JP6330486B2 - Semiconductor nanowire optical device and manufacturing method thereof - Google Patents

Semiconductor nanowire optical device and manufacturing method thereof Download PDF

Info

Publication number
JP6330486B2
JP6330486B2 JP2014111534A JP2014111534A JP6330486B2 JP 6330486 B2 JP6330486 B2 JP 6330486B2 JP 2014111534 A JP2014111534 A JP 2014111534A JP 2014111534 A JP2014111534 A JP 2014111534A JP 6330486 B2 JP6330486 B2 JP 6330486B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
dielectric
optical waveguide
semiconductor nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014111534A
Other languages
Japanese (ja)
Other versions
JP2015226021A (en
Inventor
研一 河口
研一 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014111534A priority Critical patent/JP6330486B2/en
Publication of JP2015226021A publication Critical patent/JP2015226021A/en
Application granted granted Critical
Publication of JP6330486B2 publication Critical patent/JP6330486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体ナノワイヤ光装置及びその製造方法に関する。   The present invention relates to a semiconductor nanowire optical device and a method for manufacturing the same.

面内サイズが小さく高密度に集積が可能な光素子として、縦型半導体ナノワイヤを用いた光素子が期待されている。例えば、光集積回路ナノワイヤ或いは光集積回路ナノコラムを用いたLEDなどの発光素子が提案されている(例えば、特許文献1参照)。或いは、光吸収層として用いることにより、太陽電池への応用が提案されている(例えば、特許文献2参照)。   An optical device using vertical semiconductor nanowires is expected as an optical device that has a small in-plane size and can be integrated at a high density. For example, light emitting elements such as LEDs using optical integrated circuit nanowires or optical integrated circuit nanocolumns have been proposed (see, for example, Patent Document 1). Or the application to a solar cell is proposed by using as a light absorption layer (for example, refer patent document 2).

これらの応用は、いずれも、ナノワイヤの長軸方向に光を出し入れする素子である。一方で、光通信応用では発光・受光素子などの能動素子が、光変調器や合分波器などの他の導波路型光デバイスと集積されることで光装置を構成することが多い。   All of these applications are devices that emit light in and out of the long axis direction of the nanowire. On the other hand, in optical communication applications, an active device such as a light emitting / receiving element is often integrated with another waveguide type optical device such as an optical modulator or multiplexer / demultiplexer to constitute an optical device.

特に、小型・低コスト化の観点から、近年シリコンフォトニクスと称される、光変調器や合分波器をSiウェーハ上においてSi系材料或いはSi−CMOSプロセスに整合する材料系で製造する技術が発展してきている。   In particular, from the viewpoint of miniaturization and cost reduction, there is a technology for manufacturing an optical modulator or multiplexer / demultiplexer recently called silicon photonics on a Si wafer with a Si-based material or a material system that matches the Si-CMOS process. It is developing.

しかし、Si系半導体は、間接遷移型半導体であるため、効率の点から能動素子、特に発光素子については、化合物半導体の素子を集積する必要があり、化合物半導体ナノワイヤの利用も期待されている。   However, since Si-based semiconductors are indirect transition semiconductors, it is necessary to integrate compound semiconductor elements for active elements, particularly light emitting elements, from the viewpoint of efficiency, and use of compound semiconductor nanowires is also expected.

特開2008−108924号公報JP 2008-108924 A 特開2010−028092号公報JP 2010-028092 A

化合物半導体ナノワイヤからなる発光・受光素子から出入力される光は、光導波路と横方向に結合する必要がある。しかし、従来の面出入射型のナノワイヤ光素子では、横方向に接続した光導波路へ直接光を結合させることができないという問題がある。   Light input / output from a light emitting / receiving element made of a compound semiconductor nanowire must be coupled laterally with the optical waveguide. However, the conventional surface incident type nanowire optical device has a problem that light cannot be directly coupled to the optical waveguide connected in the lateral direction.

そこで、化合物半導体ナノワイヤで発光素子等を形成する場合に、成長方向に下部クラッド層/能動層/上部クラッド層を順次積層して横方向に光を取り出すことが考えられる。しかし、単に成長方向に下部クラッド層/能動層/上部クラッド層を順次積層した構造では高効率で光を取り出すことができないという問題があるので、この事情を図12を参照して説明する。   Therefore, when forming a light emitting device or the like with compound semiconductor nanowires, it is conceivable to sequentially stack a lower cladding layer / active layer / upper cladding layer in the growth direction and extract light in the lateral direction. However, there is a problem that light cannot be extracted with high efficiency in the structure in which the lower clad layer / active layer / upper clad layer are sequentially laminated in the growth direction. This situation will be described with reference to FIG.

図12は縦型半導体ナノワイヤ発光素子の説明図であり、図12(a)は縦型半導体ナノワイヤ発光素子の斜視図であり、図12(b)は光結合効率の説明図である。図12(a)に示すように、横方向から光を取り出すためには、n型Si基板81に開口部を有するSiO膜82を設け、開口部にn型クラッド層84/活性層85/p型クラッド層86を順次積層して縦型半導体ナノワイヤ発光素子83を形成すれば良い。 FIG. 12 is an explanatory view of a vertical semiconductor nanowire light emitting device, FIG. 12 (a) is a perspective view of the vertical semiconductor nanowire light emitting device, and FIG. 12 (b) is an explanatory view of optical coupling efficiency. As shown in FIG. 12A, in order to extract light from the lateral direction, an SiO 2 film 82 having an opening is provided in an n-type Si substrate 81, and the n-type cladding layer 84 / active layer 85 / The vertical semiconductor nanowire light emitting element 83 may be formed by sequentially stacking the p-type cladding layer 86.

横方向断面積が小さく、形状に高い対称性を持つ縦型半導体ナノワイヤ発光素子83は、図12(a)に示すように、横方向については、全方向に等方的に光を出射する。さらに、上下方向、即ち、ナノワイヤ長軸方向に発光する成分も存在する。なお、ここでは、活性層85は、ナノワイヤの中心に、ナノワイヤ長よりも十分短い領域として存在し、且つ、特別な偏光依存性を持たないものとする。   As shown in FIG. 12A, the vertical semiconductor nanowire light-emitting element 83 having a small cross-sectional area in the lateral direction and high symmetry in shape emits light isotropically in all directions in the lateral direction. Furthermore, there is a component that emits light in the vertical direction, that is, in the nanowire major axis direction. Here, it is assumed that the active layer 85 exists in the center of the nanowire as a region that is sufficiently shorter than the length of the nanowire and does not have special polarization dependency.

図12(b)に示すように、縦型半導体ナノワイヤ発光素子83に誘電体光導波路87を横付けしただけの構成では、誘電体光導波路87から取り出せる光の割合は小さい。誘電体光導波路87より十分に細い縦型半導体ナノワイヤ発光素子83を用い、誘電体光導波路端面での反射を十分に抑制したとしても、横方向に出射される光のうち誘電体光導波路87に結合できる割合は少ない。   As shown in FIG. 12 (b), in the configuration in which the dielectric optical waveguide 87 is simply placed on the vertical semiconductor nanowire light emitting element 83, the proportion of light that can be extracted from the dielectric optical waveguide 87 is small. Even if the vertical semiconductor nanowire light emitting element 83 that is sufficiently thinner than the dielectric optical waveguide 87 is used and reflection at the end face of the dielectric optical waveguide is sufficiently suppressed, the dielectric optical waveguide 87 out of the light emitted in the lateral direction A small percentage can be combined.

例えば、図12(b)に示すように、2θを縦型半導体ナノワイヤ発光素子83の中心からの誘電体光導波路87の見込角とし、縦型半導体ナノワイヤ発光素子83の中心からの誘電体光導波路87の端面までの距離をd、誘電体光導波路87の幅をwとすると、光結合効率はηは2θ/2πとなる。ここで、tanθはw/2dであるので、θはtan−1(w/2d)となる。したがって、光結合効率ηは、
η=2θ/2π=2tan−1(w/2d)/2π
となる。
For example, as shown in FIG. 12 (b), 2θ is the expected angle of the dielectric optical waveguide 87 from the center of the vertical semiconductor nanowire light-emitting element 83, and the dielectric optical waveguide from the center of the vertical semiconductor nanowire light-emitting element 83 is used. When the distance to the end face of 87 is d and the width of the dielectric optical waveguide 87 is w, the optical coupling efficiency η is 2θ / 2π. Here, since tan θ is w / 2d, θ is tan −1 (w / 2d). Therefore, the optical coupling efficiency η is
η = 2θ / 2π = 2 tan −1 (w / 2d) / 2π
It becomes.

例えば、幅wが1μmの誘電体光導波路87が縦型半導体ナノワイヤ発光素子83に対して、500nm離れて配置されている場合は、光結合効率ηは
η=2tan−1(1)/2π=2×(π/4)/2π=1/4
となり、25%にとどまる。これは、縦型半導体ナノワイヤ受光素子の場合も同様である。
For example, when the dielectric optical waveguide 87 having a width w of 1 μm is disposed 500 nm away from the vertical semiconductor nanowire light emitting device 83, the optical coupling efficiency η is η = 2 tan −1 (1) / 2π = 2 × (π / 4) / 2π = 1/4
And stays at 25%. The same applies to the vertical semiconductor nanowire light receiving element.

したがって、半導体ナノワイヤ光装置において、横方向の光に対するナノワイヤと誘電体光導波路との光結合効率を高めることを目的とする。   Accordingly, an object of the semiconductor nanowire optical device is to increase the optical coupling efficiency between the nanowire and the dielectric optical waveguide with respect to lateral light.

開示する一観点からは、第1導電型の半導体基板と、前記半導体基板上に設けられた誘電体光導波路と、前記半導体基板上に前記誘電体光導波路の一方の光入出力端面の近傍に一定のピッチで格子状に配列され、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層が順次積層された前記誘電体光導波路の幅より小さい複数の同じサイズの縦型半導体ナノワイヤと前記縦型半導体ナノワイヤの内の前記誘電体光導波路の光入出力端面に直接対向する縦型半導体ナノワイヤを含む少なくとも一つの縦型半導体ナノワイヤの前記第2導電型半導体層に設けられた第1の電極と、前記半導体基板に設けられた第2の電極とを有し、前記誘電体光導波路の誘電体コア層の屈折率が、前記能動層の屈折率と前記縦型半導体ナノワイヤの外周を覆う周囲の屈折率との間の屈折率を有し、前記一定のピッチが、前記第1の電極を設けた縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置が提供される。 From one aspect to be disclosed, a semiconductor substrate of a first conductivity type, a dielectric optical waveguide provided on the semiconductor substrate, and in the vicinity of one light input / output end face of the dielectric optical waveguide on the semiconductor substrate. The width of the dielectric optical waveguide in which a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer opposite to the first conductive type are sequentially stacked in a grid pattern at a constant pitch. The first of the at least one vertical semiconductor nanowire including a plurality of smaller vertical semiconductor nanowires of the same size and the vertical semiconductor nanowire directly opposed to the light input / output end face of the dielectric optical waveguide among the vertical semiconductor nanowires A first electrode provided on a two-conductivity-type semiconductor layer and a second electrode provided on the semiconductor substrate, wherein a refractive index of a dielectric core layer of the dielectric optical waveguide is equal to that of the active layer; Refractive index and the vertical half Have a refractive index between the refractive index of the surrounding covering the outer periphery of the body nanowires, said constant pitch is a half a cycle of the optical path length of the emission wavelength of the vertical semiconductor nanowire having a first electrode A semiconductor nanowire optical device characterized in that the pitch is the same is provided.

また、開示する別の観点からは、第1導電型の半導体基板上に、誘電体コア層を含む多層誘電体膜を積層する工程と、前記多層誘電体膜をエッチング加工して誘電体光導波路と選択成長マスクとなる誘電体薄膜とを形成する工程と、前記誘電体光導波路の一方の光入出力端面に近傍において前記誘電体薄膜に一定のピッチで格子状に配列した前記誘電体光導波路の幅より小さい同じサイズの開口部を形成する工程と、前記開口部において露出した前記半導体基板上に、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層を順次積層して縦型半導体ナノワイヤを形成する工程とを有し、前記一定のピッチが、前記縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置の製造方法が提供される。 According to another aspect of the disclosure, a step of laminating a multilayer dielectric film including a dielectric core layer on a first conductivity type semiconductor substrate, and etching the multilayer dielectric film to form a dielectric optical waveguide And a dielectric thin film serving as a selective growth mask, and the dielectric optical waveguide arranged in a lattice at a constant pitch on the dielectric thin film in the vicinity of one light input / output end face of the dielectric optical waveguide Forming an opening of the same size smaller than the width of the first conductive type semiconductor layer, an active layer, and a first conductive type opposite to the first conductive type on the semiconductor substrate exposed in the opening. sequentially laminating a second conductivity type semiconductor layer have a forming a vertical semiconductor nanowires, wherein the predetermined pitch is the pitch and one cycle half the optical path length of the emission wavelength of the vertical semiconductor nanowires With features That the method for manufacturing a semiconductor nanowire light device is provided.

開示の半導体ナノワイヤ光装置及びその製造方法によれば、横方向の光に対するナノワイヤと誘電体光導波路との光結合効率を高めることが可能になる。   According to the disclosed semiconductor nanowire optical device and the manufacturing method thereof, it is possible to increase the optical coupling efficiency between the nanowire and the dielectric optical waveguide with respect to lateral light.

本発明の実施の形態の半導体ナノワイヤ光装置の説明図である。It is explanatory drawing of the semiconductor nanowire optical apparatus of embodiment of this invention. 本発明の実施の形態の半導体ナノワイヤ光装置の集光原理の説明図である。It is explanatory drawing of the condensing principle of the semiconductor nanowire optical apparatus of embodiment of this invention. 本発明の実施例1の半導体ナノワイヤ発光装置の説明図である。It is explanatory drawing of the semiconductor nanowire light-emitting device of Example 1 of this invention. 本発明の実施例1の半導体ナノワイヤ発光装置の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the semiconductor nanowire light-emitting device of Example 1 of this invention. 本発明の実施例1の半導体ナノワイヤ発光装置の製造工程の図4以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 4 of the manufacturing process of the semiconductor nanowire light-emitting device of Example 1 of this invention. 本発明の実施例1の半導体ナノワイヤ発光装置の製造工程の図5以降の説明図である。It is explanatory drawing after FIG. 5 of the manufacturing process of the semiconductor nanowire light-emitting device of Example 1 of this invention. 本発明の実施例2の半導体ナノワイヤ発光装置の概念的平面図である。It is a notional top view of the semiconductor nanowire light-emitting device of Example 2 of this invention. 本発明の実施例3の半導体ナノワイヤ光集積回路装置の概念的断面図である。It is a notional sectional view of a semiconductor nanowire optical integrated circuit device of Example 3 of the present invention. 本発明の実施例3の半導体ナノワイヤ光集積回路装置の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the semiconductor nanowire optical integrated circuit device of Example 3 of this invention. 本発明の実施例3の半導体ナノワイヤ光集積回路装置の製造工程の図9以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 9 of the manufacturing process of the semiconductor nanowire optical integrated circuit device of Example 3 of this invention. 本発明の実施例3の半導体ナノワイヤ光集積回路装置の製造工程の図10以降の説明図である。It is explanatory drawing after FIG. 10 of the manufacturing process of the semiconductor nanowire optical integrated circuit device of Example 3 of this invention. 縦型半導体ナノワイヤ発光素子の説明図である。It is explanatory drawing of a vertical semiconductor nanowire light emitting element.

ここで、図1及び図2を参照して、本発明の実施の形態の半導体ナノワイヤ光装置を説明する。図1は本発明の実施の形態の半導体ナノワイヤ光装置の説明図であり、図1(a)は概略的平面図であり、図1(b)は図1(a)におけるA−A′を結ぶ一点鎖線に沿った断面図である。図に示すように、第1導電型の半導体基板11上に誘電体光導波路15を設け、誘電体光導波路15の一方の光入出力端面の近傍に一定のピッチで格子状に複数の縦型半導体ナノワイヤ17を配列する。   Here, with reference to FIG.1 and FIG.2, the semiconductor nanowire optical apparatus of embodiment of this invention is demonstrated. FIG. 1 is an explanatory diagram of a semiconductor nanowire optical device according to an embodiment of the present invention, FIG. 1 (a) is a schematic plan view, and FIG. 1 (b) is an AA ′ in FIG. 1 (a). It is sectional drawing along the dashed-dotted line to connect. As shown in the figure, a dielectric optical waveguide 15 is provided on a semiconductor substrate 11 of the first conductivity type, and a plurality of vertical types are arranged in a lattice pattern at a constant pitch in the vicinity of one light input / output end face of the dielectric optical waveguide 15. Semiconductor nanowires 17 are arranged.

半導体基板11は、典型的にはIV族半導体基板であり、特に、(111)面を主面とするSi基板、Ge基板、C基板或いはSiGe基板等を用いる。また、縦型半導体ナノワイヤ17は、下部クラッド層18となる第1導電型の半導体層、能動層19、及び、上部クラッド層20となる前記第1導電型と反対導電型の第2導電型の半導体層が順次積層された積層構造を有する。能動層は発光層でも受光層でも良いが、特に、能動層を、引っ張り歪みを有する量子井戸層を備えたIII-V族化合物半導体量子井戸構造活性層とすることによって、高効率の半導体ナノワイヤ発光素子とすることができる。即ち、引っ張り歪み量子井戸においては、発光遷移が伝導帯と軽い正孔の価電子帯の間で起こるため、電界振幅がナノワイヤ長軸方向で、横方向のみに伝播可能なTMモード光が支配的に発生するためである。量子井戸構造を用いる場合には、単一量子井戸構造でも良いが、光強度を高めるためには多重量子井戸構造(MQW)を採用することが望ましい。   The semiconductor substrate 11 is typically a group IV semiconductor substrate, and in particular, a Si substrate, a Ge substrate, a C substrate, a SiGe substrate, or the like having a (111) plane as a main surface is used. The vertical semiconductor nanowire 17 has a second conductivity type opposite to the first conductivity type that becomes the first conductivity type semiconductor layer, the active layer 19, and the upper clad layer 20 that becomes the lower cladding layer 18. It has a stacked structure in which semiconductor layers are sequentially stacked. The active layer may be either a light-emitting layer or a light-receiving layer. In particular, by making the active layer a III-V compound semiconductor quantum well structure active layer having a quantum well layer having tensile strain, highly efficient semiconductor nanowire light emission It can be set as an element. In other words, in tensile strained quantum wells, the emission transition occurs between the conduction band and the valence band of light holes, so the TM mode light that can propagate only in the lateral direction is dominant in the major axis direction of the nanowire. This is because it occurs. When a quantum well structure is used, a single quantum well structure may be used, but it is desirable to employ a multiple quantum well structure (MQW) in order to increase the light intensity.

複数の縦型半導体ナノワイヤ17の内の誘電体光導波路15の入出力端面に対向する少なくとも一つの縦型半導体ナノワイヤ17の上部クラッド層20に第1の電極22を設けて能動素子とするとともに、半導体基板11に第2の電極23を設ける。   A first electrode 22 is provided on the upper cladding layer 20 of at least one vertical semiconductor nanowire 17 facing the input / output end face of the dielectric optical waveguide 15 among the plurality of vertical semiconductor nanowires 17 to form an active element. A second electrode 23 is provided on the semiconductor substrate 11.

この時、誘電体光導波路15の誘電体コア層13の屈折率が、能動層19の屈折率と縦型半導体ナノワイヤ17の周囲の屈折率との間の屈折率を有するように材料を選択する。典型的には、誘電体光導波路15は、下部クラッド層12をSiO膜とし、誘電体コア層13をSiN膜とし、上部クラッド層14をSiO膜とした積層構造からなる。また、縦型半導体ナノワイヤ17の周囲にBCB(ベンゾシクロブテン)樹脂等の樹脂埋込層を設けることが強度の観点等から望ましい。 At this time, the material is selected so that the refractive index of the dielectric core layer 13 of the dielectric optical waveguide 15 has a refractive index between the refractive index of the active layer 19 and the refractive index around the vertical semiconductor nanowire 17. . Typically, the dielectric optical waveguide 15 has a laminated structure in which the lower cladding layer 12 is an SiO 2 film, the dielectric core layer 13 is an SiN film, and the upper cladding layer 14 is an SiO 2 film. Further, it is desirable from the viewpoint of strength and the like to provide a resin embedding layer such as BCB (benzocyclobutene) resin around the vertical semiconductor nanowire 17.

なお、半導体基板としては、SOI基板の単結晶Si基板を用いても良く、この場合には、SOI基板の単結晶Si層を加工して誘電体光導波路15に接続するSiコア層及び光変調器を設けても良い。この場合の光変変調器としては分岐アームからなるマッハ・ツェンダー型のSi光変調器が典型的なものである。   As the semiconductor substrate, a single crystal Si substrate of an SOI substrate may be used. In this case, a Si core layer that processes the single crystal Si layer of the SOI substrate and connects it to the dielectric optical waveguide 15 and optical modulation. A vessel may be provided. A typical example of the optical modulator in this case is a Mach-Zehnder type Si optical modulator comprising a branch arm.

このような半導体ナノワイヤを形成するためには、第1導電型の半導体基板11上に、誘電体コア層13を含む多層誘電体膜を積層し、多層誘電体膜をエッチング加工して誘電体光導波路15と選択成長マスク16となる誘電体薄膜を形成する。次いで、誘電体光導波路15の一方の光入出力端面に近傍において選択成長マスクに一定のピッチで格子状に配列した開口部を形成する。次いで、この開口部内に下部クラッド層18となる第1導電型の半導体層、能動層19、及び、上部クラッド層20となる第2導電型の半導体層を順次積層して縦型半導体ナノワイヤ17を形成すれば良い。   In order to form such a semiconductor nanowire, a multilayer dielectric film including a dielectric core layer 13 is stacked on the first conductivity type semiconductor substrate 11, and the multilayer dielectric film is etched to produce a dielectric optical waveguide. A dielectric thin film to be the waveguide 15 and the selective growth mask 16 is formed. Next, openings arranged in a lattice at a constant pitch are formed in the selective growth mask in the vicinity of one light input / output end face of the dielectric optical waveguide 15. Next, a vertical semiconductor nanowire 17 is formed by sequentially laminating a first conductive type semiconductor layer that becomes the lower clad layer 18, an active layer 19, and a second conductive type semiconductor layer that becomes the upper clad layer 20 in the opening. What is necessary is just to form.

また、SOI基板を用いる場合には、誘電体多層膜を積層する前に埋込絶縁層単結晶Si層の一部を除去し、除去部に誘電体コア層13を含む誘電体多層膜を形成すれば良い。その時、単結晶Si層を加工して、誘電体光導波路15に接続するSiコア層と、Si光導波路に接続するSi光変調器とを形成しても良い。   In the case of using an SOI substrate, a part of the embedded insulating single crystal Si layer is removed before the dielectric multilayer film is stacked, and a dielectric multilayer film including the dielectric core layer 13 is formed in the removed portion. Just do it. At that time, the single crystal Si layer may be processed to form an Si core layer connected to the dielectric optical waveguide 15 and an Si optical modulator connected to the Si optical waveguide.

次に、図2を参照して、本発明の実施の形態の半導体ナノワイヤ光装置の集光原理を説明する。図2は、本発明の実施の形態の半導体ナノワイヤ光装置の集光原理の説明図である。一般的に、周囲環境に対して異なる屈折率を有する構造体が規則的に配列すると、その周期と一定の関係を満たす波長の光が変調を受けることが知られている。特に、対象とする波長の半分の光学距離を1周期として繰り返された場合、その周期構造は、反射鏡として作用する。ここで、光学距離は材料の厚さdに材料の屈折率nを乗じたn×dで表される。   Next, the light collection principle of the semiconductor nanowire optical device according to the embodiment of the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram of the light collection principle of the semiconductor nanowire optical device according to the embodiment of the present invention. Generally, it is known that when structures having different refractive indexes with respect to the surrounding environment are regularly arranged, light having a wavelength that satisfies a certain relationship with the period is modulated. In particular, when the optical distance half of the target wavelength is repeated as one period, the periodic structure acts as a reflecting mirror. Here, the optical distance is expressed by nxd obtained by multiplying the thickness d of the material by the refractive index n of the material.

鋭意検討の結果、半導体ナノワイヤをそのような構造体とみなした時、シリコンフォトニクス応用として期待される1.3μmや1.55μmの近赤外波長領域に対して、反射鏡となるような構成があることを見出した。例えば、屈折率3.2、直径100nmのInPナノワイヤを屈折率1.5のBCB樹脂中に間隔220nmで格子状に配列することで、波長1.3μmに対して反射する構造体となることを見出した。   As a result of intensive studies, when a semiconductor nanowire is regarded as such a structure, it is configured to be a reflector for the near-infrared wavelength region of 1.3 μm or 1.55 μm expected for silicon photonics applications. I found out. For example, by arranging InP nanowires with a refractive index of 3.2 and a diameter of 100 nm in a BCB resin with a refractive index of 1.5 in a lattice shape at intervals of 220 nm, a structure that reflects with respect to a wavelength of 1.3 μm is obtained. I found it.

この知見を基にして、図2(a)のように、半導体ナノワイヤ発光素子31の周囲に半導体ナノワイヤ32を格子状に配置し、一方向にのみ半導体ナノワイヤ32を取り除く。そうすると、取り除いた方向に半導体ナノワイヤ発光素子31から横方向に出射される光を集めることが可能であることが分かった。   Based on this knowledge, as shown in FIG. 2A, semiconductor nanowires 32 are arranged in a lattice pattern around the semiconductor nanowire light emitting element 31, and the semiconductor nanowires 32 are removed only in one direction. Then, it was found that the light emitted in the lateral direction from the semiconductor nanowire light emitting element 31 can be collected in the removed direction.

さらに、この光を導波路内へ良好に導くには、図2(b)に示すように、線状に空いた空隙内に光導波路を配置することが必須である。この時、光導波路としては、屈折率が半導体ナノワイヤ発光素子31の能動層と周囲環境(埋込樹脂層を設ける場合には、埋込樹脂層の屈折率)の中間の屈折率を有するコアで構成されている必要があることが検討の結果初めて見出された。   Furthermore, in order to guide this light well into the waveguide, as shown in FIG. 2B, it is essential to dispose the optical waveguide in a linear gap. At this time, the optical waveguide is a core having a refractive index intermediate between the active layer of the semiconductor nanowire light emitting element 31 and the surrounding environment (in the case of providing an embedded resin layer, the refractive index of the embedded resin layer). As a result of examination, it was found for the first time that it was necessary to be configured.

このような条件を満たす光導波路としては、誘電体コア層を備えた誘電体光導波路33が好適である。なお、Si光導波路はSiの屈折率が高すぎるので不適である。図2(b)に示した配置によって、半導体ナノワイヤ発光素子31から横方向に出射される成分を高効率に誘電体光導波路33に結合することが可能になる。   As an optical waveguide satisfying such conditions, a dielectric optical waveguide 33 having a dielectric core layer is suitable. Si optical waveguides are not suitable because the refractive index of Si is too high. With the arrangement shown in FIG. 2B, it is possible to couple the component emitted in the lateral direction from the semiconductor nanowire light emitting element 31 to the dielectric optical waveguide 33 with high efficiency.

なお、本発明では、直径が500nm未満の半導体ワイヤを半導体ナノワイヤ32として定義する。このような半導体ナノワイヤ32のサイズ(直径、長さ)と誘電体光導波路33との位置関係を考慮すると、ドライエッチングなどのトップダウンプロセスでは困難なスケールであり、ボトムアップで形成した半導体ナノワイヤによってのみ製造可能である。   In the present invention, a semiconductor wire having a diameter of less than 500 nm is defined as the semiconductor nanowire 32. Considering the positional relationship between the size (diameter and length) of the semiconductor nanowire 32 and the dielectric optical waveguide 33, the scale is difficult in a top-down process such as dry etching. Can only be manufactured.

次に、図3乃至図6を参照して、本発明の実施例1の半導体ナノワイヤ発光装置を説明する。図3は本発明の実施例1の半導体ナノワイヤ発光装置の説明図であり、図3(a)は概略的平面図であり、図3(b)は図3(a)におけるA−A′を結ぶ一点鎖線に沿った断面図である。図に示すように、n型Si基板41上にSiO膜42/SiN膜43/SiO膜44からなる誘電体光導波路45を設け、誘電体光導波路45の一方の光入出力端面の近傍に一定のピッチで格子状に複数の半導体ナノワイヤ48を配列する。 Next, with reference to FIG. 3 thru | or FIG. 6, the semiconductor nanowire light-emitting device of Example 1 of this invention is demonstrated. FIG. 3 is an explanatory diagram of the semiconductor nanowire light-emitting device of Example 1 of the present invention, FIG. 3 (a) is a schematic plan view, and FIG. 3 (b) is an A-A ′ in FIG. It is sectional drawing along the dashed-dotted line to connect. As shown in the figure, a dielectric optical waveguide 45 comprising a SiO 2 film 42 / SiN film 43 / SiO 2 film 44 is provided on an n-type Si substrate 41, and in the vicinity of one light input / output end face of the dielectric optical waveguide 45. A plurality of semiconductor nanowires 48 are arranged in a lattice pattern at a constant pitch.

誘電体光導波路45は、厚さが2000nmのSiO膜42、厚さが400nmのSiN膜43及び厚さが2000nmのSiO膜44からなり、幅は400nmとする。なお、SiOの屈折率は1.4であり、SiNの屈折率は2.0である。 The dielectric optical waveguide 45 includes a SiO 2 film 42 having a thickness of 2000 nm, a SiN film 43 having a thickness of 400 nm, and a SiO 2 film 44 having a thickness of 2000 nm, and has a width of 400 nm. Note that the refractive index of SiO 2 is 1.4, and the refractive index of SiN is 2.0.

半導体ナノワイヤ48は、厚さが2000nmのn型InPクラッド層49、厚さが400nmのMQW活性層50及び厚さが2000nmのp型InPクラッド層51を順次成長させて形成する。MQW活性層50は、波長組成が1.05μmのInGaAsPバリアと、In組成比が45%でInGaAs井戸層により発光波長が1.3μm帯で引っ張り歪み量子井戸構造とする。ここでは、InGaAs井戸層を10層設ける。   The semiconductor nanowire 48 is formed by sequentially growing an n-type InP cladding layer 49 having a thickness of 2000 nm, an MQW active layer 50 having a thickness of 400 nm, and a p-type InP cladding layer 51 having a thickness of 2000 nm. The MQW active layer 50 has an InGaAsP barrier with a wavelength composition of 1.05 μm, and a tensile strained quantum well structure with an In composition ratio of 45% and an InGaAs well layer with an emission wavelength of 1.3 μm band. Here, ten InGaAs well layers are provided.

この半導体ナノワイヤ48の直径は80nm〜120nmとし、ピッチは200nm〜220nmとする。また、隣接する半導体ナノワイヤ48の間隙を屈折率が1.5のBCB樹脂で埋め込んでBCB樹脂埋込層52を設ける。最後に、誘電体光導波路45に対向する1本の半導体ナノワイヤ48のp型InPクラッド層51上にp側電極53を設け、n型Si基板41の露出部にn側電極54を設ける。   The semiconductor nanowire 48 has a diameter of 80 nm to 120 nm and a pitch of 200 nm to 220 nm. Further, a BCB resin embedding layer 52 is provided by filling a gap between adjacent semiconductor nanowires 48 with a BCB resin having a refractive index of 1.5. Finally, the p-side electrode 53 is provided on the p-type InP cladding layer 51 of one semiconductor nanowire 48 facing the dielectric optical waveguide 45, and the n-side electrode 54 is provided on the exposed portion of the n-type Si substrate 41.

このp側電極53を設けた半導体ナノワイヤ48が半導体ナノワイヤ発光素子となり、その他の半導体ナノワイヤ48は反射体となる。p側電極53とn側電極54との間に順方向バイアスを印加するとMQW活性層50において再結合発光が生じ、放出された光は直接或いは周囲の半導体ナノワイヤ48で反射されて誘電体光導波路45に導かれる。   The semiconductor nanowire 48 provided with the p-side electrode 53 serves as a semiconductor nanowire light-emitting element, and the other semiconductor nanowires 48 serve as reflectors. When a forward bias is applied between the p-side electrode 53 and the n-side electrode 54, recombination light emission occurs in the MQW active layer 50, and the emitted light is reflected directly or by the surrounding semiconductor nanowire 48 to be a dielectric optical waveguide. 45.

次に、図4乃至図6を参照して、本発明の実施例1の半導体ナノワイヤ発光装置の製造工程を説明する。なお、各図における上図は平面図であり、下図は一部断面を含む側面図である。まず、図4(a)に示すように、(111)面を主面とするn型Si基板41上にCVD法を用いて厚さが2000nmのSiO膜42、厚さが400nmのSiN膜43及び厚さが2000nmのSiO膜44を順次堆積する。 Next, with reference to FIG. 4 thru | or FIG. 6, the manufacturing process of the semiconductor nanowire light-emitting device of Example 1 of this invention is demonstrated. In addition, the upper figure in each figure is a top view, and the lower figure is a side view including a partial cross section. First, as shown in FIG. 4A, an SiO 2 film 42 having a thickness of 2000 nm and an SiN film having a thickness of 400 nm are formed on an n-type Si substrate 41 having a (111) plane as a main surface using a CVD method. 43 and a SiO 2 film 44 having a thickness of 2000 nm are sequentially deposited.

次いで、図4(b)に示すように、リソグラフィとエッチングにより幅が400nmの誘電体導波路45を形成する。この時、SiO膜42を50nmだけ残して選択成長マスク46とする。 Next, as shown in FIG. 4B, a dielectric waveguide 45 having a width of 400 nm is formed by lithography and etching. At this time, the selective growth mask 46 is formed by leaving the SiO 2 film 42 by 50 nm.

次いで、図5(c)に示すように、エッチングによりナノワイヤ形成部に開口部47を形成してn型Si基板41の表面を露出させる。開口部47の直径は80nm〜120nmとし、ピッチは200nm〜220nmとする。   Next, as shown in FIG. 5C, an opening 47 is formed in the nanowire forming portion by etching to expose the surface of the n-type Si substrate 41. The diameter of the opening 47 is 80 nm to 120 nm, and the pitch is 200 nm to 220 nm.

次いで、図5(d)に示すように、MOVPE(有機金属気相成長)法を用いて、350℃〜450℃の成長温度において、厚さが2000nmのn型InPクラッド層49、厚さが400nmのMQW活性層50及び厚さが2000nmのp型InPクラッド層51を順次成長させて半導体ナノワイヤ48を形成する。MQW活性層50は、波長組成が1.05μmのInGaAsPバリアと、In組成比が45%のInGaAs井戸層をInGaAs井戸層が10層になるように交互に成長させる。   Next, as shown in FIG. 5D, an n-type InP cladding layer 49 having a thickness of 2000 nm and a thickness of 350 nm to 450 ° C. using a MOVPE (metal organic chemical vapor deposition) method. A 400 nm MQW active layer 50 and a 2000 nm thick p-type InP cladding layer 51 are sequentially grown to form a semiconductor nanowire 48. The MQW active layer 50 is grown alternately with an InGaAsP barrier with a wavelength composition of 1.05 μm and an InGaAs well layer with an In composition ratio of 45% so that there are 10 InGaAs well layers.

この時、n型InPクラッド層49を成長させる際には、原料としてTMIn(トリメチルインジウム)、PH、ドーパント源としてHSを用い、S濃度が1×1018cm−3〜1×1019cm−3になるように流量を制御する。一方、p型InPクラッド層51を成長させる際には、原料としてTMIn、PH、ドーパント源としてDEZn(ジエチルジンク)を用い、Zn濃度が5×1017cm−3〜2×1018cm−3になるように流量を制御する。また、MQW活性層50を成長させる際には、Ga原料にはTEGa(トリエチルガリウム)を用い、As原料にはAsHを用いる。 At this time, when the n-type InP clad layer 49 is grown, TMIn (trimethylindium), PH 3 as a raw material, H 2 S as a dopant source, and an S concentration of 1 × 10 18 cm −3 to 1 × 10 are used. The flow rate is controlled to be 19 cm −3 . On the other hand, when growing the p-type InP cladding layer 51, TMIn and PH 3 are used as raw materials, DEZn (diethyl zinc) is used as a dopant source, and the Zn concentration is 5 × 10 17 cm −3 to 2 × 10 18 cm −. The flow rate is controlled to be 3 . Further, when the MQW active layer 50 is grown, TEGa (triethylgallium) is used as the Ga material, and AsH 3 is used as the As material.

次いで、図6(e)に示すように、隣接する半導体ナノワイヤ48の間隙をBCB樹脂で埋め込んでBCB樹脂埋込層52を形成する。次いで、図6(d)に示すように、誘電体光導波路45に対向する1本の半導体ナノワイヤ48のp型InPクラッド層51上にp側電極53を設ける。一方、選択成長マスク46に開口部を形成してn型Si基板41に対するn側電極54を形成することによって、本発明の実施例1の半導体ナノワイヤ発光装置の基本構成が完成する。   Next, as shown in FIG. 6E, the gap between adjacent semiconductor nanowires 48 is filled with BCB resin to form a BCB resin buried layer 52. Next, as shown in FIG. 6D, a p-side electrode 53 is provided on the p-type InP cladding layer 51 of one semiconductor nanowire 48 facing the dielectric optical waveguide 45. On the other hand, by forming an opening in the selective growth mask 46 and forming the n-side electrode 54 for the n-type Si substrate 41, the basic configuration of the semiconductor nanowire light-emitting device of Example 1 of the present invention is completed.

本発明の実施例1においては、発光素子となる1本の半導体ナノワイヤ48の周囲に一定のピッチで格子状に半導体ナノワイヤを配置して反射体としているので、1本の半導体ナノワイヤ48からの光を効率良く誘電体光導波路45に導くことができる。なお、p側電極53のコンタクト抵抗を低減するために、p型InPクラッド層51上に、厚さが10nm〜50nm程度のp型InGaAsコンタクト層を形成しても良い。   In the first embodiment of the present invention, since the semiconductor nanowires are arranged in a lattice pattern at a constant pitch around one semiconductor nanowire 48 to be a light emitting element, the light from one semiconductor nanowire 48 is obtained. Can be efficiently guided to the dielectric optical waveguide 45. In order to reduce the contact resistance of the p-side electrode 53, a p-type InGaAs contact layer having a thickness of about 10 nm to 50 nm may be formed on the p-type InP cladding layer 51.

次に、図7を参照して本発明の実施例2の半導体ナノワイヤ発光装置を説明するが、発光素子となる半導体ナノワイヤを複数本にしただけで、基本的な構造及び製造工程は上記の実施例1と同様であるので、平面図のみを示す。図7は本発明の実施例2の半導体ナノワイヤ発光装置の概念的平面図であり、誘電体光導波路45の幅に対して2列の半導体ナノワイヤ48が対向するように半導体ナノワイヤ48の直径とピッチを設定し、計4本の半導体ナノワイヤ48にp側電極53を設けて半導体ナノワイヤ発光素子とする。   Next, the semiconductor nanowire light-emitting device according to the second embodiment of the present invention will be described with reference to FIG. 7. The basic structure and the manufacturing process are the same as those described above only by forming a plurality of semiconductor nanowires serving as light-emitting elements. Since it is similar to Example 1, only a plan view is shown. FIG. 7 is a conceptual plan view of the semiconductor nanowire light-emitting device according to the second embodiment of the present invention. The diameter and pitch of the semiconductor nanowires 48 so that the two rows of semiconductor nanowires 48 face the width of the dielectric optical waveguide 45. And a p-side electrode 53 is provided on a total of four semiconductor nanowires 48 to form a semiconductor nanowire light-emitting element.

この実施例2においては、4本の半導体ナノワイヤを半導体ナノワイヤ発光素子としているので、導出する光強度を高めることができる。なお、図においては4本を半導体ナノワイヤ発光素子としているが、本数は任意である。   In Example 2, since the four semiconductor nanowires are semiconductor nanowire light emitting elements, the derived light intensity can be increased. In the figure, four semiconductor nanowire light emitting elements are used, but the number is arbitrary.

次に、図8図乃至図11を参照して、本発明の実施例3の半導体ナノワイヤ光集積回路装置を説明する。なお、基本的な構成は上記の実施例1と同様であるので、一部断面を含む側面図のみを示す。図8は、本発明の実施例3の半導体ナノワイヤ光集積回路装置の概略的側面図であり、SOI基板を用いるとともに、誘電体光導波路69に接続するようにSiコア層64,66を備えたSi光導波路及びSi光変調器65を設けたものである。Si光変調器としては、マッハ・ツェンダー型の光変調器を用いる。   Next, with reference to FIGS. 8 to 11, a semiconductor nanowire optical integrated circuit device according to Example 3 of the present invention will be described. Since the basic configuration is the same as that of the first embodiment, only a side view including a partial cross section is shown. FIG. 8 is a schematic side view of the semiconductor nanowire optical integrated circuit device according to the third embodiment of the present invention, in which an SOI substrate is used and Si core layers 64 and 66 are provided so as to be connected to the dielectric optical waveguide 69. A Si optical waveguide and a Si optical modulator 65 are provided. As the Si optical modulator, a Mach-Zehnder type optical modulator is used.

p側電極78を設けた半導体ナノワイヤ72で生成されSiNコア層67を有する誘電体光導波路69の中を伝播した連続光(CW光)は、Siコア層64に伝播し、その先にあるSi光変調器によって変調光信号に変換される。この場合、光が損失しないように、SiNコア層67とSiコア層64の位置合わせが重要である。   The continuous light (CW light) generated by the semiconductor nanowire 72 provided with the p-side electrode 78 and propagated through the dielectric optical waveguide 69 having the SiN core layer 67 propagates to the Si core layer 64, and the Si light ahead of it. It is converted into a modulated optical signal by the optical modulator. In this case, alignment of the SiN core layer 67 and the Si core layer 64 is important so that light is not lost.

次に、図9乃至図11を参照して、本発明の実施例3の半導体ナノワイヤ光集積回路装置の製造工程を説明する。まず、図9(a)に示すように、(111)面を主面とするn型Si基板61上に厚さが2000nmのSiO膜をBOX層62として設け、その上に(100)面を主面とする厚さが500nm〜1000nmの単結晶Si層63を設けたSOI基板60を用意する。 Next, a manufacturing process of the semiconductor nanowire optical integrated circuit device according to the third embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 9A, an SiO 2 film having a thickness of 2000 nm is provided as a BOX layer 62 on an n-type Si substrate 61 having a (111) plane as a main surface, and a (100) plane is formed thereon. An SOI substrate 60 provided with a single-crystal Si layer 63 having a thickness of 500 nm to 1000 nm with a main surface of 1 is prepared.

次いで、図9(b)に示すように、誘電体光導波路及び半導体ナノワイヤを形成する領域の単結晶Si層63を除去するとともに、それ以外の領域の単結晶Si層63をパターニングして幅が500nmのSiコア層64,66とSi光変調器65を形成する。この場合のSi光変調器65は、マッハ・ツェンダー型の光変調器とする。   Next, as shown in FIG. 9B, the single crystal Si layer 63 in the region where the dielectric optical waveguide and the semiconductor nanowire are formed is removed, and the single crystal Si layer 63 in the other region is patterned to increase the width. The 500 nm Si core layers 64 and 66 and the Si optical modulator 65 are formed. In this case, the Si optical modulator 65 is a Mach-Zehnder optical modulator.

次いで、図9(c)に示すように、CVD法を用いて全面に厚さが500nmのSiNコア層67と厚さが2000nmのSiO上部クラッド層68を堆積する。 Next, as shown in FIG. 9C, a 500 nm thick SiN core layer 67 and a 2000 nm thick SiO 2 upper cladding layer 68 are deposited on the entire surface by CVD.

次いで、図10(d)に示すように、SiO上部クラッド層68乃至BOX層62をエッチングして幅が500nmの誘電体光導波路69を形成する。この時、BOX層62を50nmだけ残して選択成長マスク70とする。 Next, as shown in FIG. 10D, the SiO 2 upper cladding layer 68 through the BOX layer 62 are etched to form a dielectric optical waveguide 69 having a width of 500 nm. At this time, the selective growth mask 70 is formed by leaving the BOX layer 62 by 50 nm.

次いで、図10(e)に示すように、ナノワイヤ形成部の選択成長マスクをエッチングして開口部71を形成してn型Si基板61の表面を露出させる。開口部71の直径は80nm〜120nmとし、ピッチは200nm〜220nmとする。   Next, as shown in FIG. 10E, the selective growth mask of the nanowire forming part is etched to form an opening 71 to expose the surface of the n-type Si substrate 61. The diameter of the opening 71 is 80 nm to 120 nm, and the pitch is 200 nm to 220 nm.

次いで、図10(f)に示すように、MOVPE法を用いて、350℃〜450℃の成長温度において、厚さが2000nmのn型InPクラッド層73、厚さが400nmのMQW活性層74及び厚さが2000nmのp型InPクラッド層75を順次成長させて半導体ナノワイヤ72を形成する。MQW活性層74は、波長組成が1.05μmのInGaAsPバリアと、In組成比が45%のInGaAs井戸層をInGaAs井戸層が10層になるように交互に成長させる。この時、全面にSiNコア層67を堆積しているので、誘電体光導波路69および半導体ナノワイヤ72の形成工程においてSiコア層64,66及びSi光変調器65を保護することができる。   Next, as shown in FIG. 10 (f), using the MOVPE method, an n-type InP cladding layer 73 having a thickness of 2000 nm, an MQW active layer 74 having a thickness of 400 nm, and a growth temperature of 350 to 450 ° C. A semiconductor nanowire 72 is formed by sequentially growing a p-type InP clad layer 75 having a thickness of 2000 nm. The MQW active layer 74 is alternately grown with an InGaAsP barrier having a wavelength composition of 1.05 μm and an InGaAs well layer having an In composition ratio of 45% so that there are 10 InGaAs well layers. At this time, since the SiN core layer 67 is deposited on the entire surface, the Si core layers 64 and 66 and the Si optical modulator 65 can be protected in the process of forming the dielectric optical waveguide 69 and the semiconductor nanowire 72.

次いで、図11(g)に示すように、隣接する半導体ナノワイヤ72の間隙をBCB樹脂で埋め込んでBCB樹脂埋込層76を形成する。次いで、図11(h)に示すように、Siコア層64,66及びSi光変調器65の上に堆積している不要なSiNコア層67及びSiO上部クラッド層68を除去する。 Next, as shown in FIG. 11G, the gap between adjacent semiconductor nanowires 72 is filled with BCB resin to form a BCB resin buried layer 76. Next, as shown in FIG. 11H, unnecessary SiN core layer 67 and SiO 2 upper cladding layer 68 deposited on Si core layers 64 and 66 and Si optical modulator 65 are removed.

次いで、図11(i)に示すように、全面に厚さが2000nmのSiO上部クラッド層77を形成したのち、誘電体光導波路69及び半導体ナノワイヤ形成領域上に堆積したSiO上部クラッド層77を除去する。次いで、選択成長マスク70の一部を除去してn型Si基板61を露出させる。次いで、誘電体光導波路69に対向する1本の半導体ナノワイヤ72のp型InPクラッド層(75)上にp側電極78を設けるとともに、n型Si基板61の露出部にn側電極79を形成する。なお、ここでは、図示を省略しているが、SiO上部クラッド層77にコンタクトホールを形成して、Si光変調器65に対する電極を形成することによって、本発明の実施例3の半導体ナノワイヤ光集積回路装置の基本構成が完成する。 Then, as shown in FIG. 11 (i), after the entire surface to a thickness was formed an SiO 2 upper clad layer 77 of 2000 nm, SiO 2 upper clad layer deposited on the dielectric optical waveguide 69 and the semiconductor nanowire formation region 77 Remove. Next, a part of the selective growth mask 70 is removed to expose the n-type Si substrate 61. Next, a p-side electrode 78 is provided on the p-type InP clad layer (75) of one semiconductor nanowire 72 facing the dielectric optical waveguide 69, and an n-side electrode 79 is formed on the exposed portion of the n-type Si substrate 61. To do. Although not shown here, a contact hole is formed in the SiO 2 upper cladding layer 77 and an electrode for the Si optical modulator 65 is formed, so that the semiconductor nanowire light according to the third embodiment of the present invention is used. The basic configuration of the integrated circuit device is completed.

本発明の実施例3においては、SOI基板のBOX層を誘電体光導波路69とSi光導波路の共通の下部クラッド層としているので、Si光変調器65等を一体化する場合にもSiNコア層67とSiコア層64との良好な高さ合わせが可能となる。   In the third embodiment of the present invention, since the BOX layer of the SOI substrate is the lower clad layer common to the dielectric optical waveguide 69 and the Si optical waveguide, the SiN core layer is also used when integrating the Si optical modulator 65 and the like. 67 and the Si core layer 64 can be satisfactorily aligned with each other.

ここで、実施例1乃至実施例3を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)第1導電型の半導体基板と、前記半導体基板上に設けられた誘電体光導波路と、前記半導体基板上に前記誘電体光導波路の一方の光入出力端面の近傍に一定のピッチで格子状に配列され、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層が順次積層された前記誘電体光導波路の幅より小さい複数の同じサイズの縦型半導体ナノワイヤと前記縦型半導体ナノワイヤの内の前記誘電体光導波路の光入出力端面に直接対向する縦型半導体ナノワイヤを含む少なくとも一つの縦型半導体ナノワイヤの前記第2導電型半導体層に設けられた第1の電極と、前記半導体基板に設けられた第2の電極とを有し、前記誘電体光導波路の誘電体コア層の屈折率が、前記能動層の屈折率と前記縦型半導体ナノワイヤの外周を覆う周囲の屈折率との間の屈折率を有し、前記一定のピッチが、前記第1の電極を設けた縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置。
(付記2)前記能動層が、引っ張り歪みを有する量子井戸層を備えた量子井戸構造活性層であることを特徴とする付記1に記載の半導体ナノワイヤ光装置。
(付記3)前記縦型半導体ナノワイヤの外周を覆う周囲に樹脂埋込層を有することを特徴とする付記1または付記2に記載の半導体ナノワイヤ光装置。
(付記4)前記誘電体光導波路が、SiO下部クラッド層/SiNコア層/SiO上部クラッド層の積層構造を有していることを特徴とする付記1乃至付記3のいずれか1に記載の半導体ナノワイヤ光装置。
(付記5)前記半導体基板が、IV族半導体基板であり、前記縦型半導体ナノワイヤは、III-V族化合物半導体ナノワイヤであることを特徴とする付記1乃至付記4のいずれか1に記載の半導体ナノワイヤ光装置。
(付記6)前記半導体基板が、単結晶Si基板上に埋込絶縁膜を介して単結晶Si層を設けたSOI基板の前記単結晶Si基板であり、前記単結晶Si層の除去部に前記誘電体光導波路及び前記複数の縦型半導体ナノワイヤを設けたことを特徴とする付記1乃至付記5のいずれか1に記載の半導体ナノワイヤ光装置。
(付記7)前記誘電体光導波路に接続するSi光導波路と、前記Si光導波路に接続するSi光変調器とを有し、前記Si光導波路のSiコア層及び前記Si光変調器部が、前記単結晶Si層を加工して形成されたSiコア層及びSi光変調器であることを特徴とする付記6に記載の半導体ナノワイヤ光装置。
(付記8)第1導電型の半導体基板上に、誘電体コア層を含む多層誘電体膜を積層する工程と、前記多層誘電体膜をエッチング加工して誘電体光導波路と選択成長マスクとなる誘電体薄膜とを形成する工程と、前記誘電体光導波路の一方の光入出力端面に近傍において前記誘電体薄膜に一定のピッチで格子状に配列した前記誘電体光導波路の幅より小さい同じサイズの開口部を形成する工程と、前記開口部において露出した前記半導体基板上に、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層を順次積層して縦型半導体ナノワイヤを形成する工程とを有し、前記一定のピッチが、前記縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置の製造方法。
(付記9)前記縦型半導体ナノワイヤの外周を覆う周囲を、前記誘電体コア層の屈折率より低屈折率の樹脂層で埋め込む工程を有することを特徴とする付記8に記載の半導体ナノワイヤ光装置の製造方法。
(付記10)前記半導体基板が、単結晶Si基板上に埋込絶縁膜を介して単結晶Si層を設けたSOI基板の前記単結晶Si基板であり、前記誘電体多層膜を積層する工程の前に、前記単結晶Si層の一部を除去する工程を有し、前記除去部に前記誘電体コア層を含む多層誘電体膜を形成することを特徴とする付記8または付記9に記載の半導体ナノワイヤ光装置の製造方法。
(付記11)前記単結晶Si層を加工して、前記誘電体光導波路に接続するSi光導波路のSiコア層と、前記Si光導波路に接続するSi光変調器とを形成する工程を有することを特徴とする付記10に記載の半導体ナノワイヤ光装置の製造方法。
Here, the following supplementary notes are attached to the embodiments of the present invention including Examples 1 to 3.
(Appendix 1) A semiconductor substrate of a first conductivity type, a dielectric optical waveguide provided on the semiconductor substrate, and a constant pitch on the semiconductor substrate in the vicinity of one light input / output end face of the dielectric optical waveguide. A plurality of smaller than the width of the dielectric optical waveguide, which is arranged in a grid pattern, and in which a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer opposite to the first conductive type are sequentially stacked. The second conductivity type of at least one vertical semiconductor nanowire including a vertical semiconductor nanowire of the same size and a vertical semiconductor nanowire directly opposed to the light input / output end face of the dielectric optical waveguide among the vertical semiconductor nanowires A first electrode provided on the semiconductor layer; and a second electrode provided on the semiconductor substrate, wherein a refractive index of a dielectric core layer of the dielectric optical waveguide is equal to a refractive index of the active layer. The vertical semiconductor nanowire Have a refractive index between the refractive index of the surrounding covering the outer periphery of the pitch said constant pitch is, that the one cycle half the optical path length of the emission wavelength of the vertical semiconductor nanowire having a first electrode the semiconductor nanowire light and wherein the at.
(Supplementary note 2) The semiconductor nanowire optical device according to supplementary note 1, wherein the active layer is a quantum well structure active layer including a quantum well layer having tensile strain.
(Supplementary note 3) The semiconductor nanowire optical device according to Supplementary note 1 or 2, wherein a resin embedding layer is provided around the periphery of the vertical semiconductor nanowire.
(Appendix 4) The appendix 1 to appendix 3, wherein the dielectric optical waveguide has a laminated structure of SiO 2 lower cladding layer / SiN core layer / SiO 2 upper cladding layer. Semiconductor nanowire optical device.
(Supplementary note 5) The semiconductor according to any one of supplementary notes 1 to 4, wherein the semiconductor substrate is a group IV semiconductor substrate, and the vertical semiconductor nanowire is a group III-V compound semiconductor nanowire. Nanowire optical device.
(Supplementary Note 6) The semiconductor substrate is the single crystal Si substrate of an SOI substrate in which a single crystal Si layer is provided on a single crystal Si substrate via a buried insulating film, and the single crystal Si layer is removed at the removal portion. 6. The semiconductor nanowire optical device according to any one of appendix 1 to appendix 5, wherein a dielectric optical waveguide and the plurality of vertical semiconductor nanowires are provided.
(Additional remark 7) It has Si optical waveguide connected to the dielectric optical waveguide, and Si optical modulator connected to the Si optical waveguide, Si core layer of the Si optical waveguide and Si optical modulator part, The semiconductor nanowire optical device according to appendix 6, wherein the semiconductor nanowire optical device is a Si core layer and a Si optical modulator formed by processing the single crystal Si layer.
(Appendix 8) A step of laminating a multilayer dielectric film including a dielectric core layer on a semiconductor substrate of the first conductivity type, and etching the multilayer dielectric film to form a dielectric optical waveguide and a selective growth mask Forming a dielectric thin film, and having the same size as the width of the dielectric optical waveguide arranged in a lattice at a constant pitch on the dielectric thin film in the vicinity of one light input / output end face of the dielectric optical waveguide And forming a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer opposite to the first conductivity type on the semiconductor substrate exposed in the opening. have a forming sequentially laminated to a vertical semiconductor nanowire, wherein the constant pitch, characterized in that half of the optical path length of the emission wavelength of the vertical semiconductor nanowire is a pitch and one cycle semiconductor Nanowire Manufacturing method of the device.
(Supplementary note 9) The semiconductor nanowire optical device according to supplementary note 8, comprising a step of embedding a periphery covering the outer periphery of the vertical semiconductor nanowire with a resin layer having a refractive index lower than that of the dielectric core layer. Manufacturing method.
(Supplementary Note 10) In the step of laminating the dielectric multilayer film, the semiconductor substrate is the single crystal Si substrate of an SOI substrate in which a single crystal Si layer is provided on a single crystal Si substrate via a buried insulating film. The method according to appendix 8 or appendix 9, wherein a multilayer dielectric film including the dielectric core layer is formed in the removal portion before the step of removing a part of the single crystal Si layer. Manufacturing method of semiconductor nanowire optical device.
(Additional remark 11) It has the process of processing the said single crystal Si layer, and forming the Si core layer of Si optical waveguide connected to the said dielectric optical waveguide, and Si optical modulator connected to the said Si optical waveguide The method for manufacturing a semiconductor nanowire optical device according to appendix 10, wherein:

11 半導体基板
12 下部クラッド層
13 誘電体コア層
14 上部クラッド層
15 誘電体光導波路
16 選択成長マスク
17 縦型半導体ナノワイヤ
18 下部クラッド層
19 能動層
20 上部クラッド層
21 絶縁性埋込層
22,23 電極
31 半導体ナノワイヤ発光素子
32 半導体ナノワイヤ
33 誘電体光導波路
41 n型Si基板
42 SiO
43 SiN膜
44 SiO
45 誘電体光導波路
46 選択成長マスク
47 開口部
48 半導体ナノワイヤ
49 n型InPクラッド層
50 MQW活性層
51 p型InPクラッド層
52 BCB樹脂埋込層
53 p側電極
54 n側電極
60 SOI基板
61 n型Si基板
62 BOX層
63 単結晶Si層
64,66 Siコア層
65 Si光変調器
67 SiNコア層
68 SiO上部クラッド層
69 誘電体光導波路
70 選択成長マスク
71 開口部
72 半導体ナノワイヤ
73 n型InPクラッド層
74 MQW活性層
75 p型InPクラッド層
76 BCB樹脂埋込層
77 SiO上部クラッド層
78 p側電極
79 n側電極
81 n型Si基板
82 SiO
83 縦型半導体ナノワイヤ発光素子
84 n型クラッド層
85 活性層
86 p型クラッド層
87 誘電体光導波路
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 Lower clad layer 13 Dielectric core layer 14 Upper clad layer 15 Dielectric optical waveguide 16 Selective growth mask 17 Vertical semiconductor nanowire 18 Lower clad layer 19 Active layer 20 Upper clad layer 21 Insulating buried layers 22 and 23 Electrode 31 Semiconductor nanowire light-emitting element 32 Semiconductor nanowire 33 Dielectric optical waveguide 41 N-type Si substrate 42 SiO 2 film 43 SiN film 44 SiO 2 film 45 Dielectric optical waveguide 46 Selective growth mask 47 Opening 48 Semiconductor nanowire 49 n-type InP cladding Layer 50 MQW active layer 51 p-type InP cladding layer 52 BCB resin buried layer 53 p-side electrode 54 n-side electrode 60 SOI substrate 61 n-type Si substrate 62 BOX layer 63 single crystal Si layer 64, 66 Si core layer 65 Si light modulator 67 SiN core layer 68 SiO 2 upper clad layer 69 Collector optical waveguide 70 selective growth mask 71 opening 72 semiconductor nanowire 73 n-type InP cladding layer 74 MQW active layer 75 p-type InP cladding layer 76 BCB resin buried layer 77 SiO 2 upper clad layer 78 p-side electrode 79 n-side electrode 81 n-type Si substrate 82 SiO 2 film 83 vertical semiconductor nanowire light-emitting element 84 n-type cladding layer 85 active layer 86 p-type cladding layer 87 dielectric optical waveguide

Claims (5)

第1導電型の半導体基板と、
前記半導体基板上に設けられた誘電体光導波路と、
前記半導体基板上に前記誘電体光導波路の一方の光入出力端面の近傍に一定のピッチで格子状に配列され、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層が順次積層された前記誘電体光導波路の幅より小さい複数の同じサイズの縦型半導体ナノワイヤと
前記縦型半導体ナノワイヤの内の前記誘電体光導波路の光入出力端面に直接対向する縦型半導体ナノワイヤを含む少なくとも一つの縦型半導体ナノワイヤの前記第2導電型半導体層に設けられた第1の電極と、
前記半導体基板に設けられた第2の電極と
を有し、
前記誘電体光導波路の誘電体コア層の屈折率が、前記能動層の屈折率と前記縦型半導体ナノワイヤの外周を覆う周囲の屈折率との間の屈折率を有し、
前記一定のピッチが、前記第1の電極を設けた縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置。
A first conductivity type semiconductor substrate;
A dielectric optical waveguide provided on the semiconductor substrate;
A first conductive semiconductor layer, an active layer, and a conductive material opposite to the first conductive type are arranged on the semiconductor substrate in a lattice pattern at a constant pitch in the vicinity of one optical input / output end face of the dielectric optical waveguide. A plurality of vertical semiconductor nanowires of the same size smaller than the width of the dielectric optical waveguide, in which second conductive semiconductor layers of the same type are sequentially stacked, and the light input / output end face of the dielectric optical waveguide of the vertical semiconductor nanowires A first electrode provided on the second conductive semiconductor layer of at least one vertical semiconductor nanowire including a vertical semiconductor nanowire directly opposed to
A second electrode provided on the semiconductor substrate,
It said dielectric optical waveguide of the dielectric core layer refractive index of, have a refractive index between the refractive index of the surrounding covering the outer periphery of the refractive index the vertical semiconductor nanowires of the active layer,
2. The semiconductor nanowire optical device according to claim 1, wherein the constant pitch is a pitch with one optical cycle half the emission wavelength of the vertical semiconductor nanowire provided with the first electrode as one cycle .
前記能動層が、引っ張り歪みを有する量子井戸層を備えた量子井戸構造活性層であることを特徴とする請求項1に記載の半導体ナノワイヤ光装置。   2. The semiconductor nanowire optical device according to claim 1, wherein the active layer is a quantum well structure active layer including a quantum well layer having tensile strain. 前記縦型半導体ナノワイヤの外周を覆う周囲に樹脂埋込層を有することを特徴とする請求項1または請求項2に記載の半導体ナノワイヤ光装置。 3. The semiconductor nanowire optical device according to claim 1, further comprising a resin embedding layer around an outer periphery of the vertical semiconductor nanowire. 4. 前記半導体基板が、単結晶Si基板上に埋込絶縁膜を介して単結晶Si層を設けたSOI基板の前記単結晶Si基板であり、
前記単結晶Si層の除去部に前記誘電体光導波路及び前記複数の縦型半導体ナノワイヤを設けたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体ナノワイヤ光装置。
The semiconductor substrate is the single crystal Si substrate of an SOI substrate in which a single crystal Si layer is provided on a single crystal Si substrate via a buried insulating film,
The semiconductor nanowire optical device according to any one of claims 1 to 3, wherein the dielectric optical waveguide and the plurality of vertical semiconductor nanowires are provided in a removal portion of the single crystal Si layer.
第1導電型の半導体基板上に、誘電体コア層を含む多層誘電体膜を積層する工程と、
前記多層誘電体膜をエッチング加工して誘電体光導波路と選択成長マスクとなる誘電体薄膜とを形成する工程と、
前記誘電体光導波路の一方の光入出力端面に近傍において前記誘電体薄膜に一定のピッチで格子状に配列した前記誘電体光導波路の幅より小さい同じサイズの開口部を有する工程と、
前記開口部において露出した前記半導体基板上に、第1導電型半導体層、能動層、及び、前記第1導電型と反対導電型の第2導電型半導体層を順次積層して縦型半導体ナノワイヤを形成する工程と
を有し、
前記一定のピッチが、前記縦型半導体ナノワイヤの発光波長の半分の光学距離を一周期としたピッチであることを特徴とする半導体ナノワイヤ光装置の製造方法。
Laminating a multilayer dielectric film including a dielectric core layer on a first conductivity type semiconductor substrate;
Etching the multilayer dielectric film to form a dielectric optical waveguide and a dielectric thin film serving as a selective growth mask;
A step of having openings of the same size smaller than the width of the dielectric optical waveguide arranged in a lattice at a constant pitch in the dielectric thin film in the vicinity of one light input / output end face of the dielectric optical waveguide ;
A vertical semiconductor nanowire is formed by sequentially stacking a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer opposite to the first conductive type on the semiconductor substrate exposed in the opening. possess and forming,
The method of manufacturing a semiconductor nanowire optical device, wherein the constant pitch is a pitch with an optical distance that is half the emission wavelength of the vertical semiconductor nanowire as one period .
JP2014111534A 2014-05-29 2014-05-29 Semiconductor nanowire optical device and manufacturing method thereof Expired - Fee Related JP6330486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111534A JP6330486B2 (en) 2014-05-29 2014-05-29 Semiconductor nanowire optical device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111534A JP6330486B2 (en) 2014-05-29 2014-05-29 Semiconductor nanowire optical device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015226021A JP2015226021A (en) 2015-12-14
JP6330486B2 true JP6330486B2 (en) 2018-05-30

Family

ID=54842562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111534A Expired - Fee Related JP6330486B2 (en) 2014-05-29 2014-05-29 Semiconductor nanowire optical device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6330486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851852B1 (en) 2016-04-28 2018-04-24 전북대학교산학협력단 Nanowire structure and method for manufacturing the same
JP6954562B2 (en) * 2017-09-15 2021-10-27 セイコーエプソン株式会社 Light emitting device and its manufacturing method, and projector
CN108281517B (en) * 2018-01-26 2020-06-16 厦门市三安光电科技有限公司 Manufacturing method of light emitting diode
JP2022052420A (en) 2020-09-23 2022-04-04 セイコーエプソン株式会社 Light emitting device, method for manufacturing light emitting device and projector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736050B2 (en) * 1985-04-01 1995-04-19 株式会社日立製作所 Method of coupling semiconductor light emitting device and optical waveguide
JP3181303B2 (en) * 1990-04-20 2001-07-03 株式会社日立製作所 Light emitting element
US5784400A (en) * 1995-02-28 1998-07-21 Massachusetts Institute Of Technology Resonant cavities employing two dimensionally periodic dielectric materials
JPH11330619A (en) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2004296560A (en) * 2003-03-26 2004-10-21 Hitachi Ltd Method for manufacturing semiconductor laser, and method for manufacturing integrated optical circuit
US7132677B2 (en) * 2004-02-13 2006-11-07 Dongguk University Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
JP4160000B2 (en) * 2004-02-13 2008-10-01 ドンゴク ユニバーシティ インダストリー アカデミック コーポレイション ファウンデイション Light emitting diode and manufacturing method thereof
US8163575B2 (en) * 2005-06-17 2012-04-24 Philips Lumileds Lighting Company Llc Grown photonic crystals in semiconductor light emitting devices
EP1804350A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum A semiconductor laser comprising elongate nanostructures
US8237151B2 (en) * 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
JP2009239260A (en) * 2008-03-07 2009-10-15 Mitsubishi Electric Corp Semiconductor laser and method for manufacturing the same
RU2469435C1 (en) * 2008-10-17 2012-12-10 Нэшнл Юниверсити Корпорейшн Хоккайдо Юниверсити Array of semiconductor light-emitting elements and method of making said element
JP5728964B2 (en) * 2011-01-20 2015-06-03 富士通株式会社 Optical semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015226021A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
KR101374485B1 (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
JP6608352B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6300240B2 (en) Semiconductor device
JP4829190B2 (en) Light emitting element
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
JP6330486B2 (en) Semiconductor nanowire optical device and manufacturing method thereof
JP6347600B2 (en) High efficiency light emitting diode
JP5205034B2 (en) Surface emitting laser diode
JP2018029098A (en) Semiconductor light-emitting device and multilayer reflection film
CN101794805B (en) Light receiving device
JP6919549B2 (en) Nanowire optical device
JP2006165309A (en) Semiconductor laser element
US20070228385A1 (en) Edge-emitting light emitting diodes and methods of making the same
US20130270598A1 (en) Light emitting device having auto-cloning photonic crystal structures
JP2011096981A (en) Nitride semiconductor optical functional element
JP6162401B2 (en) Optical semiconductor device
JP6256311B2 (en) Semiconductor optical device and manufacturing method thereof
JP2020109819A (en) Multiple wavelength light-emitting diode epitaxial structure
JP6123536B2 (en) Optical semiconductor device and manufacturing apparatus thereof
JP2015164148A (en) Integrated type semiconductor optical element, and method of manufacturing the same
CN109860354B (en) Homogeneous integrated infrared photon chip and preparation method thereof
KR102258441B1 (en) Nitride semiconductor based optical integrated circuit and method for manufacturing the same
JP2010153739A (en) Optical semiconductor element and integrated element
JP2017054859A (en) Semiconductor light emitting device
CN104078842B (en) Optical Device module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees