JP6350684B2 - Method for hydrometallizing nickel oxide ore - Google Patents

Method for hydrometallizing nickel oxide ore Download PDF

Info

Publication number
JP6350684B2
JP6350684B2 JP2017002344A JP2017002344A JP6350684B2 JP 6350684 B2 JP6350684 B2 JP 6350684B2 JP 2017002344 A JP2017002344 A JP 2017002344A JP 2017002344 A JP2017002344 A JP 2017002344A JP 6350684 B2 JP6350684 B2 JP 6350684B2
Authority
JP
Japan
Prior art keywords
nickel
oxide ore
zinc
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002344A
Other languages
Japanese (ja)
Other versions
JP2018090889A (en
Inventor
智暁 米山
智暁 米山
敬介 柴山
敬介 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to PCT/JP2017/041381 priority Critical patent/WO2018101069A1/en
Priority to EP17876261.3A priority patent/EP3550040A4/en
Priority to AU2017369155A priority patent/AU2017369155B2/en
Publication of JP2018090889A publication Critical patent/JP2018090889A/en
Application granted granted Critical
Publication of JP6350684B2 publication Critical patent/JP6350684B2/en
Priority to PH12019501187A priority patent/PH12019501187B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods

Description

本発明は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法に関し、特にニッケル回収率を高めることが可能な湿式製錬方法に関する。   The present invention relates to a hydrometallurgical method using high-pressure acid leaching of nickel oxide ore, and more particularly to a hydrometallurgical method capable of increasing the nickel recovery rate.

ニッケル酸化鉱石の湿式製錬法の一つとして、硫酸を用いた高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスが知られている。このプロセスは、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬プロセスと異なり、高温下での酸化鉱の還元や乾燥工程がなく、一貫して湿式工程で処理するのでエネルギー的及びコスト的に有利である。また、ニッケル品位が50〜60質量%程度にまで濃縮されたニッケルとコバルトを含む硫化物(以下、ニッケルコバルト混合硫化物とも称する)を得ることができ、高純度なニッケルを精製しやすい特徴がある。   As one of the hydrometallurgical methods for nickel oxide ore, a high pressure acid leach (HPAL) process using sulfuric acid is known. Unlike the conventional dry smelting process, which is a conventional nickel oxide ore smelting process, this process does not involve reduction or drying of the oxide ore at high temperatures, and is consistently processed in a wet process, so it is energetic. And cost advantageous. In addition, it is possible to obtain a sulfide containing nickel and cobalt concentrated to a nickel quality of about 50 to 60% by mass (hereinafter also referred to as nickel cobalt mixed sulfide), and has a feature of easily purifying high-purity nickel. is there.

原料のニッケル酸化鉱石を高圧酸浸出してニッケルを製品として回収する場合は、一般的に下記の(a)〜(d)に示す工程に沿って処理を行う場合が多い。
(a)粉砕したニッケル酸化鉱石に水を加えてスラリーにした後、このスラリーに硫酸を添加してからオートクレーブ等の反応容器に装入し、高圧下で240〜280℃程度の温度に保持することでニッケル酸化鉱石に含まれるニッケルやコバルトなどの有価物を浸出させ、浸出後はスラリーを反応容器から取り出して沈降槽によってニッケルやコバルトを含む浸出液と浸出残渣とに固液分離する浸出及び固液分離工程。
(b)上記浸出液に中和剤を添加して所定のpHに調整した状態で鉄などの不純物を析出させ、得られた不純物の中和澱物を含む中和スラリーに凝結剤を添加して該中和澱物を固液分離することでニッケルやコバルトを含む中和後液(中和終液とも称する)を得る中和工程。
(c)上記中和後液に含まれる有価物のニッケルやコバルトを硫化させずに亜鉛及び銅のみを硫化物として除去すべく、上記中和後液に硫化剤をその添加量を適正範囲に制御しながら添加し、得られた硫化澱物(亜鉛澱物とも称する)を固液分離して脱亜鉛後液(脱亜鉛終液とも称する)を得る脱亜鉛工程。
(d)上記脱亜鉛後液に硫化剤を添加してニッケルコバルト混合硫化物を生成した後、この混合硫化物を分離して回収するニッケル回収工程。
When nickel oxide ore as a raw material is subjected to high-pressure acid leaching and nickel is recovered as a product, the treatment is generally performed in accordance with the following steps (a) to (d).
(A) After adding water to the crushed nickel oxide ore to make a slurry, sulfuric acid is added to the slurry, and then charged into a reaction vessel such as an autoclave, and kept at a temperature of about 240 to 280 ° C. under high pressure. Thus, valuable materials such as nickel and cobalt contained in the nickel oxide ore are leached, and after leaching, the slurry is taken out from the reaction vessel and separated into a leaching solution containing nickel and cobalt and a leaching residue by a settling tank. Liquid separation process.
(B) An impurity such as iron is precipitated in a state where a neutralizing agent is added to the leachate and adjusted to a predetermined pH, and a coagulant is added to the neutralized slurry containing neutralized starch of the obtained impurity. A neutralization step of obtaining a post-neutralization solution (also referred to as a neutralization end solution) containing nickel and cobalt by solid-liquid separation of the neutralized starch;
(C) In order to remove only zinc and copper as sulfides without sulphurizing valuable nickel and cobalt contained in the solution after neutralization, the addition amount of a sulfurizing agent in the solution after neutralization is within an appropriate range. A dezincification step in which the added sulfurized starch (also referred to as zinc starch) is solid-liquid separated to obtain a post-dezincification solution (also referred to as dezincification final solution) by adding while controlling.
(D) A nickel recovery step of separating and recovering the mixed sulfide after adding a sulfiding agent to the post-dezinced solution to form a nickel cobalt mixed sulfide.

例えば特許文献1には上記した高圧酸浸出法による湿式製錬法が開示されており、この湿式製錬法はニッケル酸化鉱石を硫酸で浸出してから固液分離する浸出工程と、得られた浸出液に中和剤を添加して不純物を含む中和澱物を生成し、これを除去して中和後液を得る中和工程と、該中和後液に硫化水素ガスを添加して亜鉛硫化物を生成し、これを除去してニッケル回収母液を得る脱亜鉛工程と、該母液に硫化水素ガスを添加してニッケル及びコバルトを混合硫化物として回収するニッケル回収工程とからなる。   For example, Patent Document 1 discloses a wet smelting method using the above-described high-pressure acid leaching method, and this wet smelting method was obtained by a leaching step of leaching nickel oxide ore with sulfuric acid and then solid-liquid separation. Neutralization step of adding neutralizing agent to leachate to produce neutralized starch containing impurities, removing this to obtain a neutralized solution, and adding hydrogen sulfide gas to the neutralized solution to add zinc It consists of a dezincification step in which sulfides are generated and removed to obtain a nickel recovery mother liquor, and a nickel recovery step in which hydrogen sulfide gas is added to the mother liquor to recover nickel and cobalt as mixed sulfides.

この特許文献1の方法は、中和工程において浸出液中に適宜浸出残渣を添加すると共に中和終液のpHを3.0〜3.5に調整し、更に脱亜鉛工程において該中和終液の濁度が100〜400NTU(Nephelometric Turbidity Unit)になるように該中和終液中に中和澱物及び浸出残渣からなる懸濁物を残留させた状態で硫化反応を行い、これにより得た硫化澱物を含むスラリーを脱亜鉛工程内のろ過工程で固液分離することで該硫化澱物とニッケル及びコバルトを含む終液とを得ている。   In the method of Patent Document 1, a leaching residue is appropriately added to the leachate in the neutralization step, the pH of the neutralization final solution is adjusted to 3.0 to 3.5, and the neutralization final solution is further removed in the dezincing step. A sulfidation reaction was carried out in a state in which a suspension consisting of neutralized starch and leach residue remained in the neutralized final solution so that the turbidity of the mixture became 100 to 400 NTU (Nephelometric Turbidity Unit). The slurry containing the sulfide starch is subjected to solid-liquid separation in the filtration step in the dezincification step to obtain the sulfide starch and a final solution containing nickel and cobalt.

特開2010−37626号公報JP 2010-37626 A

上記したようなニッケル酸化鉱石を原料とするHPALプロセスでは、その脱亜鉛工程においてニッケルの硫化澱物を生成する条件と亜鉛の硫化澱物を生成する条件とが互いに近似しており、しばしば亜鉛澱物中にニッケルが共沈してロスになる場合があった。ニッケルの回収率はプロセスの経済性に大きく影響するため、ニッケルのロスをできるだけ低減することが望まれている。   In the HPAL process using nickel oxide ore as a raw material as described above, the conditions for producing a nickel sulfide starch and the conditions for producing a zinc sulfide starch in the dezincification step are close to each other. In some cases, nickel co-precipitated into the material, resulting in loss. Since the recovery rate of nickel greatly affects the economics of the process, it is desired to reduce the nickel loss as much as possible.

本発明はかかる状況に鑑みてなされたものであり、ニッケル酸化鉱石の高圧酸浸出による湿式製錬法において、該ニッケル酸化鉱石に含まれる亜鉛の除去を行う際、亜鉛や銅などの不純物と共沈するニッケルの量を減少させてニッケル回収率を高めることが可能な湿式製錬方法を提供することを目的とする。   The present invention has been made in view of such a situation. In the hydrometallurgical method using high pressure acid leaching of nickel oxide ore, when removing zinc contained in the nickel oxide ore, it is necessary to coexist with impurities such as zinc and copper. An object of the present invention is to provide a hydrometallurgical method capable of increasing the nickel recovery rate by reducing the amount of nickel to be precipitated.

上記目的を達成するため、本発明者らは、ニッケル酸化鉱石を高圧酸浸出させて得た浸出液の中和処理後の中和後液に硫化剤を添加して硫化により脱亜鉛反応(硫化反応)を行う際、該脱亜鉛反応用の反応槽を2槽以上設けてそれらを直列に接続すると共にそれら反応槽に吹き込む硫化水素ガスの分配比率を調整することで、ニッケル回収率を高めることができることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors added a sulfidizing agent to the post-neutralization solution after neutralization of the leachate obtained by high-pressure acid leaching of nickel oxide ore, and dezincation reaction (sulfurization reaction) by sulfurization. 2), two or more reaction tanks for the dezincification reaction are provided, they are connected in series, and the distribution ratio of hydrogen sulfide gas blown into the reaction tanks is adjusted to increase the nickel recovery rate. The present inventors have found that this can be done and have completed the present invention.

すなわち、本発明のニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石を高圧下で酸浸出した後に浸出残渣を除去して浸出液を得る浸出工程と、該浸出液に中和剤を添加して生成した中和澱物を除去して中和後液を得る中和工程と、該中和後液に硫化水素ガスを吹き込んで生成した亜鉛澱物を除去して脱亜鉛後液を得る脱亜鉛工程と、該脱亜鉛後液に硫化剤を添加してニッケルを硫化物として回収するニッケル回収工程とで構成されるニッケル酸化鉱石の湿式製錬方法であって、前記脱亜鉛工程における前記硫化水素ガスの吹き込みは、直列に接続された2槽以上の反応槽内に前記中和後液を順次流しながら、全ての反応槽への硫化水素ガスの全吹込み量に対して先頭から2番目以降の反応槽への硫化水素ガスの吹込み量を50%以上90%以下に調整することを特徴としている。   That is, the method for hydrometallizing nickel oxide ore according to the present invention includes a leaching step in which leaching residue is removed after acid leaching of nickel oxide ore under high pressure to obtain a leachate, and a neutralizing agent is added to the leachate. Neutralization step of removing the neutralized starch to obtain a post-neutralization solution, and a dezincification step of removing the zinc starch produced by blowing hydrogen sulfide gas into the post-neutralization solution to obtain a post-dezincification solution And a nickel recovery process for recovering nickel as a sulfide by adding a sulfiding agent to the solution after dezincing, and the hydrogen sulfide gas in the dezincing step The second and subsequent steps from the top of the total amount of hydrogen sulfide gas blown into all the reaction tanks while the post-neutralized solution was sequentially flowed into two or more reaction tanks connected in series. 50% or more of hydrogen sulfide gas was blown into the reaction tank 9 % Are characterized by adjusting below.

本発明によれば、ニッケル酸化鉱石に含まれる亜鉛の除去を行う際、亜鉛や銅などの不純物と共沈するニッケルの量を減少させてニッケル回収率を高めることができる。   According to the present invention, when removing zinc contained in nickel oxide ore, the amount of nickel co-precipitated with impurities such as zinc and copper can be reduced to increase the nickel recovery rate.

本発明の一具体例のニッケル酸化鉱の湿式製錬方法を示すプロセスフロー図である。It is a process flowchart which shows the hydrometallurgy method of the nickel oxide ore of one specific example of this invention. 実施例で得た各試料の亜鉛硫化物の粒径とその生成時の硫化水素ガスの吹込み比との関係をプロットしたグラフである。It is the graph which plotted the relationship between the particle diameter of the zinc sulfide of each sample obtained in the Example, and the blowing ratio of the hydrogen sulfide gas at the time of the production | generation. 実施例で得た各試料の亜鉛硫化物のNi品位とその生成時の硫化水素ガスの吹込み比との関係をプロットしたグラフである。It is the graph which plotted the relationship between the Ni quality of the zinc sulfide of each sample obtained in the Example, and the blowing ratio of hydrogen sulfide gas at the time of the production. 実施例で得た各試料の亜鉛硫化物のNi品位と粒径との関係をプロットしたグラフである。It is the graph which plotted the relationship between the Ni quality of the zinc sulfide of each sample obtained in the Example, and a particle size.

以下、本発明の一具体例のニッケル酸化鉱石の湿式製錬方法について説明する。この湿式製錬方法は図1に示すように、先ず浸出工程S1において、原料のニッケル酸化鉱石をクラッシャーなどの粉砕手段によって粒状に細かくしてから水を添加してスラリー化し、このスラリーに硫酸を添加した後、オートクレーブ等の加圧容器に装入して例えば240~280℃の高温高圧下で硫酸浸出処理を行い、有価物であるニッケル及びコバルトを浸出させる。   Hereinafter, the hydrometallurgical method of nickel oxide ore of one specific example of the present invention will be described. As shown in FIG. 1, in this smelting method, first, in the leaching step S1, the raw material nickel oxide ore is finely granulated by a crushing means such as a crusher, and then water is added to form a slurry. After the addition, it is charged into a pressure vessel such as an autoclave and subjected to sulfuric acid leaching treatment at a high temperature and high pressure of, for example, 240 to 280 ° C. to leach valuable nickel and cobalt.

次に固液分離工程S2において、上記硫酸浸出で得たスラリーを多段階で洗浄した後、固液分離により該スラリーから浸出残渣を除去することでニッケル及びコバルト並びに不純物元素を含む浸出液を得る。次に中和工程S3において、該浸出液に中和剤として消石灰や炭酸カルシウムなどのアルカリを添加して該浸出液のpHを調整することで上記不純物元素を中和澱物として析出させた後、この中和澱物を含むスラリーに凝集剤(凝結剤)を添加してから固液分離することで該中和澱物を除去し、ニッケル及びコバルトを含む中和終液を得る。尚、中和工程S3で得た中和澱物を必要に応じて固液分離行程S2に繰り返してもよい。また、図1の点線に示すように、上記固液分離工程S2で得た浸出残渣の少なくとも一部を中和工程S3において浸出液に添加してもよい。   Next, in the solid-liquid separation step S2, the slurry obtained by the sulfuric acid leaching is washed in multiple stages, and then the leaching residue is removed from the slurry by solid-liquid separation to obtain a leachate containing nickel, cobalt, and impurity elements. Next, in the neutralization step S3, an alkali such as slaked lime or calcium carbonate is added to the leachate as a neutralizing agent, and the pH of the leachate is adjusted to precipitate the impurity elements as neutralized starch. A flocculant (coagulant) is added to the slurry containing the neutralized starch, followed by solid-liquid separation to remove the neutralized starch, thereby obtaining a neutralized final solution containing nickel and cobalt. In addition, you may repeat the neutralization starch obtained by neutralization process S3 to solid-liquid separation process S2 as needed. Moreover, as shown by the dotted line in FIG. 1, at least a part of the leaching residue obtained in the solid-liquid separation step S2 may be added to the leaching solution in the neutralization step S3.

次に脱亜鉛工程S4において、上記の該中和終液に硫化剤として硫化水素ガスを吹き込むことにより亜鉛を含む硫化澱物(亜鉛硫化物)を生成し、この硫化澱物を含むスラリーを固液分離することで亜鉛硫化物を除去して脱亜鉛後液を得る。最後にニッケル回収工程S5において、該脱亜鉛後液に硫化水素ガスなどの硫化剤を添加することによりニッケル及びコバルトを含むニッケルコバルト混合硫化物を生成し、該ニッケルコバルト混合硫化物を含むスラリーを固液分離することで該ニッケルコバルト混合硫化物を回収すると共に硫化後液(貧液)を得る。この貧液は、必要に応じて図1に示すように固液分離工程S2に繰り返してもよい。   Next, in the zinc removal step S4, hydrogen sulfide gas as a sulfiding agent is blown into the neutralized final solution to produce a sulfide containing zinc (zinc sulfide), and the slurry containing the sulfide is solidified. By separating the liquid, zinc sulfide is removed to obtain a liquid after dezincing. Finally, in nickel recovery step S5, a nickel-cobalt mixed sulfide containing nickel and cobalt is generated by adding a sulfiding agent such as hydrogen sulfide gas to the solution after dezincing, and a slurry containing the nickel-cobalt mixed sulfide is produced. The nickel-cobalt mixed sulfide is recovered by solid-liquid separation and a post-sulfurized liquid (poor liquid) is obtained. This poor solution may be repeated in the solid-liquid separation step S2 as shown in FIG. 1 as necessary.

本発明の湿式製錬方法の一具体例においては、上記の脱亜鉛工程S4において亜鉛を選択的に硫化物として析出及び沈降させてニッケル及びコバルトから分離する。その際、中和終液に硫化水素ガスを吹き込んで硫化反応を行う反応槽を2槽以上設け、これら複数の反応槽を直列に接続して中和工程で得た中和終液が順に流れるようにする。更に、これら全ての反応槽に吹き込む硫化水素ガスの量に対して、上記直列に接続した反応槽群のうち先頭から2槽目以降の反応槽に吹き込む硫化水素ガスの量の割合(以下「吹込み比」とも称する)を適切な範囲に調整する。これにより亜鉛や銅などの不純物と共沈するニッケルの量を減らすことができ、ニッケル回収率を高めることができる。   In one specific example of the hydrometallurgical method of the present invention, zinc is selectively precipitated and precipitated as a sulfide in the dezincing step S4 to separate it from nickel and cobalt. At that time, two or more reaction tanks for performing a sulfurization reaction by blowing hydrogen sulfide gas into the neutralized final liquid are provided, and the neutralized final liquid obtained in the neutralization process flows in order by connecting the plurality of reaction tanks in series. Like that. Furthermore, with respect to the amount of hydrogen sulfide gas blown into all these reaction tanks, the ratio of the amount of hydrogen sulfide gas blown into the reaction tanks after the first tank in the series of reaction tanks connected in series (hereinafter referred to as “blowing”). (Also referred to as “compression ratio”) to an appropriate range. Thereby, the amount of nickel co-precipitated with impurities such as zinc and copper can be reduced, and the nickel recovery rate can be increased.

具体的には、上記脱亜鉛工程S4において、脱亜鉛反応を行う反応槽を中和終液が流れる順に先頭からNo.1反応槽、No.2反応槽、No.3反応槽、・・・No.n反応槽のn個の反応槽で構成する場合、No.1反応槽からNo.n反応槽までの全ての反応槽への硫化水素ガスの全吹込み量に対するNo.2反応槽以降の(n−1)個の反応槽への硫化水素ガスの吹込み量(即ち吹込み比)を、50%〜90%の範囲内に調整する。これにより、亜鉛や銅などの不純物と共沈するニッケルの量を減らすことができる。   Specifically, in the dezincing step S4, the No. 1 reaction tank, No. 2 reaction tank, No. 3 reaction tank, etc. from the top in the order in which the neutralization final solution flows through the reaction tank in which the dezincification reaction is performed. When the reactor is composed of n reactors in the No. n reactor, the No. 2 reactor and the subsequent reactors with respect to the total amount of hydrogen sulfide gas injected into all reactors from the No. 1 reactor to the No. n reactor. The amount of hydrogen sulfide gas blown into (n-1) reactors (i.e., the blow-in ratio) is adjusted within the range of 50% to 90%. Thereby, the amount of nickel co-precipitated with impurities such as zinc and copper can be reduced.

更に、上記のように吹込み比を高めに設定することで、硫化澱物の粒径を大きく成長させることができる。その結果、脱亜鉛工程における固液分離性を高めることも可能になる。即ち、脱亜鉛工程では微細な粒子からなる硫化澱物が生成されやすく、これを含むスラリーをフィルタープレス等のろ過装置で固液分離すると、ろ布がすぐに目詰まりして通液量が低下するため、その回復のためにろ布の頻繁な逆洗や交換作業が必要になり、生産効率が低下することがあった。これに対して、上記の通り吹込み比を高めに設定することで硫化澱物の粒径が大きくなるのでろ過性が向上する。   Furthermore, by setting the blowing ratio higher as described above, the particle size of the sulfide starch can be increased. As a result, it becomes possible to improve the solid-liquid separation in the dezincing step. That is, in the dezincing process, sulfide starch consisting of fine particles is likely to be generated, and if the slurry containing this is solid-liquid separated with a filtration device such as a filter press, the filter cloth will be clogged immediately and the flow rate will decrease. Therefore, frequent backwashing and replacement work of the filter cloth is necessary for the recovery, and the production efficiency may be lowered. On the other hand, since the particle size of a sulfide starch becomes large by setting a blowing ratio high as above-mentioned, filterability improves.

上記のように、ニッケル回収率の向上に加えて固液分離性を高める場合は、上記吹込み比を60〜90%の範囲内に調整するのが好ましく、60〜85%の範囲内に調整するのがより好ましい。これにより、最終的に生成される亜鉛硫化物(「脱亜鉛澱物」とも称する)の粒径を大きくすることができ、後段のフィルタープレスなどのろ過装置におけるろ布の目詰まりを抑制することができる。その結果、当該ろ過装置の通液能力が向上するので生産性を高めることができる。このように吹込み比を増加することにより脱亜鉛澱物の粒径が大きく成長する理由は、吹込み比が増加すると、No.1反応槽において硫化反応の初期に発生する亜鉛を含む不純物の硫化物からなる微細粒子の数が減少し、その結果、No.2反応槽以降ではこれら少数の微粒子を核(「タネ」とも称する)として硫化物が成長するからである。   As described above, when improving the solid-liquid separation in addition to the improvement of the nickel recovery rate, it is preferable to adjust the blowing ratio within the range of 60 to 90%, and within the range of 60 to 85%. More preferably. This makes it possible to increase the particle size of the zinc sulfide (also referred to as “dezinced starch”) that is finally produced, and to prevent clogging of the filter cloth in a filtration device such as a subsequent filter press. Can do. As a result, the liquid passing capacity of the filtration device is improved, so that productivity can be increased. The reason why the particle size of the dezincified starch grows large by increasing the blowing ratio in this way is that when the blowing ratio is increased, in the No. 1 reaction tank, the impurities including zinc generated at the early stage of the sulfurization reaction This is because the number of fine particles made of sulfide decreases, and as a result, sulfide grows with these few fine particles as nuclei (also referred to as “seed”) in the No. 2 reaction tank and later.

上記の吹込み比が60%未満の場合、No.1反応槽に吹き込まれる硫化水素ガスの割合が相対的に多くなり、その結果No.1反応槽において核となる微細な亜鉛硫化物の粒子が過剰に生成されるので、No.2反応槽以降ではこれら多数の微細粒子を核として硫化物が成長していくので粒径の大きな亜鉛硫化物を得ることが難しくなる。逆に吹込み比が90%を超えた場合、No.1反応槽において核となる微細な亜鉛硫化物の生成が抑えられるのでタネの数が不足し、その結果No.2反応槽以降では粒子成長が不十分になるおそれがある。つまりNo.1反応槽には反応槽全体に供給する硫化水素ガスのうちの10%を超え且つ40%未満の量を吹き込むことでタネを安定的に生成することができる。具体的な吹込み比は、後段のろ過処理の際にろ布が容易に目詰まりしない程度にまで上記粒子が成長するように適宜調整すればよい。   When the above blowing ratio is less than 60%, the proportion of hydrogen sulfide gas blown into the No. 1 reaction tank is relatively high, and as a result, fine zinc sulfide particles that serve as nuclei in the No. 1 reaction tank Is excessively generated, and after the No. 2 reactor, the sulfide grows with these many fine particles as nuclei, so it is difficult to obtain a zinc sulfide having a large particle size. On the other hand, when the blowing ratio exceeds 90%, the production of fine zinc sulfide as a nucleus in the No. 1 reaction tank is suppressed, so the number of seeds is insufficient. Growth may be insufficient. That is, seeds can be stably generated by blowing more than 10% and less than 40% of the hydrogen sulfide gas supplied to the entire reaction tank into the No. 1 reaction tank. The specific blowing ratio may be appropriately adjusted so that the particles grow to such an extent that the filter cloth is not easily clogged during the subsequent filtration process.

尚、反応槽を直列に3槽以上設ける場合は、末尾に位置する反応槽には硫化水素ガスをあまり吹き込まずにバッファ槽としての役割を担わせてもよい。このように末尾に位置する反応槽をバッファ槽にすることで、それよりも上流側に位置する反応槽において処理液のショートパスが生じても当該バッファ槽において反応時間を確保することができるので、全体的な反応効率の低下を抑制できる。ただし、硫化反応が実質的に行われない反応槽が多いと、設備コストやエネルギーコストの無駄が多くなる上、これら余剰の反応槽に滞留したスラリーが、巻き込まれた空気により酸化されて脱亜鉛澱物が再溶解する等の問題を生じうるため、脱亜鉛反応を行う反応槽の数は3槽以下が好ましい。また、別途用意した亜鉛硫化物や固液分離により回収した亜鉛硫化物をタネとしてNo.1反応槽に供給してもよく、これにより、より粗大な亜鉛硫化物を生成させることができる。   When three or more reaction vessels are provided in series, the reaction vessel located at the end may serve as a buffer vessel without blowing much hydrogen sulfide gas. By making the reaction tank located at the end in this way a buffer tank, the reaction time can be ensured in the buffer tank even if a short path of the processing liquid occurs in the reaction tank located upstream of the reaction tank. , A decrease in the overall reaction efficiency can be suppressed. However, if there are many reaction tanks in which the sulfidation reaction is not substantially carried out, the waste of equipment costs and energy costs increases, and the slurry retained in these excess reaction tanks is oxidized by the entrained air and dezinced. The number of reaction tanks for performing the dezincification reaction is preferably 3 tanks or less because problems such as re-dissolution of starch may occur. Further, separately prepared zinc sulfide or zinc sulfide recovered by solid-liquid separation may be supplied as seed to the No. 1 reaction tank, whereby a coarser zinc sulfide can be generated.

上記の脱亜鉛工程S4では、pH2.5以上3.5以下の範囲で脱亜鉛反応を行うのが好ましい。このpHが2.5未満の場合、一度硫化物となった亜鉛が再溶解して亜鉛の分離が不十分となることがある。逆にpHが3.5を超えた場合、鉄やニッケルなどの除去対象でない元素までも沈澱し得るので後工程のろ過処理の際にろ布やろ過器への澱物負荷が増加し、特に鉄などの場合は微細な澱物を多く発生させるのでろ布の閉塞が促進されるので十分な通液速度を確保するために頻繁にろ布を逆洗する必要が生じ、生産効率が低下するおそれがある。   In the dezincing step S4 described above, it is preferable to carry out the dezincing reaction in the range of pH 2.5 to 3.5. When this pH is less than 2.5, zinc once converted to sulfide may be redissolved and separation of zinc may be insufficient. Conversely, when the pH exceeds 3.5, elements that are not subject to removal, such as iron and nickel, may precipitate, increasing the starch load on the filter cloth and filter during the subsequent filtration process, In the case of iron or the like, a lot of fine starch is generated, so that the filter cloth is clogged. Therefore, it is necessary to backwash the filter cloth frequently in order to ensure a sufficient flow rate, and the production efficiency decreases. There is a fear.

尚、上記脱亜鉛反応は、下記式1に示すように反応後に酸が生成するため、上記範囲に対して余裕を持たせる観点からpHを2.7以上3.0以下の範囲に維持しながら行うことがより好ましい。
[式1]
ZnSO+HS→ZnS+HSO
In the above dezincification reaction, an acid is generated after the reaction as shown in the following formula 1, so that the pH is maintained in the range of 2.7 to 3.0 from the viewpoint of giving a margin to the above range. More preferably.
[Formula 1]
ZnSO 4 + H 2 S → ZnS + H 2 SO 4

図1に示すプロセスフローに沿ってニッケル酸化鉱石を高温高圧浸出で湿式製錬し、ニッケルを硫化物の形態で回収した。具体的には、ラテライト鉱、サプロライト鉱、及びリモナイト鉱からなるニッケル酸化鉱石を硫酸と共に加圧容器としてのオートクレーブに入れ、蒸気ヒーターで240〜260℃の温度に加熱して高圧加圧浸出を行った後、得られた浸出スラリーから浸出残渣を固液分離して浸出液を得た。この浸出液に中和剤として消石灰を添加してpHを3.0〜3.5の範囲に調整することで中和澱物を生成した後、アニオン系の凝集剤を添加して該中和澱物を固液分離により除去して中和終液を得た。   The nickel oxide ore was hydrometallized by high-temperature and high-pressure leaching along the process flow shown in FIG. 1, and nickel was recovered in the form of sulfide. Specifically, nickel oxide ore consisting of laterite ore, saprolite ore and limonite ore is put together with sulfuric acid into an autoclave as a pressure vessel, and heated to a temperature of 240 to 260 ° C with a steam heater to perform high pressure press leaching. Thereafter, the leaching residue was solid-liquid separated from the obtained leaching slurry to obtain a leaching solution. After adding slaked lime as a neutralizing agent to this leachate and adjusting the pH to a range of 3.0 to 3.5, a neutralized starch is produced, and then an anionic flocculant is added to the neutralized starch. The product was removed by solid-liquid separation to obtain a neutralized final solution.

次に、各々直径7.7m×高さ12m(容量460m)の略円筒形状を有し且つ直列に接続された3つの反応槽(No.1反応槽、No.2反応槽、及びNo.3反応槽)を用意し、上記中和後液を1200〜1450m/hrの流量で連続的に先頭のNo.1反応槽に供給し、No.1反応槽、No.2反応槽、及びNo.3反応槽の順に流した。更にこれら3つの反応槽の各々に硫化水素ガスを吹き込んで中和終液に含まれる亜鉛を硫化して亜鉛硫化物を生成した。その際、3つ全ての反応槽への硫化水素ガスの吹込み量に対して、No.2反応槽及びNo.3反応槽への硫化水素ガスの吹込み量の割合、即ち吹込み比を5.1%から86.3%までの範囲内で少しずつ変化させた。 Next, three reaction tanks (No. 1 reaction tank, No. 2 reaction tank, and No. 2) each having a substantially cylindrical shape each having a diameter of 7.7 m × height of 12 m (capacity: 460 m 3 ) and connected in series. 3 reaction tanks), and the above neutralized solution is continuously supplied to the top No. 1 reaction tank at a flow rate of 1200 to 1450 m 3 / hr, and the No. 1 reaction tank, No. 2 reaction tank, and It flowed in order of No. 3 reaction tank. Further, hydrogen sulfide gas was blown into each of these three reaction tanks to sulfidize zinc contained in the neutralized final solution to produce zinc sulfide. At that time, the ratio of the amount of hydrogen sulfide gas blown into the No. 2 reaction vessel and No. 3 reaction vessel, that is, the blowing ratio, with respect to the amount of hydrogen sulfide gas blown into all three reaction vessels. It was gradually changed within the range from 5.1% to 86.3%.

そして、末尾のNo.3反応槽から抜き出した硫化後液を多数のろ過孔が設けられた直径60cmのろ過盤上にろ布を敷いた構造のブフナー漏斗に供給し、ろ液側を真空に吸引することで固液分離した。このようにして吹込み比の異なる条件で生成した試料1〜46の亜鉛硫化物(脱亜鉛澱物)を得た。尚、No.2反応槽及びNo.3反応槽への硫化水素ガスの吹き込みは、大部分をNo.2反応槽に吹き込むようにし、No.2反応槽で成長した亜鉛硫化物を溶存状態の硫化水素ガスの残留分と反応させて成長の仕上げを行う場所としてNo.3反応槽を利用した。具体的には、サンプリングした亜鉛硫化物の粒子径の成長状態に応じて吹込み比を変えない範囲でNo.3反応槽への吹込み量を適宜増減することで調整した。   Then, the sulfidized liquid extracted from the No. 3 reaction tank at the end was supplied to a Buchner funnel having a filter cloth on a 60 cm diameter filter panel provided with a large number of filtration holes, and the filtrate side was evacuated. Solid-liquid separation was performed by suction. Thus, the zinc sulfide (dezinced starch) of samples 1-46 produced | generated on the conditions from which blowing ratios differ was obtained. Note that most of the hydrogen sulfide gas was blown into the No. 2 reaction tank and No. 3 reaction tank, and the zinc sulfide grown in the No. 2 reaction tank was in a dissolved state. The No. 3 reaction tank was used as a place for finishing the growth by reacting with the residual hydrogen sulfide gas. Specifically, the amount of injection into the No. 3 reaction tank was adjusted appropriately as long as the injection ratio was not changed in accordance with the growth state of the sampled zinc sulfide particle diameter.

上記の試料1〜46の亜鉛硫化物の生成の際の吹込み比と、それらの条件でそれぞれ生成した亜鉛硫化物の粒径を下記表1に示す。また、これら吹込み比と亜鉛硫化物の粒径との関係をプロットしたグラフを図2に示す。亜鉛硫化物の粒径は、定常運転時に回収したサンプルを顕微鏡で観察すると共にマイクロトラックを用いて測定した。尚、これら試料1〜46の亜鉛硫化物の生成の際、反応槽内のスラリーのpHを2.7〜2.9、液温を60〜67℃の範囲内に維持した。また、この中和終液の組成は、ニッケル濃度が3.5〜4.0g/L、鉄濃度が0.7〜1.4g/L、亜鉛濃度が60〜140mg/Lの範囲内であった。そして、脱亜鉛後液の亜鉛濃度は5〜12mg/L程度まで低減した。   Table 1 below shows the blowing ratio at the time of producing the zinc sulfide of the samples 1 to 46 and the particle diameter of the zinc sulfide produced under these conditions. Moreover, the graph which plotted the relationship between these blowing ratio and the particle size of zinc sulfide is shown in FIG. The particle size of zinc sulfide was measured using a microtrack while observing a sample collected during steady operation with a microscope. In addition, when producing the zinc sulfide of these samples 1 to 46, the pH of the slurry in the reaction vessel was maintained in the range of 2.7 to 2.9, and the liquid temperature was in the range of 60 to 67 ° C. The composition of this neutralized final solution was within the range of nickel concentration 3.5 to 4.0 g / L, iron concentration 0.7 to 1.4 g / L, and zinc concentration 60 to 140 mg / L. It was. And the zinc concentration of the solution after dezincification was reduced to about 5 to 12 mg / L.

Figure 0006350684
Figure 0006350684

上記表1及び図2の結果から分かるように、No.2反応槽以降での硫化水素ガスの吹込み比を60%以上90%以下に調整した試料24〜46の亜鉛硫化物では、粒径が概ね10μm以上の粗大な亜鉛硫化物が得られた。これら試料24〜46の亜鉛硫化物の作成では、各々の吹込み比の条件で少なくとも24時間かけて数日間に亘って製錬を継続したが、No.3反応槽から抜き出したスラリーが供給されるろ過器において目詰まりは生じなかった。これに対して吹込み比を60%未満に調整した試料1〜23では、亜鉛硫化物の粒径が全て10μm未満で微細であった。これら試料1〜23の亜鉛硫化物の作成では、各々の吹込み比の条件で連続して製錬を継続したところ、24時間経過する前にろ過器に目詰まりが生じた。   As can be seen from the results of Table 1 and FIG. 2, the zinc sulfide samples 24 to 46 in which the hydrogen sulfide gas blowing ratio after the No. 2 reaction tank was adjusted to 60% to 90% A coarse zinc sulfide of approximately 10 μm or more was obtained. In the preparation of zinc sulfide of these samples 24 to 46, smelting was continued for several days over at least 24 hours under the conditions of the respective blowing ratios, but the slurry extracted from the No. 3 reactor was supplied. No clogging occurred in the filter. On the other hand, in Samples 1 to 23 in which the blowing ratio was adjusted to less than 60%, the zinc sulfide particle sizes were all less than 10 μm and fine. In the preparation of the zinc sulfides of these samples 1 to 23, when smelting was continued continuously under the conditions of each blowing ratio, the filter was clogged before 24 hours passed.

次に、上記の試料1〜46の亜鉛硫化物のうち、任意に選択した37種類の亜鉛硫化物の試料に対して、各々そのニッケル品位をICPにより測定した。得られた亜鉛硫化物中のニッケル品位を吹込み比と共に下記表2に示す。また、これらニッケル品位と吹込み比との関係をプロットしたグラフを図3に示す。更に、亜鉛硫化物の粒径とニッケル品位との関係をプロットしたグラフを図4に示す。   Next, among the zinc sulfides of the above samples 1 to 46, the nickel quality of each of 37 types of arbitrarily selected zinc sulfide samples was measured by ICP. Table 2 below shows the nickel quality in the obtained zinc sulfide together with the blowing ratio. Moreover, the graph which plotted the relationship between these nickel grades and blowing ratios is shown in FIG. Furthermore, the graph which plotted the relationship between the particle size of zinc sulfide and nickel quality is shown in FIG.

Figure 0006350684
Figure 0006350684

上記表2及び図3から、吹込み比を50%以上にすることで亜鉛硫化物中のニッケル品位を1%以下に低減できることが分かる。また、図4から、ニッケル品位を1%以下にするためには亜鉛硫化物の粒径を概ね10μm以上にすればよく、これは上記表1及び図2から硫化水素ガスの吹込み比を概ね60%以上とすればよいことが分かる。このように亜鉛硫化物の粒径を10μm以上にする場合は、ニッケル回収率の向上の効果に加えてろ過性の向上の効果も得られる。


From Table 2 and FIG. 3, it can be seen that the nickel quality in the zinc sulfide can be reduced to 1% or less by setting the blowing ratio to 50% or more. Also, from FIG. 4, in order to make the nickel quality 1% or less, the particle size of zinc sulfide should be approximately 10 μm or more, and this indicates that the blowing ratio of hydrogen sulfide gas is approximately from Table 1 and FIG. It can be seen that it should be 60% or more. Thus, when making the particle size of zinc sulfide 10 μm or more, in addition to the effect of improving the nickel recovery rate, the effect of improving the filterability is also obtained.


Claims (2)

ニッケル酸化鉱石を高圧下で酸浸出した後に浸出残渣を除去して浸出液を得る浸出工程と、該浸出液に中和剤を添加して生成した中和澱物を除去して中和後液を得る中和工程と、該中和後液に硫化水素ガスを吹き込んで生成した亜鉛澱物を除去して脱亜鉛後液を得る脱亜鉛工程と、該脱亜鉛後液に硫化剤を添加してニッケルを硫化物として回収するニッケル回収工程とで構成されるニッケル酸化鉱石の湿式製錬方法であって、
前記脱亜鉛工程における前記硫化水素ガスの吹き込みは、直列に接続された2槽以上の反応槽内に前記中和後液を順次流しながら、全ての反応槽への硫化水素ガスの全吹込み量に対して先頭から2番目以降の反応槽への硫化水素ガスの吹込み量を50%以上90%以下に調整することを特徴とするニッケル酸化鉱石の湿式製錬方法。
A leaching process in which leaching residue is removed after acid leaching of nickel oxide ore under high pressure to obtain a leachate, and a neutralized starch produced by adding a neutralizing agent to the leachate is removed to obtain a post-neutralization solution A neutralization step, a zinc removal step in which zinc starch formed by blowing hydrogen sulfide gas into the solution after neutralization is removed to obtain a solution after dezincification, and a sulfurizing agent is added to the solution after dezincification to form nickel A nickel oxide ore hydrometallurgy method comprising a nickel recovery step for recovering as a sulfide,
The blowing of the hydrogen sulfide gas in the dezincing step is performed by sequentially flowing the post-neutralized liquid into two or more reaction vessels connected in series, and the total amount of hydrogen sulfide gas blown into all the reaction vessels. In contrast, the method for hydrometallurgy of nickel oxide ore is characterized in that the amount of hydrogen sulfide gas blown into the second and subsequent reactors is adjusted to 50% or more and 90% or less.
前記脱亜鉛工程では、pH2.5以上3.5以下の範囲内で前記硫化反応を行うことを特徴とする、請求項1に記載のニッケル酸化鉱の湿式製錬方法。 Wherein in the dezincification process, and it performs the sulfurization reaction in the range of pH2.5 to 3.5, hydrometallurgical method for nickel oxide ore according to claim 1.
JP2017002344A 2016-11-30 2017-01-11 Method for hydrometallizing nickel oxide ore Active JP6350684B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/041381 WO2018101069A1 (en) 2016-11-30 2017-11-16 Wet metallurgy method for nickel oxide ore
EP17876261.3A EP3550040A4 (en) 2016-11-30 2017-11-16 Wet metallurgy method for nickel oxide ore
AU2017369155A AU2017369155B2 (en) 2016-11-30 2017-11-16 Wet metallurgy method for nickel oxide ore
PH12019501187A PH12019501187B1 (en) 2016-11-30 2019-05-29 Hydrometallurgical method for nickel oxide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016232416 2016-11-30
JP2016232416 2016-11-30

Publications (2)

Publication Number Publication Date
JP2018090889A JP2018090889A (en) 2018-06-14
JP6350684B2 true JP6350684B2 (en) 2018-07-04

Family

ID=62565134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002344A Active JP6350684B2 (en) 2016-11-30 2017-01-11 Method for hydrometallizing nickel oxide ore

Country Status (4)

Country Link
EP (1) EP3550040A4 (en)
JP (1) JP6350684B2 (en)
AU (1) AU2017369155B2 (en)
PH (1) PH12019501187B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095606B2 (en) * 2019-01-17 2022-07-05 住友金属鉱山株式会社 Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1116412A (en) * 1979-05-10 1982-01-19 Kohur N. Subramanian Recovery of nickel and cobalt from leach slurries
JP2004305917A (en) * 2003-04-07 2004-11-04 Sumitomo Metal Mining Co Ltd Method for removing zinc from aqueous solution of nickel sulfate
JP5572928B2 (en) * 2008-07-25 2014-08-20 住友金属鉱山株式会社 Method for hydrometallizing nickel oxide ore
EP2492364A4 (en) * 2009-10-19 2015-10-21 Sumitomo Metal Mining Co Wet smelting plant for nickel oxide ore and method for operating same
JP6222141B2 (en) * 2015-03-05 2017-11-01 住友金属鉱山株式会社 Method for producing nickel sulfide, method for hydrometallizing nickel oxide ore

Also Published As

Publication number Publication date
PH12019501187A1 (en) 2020-02-24
PH12019501187B1 (en) 2020-02-24
EP3550040A1 (en) 2019-10-09
JP2018090889A (en) 2018-06-14
AU2017369155B2 (en) 2022-09-29
AU2017369155A1 (en) 2019-07-11
EP3550040A4 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6874547B2 (en) Scandium recovery method
AU2013373238B2 (en) Operation method for dezincification plant
WO2016139858A1 (en) Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
WO2018066638A1 (en) Hydrometallurgical method for refining nickel oxide ore
JP6350684B2 (en) Method for hydrometallizing nickel oxide ore
JP5904100B2 (en) Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore
WO2018101069A1 (en) Wet metallurgy method for nickel oxide ore
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
JP5660248B1 (en) Operation method of dezincification plant
JP7115170B2 (en) Nickel oxide ore treatment method and nickel-cobalt mixed sulfide production method including the treatment method
WO2020149122A1 (en) Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
JP6888359B2 (en) Smelting method of metal oxide ore
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP7279578B2 (en) Solid-liquid separation method using thickener and nickel oxide ore hydrometallurgical method including the same
JP7355186B1 (en) Particle size control method for nickel-cobalt mixed sulfide
JP2019214778A (en) Pretreatment method of nickel oxide ore raw material
JP6996328B2 (en) Dezincification method, wet smelting method of nickel oxide ore
JP6981206B2 (en) Nickel sulfate aqueous solution dezincification system and its method
JP2023122850A (en) Solid-liquid separation method using multistage thickner and wet smelter method of nickel oxide ore containing the same
JP2019049020A (en) Wet type smelting method of nickel oxide ore
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore
JP2020059909A (en) Filtration facility for removing zinc sulfide and production method of nickel cobalt mixed sulfide using the same
JP2020180317A (en) Pretreatment method for nickel oxide ore to be used as raw material for wet smelting method
CN111479643A (en) Method for producing nickel powder
JP2019035132A (en) Neutralization treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180319

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6350684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150