2 (en) 2018-07-18

Family

ID=55270268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150879A Active JP6359906B2 (en) 2014-07-24 2014-07-24 Method for producing fluoromalonic ester derivative

Country Status (1)

Country Link
JP (1) JP6359906B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313664C2 (en) * 1993-04-20 1996-12-05 Schering Ag N-fluoromethanesulfonimide, process for its preparation and its use
US5552533A (en) * 1994-09-14 1996-09-03 Alliedsignal Inc. Preparation of (8S)-8-fluoroerythromycins with N-F fluorinating agents
JP3638390B2 (en) * 1995-12-22 2005-04-13 エスエス製薬株式会社 Triazole derivative, process for producing the same, and medicament containing the compound as an active ingredient
JP2009091331A (en) * 2007-10-11 2009-04-30 Nagoya Institute Of Technology Method for preparing optically active fluoromalonic ester
US20130072712A1 (en) * 2010-05-24 2013-03-21 Nippon Shokubai Co, Ltd Alpha-substituted acrylate esters, composition containing thereof, and method for producing those

Also Published As

Publication number Publication date
JP2016023178A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Kananovich et al. Simple access to β-trifluoromethyl-substituted ketones via copper-catalyzed ring-opening trifluoromethylation of substituted cyclopropanols
JP2014201545A (en) METHOD OF MANUFACTURING 2-HYDROXYMETHYL-2,3-DIHYDRO-THIENO[3,4-b][1,4]DIOXIN-5,7-DICARBOXYLIC ACID DIALKYL ESTER
Olbrich et al. A step toward polytwistane: synthesis and characterization of C 2-symmetric tritwistane
TW201527263A (en) Method for producing methylene-disulfonic acid compound
WO2021066155A1 (en) Method for producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane)
JP6359906B2 (en) Method for producing fluoromalonic ester derivative
KR101763552B1 (en) Method for preparation of alkylated or fluoro, chloro and fluorochloro alkylated compounds by heterogeneous catalysis
JP2015224218A (en) Production method of perfluoroalkylperfluoroalkane sulfonate
RU2602240C1 (en) Reagent for introduction of perfluoro-tert-butyl group, method for production thereof and method for producing perfluoro-tert-butyl-substituted compounds
Chen et al. Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives
JP6962220B2 (en) Method for producing 1,2,3,5,6-pentathiepan
JP6236630B2 (en) Method for producing monofluoromalonic acid derivative
JP6236630B6 (en) Method for producing monofluoromalonic acid derivative
JP6055293B2 (en) Ether compound production method
EP3492449B1 (en) Process for the preparation of dihalobenzophenones, new chemicals useful for its implementation and methods for preparing said chemicals
JP5918624B2 (en) Optically active fluorine-containing 5,6-dihydropyridone derivative and process for producing the same
US7772443B2 (en) Iodine-containing fluoropolyether and process for producing the same
JP6920917B2 (en) 6-Hydroxy-2-naphthoic acid alkenyl ester and its production method
JP5365064B2 (en) Novel halogen-containing compounds and methods for producing them
CA3142008A1 (en) Processes for the preparation of halogenated dihydroxybenzene compounds
JP2009132630A (en) Method for producing benzoxathiin compound
JP2016108252A (en) Method for producing 1-alkoxy-2-alkanol compound
RU2612956C1 (en) Method for producing 1-adamantyl acetaldehyde
JP4364545B2 (en) Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same
EP3717493A1 (en) New cycloadduct precursors of dihalobenzophenones and preparations thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6359906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250