JP6299290B2 - Circuit board manufacturing method - Google Patents

Circuit board manufacturing method Download PDF

Info

Publication number
JP6299290B2
JP6299290B2 JP2014045242A JP2014045242A JP6299290B2 JP 6299290 B2 JP6299290 B2 JP 6299290B2 JP 2014045242 A JP2014045242 A JP 2014045242A JP 2014045242 A JP2014045242 A JP 2014045242A JP 6299290 B2 JP6299290 B2 JP 6299290B2
Authority
JP
Japan
Prior art keywords
layer
wiring
composition
release layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045242A
Other languages
Japanese (ja)
Other versions
JP2015170767A (en
Inventor
小澤 美和
美和 小澤
靖志 小林
靖志 小林
野崎 耕司
耕司 野崎
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014045242A priority Critical patent/JP6299290B2/en
Publication of JP2015170767A publication Critical patent/JP2015170767A/en
Application granted granted Critical
Publication of JP6299290B2 publication Critical patent/JP6299290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate

Description

本発明は、回路基板の製造方法に関する。 The present invention relates to a circuit board manufacturing method.

近年、例えばモバイル機器等の小型化、高性能化に伴い、搭載される回路基板に対しても、軽量化、高密度実装化、さらには低コスト化が望まれている。
これに伴い、回路基板における配線の微細化を図るべく、例えばプリント基板などの配線基板と、集積回路を有する半導体チップとを、微細配線を有する配線層を介して接続して、回路基板を製造することが行なわれている。 Along with this, in order to reduce the wiring in the circuit board, for example, a wiring board such as a printed circuit board and a semiconductor chip having an integrated circuit are connected via a wiring layer having fine wiring to manufacture a circuit board. Is being done. In recent years, for example, with the miniaturization and high performance of mobile devices and the like, it is desired to reduce the weight, the density, and the cost of circuit boards to be mounted. In recent years, for example, with the miniaturization and high performance of mobile devices and the like, it is desired to reduce the weight, the density, and the cost of circuit boards to be mounted.
Along with this, in order to miniaturize wiring on a circuit board, for example, a circuit board is manufactured by connecting a wiring board such as a printed circuit board and a semiconductor chip having an integrated circuit via a wiring layer having fine wiring. To be done. Along with this, in order to miniaturize wiring on a circuit board, for example, a circuit board is manufactured by connecting a wiring board such as a printed circuit board and a semiconductor chip having an integrated circuit via a wiring layer having fine wiring. To be done.

また、これを低コストで実現すべく、支持基板上に配線層を形成し、この配線層を配線基板上に転写し、配線基板上に転写された配線層上に半導体チップを実装することが行なわれている。
このようにして配線層を配線基板上に転写する際には、配線層から支持基板を剥離することが必要になる。 When transferring the wiring layer onto the wiring board in this way, it is necessary to peel off the support substrate from the wiring board. このため、配線層と支持基板との間に剥離層を設け、例えば剥離層が樹脂材料からなる場合はそれを硬化させ、また、剥離層が金属材料からなる場合はそれを溶解することで、配線層から支持基板を剥離するようにしている。 Therefore, a release layer is provided between the wiring layer and the support substrate, for example, when the release layer is made of a resin material, it is cured, and when the release layer is made of a metal material, it is melted. The support substrate is peeled off from the wiring layer. In order to realize this at a low cost, it is possible to form a wiring layer on a support substrate, transfer the wiring layer onto the wiring substrate, and mount a semiconductor chip on the wiring layer transferred onto the wiring substrate. It is done. In order to realize this at a low cost, it is possible to form a wiring layer on a support substrate, transfer the wiring layer onto the wiring substrate, and mount a semiconductor chip on the wiring layer transferred onto the wiring substrate. It is done ..
Thus, when transferring the wiring layer onto the wiring substrate, it is necessary to peel the support substrate from the wiring layer. For this reason, a release layer is provided between the wiring layer and the support substrate.For example, when the release layer is made of a resin material, it is cured, and when the release layer is made of a metal material, it is dissolved. The support substrate is peeled off from the wiring layer. Thus, when transferring the wiring layer onto the wiring substrate, it is necessary to peel the support substrate from the wiring layer. For this reason, a release layer is provided between the wiring layer and the support substrate. For example, when the release layer. The support substrate is peeled off from the wiring layer. Is made of a resin material, it is cured, and when the release layer is made of a metal material, it is dissolved.

特開2004−146602号公報JP 2004-146602 A 特開2013−126723号公報JP 2013-126723 A 特開2009−43962号公報JP 2009-43962 A

ところで、剥離層が樹脂材料からなり、支持基板を剥離する際に、剥離層を硬化させる場合、支持基板を剥離した後に、配線層上に、硬化した樹脂材料からなる剥離層が残ってしまうため、これを除去することが必要になる。
しかしながら、硬化した樹脂材料からなる剥離層を配線層にダメージを与えないで容易かつ簡単に除去するのは難しく、信頼性及び歩留まりを低下させることになる。 However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, which lowers the reliability and the yield. By the way, when the release layer is made of a resin material and the release layer is cured when the support substrate is peeled off, the release layer made of the cured resin material remains on the wiring layer after the support substrate is peeled off. It will be necessary to remove this. By the way, when the release layer is made of a resin material and the release layer is cured when the support substrate is peeled off, the release layer made of the cured resin material remains on the wiring layer after the support substrate is peeled off. It will be necessary to remove this.
However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, and the reliability and yield are lowered. However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, and the reliability and yield are lowered.

また、剥離層が金属材料からなり、支持基板を剥離する際に、剥離層を溶解する場合、剥離層は、配線層と支持基板との間に挟まれているため、その側面から面内方向へ溶解されていくことになる。
このため、剥離層を溶解するのに長時間を要するため、容易かつ簡単に支持基板を剥離するのは難しく、配線層にダメージを与えてしまい、信頼性及び歩留まりを低下させることになる。
Also, when the release layer is made of a metal material and the release layer is dissolved when the support substrate is peeled off, the release layer is sandwiched between the wiring layer and the support substrate. Will be dissolved.
For this reason, since it takes a long time to dissolve the release layer, it is difficult to easily and easily peel off the support substrate, which damages the wiring layer and decreases reliability and yield. For this reason, since it takes a long time to dissolve the release layer, it is difficult to easily and easily peel off the support substrate, which damages the wiring layer and decreases reliability and yield.

そこで、配線層にダメージを与えないで、容易かつ簡単に、支持基板を剥離でき、かつ、剥離層を除去できるようにし、低コストで、より高い信頼性を有する回路基板を、より高い歩留まりで得られるようにしたい。 Therefore, it is possible to easily and easily peel off the supporting substrate without damaging the wiring layer, and to remove the peeling layer, so that a circuit board having higher reliability at a lower cost can be obtained at a higher yield. I want to get it.

本回路基板の製造方法は、紫外線を透過する支持基板上に、紫外線の照射に起因して気体を生成する組成物を含む剥離層を形成する工程と、剥離層の上方に配線層を形成する工程と、配線層の一方の表面側を配線基板に接合する工程と、剥離層に紫外線を照射して剥離層に気体を生成させ、支持基板を剥離する工程とを含み、紫外線の照射に起因して気体を生成する組成物は、紫外線の照射によって酸を発生する組成物と、酸によって脱離して気体となる保護基を有する組成物とを含むIn the method for manufacturing the circuit board, a step of forming a release layer containing a composition that generates a gas due to irradiation of ultraviolet rays on a supporting substrate that transmits ultraviolet rays, and a wiring layer is formed above the release layer. a step, a step of bonding the one surface side of the wiring layers in the wiring board, the peeling layer ultraviolet to generate gas by irradiating the peeling layer to, and a step of peeling the supporting substrate seen including, the irradiation of ultraviolet light The composition which produces | generates gas by origin contains the composition which generate | occur | produces an acid by irradiation of an ultraviolet-ray, and the composition which has a protective group which remove | eliminates by an acid and becomes a gas .

したがって、本回路基板の製造方法によれば、配線層にダメージを与えないで、容易かつ簡単に、支持基板を剥離でき、かつ、剥離層を除去できるようにし、低コストで、より高い信頼性を有する回路基板を、より高い歩留まりで得られるという利点がある。   Therefore, according to the manufacturing method of the present circuit board, the support substrate can be easily and easily peeled off without damaging the wiring layer, and the peeling layer can be removed, resulting in lower cost and higher reliability. There is an advantage that a circuit board having the above can be obtained at a higher yield.

(A)〜(F)は本実施形態にかかる回路基板の製造方法を説明するための模式的断面図である。 (A)-(F) are typical sectional drawings for demonstrating the manufacturing method of the circuit board concerning this embodiment. (A)、(B)は本実施形態にかかる回路基板の製造方法の変形例を説明するための模式的断面図である。 (A), (B) is typical sectional drawing for demonstrating the modification of the manufacturing method of the circuit board concerning this embodiment.

以下、図面により、本発明の実施の形態にかかる回路基板の製造方法について、図1、図2を参照しながら説明する。
本実施形態にかかる回路基板の製造方法は、以下の各工程を含む。 The method for manufacturing a circuit board according to this embodiment includes the following steps.
まず、図1(A)に示すように、支持基板1上に剥離層2を形成する。 First, as shown in FIG. 1A, the release layer 2 is formed on the support substrate 1.
ここで、支持基板1は、後述の配線層3を形成するために用いられる基板である。 Here, the support substrate 1 is a substrate used for forming the wiring layer 3 described later. Hereinafter, a method for manufacturing a circuit board according to an embodiment of the present invention will be described with reference to FIGS. Fig, a method for manufacturing a circuit board according to an embodiment of the present invention will be described with reference to FIGS.
The circuit board manufacturing method according to the present embodiment includes the following steps. The circuit board manufacturing method according to the present embodiment includes the following steps.
First, as shown in FIG. 1A, a release layer 2 is formed over a support substrate 1. First, as shown in FIG. 1A, a release layer 2 is formed over a support substrate 1.
Here, the support substrate 1 is a substrate used for forming a wiring layer 3 described later. Here, the support substrate 1 is a substrate used for forming a wiring layer 3 described later.

本実施形態では、後述のように、支持基板1を剥離する工程において、剥離層2に紫外線を照射することになるため、支持基板1は、紫外線を透過する支持基板である。つまり、支持基板1は、紫外線を透過する材料からなる。この紫外線を透過する材料としては、例えば、パイレックス(登録商標)やテンパックスなどのホウ珪酸ガラス、合成石英などの珪酸ガラスなどがある。特に、耐熱性、透明性、低膨張性などを考慮すると、合成石英を用いるのが好ましい。   In the present embodiment, as will be described later, in the step of peeling the support substrate 1, the release layer 2 is irradiated with ultraviolet rays. Therefore, the support substrate 1 is a support substrate that transmits ultraviolet rays. That is, the support substrate 1 is made of a material that transmits ultraviolet rays. Examples of the material that transmits ultraviolet light include borosilicate glass such as Pyrex (registered trademark) and Tempax, and silicate glass such as synthetic quartz. In particular, it is preferable to use synthetic quartz in consideration of heat resistance, transparency, low expansibility, and the like.

また、支持基板1の形状及びサイズは、製造する回路基板の形状及びサイズに応じて適宜選択可能である。例えば、ウエハ(例えばSiウエハ)と同様の円形であっても良いし、配線基板(例えばビルドアップ基板)と同様の角形であっても良い。なお、配線層3における配線の微細化に向け、配線形成手法としてウエハプロセスを適用する場合を考慮すると、Siウエハと同様の円形の基板を用いるのが好ましい。また、支持基板1の厚さについても適宜選択可能であるが、配線層形成のためのプロセス安定性や基板コストを考慮すると、例えば約100μm〜約2mm程度であることが好ましい。   Further, the shape and size of the support substrate 1 can be appropriately selected according to the shape and size of the circuit board to be manufactured. For example, it may be a circle similar to a wafer (for example, a Si wafer) or a square shape similar to a wiring substrate (for example, a build-up substrate). Note that it is preferable to use a circular substrate similar to a Si wafer in consideration of the case where a wafer process is applied as a wiring formation method for miniaturization of wiring in the wiring layer 3. The thickness of the support substrate 1 can also be selected as appropriate, but is preferably about 100 μm to about 2 mm, for example, in consideration of process stability for forming the wiring layer and substrate cost.

剥離層2は、後述のようにして、配線層3を形成し、配線基板5に接合した後、配線層3から支持基板1を剥離しやすくするための層であって、紫外線の照射に起因して気体を生成する組成物を含む。つまり、剥離層2は、紫外線の照射に起因して気体を生成する機能を有する組成物を少なくとも含む。ここでは、剥離層2は、支持基板1と配線層3とを接着する接着層としても機能し、樹脂組成物からなる。   The peeling layer 2 is a layer for facilitating peeling of the support substrate 1 from the wiring layer 3 after the wiring layer 3 is formed and bonded to the wiring board 5 as will be described later. And a gas generating composition. That is, the release layer 2 includes at least a composition having a function of generating a gas due to ultraviolet irradiation. Here, the release layer 2 also functions as an adhesive layer for bonding the support substrate 1 and the wiring layer 3 and is made of a resin composition.

ここで、紫外線の照射に起因して気体を生成する組成物は、紫外線の照射に起因して脱離して気体となる保護基を有する組成物を含む。この紫外線の照射に起因して脱離して気体となる保護基を有する組成物では、紫外線の照射に起因して保護基が脱離し、脱離した保護基によって気体が生成される。つまり、紫外線の照射に起因する保護基の脱離によって生成される副生成物が気体(ここでは常温で気体)である。このようにして、紫外線の照射に起因して保護基が脱離し、脱離した保護基によって気体が生成されると、組成物の内部に気体が発生することになる。これにより、紫外線の照射に起因して剥離層2に含まれる組成物の保護基が脱離し、剥離層2の内部に気体が発生することで、界面にストレスが発生し、配線層3から支持基板1を容易かつ簡単に剥離することが可能となる。なお、保護基を脱離基ともいう。   Here, the composition that generates gas due to irradiation with ultraviolet rays includes a composition having a protecting group that becomes a gas by desorption due to irradiation with ultraviolet rays. In a composition having a protecting group that is desorbed to become a gas due to irradiation with ultraviolet rays, the protecting group is desorbed due to irradiation with ultraviolet rays, and a gas is generated by the desorbing protecting groups. That is, the by-product generated by the elimination of the protecting group resulting from the irradiation of ultraviolet rays is a gas (here, a gas at normal temperature). In this way, when the protective group is released due to the irradiation of ultraviolet rays and a gas is generated by the released protective group, a gas is generated inside the composition. As a result, the protective group of the composition contained in the release layer 2 is released due to the irradiation of ultraviolet rays, and gas is generated inside the release layer 2, stress is generated at the interface, and the wiring layer 3 is supported. The substrate 1 can be easily and easily peeled off. The protecting group is also referred to as a leaving group.

例えば、紫外線の照射に起因して気体を生成する組成物は、紫外線の照射によって酸(ここでは強酸;例えばプロトン)を発生する組成物と、酸によって脱離して気体となる保護基を有する組成物とを含むものとするのが好ましい。この場合、紫外線の照射によって一の成分である組成物が酸を発生し、発生した酸によって他の成分である組成物の保護基が脱離し、脱離した保護基によって気体が生成される。これにより、剥離層2の内部に気体が発生することで、配線層3から支持基板1を容易かつ簡単に剥離することが可能となる。このように、剥離層2を2成分の組成物を含むものとすることで、剥離層2に含まれる組成物の選択肢が広がり、紫外線照射に起因した気体の生成量(発生量)を制御しやすくなる。つまり、紫外線照射に起因した気体の生成量を、紫外線照射によって酸を発生する組成物の添加量と、酸によって脱離して気体となる保護基を有する組成物に対する保護基の導入量とによって制御することが可能となるため、紫外線照射に起因した気体の生成量を制御しやすくなる。この場合、保護基の脱離は、紫外線の照射に起因して間接的に発現することになる。なお、保護基の脱離は、紫外線の照射に起因して直接的又は間接的に発現するものであれば良い。   For example, a composition that generates gas due to ultraviolet irradiation includes a composition that generates an acid (here, a strong acid; for example, proton) upon irradiation with ultraviolet light, and a composition that has a protective group that is eliminated by acid to become a gas. It is preferable to include a product. In this case, the composition, which is one component, generates an acid upon irradiation with ultraviolet rays, and the protective group of the composition, which is another component, is released by the generated acid, and a gas is generated by the released protective group. As a result, gas is generated inside the release layer 2 so that the support substrate 1 can be easily and easily peeled from the wiring layer 3. Thus, by including the two-component composition in the release layer 2, the options of the composition contained in the release layer 2 are expanded, and the amount of gas generated (generated amount) due to ultraviolet irradiation can be easily controlled. . In other words, the amount of gas generated due to ultraviolet irradiation is controlled by the amount of the composition that generates an acid by ultraviolet irradiation and the amount of protective group introduced into the composition that has a protective group that is released by the acid to become a gas. This makes it easier to control the amount of gas generated due to ultraviolet irradiation. In this case, the elimination of the protecting group is indirectly expressed due to irradiation with ultraviolet rays. In addition, the removal of the protecting group may be any as long as it is expressed directly or indirectly due to ultraviolet irradiation.

ここで、紫外線の照射によって酸(ここでは強酸)を発生する組成物は、紫外線官能物質であり、例えば、ヨードニウム塩やスルホニウム塩などのオニウム塩系化合物光酸発生剤、オキシムスルホネート系光酸発生剤、ビスアルキル又はビスアリールスルホニルジアゾメタン系光酸発生剤、ニトロベンジルスルホネート系光酸発生剤、イミノスルホネート系光酸発生剤、ジスルホン系光酸発生剤からなる群から選ばれる少なくとも1種を含むことが好ましい。つまり、紫外線の照射によって酸を発生する組成物に、これらの光酸発生剤の1種を単独で又は2種以上を混合して使用することが好ましい。   Here, the composition that generates an acid (strong acid in this case) upon irradiation with ultraviolet rays is an ultraviolet functional substance, for example, an onium salt compound photoacid generator such as an iodonium salt or a sulfonium salt, or an oxime sulfonate photoacid generator. Containing at least one selected from the group consisting of an agent, a bisalkyl or bisarylsulfonyldiazomethane photoacid generator, a nitrobenzyl sulfonate photoacid generator, an iminosulfonate photoacid generator, and a disulfone photoacid generator Is preferred. That is, it is preferable to use one of these photoacid generators alone or a mixture of two or more thereof in a composition that generates an acid upon irradiation with ultraviolet rays.

また、酸(ここでは強酸)によって脱離して気体となる保護基を有する組成物は、酸によって脱離が発現し、副生成物が気体である保護基を有するものであれば特に限定されないが、汎用性の点から、保護基として、ターシャリブチル(t−Bu)基又はターシャリブトキシカルボニル(t−Boc)基を有するものであることが好ましい。ここで、t−Bu基が脱離して生成される副生成物はイソブテンであり、t−Boc基が脱離して生成される副生成物はイソブテンと二酸化炭素であり、いずれも気体のみが生成される。   In addition, the composition having a protecting group that is eliminated by an acid (here, a strong acid) and becomes a gas is not particularly limited as long as it is eliminated by an acid and the by-product has a gaseous protecting group. From the viewpoint of versatility, the protective group preferably has a tertiary butyl (t-Bu) group or a tertiary riboxycarbonyl (t-Boc) group. Here, the by-product produced by elimination of the t-Bu group is isobutene, and the by-product produced by elimination of the t-Boc group is isobutene and carbon dioxide, both of which produce only gas. Is done.

また、酸(ここでは強酸)によって脱離して気体となる保護基を有する組成物は、水酸基又はアミノ基の一部又は全部が保護基で保護された組成物であることが好ましい。例えば、アルコール性水酸基、フェノール性水酸基、又は、アミノ基の一部又は全部が保護基で保護された組成物であることが好ましい。この場合、組成物の水酸基又はアミノ基に対する保護基の導入量を、支持基板1を剥離するための気体の生成量に鑑みて、適宜調製できる点で優れている。例えば、支持基板1を容易に剥離するための保護基の好ましい導入量は、組成物の水酸基又はアミノ基に対して約100%〜約50%である。なお、後述するように、剥離層2に紫外線を照射して剥離層2内で気体を生成させた後、溶剤によって剥離層2を溶解させて、支持基板1を剥離する場合には、支持基板1を容易に剥離するための保護基の好ましい導入量は、組成物の水酸基又はアミノ基に対して約100%〜約15%である。このように溶剤による溶解も行なう場合、保護基の導入量を少なくしても良いが、保護基の導入量が少ない場合、浸漬時間を長くして剥離することになる。この場合、浸漬時間が長時間であると、例えば樹脂配線層3が膨潤する等、樹脂配線層3にダメージを与えるおそれがある。そこで、溶剤による溶解も行ない、保護基の導入量を少なくする場合であっても、浸漬時間が樹脂配線層3にダメージを与えない程度の時間になるように、保護基の導入量を、組成物の水酸基又はアミノ基に対して約15%程度にするのが好ましい。このように、支持基板1を容易に剥離するための保護基の導入量は、組成物の水酸基又はアミノ基に対して約100%〜約15%が好ましく、より好ましくは約100%〜約50%である。   In addition, the composition having a protecting group that is eliminated by an acid (here, a strong acid) to become a gas is preferably a composition in which a hydroxyl group or a part or all of an amino group is protected with a protecting group. For example, a composition in which a part or all of an alcoholic hydroxyl group, a phenolic hydroxyl group, or an amino group is protected with a protecting group is preferable. In this case, it is excellent in that the amount of the protective group introduced to the hydroxyl group or amino group of the composition can be appropriately adjusted in view of the amount of gas generated for peeling the support substrate 1. For example, the preferable introduction amount of the protective group for easily peeling the support substrate 1 is about 100% to about 50% with respect to the hydroxyl group or amino group of the composition. As will be described later, when the release layer 2 is irradiated with ultraviolet rays to generate a gas in the release layer 2 and then the release layer 2 is dissolved by a solvent and the support substrate 1 is peeled off, A preferable introduction amount of the protecting group for easily peeling 1 is about 100% to about 15% with respect to the hydroxyl group or amino group of the composition. When dissolution with a solvent is also performed in this way, the introduction amount of the protecting group may be reduced, but when the introduction amount of the protecting group is small, peeling is performed with a longer immersion time. In this case, if the immersion time is long, the resin wiring layer 3 may be damaged, for example, the resin wiring layer 3 may swell. Therefore, the amount of the protective group introduced is set so that the immersion time is a time that does not damage the resin wiring layer 3 even when the solvent is dissolved and the amount of the protective group introduced is reduced. About 15% of the hydroxyl group or amino group of the product is preferable. Thus, the introduction amount of the protective group for easily peeling the support substrate 1 is preferably about 100% to about 15%, more preferably about 100% to about 50% with respect to the hydroxyl group or amino group of the composition. %.

また、酸(ここでは強酸)によって脱離して気体となる保護基を有する組成物は、高分子組成物でもモノマでも良く、特に限定されない。
例えば、高分子組成物としては、水酸基をt−Bu基又はt−Boc基で保護したフェノール樹脂を用いるのが好ましい。 For example, as the polymer composition, it is preferable to use a phenol resin in which the hydroxyl group is protected by a t-Bu group or a t-Boc group. また、モノマ(モノマ物質)としては、水酸基をt−Bu基又はt−Boc基で保護したビスフェノールAを用いるのが好ましい。 Further, as the monoma (monoma substance), it is preferable to use bisphenol A in which the hydroxyl group is protected by a t-Bu group or a t-Boc group. なお、酸(ここでは強酸)によって脱離して気体となる保護基を有する組成物がモノマの場合、剥離層2を形成するのに、別途、膜状にするためのバインダとしての高分子組成物を含むものとするのが好ましい。 When the composition having a protecting group desorbed by an acid (here, a strong acid) becomes a gas is a monoma, a polymer composition as a binder for forming a separate layer 2 is separately formed into a film. It is preferable to include. この高分子組成物としては、例えばポリメチルメタクリレートなどのアクリル樹脂などを用いるのが好ましいが、特にこれに限定されるものではない。 As the polymer composition, for example, an acrylic resin such as polymethylmethacrylate is preferably used, but the polymer composition is not particularly limited thereto. この場合、剥離層2は、紫外線の照射によって酸を発生する組成物、酸によって脱離して気体となる保護基を有する組成物としてのモノマ、及び、高分子組成物の3成分を含むものとなる(3成分系)。 In this case, the release layer 2 contains three components: a composition that generates an acid by irradiation with ultraviolet rays, a monoma as a composition having a protecting group that is desorbed by the acid and becomes a gas, and a polymer composition. (3 component system). 一方、酸によって脱離して気体となる保護基を有する組成物が高分子組成物の場合、剥離層2は、紫外線の照射によって酸を発生する組成物、及び、酸によって脱離して気体となる保護基を有する組成物としての高分子組成物の2成分を含むものとなる(2成分系)。 On the other hand, when the composition having a protecting group desorbed by an acid to become a gas is a polymer composition, the release layer 2 is a composition that generates an acid by irradiation with ultraviolet rays and a composition desorbed by the acid to become a gas. It contains two components of the polymer composition as a composition having a protecting group (two-component system). In addition, the composition having a protecting group that is eliminated by an acid (here, a strong acid) and becomes a gas may be a polymer composition or a monomer, and is not particularly limited. In addition, the composition having a protecting group that is eliminated by an acid (here, a strong acid) and becomes a gas may be a polymer composition or a monomer, and is not particularly limited.
For example, as the polymer composition, it is preferable to use a phenol resin in which a hydroxyl group is protected with a t-Bu group or a t-Boc group. As the monomer (monomer substance), it is preferable to use bisphenol A in which a hydroxyl group is protected with a t-Bu group or a t-Boc group. In addition, when the composition having a protective group which is eliminated by an acid (here, a strong acid) and becomes a gas is a monomer, a polymer composition as a binder for forming a release layer 2 separately is used as a binder. It is preferable to contain. As this polymer composition, for example, an acrylic resin such as polymethyl methacrylate is preferably used, but is not particularly limited thereto. In this case, the release layer 2 includes three components: a composition that generates an acid upon irradiation with ultraviolet rays, a monomer as a composition having a protective group that is eliminated by acid and becomes a gas, and a polymer composition. (3 component For example, as the polymer composition, it is preferred to use a phenol resin in which a hydroxyl group is protected with a t-Bu group or a t-Boc group. As the monomer (monomer substance), it is preferred to use bisphenol A in which a hydroxyl group is protected with a t-Bu group or a t-Boc group. In addition, when the composition having a protective group which is eliminated by an acid (here, a strong acid) and becomes a gas is a monomer, a polymer composition as a binder for forming a release layer 2 separately is used as a binder. It is preferred to contain. As this polymer composition, for example, an acrylic resin such as polymethylbutyl is preferably used, but is not particularly In this case, the release layer 2 includes three components: a composition that generates an acid upon irradiation with ultraviolet rays, a monomer as a composition having a protective group that is eliminated by acid and becomes a gas, and a polymer composition . (3 component system) On the other hand, in the case where the composition having a protective group that is desorbed by an acid and becomes a gas is a polymer composition, the release layer 2 is a composition that generates an acid upon irradiation with ultraviolet rays, and becomes a gas by desorbing by an acid. It contains two components of a polymer composition as a composition having a protecting group (two-component system). system) On the other hand, in the case where the composition having a protective group that is desorbed by an acid and becomes a gas is a polymer composition, the release layer 2 is a composition that generates an acid upon irradiation with ultraviolet rays, and It contains two components of a polymer composition as a composition having a protecting group (two-component system).

このような組成物を含む剥離層2の形成方法としては、例えばスピンコ−ト法を用いることができる。これは均一な薄膜を形成できる点で好ましい。ここで、剥離層2の膜厚は、特に限定されないが、約100nm〜約1mm程度が好ましい。この場合、例えば支持基板1や配線層3の構造、気体の生成量、さらに剥離層2を溶解する場合には溶解性等を考慮して、適宜選択することが可能である。例えば、プロセス安定性などを考慮すると、約300nm〜約200μm程度とするのが好ましい。なお、スピンコート法による成膜条件としては、成膜後に加熱しても良く、この場合、加熱温度や時間は、組成によって適宜選択することができる。好ましくは、約70℃〜約150℃、約30秒〜約300秒程度であり、一般的な樹脂組成物の成膜条件に基づいたものを適用できる。なお、この剥離層2を形成する際の加熱は配線層3を形成する前に行なわれるので、配線層3にダメージを与えることはない。   As a method for forming the release layer 2 containing such a composition, for example, a spin coating method can be used. This is preferable in that a uniform thin film can be formed. Here, the thickness of the release layer 2 is not particularly limited, but is preferably about 100 nm to about 1 mm. In this case, for example, the structure of the support substrate 1 and the wiring layer 3, the amount of gas generated, and when the release layer 2 is dissolved, it is possible to select appropriately in consideration of solubility and the like. For example, considering process stability and the like, the thickness is preferably about 300 nm to about 200 μm. Note that the film formation conditions by the spin coating method may be heated after film formation, and in this case, the heating temperature and time can be appropriately selected depending on the composition. Preferably, they are about 70 ° C. to about 150 ° C. and about 30 seconds to about 300 seconds, and those based on the film forming conditions of a general resin composition can be applied. The heating for forming the release layer 2 is performed before the wiring layer 3 is formed, so that the wiring layer 3 is not damaged.

次いで、図1(B)に示すように、剥離層2の上方に配線層3を形成する。本実施形態では、剥離層2上に配線層3を形成する。つまり、支持基板1上に剥離層2を介して配線層3を形成する。ここで、配線層3は、配線3Aを有する樹脂層である。例えば、配線層3は、樹脂層3B(絶縁層)上に配線3A(微細配線;ビアを含む)を形成したものを積層して多層化したものである。なお、配線層3の形成方法については、後述の実施例において詳細に説明する。また、配線層3を樹脂配線層ともいう。   Next, as illustrated in FIG. 1B, the wiring layer 3 is formed above the release layer 2. In the present embodiment, the wiring layer 3 is formed on the release layer 2. That is, the wiring layer 3 is formed on the support substrate 1 via the release layer 2. Here, the wiring layer 3 is a resin layer having the wiring 3A. For example, the wiring layer 3 is formed by laminating a layer in which a wiring 3A (fine wiring; including vias) is formed on a resin layer 3B (insulating layer). In addition, the formation method of the wiring layer 3 is demonstrated in detail in the below-mentioned Example. The wiring layer 3 is also referred to as a resin wiring layer.

ここでは、配線層3は、微細配線を有する配線層である。つまり、後述の配線基板5に備えられる配線よりも微細な配線を有する配線層である。例えば、配線基板5に備えられる配線は、プリント配線プロセスによって形成されるのに対し、配線層3に備えられる微細な配線は、半導体プロセス又はウエハプロセス(例えばFan-out WLP技術)によって形成される。なお、配線層3を微細配線層又は微細配線回路部ともいう。   Here, the wiring layer 3 is a wiring layer having fine wiring. That is, the wiring layer has finer wiring than the wiring provided on the wiring board 5 described later. For example, the wiring provided on the wiring substrate 5 is formed by a printed wiring process, while the fine wiring provided on the wiring layer 3 is formed by a semiconductor process or a wafer process (for example, Fan-out WLP technology). . The wiring layer 3 is also referred to as a fine wiring layer or a fine wiring circuit unit.

次に、図1(B)、図1(C)に示すように、配線層3の一方の表面側を配線基板5に接合する。
ここで、配線基板5は、例えばプリント基板などである。ここでは、配線基板5は、ビルドアップ基板である。
ここでは、配線層3の一方の表面側に露出した電極(パッド)上にバンプ4を形成し、このバンプ4を介して、配線層3と配線基板5とを接合する。つまり、配線層3の一方の表面側と配線基板5とをバンプ4を介して貼り合わせる。
Next, as shown in FIGS. 1B and 1C, one surface side of the wiring layer 3 is bonded to the wiring substrate 5.
Here, the wiring board 5 is, for example, a printed board. Here, the wiring board 5 is a build-up board.
Here, a bump 4 is formed on an electrode (pad) exposed on one surface side of the wiring layer 3, and the wiring layer 3 and the wiring substrate 5 are bonded via the bump 4. That is, one surface side of the wiring layer 3 and the wiring substrate 5 are bonded together via the bumps 4. Here, a bump 4 is formed on an electrode (pad) exposed on one surface side of the wiring layer 3, and the wiring layer 3 and the wiring substrate 5 are bonded via the bump 4. That is, one surface side of the wiring layer 3 and the wiring substrate 5 are bonded together via the bumps 4.

次いで、図1(D)に示すように、剥離層2に紫外線を照射して剥離層2内で気体を生成させ、支持基板1を剥離する。このように、剥離層2に紫外線を照射して剥離層2と支持基板1とを剥離することができるため、高い歩留まりで容易かつ簡単に剥離することが可能となる。
ここでは、剥離層2に紫外線を照射して剥離層2内で気体を生成させ、支持基板1を剥離すると、これとともに剥離層2も配線層3の表面から剥離し、配線層3の他方の表面側、即ち、配線層3の他方の表面(剥離面)側に設けられた電極(パッド)が露出することになる。 Here, when the release layer 2 is irradiated with ultraviolet rays to generate gas in the release layer 2 and the support substrate 1 is peeled off, the release layer 2 is also separated from the surface of the wiring layer 3 and the other of the wiring layer 3 is separated. The electrode (pad) provided on the surface side, that is, on the other surface (peeling surface) side of the wiring layer 3 is exposed. Next, as shown in FIG. 1D, the release layer 2 is irradiated with ultraviolet rays to generate gas in the release layer 2, and the support substrate 1 is peeled off. In this manner, since the release layer 2 can be peeled off from the support substrate 1 by irradiating the release layer 2 with ultraviolet rays, the release layer 2 can be easily and easily peeled off at a high yield. Next, as shown in FIG. 1D, the release layer 2 is communicating with ultraviolet rays to generate gas in the release layer 2, and the support substrate 1 is peeled off. In this manner, since the release layer 2 can be peeled off from the support substrate 1 by irradiating the release layer 2 with ultraviolet rays, the release layer 2 can be easily and easily peeled off at a high yield.
Here, when the release layer 2 is irradiated with ultraviolet rays to generate gas in the release layer 2 and the support substrate 1 is peeled off, the release layer 2 is also peeled off from the surface of the wiring layer 3 together with the other of the wiring layer 3. The electrode (pad) provided on the surface side, that is, the other surface (peeling surface) side of the wiring layer 3 is exposed. Here, when the release layer 2 is particularly with ultraviolet rays to generate gas in the release layer 2 and the support substrate 1 is peeled off, the release layer 2 is also peeled off from the surface of the wiring layer 3 together with the other of the wiring layer 3. The electrode (pad) provided on the surface side, that is, the other surface (peeling surface) side of the wiring layer 3 is exposed.

また、気体の生成を発現するために照射する紫外線の波長は、特に限定されないが、使用する剥離層2に含まれる紫外線官能物質(紫外線の照射によって酸を発生する組成物)によって適宜選択される。例えば、波長約436nmのg線、波長約365nmのi線、波長約248nmのKrFエキシマレーザなどを用いれば良い。また、照射時間は、剥離層2の組成によって適宜決定されるが、約10秒から約300秒程度が好ましい。   Further, the wavelength of the ultraviolet ray irradiated for expressing the generation of gas is not particularly limited, but is appropriately selected depending on the ultraviolet functional substance (composition that generates an acid upon irradiation with ultraviolet ray) contained in the release layer 2 to be used. . For example, a g-line with a wavelength of about 436 nm, an i-line with a wavelength of about 365 nm, a KrF excimer laser with a wavelength of about 248 nm may be used. Moreover, although irradiation time is suitably determined by the composition of the peeling layer 2, about 10 seconds to about 300 seconds are preferable.

このようにして、配線層3から支持基板1を剥離して、配線層3を配線基板5上に転写することができる。なお、後述するように、配線層3に半導体チップ7が接合されるため、これらの工程を、配線基板5と半導体チップ7とを接続する微細配線の転写プロセスともいう。特に、剥離層2に紫外線を照射して剥離層2の組成物において気体を生成させることで、配線層3にダメージを与えないで、容易かつ簡単に支持基板1を剥離できる。また、剥離層2に紫外線を照射して剥離層2の組成物において気体を生成させるため、配線層3上に剥離層2が残ってしまった場合であっても、配線層3にダメージを与えないで、容易かつ簡単に、剥離層2を除去することが可能である。この結果、低コストで、より高い信頼性を有する回路基板を、より高い歩留まりで得られることになる。このように、支持基板1の良好な剥離性と、配線層3ひいては回路基板の高い信頼性及び高い歩留りとを両立させることが可能となる。   In this manner, the support substrate 1 can be peeled from the wiring layer 3 and the wiring layer 3 can be transferred onto the wiring substrate 5. As will be described later, since the semiconductor chip 7 is bonded to the wiring layer 3, these steps are also referred to as a fine wiring transfer process for connecting the wiring substrate 5 and the semiconductor chip 7. In particular, the support substrate 1 can be easily and easily peeled without damaging the wiring layer 3 by irradiating the release layer 2 with ultraviolet rays to generate gas in the composition of the release layer 2. Further, since the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition of the release layer 2, even if the release layer 2 remains on the wiring layer 3, the wiring layer 3 is damaged. It is possible to remove the release layer 2 easily and simply. As a result, a circuit board having higher reliability at a lower cost can be obtained with a higher yield. In this way, it is possible to achieve both good releasability of the support substrate 1 and high reliability and high yield of the wiring layer 3 and thus the circuit board.

ここで、上述のようにして支持基板1を剥離するようにしているのは、以下の理由による。
まず、剥離層が樹脂材料からなり、支持基板を剥離する際に、剥離層を硬化させる場合、支持基板を剥離した後に、配線層(剥離面)上に、硬化した樹脂材料からなる剥離層が残ってしまうため、これを除去することが必要になる。 First, when the release layer is made of a resin material and the release layer is cured when the support substrate is peeled off, after the support substrate is peeled off, a release layer made of the cured resin material is formed on the wiring layer (peeling surface). It will remain and will need to be removed. しかしながら、硬化した樹脂材料からなる剥離層を配線層にダメージを与えないで容易かつ簡単に除去するのは難しく、信頼性及び歩留まりを低下させることになる。 However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, which lowers the reliability and the yield. 特に、剥離層が熱硬化性樹脂材料からなり、剥離層を加熱によって硬化させる場合、配線層形成時のプロセス温度よりも高温になるため、配線層にダメージを与えるおそれがあり、信頼性及び歩留まりを低下させることになる。 In particular, when the release layer is made of a thermosetting resin material and the release layer is cured by heating, the temperature becomes higher than the process temperature at the time of forming the wiring layer, which may damage the wiring layer, resulting in reliability and yield. Will be reduced. なお、熱硬化性樹脂材料を、加熱による接着性喪失材料ともいう。 The thermosetting resin material is also referred to as a material that loses adhesiveness due to heating. Here, the reason why the support substrate 1 is peeled off as described above is as follows. Here, the reason why the support substrate 1 is peeled off as described above is as follows.
First, when the release layer is made of a resin material and the release layer is cured when the support substrate is peeled off, the release layer made of the cured resin material is formed on the wiring layer (release surface) after peeling the support substrate. Since it remains, it is necessary to remove it. However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, and the reliability and yield are lowered. In particular, when the release layer is made of a thermosetting resin material and the release layer is cured by heating, the process temperature is higher than the process temperature at the time of forming the wiring layer, which may cause damage to the wiring layer, and reliability and yield. Will be reduced. The thermosetting resin material is also referred to as an adhesive loss material due to heating. First, when the release layer is made of a resin material and the release layer is cured when the support substrate is peeled off, the release layer made of the cured resin material is formed on the wiring layer (release surface) after peeling the support substrate Since it remains, it is necessary to remove it. However, it is difficult to easily and easily remove the release layer made of the cured resin material without damaging the wiring layer, and the reliability and yield are lowered. In particular, when the release layer is made of a thermosetting resin material and the release layer is cured by heating, the process temperature is higher than the process temperature at the time of forming the wiring layer, which may cause damage to the wiring layer, and reliability and yield. Will be reduced. The thermosetting resin material is also referred to as an adhesive loss material due to heating.

また、剥離層が金属材料からなり、支持基板を剥離する際に、剥離層を溶解する場合、剥離層は、配線層と支持基板との間に挟まれているため、その側面から面内方向へ溶解されていくことになる。このため、剥離層を溶解するのに長時間を要するため、容易かつ簡単に支持基板を剥離するのは難しく、配線層にダメージを与えてしまい、信頼性及び歩留まりを低下させることになる。特に、剥離層としての金属層(金属膜)を溶解するためには、例えば過酸化水素や硫酸などの強酸性の溶剤(薬液浸漬)を用いることになるため、配線層にダメージを与えてしまう可能性が高い。また、剥離層として金属層を設けると、配線層と金属層の熱膨張率差に起因して配線層にプロセスの熱履歴によるクラックが発生するおそれもある。   Also, when the release layer is made of a metal material and the release layer is dissolved when the support substrate is peeled off, the release layer is sandwiched between the wiring layer and the support substrate. Will be dissolved. For this reason, since it takes a long time to dissolve the release layer, it is difficult to easily and easily peel off the support substrate, which damages the wiring layer and decreases reliability and yield. In particular, in order to dissolve the metal layer (metal film) as the release layer, for example, a strongly acidic solvent (chemical solution immersion) such as hydrogen peroxide or sulfuric acid is used, which damages the wiring layer. Probability is high. In addition, when a metal layer is provided as a release layer, there is a risk that a crack due to a thermal history of the process may occur in the wiring layer due to a difference in thermal expansion coefficient between the wiring layer and the metal layer.

そこで、配線層3にダメージを与えないで、容易かつ簡単に、支持基板1を剥離でき、かつ、剥離層2を除去できるようにし、低コストで、より高い信頼性を有する回路基板を、より高い歩留まりで得られるようにすべく、上述のように、剥離層2に紫外線を照射して剥離層2内部で気体を生成させることで、支持基板1を剥離するようにしている。また、支持基板1を剥離する際に配線層形成時のプロセス温度よりも高温になるような加熱を行なわないため、加熱によって配線層3がダメージを受けることはなく、また、剥離層2に金属層を用いていないため、配線層3に熱膨張率のミスマッチによるクラックが発生するおそれもない。   Therefore, it is possible to easily and easily peel the supporting substrate 1 and remove the peeling layer 2 without damaging the wiring layer 3, and to obtain a circuit board having higher reliability at a lower cost. In order to obtain a high yield, as described above, the support substrate 1 is peeled off by irradiating the release layer 2 with ultraviolet rays to generate gas inside the release layer 2. In addition, when the support substrate 1 is peeled off, the wiring layer 3 is not damaged by the heating because it is not heated to a temperature higher than the process temperature at the time of forming the wiring layer. Since no layer is used, there is no possibility that cracks due to mismatch in thermal expansion coefficient occur in the wiring layer 3.

なお、支持基板1を剥離した後に配線層3上に剥離層2が残ってしまった場合であっても、表面に露出した剥離層2を形成する組成物は、保護基が脱離した状態になっているため、溶剤によって短時間で、配線層3にダメージを与えることなく、剥離層2を除去することが可能である。
また、支持基板1を剥離すべく、剥離層2に紫外線を照射後に、剥離層2の組成物における気体の生成を進行させるための加熱処理を施しても良い。 Further, in order to peel off the support substrate 1, after irradiating the peeling layer 2 with ultraviolet rays, a heat treatment may be performed to promote the generation of gas in the composition of the peeling layer 2. なお、前記加熱処理は、配線層形成時のプロセス温度よりも低温で行なうため、配線層3にダメージを与えることはない。 Since the heat treatment is performed at a temperature lower than the process temperature at the time of forming the wiring layer, the wiring layer 3 is not damaged. Even when the release layer 2 remains on the wiring layer 3 after the support substrate 1 is peeled off, the composition that forms the release layer 2 exposed on the surface is in a state in which the protective group is detached. Therefore, the release layer 2 can be removed in a short time by the solvent without damaging the wiring layer 3. Even when the release layer 2 remains on the wiring layer 3 after the support substrate 1 is peeled off, the composition that forms the release layer 2 exposed on the surface is in a state in which the protective group is detached. Therefore, the release layer 2 can be removed in a short time by the solvent without damaging the wiring layer 3.
Moreover, in order to peel the support substrate 1, after irradiating the peeling layer 2 with ultraviolet rays, a heat treatment for advancing the generation of gas in the composition of the peeling layer 2 may be performed. Since the heat treatment is performed at a temperature lower than the process temperature at the time of forming the wiring layer, the wiring layer 3 is not damaged. Moreover, in order to peel the support substrate 1, after irradiating the peeling layer 2 with ultraviolet rays, a heat treatment for advancing the generation of gas in the composition of the peeling layer 2 may be performed. Since the heat treatment is performed at a temperature lower than the process temperature at the time of forming the wiring layer, the wiring layer 3 is not damaged.

そして、図1(E)、図1(F)に示すように、支持基板1を剥離することによって露出した配線層3の他方の表面側に半導体チップ7を接合する。
ここで、半導体チップ7は、例えば集積回路を有する半導体チップである。なお、半導体チップ7を電子部品ともいう。

ここでは、配線層3の他方の表面側に露出した電極(パッド)上にバンプ6を形成し、このバンプ6を介して、配線層3と半導体チップ7とを接合する。 Here, a bump 6 is formed on an electrode (pad) exposed on the other surface side of the wiring layer 3, and the wiring layer 3 and the semiconductor chip 7 are joined via the bump 6. つまり、配線層3の他方の表面側と半導体チップ7とをバンプ6を介して貼り合わせる。 That is, the other surface side of the wiring layer 3 and the semiconductor chip 7 are bonded to each other via the bump 6. Then, as shown in FIGS. 1E and 1F, a semiconductor chip 7 is bonded to the other surface side of the wiring layer 3 exposed by peeling the support substrate 1. Then, as shown in FIGS. 1E and 1F, a semiconductor chip 7 is bonded to the other surface side of the wiring layer 3 exposed by peeling the support substrate 1.
Here, the semiconductor chip 7 is a semiconductor chip having an integrated circuit, for example. The semiconductor chip 7 is also referred to as an electronic component. Here, the semiconductor chip 7 is a semiconductor chip having an integrated circuit, for example. The semiconductor chip 7 is also referred to as an electronic component.
Here, a bump 6 is formed on an electrode (pad) exposed on the other surface side of the wiring layer 3, and the wiring layer 3 and the semiconductor chip 7 are bonded via the bump 6. That is, the other surface side of the wiring layer 3 and the semiconductor chip 7 are bonded together via the bumps 6. Here, a bump 6 is formed on an electrode (pad) exposed on the other surface side of the wiring layer 3, and the wiring layer 3 and the semiconductor chip 7 are bonded via the bump 6. That is, the other surface side of the wiring layer 3 and the semiconductor chip 7 are bonded together via the bumps 6.

このようにして、本実施形態にかかる回路基板8、即ち、配線基板5と半導体チップ7とを配線層3を介して接続した回路基板8を製造することができる。つまり、配線基板5に、配線基板5に備えられる配線よりも微細な配線を有する配線層3を接合し、配線層3上に半導体チップ7を接合することで、配線基板5と半導体チップ7とが微細配線接続された回路基板8を製造することができる。ここでは、支持基板1上に配線層3を形成し、この配線層3を配線基板5上に転写し、配線基板5上に転写された配線層3上に半導体チップ7を実装することで、回路基板8を製造することができる。これにより、回路基板8における配線の微細化を図り、回路基板8の軽量化、高密度実装化、さらには低コスト化を実現することが可能である。特に、高い信頼性を有する微細配線接続された回路基板8を、容易かつ簡単に、高い歩留りで得ることを可能となる。なお、このような回路基板8は、例えばモバイル機器等の電子装置に備えられるため、本実施形態の回路基板の製造方法は、電子装置の製造方法に含まれる。また、本実施形態の回路基板の製造方法は、例えば複数の異なる種類のチップを1モジュール化するためのインターポーザ技術に適用することが可能である。   In this manner, the circuit board 8 according to the present embodiment, that is, the circuit board 8 in which the wiring board 5 and the semiconductor chip 7 are connected via the wiring layer 3 can be manufactured. That is, the wiring substrate 5 and the semiconductor chip 7 are bonded to the wiring substrate 5 by bonding the wiring layer 3 having finer wiring than the wiring provided in the wiring substrate 5 and bonding the semiconductor chip 7 on the wiring layer 3. Can be manufactured. Here, the wiring layer 3 is formed on the support substrate 1, the wiring layer 3 is transferred onto the wiring substrate 5, and the semiconductor chip 7 is mounted on the wiring layer 3 transferred onto the wiring substrate 5. The circuit board 8 can be manufactured. As a result, it is possible to miniaturize the wiring on the circuit board 8 and to realize weight reduction, high-density mounting, and cost reduction of the circuit board 8. In particular, it is possible to easily and easily obtain a highly reliable circuit board 8 connected with fine wiring with a high yield. Since such a circuit board 8 is provided in an electronic device such as a mobile device, the circuit board manufacturing method of the present embodiment is included in the electronic device manufacturing method. Further, the circuit board manufacturing method of the present embodiment can be applied to, for example, an interposer technique for making a plurality of different types of chips into one module.

したがって、本実施形態にかかる回路基板の製造方法によれば、配線層3にダメージを与えないで、容易かつ簡単に、支持基板1を剥離でき、かつ、剥離層2を除去できるようにし、低コストで、より高い信頼性を有する回路基板8を、より高い歩留まりで得られるという利点がある。
なお、上述の実施形態では、支持基板1を剥離する工程において、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させ、支持基板1を剥離するようにしているが、これに限られるものではなく、例えば、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させた後、溶剤によって剥離層2を溶解させて、支持基板1を剥離するようにしても良い。 In the above-described embodiment, in the step of peeling the support substrate 1, the release layer 2 is irradiated with ultraviolet rays to generate gas in the composition forming the release layer 2, and the support substrate 1 is peeled off. However, the present invention is not limited to this, for example, the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition forming the release layer 2, and then the release layer 2 is dissolved with a solvent to dissolve the release layer 2 to support the substrate 1. May be peeled off. なお、この場合、溶剤によって剥離層2を溶解させる工程が追加されているだけで、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させ、支持基板1を剥離していることに変わりはない。 In this case, only the step of dissolving the release layer 2 with a solvent is added, and the release layer 2 is irradiated with ultraviolet rays to generate gas in the composition forming the release layer 2 and the support substrate 1 is peeled off. There is no change in doing. Therefore, according to the method for manufacturing a circuit board according to the present embodiment, the supporting substrate 1 can be easily and easily peeled off and the peeling layer 2 can be removed without damaging the wiring layer 3. There is an advantage that the circuit board 8 having higher reliability can be obtained at a higher yield at a lower cost. Therefore, according to the method for manufacturing a circuit board according to the present embodiment, the supporting substrate 1 can be easily and easily peeled off and the peeling layer 2 can be removed without damaging the wiring layer 3. There is an advantage that the circuit board 8 having higher reliability can be obtained at a higher yield at a lower cost.
In the above-described embodiment, in the step of peeling the support substrate 1, the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition that forms the release layer 2, thereby peeling the support substrate 1. However, the present invention is not limited to this. For example, after the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition for forming the release layer 2, the release layer 2 is dissolved with a solvent, and the support substrate 1 You may make it peel. In this case, only the step of dissolving the release layer 2 with a solvent is added, and the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition for forming the release layer 2 and release the support substrate 1. There is no change in doing. In the above-described embodiment, in the step of peeling the support substrate 1, the release layer 2 is insulating with ultraviolet rays to generate a gas in the composition that forms the release layer 2, thereby peeling the support substrate 1. However, the present invention is not limited to this. For example, after the release layer 2 is irregular with ultraviolet rays to generate a gas in the composition for forming the release layer 2, the release layer 2 is dissolved with a solvent, and the support substrate 1 You may make it peel. In this case, only the step of removing the release layer 2 with a solvent is added, and the release layer 2 is irregular with ultraviolet rays to generate a gas in the composition for forming the release layer 2 and release. the support substrate 1. There is no change in doing.

例えば、配線層3の配線密度、層数、サイズ、あるいは、剥離層2における気体の生成量などによって、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させるだけでは支持基板1を剥離することができない場合には、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させた後、溶剤によって剥離層2を溶解させて、支持基板1を剥離するようにしても良い。このように、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させるだけでは支持基板1を剥離することができない場合であっても、剥離層2に紫外線を照射して剥離層2内で気体を生成させているため、配線層3と支持基板1との間に挟まれている剥離層2の側面から面内方向へ、剥離層2を溶解するための溶剤(溶液)が浸み込みやすい。このため、短時間で剥離層2を溶解して容易かつ簡単に支持基板1を剥離することができるため、配線層3にダメージを与えないようにすることができ、信頼性や歩留まりを向上させることができる。このように、気体を生成による剥離と溶解による剥離とを組み合わせることで、容易かつ簡単に支持基板1を剥離することができ、配線層3にダメージを与えないで、信頼性や歩留まりを向上させることができる。   For example, depending on the wiring density, the number of layers, the size of the wiring layer 3, or the amount of gas generated in the release layer 2, only gas is generated in the composition that forms the release layer 2 by irradiating the release layer 2 with ultraviolet rays. Then, when the support substrate 1 cannot be peeled off, the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition for forming the release layer 2, and then the release layer 2 is dissolved with a solvent to support the release layer 2. The substrate 1 may be peeled off. Thus, even if it is a case where the support substrate 1 cannot be peeled off simply by irradiating the release layer 2 with ultraviolet rays to generate a gas in the composition forming the release layer 2, the release layer 2 is irradiated with ultraviolet rays. Since the gas is generated in the release layer 2, the solvent for dissolving the release layer 2 from the side surface of the release layer 2 sandwiched between the wiring layer 3 and the support substrate 1 in the in-plane direction. (Solution) is likely to penetrate. For this reason, since the peeling layer 2 can be melt | dissolved in a short time and the support substrate 1 can be peeled easily and simply, it can be prevented from damaging the wiring layer 3, and reliability and a yield are improved. be able to. In this way, by combining the separation by gas generation and the separation by dissolution, the support substrate 1 can be easily and easily separated, and the reliability and yield are improved without damaging the wiring layer 3. be able to.

具体的には、剥離層2を構成する紫外線の照射に起因して気体を生成する組成物が、紫外線の照射に起因して脱離して気体となる保護基を有する組成物を含むものとする。この紫外線の照射に起因して脱離して気体となる保護基を有する組成物として、保護基が脱離すると、極性が変化し、保護基の脱離前に不溶であった溶剤に対する溶解性が発現する組成物を用いる。特に、この紫外線の照射に起因して脱離して気体となる保護基を有する組成物として、保護基が脱離すると、配線層を溶解しない溶剤に対する溶解性が発現する組成物を用いるのが好ましい。   Specifically, it is assumed that the composition that generates gas due to the irradiation of ultraviolet rays that constitutes the release layer 2 includes a composition having a protective group that is released and becomes a gas due to the irradiation of ultraviolet rays. As a composition having a protecting group that is eliminated due to the irradiation of ultraviolet rays to become a gas, when the protecting group is eliminated, the polarity changes, and the solubility in the solvent that was insoluble before the elimination of the protecting group is increased. A developing composition is used. In particular, it is preferable to use a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protective group is eliminated, as a composition having a protective group that is eliminated and becomes a gas due to irradiation with ultraviolet rays. .

なお、剥離層2を構成する紫外線の照射に起因して気体を生成する組成物を、紫外線の照射によって酸を発生する組成物と、酸によって脱離して気体となる保護基を有する組成物とを含むものとしても良い。この場合、酸によって脱離して気体となる保護基を有する組成物として、保護基が脱離すると、極性が変化し、保護基の脱離前に不溶であった溶剤に対する溶解性が発現する組成物を用いる。特に、この酸によって脱離して気体となる保護基を有する組成物として、保護基が脱離すると、配線層3を溶解しない溶剤に対する溶解性が発現する組成物を用いるのが好ましい。   In addition, the composition which produces | generates gas resulting from the ultraviolet irradiation which comprises the peeling layer 2, the composition which generate | occur | produces an acid by ultraviolet irradiation, and the composition which has a protective group which detach | desorbs by an acid and becomes gas May be included. In this case, as a composition having a protecting group that is eliminated by acid and becomes a gas, when the protecting group is eliminated, the polarity changes, and the composition that exhibits solubility in a solvent that is insoluble before the protecting group is eliminated. Use things. In particular, it is preferable to use a composition that exhibits solubility in a solvent that does not dissolve the wiring layer 3 when the protective group is eliminated, as the composition having a protective group that is eliminated by the acid and becomes a gas.

そして、支持基板1を剥離する工程において、剥離層2に紫外線を照射して剥離層2を形成する組成物に気体を生成させた後、溶剤によって剥離層2を溶解させて、支持基板1を剥離するようにするのが好ましい。
特に、保護基が脱離すると、配線層3を溶解しない溶剤に対する溶解性が発現する組成物を用いる場合、配線層3を溶解しない溶剤は、水、アルコール及びアルカリ水溶液からなる群から選ばれる少なくとも1種を含むことが好ましい。 In particular, when a composition that exhibits solubility in a solvent that does not dissolve the wiring layer 3 when the protective group is removed is used, the solvent that does not dissolve the wiring layer 3 is at least selected from the group consisting of water, alcohol, and an alkaline aqueous solution. It is preferable to include one type. 例えば、上述の配線層3を溶解しない溶剤は、水、例えばエタノール、IPAなどのアルコール、及び、例えばテトラメチルアンモニウムハイドロオキサイド水溶液、テトラブチルアンモニウムハイドロオキサイド水溶液などのアルカリ水溶液から、剥離層2を構成する組成物に応じて、選択すれば良い。 For example, the solvent that does not dissolve the wiring layer 3 described above constitutes the release layer 2 from water, for example, alcohol such as ethanol and IPA, and an alkaline aqueous solution such as a tetramethylammonium hydroxide aqueous solution and a tetrabutylammonium hydroxide aqueous solution. It may be selected according to the composition to be formed. In the step of peeling the support substrate 1, after the release layer 2 is irradiated with ultraviolet rays to generate a gas in the composition for forming the release layer 2, the release layer 2 is dissolved with a solvent, and the support substrate 1 is then removed. Peeling is preferable. In the step of peeling the support substrate 1, after the release layer 2 is insulating with ultraviolet rays to generate a gas in the composition for forming the release layer 2, the release layer 2 is dissolved with a solvent, and the support substrate 1 is then removed. Peeling is preferred.
In particular, when a composition that exhibits solubility in a solvent that does not dissolve the wiring layer 3 when the protecting group is removed, the solvent that does not dissolve the wiring layer 3 is at least selected from the group consisting of water, alcohol, and an alkaline aqueous solution. It is preferable that 1 type is included. For example, the solvent that does not dissolve the wiring layer 3 described above constitutes the release layer 2 from water, an alcohol such as ethanol or IPA, and an alkaline aqueous solution such as an aqueous tetramethylammonium hydroxide solution or an aqueous tetrabutylammonium hydroxide solution. What is necessary is just to select according to the composition to do. In particular, when a composition that exhibits solubility in a solvent that does not dissolve the wiring layer 3 when the protecting group is removed, the solvent that does not dissolve the wiring layer 3 is at least selected from the group consisting of water, alcohol, It is preferred that 1 type is included. For example, the solvent that does not dissolve the wiring layer 3 described above constitutes the release layer 2 from water, an alcohol such as ethanol or IPA, and an alkaline aqueous solution. solution such as an aqueous tetramethylammonium hydroxide solution or an aqueous tetrabutylammonium hydroxide solution. What is necessary is just to select according to the composition to do.

また、上述の実施形態では、剥離層2上に配線層3を形成しているが、これに限られるものではなく、剥離層2の上方に配線層3が形成されていれば良い。
例えば、上述の実施形態では、支持基板1を剥離する工程において、剥離層2に紫外線を照射するため、剥離層2の厚さが薄く、照射した紫外線が剥離層2を透過してしまうような場合には、例えば図2(A)、図2(B)に示すように、配線層3への影響を回避するために、剥離層2と配線層3の間に紫外線を透過しない材料からなる透過防止層9を形成するのが好ましい。 For example, in the above-described embodiment, since the release layer 2 is irradiated with ultraviolet rays in the step of peeling the support substrate 1, the thickness of the release layer 2 is thin and the irradiated ultraviolet rays pass through the release layer 2. In this case, for example, as shown in FIGS. 2A and 2B, the material is made of a material that does not transmit ultraviolet rays between the release layer 2 and the wiring layer 3 in order to avoid the influence on the wiring layer 3. It is preferable to form the permeation prevention layer 9. この場合、剥離層2上に、紫外線を透過しない材料からなる透過防止層9を形成し、透過防止層9上に配線層3を形成することになる。 In this case, a transmission prevention layer 9 made of a material that does not transmit ultraviolet rays is formed on the release layer 2, and a wiring layer 3 is formed on the transmission prevention layer 9. つまり、剥離層2を形成する工程の後、配線層3を形成する工程の前に、剥離層2上に紫外線を透過しない材料からなる透過防止層9を形成する工程を含むことになる。 That is, after the step of forming the release layer 2, and before the step of forming the wiring layer 3, a step of forming a transmission prevention layer 9 made of a material that does not transmit ultraviolet rays is included on the release layer 2. In the above-described embodiment, the wiring layer 3 is formed on the release layer 2, but the present invention is not limited to this, and the wiring layer 3 may be formed above the release layer 2. In the above-described embodiment, the wiring layer 3 is formed on the release layer 2, but the present invention is not limited to this, and the wiring layer 3 may be formed above the release layer 2.
For example, in the above-described embodiment, in the step of peeling the support substrate 1, since the release layer 2 is irradiated with ultraviolet rays, the release layer 2 is thin, and the irradiated ultraviolet rays pass through the release layer 2. In such a case, for example, as shown in FIGS. 2A and 2B, in order to avoid the influence on the wiring layer 3, it is made of a material that does not transmit ultraviolet rays between the peeling layer 2 and the wiring layer 3. It is preferable to form the transmission preventing layer 9. In this case, the transmission preventing layer 9 made of a material that does not transmit ultraviolet rays is formed on the release layer 2, and the wiring layer 3 is formed on the transmission preventing layer 9. That is, after the step of forming the release layer 2 and before the step of forming the wiring layer 3, a step of forming the transmission preventing layer 9 made of a material that does not transmit ultraviolet light on the release For example, in the above-described embodiment, in the step of peeling the support substrate 1, since the release layer 2 is irregular with ultraviolet rays, the release layer 2 is thin, and the similarly ultraviolet rays pass through the release layer 2. In such a case, for example, as shown in FIGS. 2A and 2B, in order to avoid the influence on the wiring layer 3, it is made of a material that does not transmit ultraviolet rays between the peeling layer 2 and the wiring layer 3. It is preferred to form the transmission preventing layer 9. In this case, the transmission preventing layer 9 made of a material that does not transmit ultraviolet rays is formed on the release layer 2, and the wiring layer 3 is formed on the transmission preventing layer 9. That is, after the step of forming the release layer 2 and before the step of forming the wiring layer 3, a step of forming the transmission preventing layer 9 made of a material that does not transmit ultraviolet light on the release layer 2 is included. layer 2 is included.

この透過防止層9は、剥離層2に照射される紫外線を透過しない材料(透過防止材料)からなるものであれば良く、材料は特に限定されない。
例えば、上述のように、剥離層2に紫外線を照射して剥離層2内で気体を生成させた後、溶剤によって剥離層2を溶解させて、支持基板1を剥離する場合、剥離層2を溶解させる溶剤によって溶解する材料を用いることで、剥離層2とともに透過防止層9を除去することが可能である。 For example, as described above, when the release layer 2 is irradiated with ultraviolet rays to generate gas in the release layer 2 and then the release layer 2 is dissolved with a solvent to separate the support substrate 1, the release layer 2 is separated. By using a material that dissolves with a solvent that dissolves it, it is possible to remove the permeation prevention layer 9 together with the release layer 2. なお、剥離層2を溶解させる溶剤に対する溶解性が極めて小さいか、又は、不溶である材料を用いても良い。 A material having extremely low solubility in a solvent for dissolving the release layer 2 or being insoluble may be used. この場合、支持基板1を剥離し、剥離層2を除去した後に、別の溶剤や別の方法によって、透過防止層9を除去することになる。 In this case, after the support substrate 1 is peeled off and the peeling layer 2 is removed, the permeation prevention layer 9 is removed by another solvent or another method. The permeation preventive layer 9 may be made of a material that does not transmit ultraviolet rays irradiated to the release layer 2 (permeation preventive material), and the material is not particularly limited. The permeation preventive layer 9 may be made of a material that does not transmit ultraviolet rays emitting to the release layer 2 (permeation preventive material), and the material is not particularly limited.
For example, as described above, when the release layer 2 is irradiated with ultraviolet rays to generate a gas in the release layer 2 and then the release layer 2 is dissolved by a solvent and the support substrate 1 is peeled off, the release layer 2 is By using a material that is dissolved by the solvent to be dissolved, it is possible to remove the permeation preventing layer 9 together with the release layer 2. In addition, you may use the material whose solubility with respect to the solvent which melt | dissolves the peeling layer 2 is very small, or insoluble. In this case, after the support substrate 1 is peeled and the peeling layer 2 is removed, the permeation preventing layer 9 is removed by another solvent or another method. For example, as described above, when the release layer 2 is dissolved with ultraviolet rays to generate a gas in the release layer 2 and then the release layer 2 is dissolved by a solvent and the support substrate 1 is peeled off, the release layer 2 is By using a material that is dissolved by the solvent to be dissolved, it is possible to remove the permeation preventing layer 9 together with the release layer 2. In addition, you may use the material whose solubility with respect to the solvent which melt | dissolves the peeling layer 2 is very small, or in soluble. In this case, after the support substrate 1 is peeled and the peeling layer 2 is removed, the permeation preventing layer 9 is removed by another solvent or another method.

また、例えば、透過防止層9を、Cu,Ti,Ta,W,Cr,Ni,Coからなる群から選ばれる少なくとも1種を含む材料からなるものとしても良い。この場合、透過防止層9は、金属系材料からなる金属系薄膜となる。このような金属系薄膜からなる透過防止層9は、例えば酸、有機溶剤、ドライエッチング等により除去することができる。なお、この透過防止層9を除去する段階では、支持基板1は剥離され、剥離層2が除去されており、表面が露出した状態になっているため、短時間で、配線層3にダメージを与えることなく、透過防止層9を除去することが可能である。   For example, the permeation preventive layer 9 may be made of a material containing at least one selected from the group consisting of Cu, Ti, Ta, W, Cr, Ni, and Co. In this case, the permeation preventing layer 9 is a metal thin film made of a metal material. The permeation preventive layer 9 made of such a metal thin film can be removed by, for example, an acid, an organic solvent, dry etching, or the like. At the stage of removing the permeation preventive layer 9, the support substrate 1 is peeled off, the peelable layer 2 is removed, and the surface is exposed, so that the wiring layer 3 is damaged in a short time. It is possible to remove the permeation preventive layer 9 without giving.

また、上述の実施形態では、回路基板8を、配線基板5と半導体チップ7とを配線層3を介して接続した回路基板とし、回路基板の製造方法が、支持基板1を剥離することによって露出した配線層3の他方の表面側に半導体チップ7を接合する工程を含むものとしているが、これに限られるものではなく、回路基板の製造方法が、支持基板を剥離することによって露出した配線層の他方の表面側に半導体チップを接合する工程を含まないものとしても良い。つまり、回路基板を、配線基板と半導体チップとを配線層を介して接続するために、配線基板に配線層を接合したものとし、回路基板の製造方法が、支持基板を剥離することによって露出した配線層の他方の表面側に半導体チップを接合する工程を含まないものとしても良い。例えば、ある者が、上述の実施形態の回路基板の製造方法における、支持基板を剥離することによって露出した配線層の他方の表面側に半導体チップを接合する工程以外の工程を行ない、他の者が、支持基板を剥離することによって露出した配線層の他方の表面側に半導体チップを接合する工程を行なうような場合も本発明の範囲に含まれる。   In the above-described embodiment, the circuit board 8 is a circuit board in which the wiring board 5 and the semiconductor chip 7 are connected via the wiring layer 3, and the circuit board manufacturing method is exposed by peeling the support substrate 1. The step of bonding the semiconductor chip 7 to the other surface side of the wiring layer 3 is included, but is not limited to this, and the wiring layer exposed by peeling the support substrate is not limited to this. The step of bonding the semiconductor chip to the other surface side of this may not be included. In other words, in order to connect the circuit board to the wiring board and the semiconductor chip through the wiring layer, the wiring layer is joined to the wiring board, and the circuit board manufacturing method is exposed by peeling the support substrate. The step of bonding the semiconductor chip to the other surface side of the wiring layer may not be included. For example, one person performs a process other than the process of bonding the semiconductor chip to the other surface side of the wiring layer exposed by peeling the support substrate in the method of manufacturing the circuit board of the above-described embodiment. However, the case where the step of bonding the semiconductor chip to the other surface side of the wiring layer exposed by peeling the support substrate is included in the scope of the present invention.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、これらの実施例に何ら制限されるものではない。
[実施例1]
実施例1では、以下のようにして、剥離層の材料を調製した。
つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基に対し、約75%の割合でt−Boc化したt−Boc化PVPを調製した。 That is, a t-Boc-ized PVP in which t-Boc was formed at a ratio of about 75% with respect to the hydroxyl group of the polyvinyl phenol resin (PVP) which is a polymer composition was prepared. このt−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約4部、溶媒として乳酸エチル約30部及びプロピレングリコールモノメチルエーテルアセテート約100部を加え、実施例1の剥離層の材料を調製した。 To about 20 parts of this t-Boc-formed PVP, about 4 parts of triphenylsulfonium triflate, which is an ultraviolet functional substance, about 30 parts of ethyl lactate and about 100 parts of propylene glycol monomethyl ether acetate were added as a solvent, and Example 1 The material of the release layer of was prepared. EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not restrict | limited to these Examples at all. Disturbed, although an Example is given and this invention is demonstrated more concretely, this invention is not restrict | limited to these Examples at all.
[Example 1] [Example 1]
In Example 1, a release layer material was prepared as follows. In Example 1, a release layer material was prepared as follows.
That is, a t-Boc-modified PVP that was t-Boced at a ratio of about 75% with respect to the hydroxyl group of the polyvinyl phenol resin (PVP) that is a polymer composition was prepared. Example 1 To about 20 parts of t-Boc-modified PVP, about 4 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 30 parts of ethyl lactate and about 100 parts of propylene glycol monomethyl ether acetate as a solvent were added. A release layer material was prepared. That is, a t-Boc-modified PVP that was t-Boced at a ratio of about 75% with respect to the hydroxyl group of the oxidizing phenol resin (PVP) that is a polymer composition was prepared. Example 1 To about 20 parts of t-Boc-modified PVP, about 4 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 30 parts of ethyl lactate and about 100 parts of propylene glycol monomethyl ether acetate as a solvent were added. A release layer material was prepared.

そして、実施例1では、以下のようにして、支持基板としての石英ウエハ(ガラスウエハ;ガラス基板)上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した後、支持基板を剥離した。
つまり、まず、6インチφの石英ウエハを準備し、上述のようにして調製した剥離層の材料を、回転数約2000rpm、約30秒間の条件でスピンコート法によって塗布した。 That is, first, a 6-inch φ quartz wafer was prepared, and the material of the release layer prepared as described above was applied by a spin coating method under the conditions of a rotation speed of about 2000 rpm and about 30 seconds. In Example 1, a release layer is formed on a quartz wafer (glass wafer; glass substrate) as a support substrate, a transmission preventing layer is formed on the release layer, and the transmission preventing layer is formed as follows. After forming a resin wiring layer as a wiring layer and bonding the resin wiring layer to a build-up substrate as a wiring substrate, the support substrate was peeled off. In Example 1, a release layer is formed on a quartz wafer (glass wafer; glass substrate) as a support substrate, a transmission preventing layer is formed on the release layer, and the transmission preventing layer is formed as follows. After forming a resin wiring layer as a wiring layer and bonding the resin wiring layer to a build-up substrate as a wiring substrate, the support substrate was peeled off.
That is, first, a 6-inch φ quartz wafer was prepared, and the release layer material prepared as described above was applied by spin coating under the condition of about 2000 rpm for about 30 seconds. That is, first, a 6-inch φ quartz wafer was prepared, and the release layer material prepared as described above was applied by spin coating under the condition of about 2000 rpm for about 30 seconds.

次いで、約105℃のホットプレートで約1分ベークし、石英ウエハ上に膜厚約700nmの剥離層を形成した。
次に、剥離層上に、透過防止層として厚さ約50nmのCu層をスパッタ法によって形成した。
次に、透過防止層としてのCu層上に、樹脂配線層を形成した。
Next, baking was performed for about 1 minute on a hot plate at about 105 ° C. to form a release layer having a thickness of about 700 nm on the quartz wafer.
Next, a Cu layer having a thickness of about 50 nm was formed on the release layer as a transmission preventing layer by sputtering.
Next, a resin wiring layer was formed on the Cu layer as the permeation prevention layer.

つまり、まず、透過防止層としてのCu層上に、Cuシード層を形成し、次いで、ノボラック型の液状レジストをスピンコート法によって塗布した。
次に、φ約500μmのランドパターンを有するガラスマスクを用いてコンタクトアライナーでレジストを露光し、現像して、所定の位置にφ約500μmのランドパターンを形成した。
That is, first, a Cu seed layer was formed on a Cu layer as an anti-permeation layer, and then a novolac type liquid resist was applied by spin coating.
Next, the resist was exposed with a contact aligner using a glass mask having a land pattern with a diameter of about 500 μm and developed to form a land pattern with a diameter of about 500 μm at a predetermined position.

続いて、電気めっきによってランドパターン部へCuめっきを施した。ここでは、Cuめっきの高さは約3μm程度になるようにした。
次に、レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってCuめっきされなかった部分のCuシード層を過硫酸アンモニウムによってエッチングして、透過防止層としてのCu層上に、Cuシード層及びCuめっきからなるランドを形成した。
Subsequently, Cu plating was applied to the land pattern portion by electroplating. Here, the height of the Cu plating was set to about 3 μm.
Next, after removing the resist using N-methyl-2-pyrrolidinone, the portion of the Cu seed layer that was not plated with Cu due to the resist coating was etched with ammonium persulfate to form a layer on the Cu layer as a permeation prevention layer. Then, a land composed of a Cu seed layer and Cu plating was formed. Next, after removing the resist using N-methyl-2-pyrrolidinone, the portion of the Cu seed layer that was not plated with Cu due to the resist coating was etched with ammonium persulfate to form a layer on the Cu layer as a permeation prevention layer. Then, a land composed of a Cu seed layer and Cu plating was formed.

次に、透過防止層としてのCu層上に、ランドを覆うように、ポリイミド剤をスピンコートで塗布し、約130℃のホットプレートで約2分加熱し、硬化させて、ビア部を有する第1樹脂層(絶縁層)を形成した。この第1樹脂層の膜厚は約8μmとした。
次いで、第1樹脂層上に、Cuシード層を形成し、次いで、再び、ノボラック型の液状レジストを上述と同様に塗布し、最少サイズ約5μmの配線パターンを有するガラスマスクを用いてコンタクトアライナーでレジストを露光し、現像して、所定の位置に配線パターンを形成した。 Next, a Cu seed layer is formed on the first resin layer, then a novolac-type liquid resist is applied again in the same manner as described above, and a contact aligner is used with a glass mask having a wiring pattern having a minimum size of about 5 μm. The resist was exposed and developed to form a wiring pattern in place. Next, a polyimide agent is applied on the Cu layer as the permeation preventive layer by spin coating so as to cover the land, and is heated and cured for about 2 minutes on a hot plate at about 130 ° C. to form a first portion having a via portion. One resin layer (insulating layer) was formed. The thickness of the first resin layer was about 8 μm. Next, a polyimide agent is applied on the Cu layer as the permeation preventive layer by spin coating so as to cover the land, and is heated and cured for about 2 minutes on a hot plate at about 130 ° C. to form a first portion having a via portion. One resin layer (insulating layer) was formed. The thickness of the first resin layer was about 8 μm.
Next, a Cu seed layer is formed on the first resin layer, and then a novolak-type liquid resist is applied again in the same manner as described above, using a glass mask having a wiring pattern with a minimum size of about 5 μm using a contact aligner. The resist was exposed and developed to form a wiring pattern at a predetermined position. Next, a Cu seed layer is formed on the first resin layer, and then a novolak-type liquid resist is applied again in the same manner as described above, using a glass mask having a wiring pattern with a minimum size of about 5 μm using a contact aligner. The resist was exposed and developed to form a wiring pattern at a predetermined position.

続いて、電気めっきによって配線パターン部へCuめっきを施した。ここでは、Cuめっきの高さは約3μm程度になるようにした。この際、第1樹脂層のビア部はCuめっきで埋め込まれた。
次に、レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってCuめっきされなかった部分のCuシード層を過硫酸アンモニウムによってエッチングして、ビア部を有する第1樹脂層上に、上述のランドに接続されるように、Cuシード層及びCuめっきからなる、ビアを含む第1配線(配線パターン)を形成した。 Next, after the resist was peeled off with N-methyl-2-pyrrolidinone, the Cu seed layer of the portion not Cu-plated by the coating of the resist was etched with ammonium persulfate on the first resin layer having a via portion. A first wiring (wiring pattern) including vias, composed of a Cu seed layer and Cu plating, was formed so as to be connected to the above-mentioned land. Subsequently, Cu plating was applied to the wiring pattern portion by electroplating. Here, the height of the Cu plating was set to about 3 μm. At this time, the via portion of the first resin layer was filled with Cu plating. At this time, the via portion of the first resin layer was filled with Cu plating. Here, the height of the Cu plating was set to about 3 μm. At this time, the via portion of the first resin layer was filled with Cu plating.
Next, after removing the resist using N-methyl-2-pyrrolidinone, the portion of the Cu seed layer that was not plated with Cu by the resist coating was etched with ammonium persulfate to form a via on the first resin layer. First, a first wiring (wiring pattern) including a via and made of a Cu seed layer and Cu plating was formed so as to be connected to the land. Next, after removing the resist using N-methyl-2-pyrrolidinone, the portion of the Cu seed layer that was not plated with Cu by the resist coating was etched with ammonium persulfate to form a via on the first resin layer. First, a first wiring (wiring pattern) including a via and made of a Cu seed layer and Cu plating was formed so as to be connected to the land.

次に、第1樹脂層上に、第1配線を覆うように、ポリイミド剤をスピンコートで塗布し、約130℃のホットプレートで約2分加熱し、硬化させて、ビアを有する第2樹脂層(絶縁層)を形成した。この第2樹脂層の膜厚は約8μmとした。
次に、第2樹脂層上に、Cuシード層を形成し、次いで、再び、ノボラック型の液状レジストを上述と同様に塗布し、φ700μmのランドパターンを有するガラスマスクを用いてコンタクトアライナーでレジストを露光し、現像して、所定の位置にφ700μmのランドパターンを形成した。 Next, a Cu seed layer is formed on the second resin layer, then a novolak type liquid resist is applied again in the same manner as described above, and the resist is applied with a contact aligner using a glass mask having a land pattern of φ700 μm. It was exposed and developed to form a land pattern of φ700 μm at a predetermined position. Next, on the first resin layer, a polyimide agent is applied by spin coating so as to cover the first wiring, and is heated and cured for about 2 minutes on a hot plate at about 130 ° C. to form a second resin having vias. A layer (insulating layer) was formed. The film thickness of this second resin layer was about 8 μm. Next, on the first resin layer, a polyimide agent is applied by spin coating so as to cover the first wiring, and is heated and cured for about 2 minutes on a hot plate at about 130 ° C. to form a second resin having vias A layer (insulating layer) was formed. The film thickness of this second resin layer was about 8 μm.
Next, a Cu seed layer is formed on the second resin layer, and then a novolac type liquid resist is applied again in the same manner as described above, and the resist is applied with a contact aligner using a glass mask having a land pattern of φ700 μm. Exposure and development were performed to form a land pattern having a diameter of 700 μm at a predetermined position. Next, a Cu seed layer is formed on the second resin layer, and then a novolac type liquid resist is applied again in the same manner as described above, and the resist is applied with a contact aligner using a glass mask having a land pattern of φ700 μm. Exposure and development were performed to form a land pattern having a diameter of 700 μm at a predetermined position.

続いて、電気めっきによってランドパターン部へCuめっきを施した。ここでは、Cuめっきの高さは約6μm程度になるようにした。この際、第2樹脂層のビア部はCuめっきで埋め込まれた。
次に、レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってCuめっきされなかった部分のCuシード層を過硫酸アンモニウムによってエッチングして、ビア部を有する第2樹脂層上に、上述の第1配線に接続されるように、Cuシード層及びCuめっきからなるビア及びランドを形成した。 Next, after the resist was peeled off with N-methyl-2-pyrrolidinone, the Cu seed layer of the portion not Cu-plated by the coating of the resist was etched with ammonium persulfate on the second resin layer having a via portion. In addition, vias and lands made of a Cu seed layer and Cu plating were formed so as to be connected to the above-mentioned first wiring. Subsequently, Cu plating was applied to the land pattern portion by electroplating. Here, the height of the Cu plating was set to about 6 μm. At this time, the via portion of the second resin layer was filled with Cu plating. At this time, the via portion of the second resin layer was filled with Cu plating. Here, the height of the Cu plating was set to about 6 μm. At this time, the via portion of the second resin layer was filled with Cu plating.
Next, after the resist is peeled off using N-methyl-2-pyrrolidinone, the Cu seed layer which is not plated with Cu by the resist coating is etched with ammonium persulfate, and the second resin layer having a via portion is etched. In addition, vias and lands made of a Cu seed layer and Cu plating were formed so as to be connected to the first wiring described above. Next, after the resist is peeled off using N-methyl-2-pyrrolidinone, the Cu seed layer which is not plated with Cu by the resist coating is etched with ammonium persulfate, and the second resin layer having a via portion is etched. In addition, vias and lands made of a Cu seed layer and Cu plating were formed so as to be connected to the first wiring described above.

このようにして、透過防止層としてのCu層上に、樹脂配線層を形成した。
次に、樹脂配線層の表面に露出しているランド上にバンプを形成し、ビルドアップ基板に接合した。ここでは、樹脂配線層とビルドアップ基板の間にアンダーフィル材を注入し、約120℃で加熱して、ビルドアップ基板を固定した。

その後、支持基板である石英ウエハ側から剥離層の全面に紫外線である波長約365nmのi線を約200mJ/cm 照射した。 Then, from the quartz wafer side of the support substrate, the entire surface of the release layer was irradiated with i-rays having a wavelength of about 365 nm, which is ultraviolet rays, at about 200 mJ / cm 2 . これにより、t−Boc化PVPのt−Boc基が脱離し、剥離層内で気体が生成され、その結果、支持基板である石英ウエハを剥離することができた。 As a result, the t-Boc group of the t-Boc-ized PVP was desorbed and gas was generated in the release layer, and as a result, the quartz wafer as the support substrate could be separated. ここでは、紫外線である波長約365nmのi線を約200mJ/cm 照射した後に、約120℃のホットプレートで約1分加熱して気体発生の反応を進行させた。 Here, after irradiating i-rays having a wavelength of about 365 nm, which is ultraviolet rays, at about 200 mJ / cm 2 , the reaction of gas generation proceeded by heating on a hot plate at about 120 ° C. for about 1 minute. また、ビルドアップ基板を固定し、上方から石英ウエハを吸着しながら石英ウエハを剥離した。 Further, the build-up substrate was fixed, and the quartz wafer was peeled off while adsorbing the quartz wafer from above. これにより、剥離面側の樹脂配線層のランド(電極)が露出した。 As a result, the land (electrode) of the resin wiring layer on the peeled surface side was exposed. Thus, the resin wiring layer was formed on the Cu layer as the permeation preventive layer. Thus, the resin wiring layer was formed on the Cu layer as the permeation preventive layer.
Next, bumps were formed on the lands exposed on the surface of the resin wiring layer and joined to the build-up substrate. Here, an underfill material was injected between the resin wiring layer and the buildup substrate and heated at about 120 ° C. to fix the buildup substrate. Next, bumps were formed on the lands exposed on the surface of the resin wiring layer and joined to the build-up substrate. Here, an underfill material was injected between the resin wiring layer and the buildup substrate and heated at about 120 ° C. to fix the buildup substrate.
Thereafter, the entire surface was performed at about 200 mJ / cm 2 irradiated with a wavelength of about 365nm i-line which is ultraviolet radiation from the quartz wafer side release layer which is a supporting substrate. As a result, the t-Boc group of the t-Boc-modified PVP was desorbed, and gas was generated in the release layer. As a result, the quartz wafer that was the support substrate could be peeled off. Here, after irradiation with ultraviolet rays of i-ray having a wavelength of about 365 nm of about 200 mJ / cm 2 , the reaction of gas generation was advanced by heating for about 1 minute on a hot plate at about 120 ° C. Further, the build-up substrate was fixed, and the quartz wafer was peeled off while adsorbing the quartz wafer from above. Thereby, the land (electrode) of the resin wiring layer on the peeling surface side was exposed. As a result, the t-Boc group was performed at the entire surface was performed at about 200 mJ / cm 2 recently with a wavelength of about 365nm i-line which is ultraviolet radiation from the quartz wafer side release layer which is a supporting substrate. Of the t-Boc-modified PVP was desorbed, and gas was generated in the release layer. As a result, the quartz wavelength that was the support substrate could be peeled off. Here, after irradiation with ultraviolet rays of i-ray having a wavelength of about 365 nm of about 200 mJ / cm 2 , the reaction of gas generation was advanced by heating for about 1 minute on a hot plate at about 120 ° C. Further, the build-up substrate was fixed, and the quartz wafer was peeled off while adsorbing the quartz wafer from above. Thus, the land (electrode) of the resin wiring layer on the peeling surface side was exposed.

この結果、剥離層内での気体発生量(気体生成量)が十分であったため、容易かつ簡単に支持基板である石英ウエハを剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[実施例2]
実施例2では、以下のようにして、剥離層の材料を調製した。
As a result, since the gas generation amount (gas generation amount) in the release layer was sufficient, it was possible to easily and easily peel the quartz wafer as the support substrate. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer.
[Example 2]
In Example 2, a release layer material was prepared as follows. In Example 2, a release layer material was prepared as follows.

つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基に対し、約50%の割合でt−Boc化したt−Boc化PVPを調製した。このt−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約4部、溶媒として乳酸エチル約30部及びプロピレングリコールモノメチルエーテルアセテート約100部を加え、実施例2の剥離層の材料を調製した。   That is, a t-Boc-modified PVP having a t-Boc ratio of about 50% with respect to the hydroxyl group of the polyvinyl phenol resin (PVP) as the polymer composition was prepared. Example 2 To about 20 parts of t-Boc-modified PVP, about 4 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 30 parts of ethyl lactate and about 100 parts of propylene glycol monomethyl ether acetate as a solvent were added. A release layer material was prepared.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した後、剥離層に紫外線を照射して剥離層内で気体を生成させて、支持基板を剥離した。
この結果、剥離層内での気体発生量が十分であったため、容易かつ簡単に支持基板である石英ウエハを剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[実施例3]
実施例3では、以下のようにして、剥離層の材料を調製した。 In Example 3, the material of the release layer was prepared as follows. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was irradiated with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was insulating with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off.
As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer. As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way , the reliability and yield could be improved without damaging the resin wiring layer.
[Example 3] [Example 3]
In Example 3, a release layer material was prepared as follows. In Example 3, a release layer material was prepared as follows.

つまり、モノマであるビスフェノールAの水酸基に対し、約85%の割合でt−Boc化したt−Boc化ビスフェノールAを調製した。このt−Boc化ビスフェノールA約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約4部、高分子組成物であるポリメチルメタクリレートを約50部、溶媒としてプロピレングリコールモノメチルエーテルアセテート約200部を加え、実施例3の剥離層の材料を調製した。   That is, t-Boc-modified bisphenol A which was t-Boc converted at a ratio of about 85% with respect to the hydroxyl group of bisphenol A as a monomer was prepared. About 20 parts of this t-Bocated bisphenol A, about 4 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 50 parts of polymethyl methacrylate as a polymer composition, and propylene glycol monomethyl ether acetate as a solvent About 200 parts was added to prepare the release layer material of Example 3.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した後、剥離層に紫外線を照射して剥離層内で気体を生成させて、支持基板を剥離した。
この結果、剥離層内での気体発生量が十分であったため、容易かつ簡単に支持基板である石英ウエハを剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[実施例4]
実施例4では、以下のようにして、剥離層の材料を調製した。 In Example 4, the material of the release layer was prepared as follows. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was irradiated with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was insulating with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off.
As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer. As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way , the reliability and yield could be improved without damaging the resin wiring layer.
[Example 4] [Example 4]
In Example 4, a release layer material was prepared as follows. In Example 4, a release layer material was prepared as follows.

つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基に対し、約90%の割合でt−Boc化したt−Boc化PVPを調製した。このt−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約4部、溶媒としてプロピレングリコールモノメチルエーテル約30部及びプロピレングリコールモノメチルエーテルアセテート約850部を加え、実施例4の剥離層の材料を調製した。   That is, t-Boc-modified PVP that was t-Boc converted at a ratio of about 90% with respect to the hydroxyl group of polyvinylphenol resin (PVP), which is a polymer composition, was prepared. About 20 parts of this t-Boc-modified PVP was added with about 4 parts of triphenylsulfonium triflate, which is an ultraviolet functional substance, and about 30 parts of propylene glycol monomethyl ether and about 850 parts of propylene glycol monomethyl ether acetate as a solvent. The release layer material of Example 4 was prepared.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した後、剥離層に紫外線を照射して剥離層内で気体を生成させて、支持基板を剥離した。
この結果、剥離層内での気体発生量が十分であったため、容易かつ簡単に支持基板である石英ウエハを剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[実施例5]
実施例5では、以下のようにして、剥離層の材料を調製した。 In Example 5, the material of the release layer was prepared as follows. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was irradiated with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. After the resin wiring layer was bonded to a build-up substrate as a wiring substrate, the release layer was insulating with ultraviolet rays to generate gas in the release layer, and the support substrate was peeled off.
As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer. As a result, since the amount of gas generated in the release layer was sufficient, the quartz wafer as the support substrate could be easily and easily peeled off. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way , the reliability and yield could be improved without damaging the resin wiring layer.
[Example 5] [Example 5]
In Example 5, a release layer material was prepared as follows. In Example 5, a release layer material was prepared as follows.

つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基に対し、約25%の割合でt−Boc化したt−Boc化PVPを調製した。このt−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約2部、溶媒として乳酸エチル約30部及びプロピレングリコールモノメチルエーテルアセテート約70部を加え、実施例5の剥離層の材料を調製した。   That is, t-Boc-modified PVP that was t-Boc converted at a ratio of about 25% with respect to the hydroxyl group of polyvinylphenol resin (PVP), which is a polymer composition, was prepared. Example 2 To about 20 parts of the t-Boc-modified PVP, about 2 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 30 parts of ethyl lactate and about 70 parts of propylene glycol monomethyl ether acetate as a solvent were added. A release layer material was prepared.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した。
その後、実施例5では、剥離層に紫外線を照射した際の剥離層内での気体発生量が不十分であったため、剥離層に紫外線を照射した後、加えて溶剤によって剥離層を溶解させて、支持基板を剥離した。 After that, in Example 5, since the amount of gas generated in the release layer when the release layer was irradiated with ultraviolet rays was insufficient, after the release layer was irradiated with ultraviolet rays, the release layer was additionally dissolved with a solvent. , The support substrate was peeled off. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate.
Then, in Example 5, since the amount of gas generated in the release layer when the release layer was irradiated with ultraviolet rays was insufficient, after the release layer was irradiated with ultraviolet rays, the release layer was dissolved with a solvent in addition. The support substrate was peeled off. Then, in Example 5, since the amount of gas generated in the release layer when the release layer was dissolved with ultraviolet rays was insufficient, after the release layer was irradiated with ultraviolet rays, the release layer was dissolved with a solvent in addition. support substrate was peeled off.

ここでは、まず、上述の実施例1の場合と同様に、支持基板である石英ウエハ側から剥離層の全面に紫外線である波長約365nmのi線を約200mJ/cm照射して、剥離層内に気体を発生させた。また、上述の実施例1の場合と同様に、約120℃のホットプレートで約1分加熱して剥離層での反応を進行させた。その後、溶剤[剥離溶剤;テトラメチルアンモニウムハイドロオキサイド水溶液(TMAH;2.38%TMAH)]に浸漬し、剥離層を溶解させて、支持基板である石英ウエハを剥離した。ここで、剥離するのに要した浸漬時間は約180秒であった。これにより、剥離面側の樹脂配線層のランド(電極)が露出した。 Here, first, as in the case of Example 1 described above, i-rays having a wavelength of about 365 nm, which is ultraviolet rays, are irradiated to the entire surface of the release layer from the side of the quartz wafer, which is the support substrate, for about 200 mJ / cm 2. Gas was generated inside. In the same manner as in Example 1 described above, the reaction in the release layer was allowed to proceed by heating for about 1 minute on a hot plate at about 120 ° C. Then, it was immersed in a solvent [peeling solvent; tetramethylammonium hydroxide aqueous solution (TMAH; 2.38% TMAH)] to dissolve the peeling layer, and the quartz wafer as the supporting substrate was peeled off. Here, the immersion time required for peeling was about 180 seconds. Thereby, the land (electrode) of the resin wiring layer on the peeling surface side was exposed.

この結果、剥離層に紫外線を照射して剥離層内で気体を生成させているため、支持基板である石英ウエハと樹脂配線層との間に挟まれている剥離層に対する溶剤の浸み込みが促進され、短時間で剥離層を溶解して容易かつ簡単に支持基板を剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[実施例6]
実施例6では、以下のようにして、剥離層の材料を調製した。 In Example 6, the material of the release layer was prepared as follows. As a result, the release layer is irradiated with ultraviolet rays to generate gas in the release layer, so that the solvent penetrates into the release layer sandwiched between the quartz wafer as the support substrate and the resin wiring layer. The support layer could be easily and easily peeled by dissolving the release layer in a short time. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer. The support layer could be easily be as a result, the release layer is particularly with ultraviolet rays to generate gas in the release layer, so that the solvent penetrates into the release layer sandwiched between the quartz wafer as the support substrate and the resin wiring layer. And easily peeled by oxidizing the release layer in a short time. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer.
[Example 6] [Example 6]
In Example 6, the material for the release layer was prepared as follows. In Example 6, the material for the release layer was prepared as follows.

つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基に対し、約15%の割合でt−Boc化したt−Boc化PVPを調製した。このt−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約2部、溶媒として乳酸エチル約30部及びプロピレングリコールモノメチルエーテルアセテート約70部を加え、実施例6の剥離層の材料を調製した。   That is, a t-Boc-modified PVP that was t-Boc converted at a ratio of about 15% with respect to the hydroxyl group of the polyvinyl phenol resin (PVP) that is a polymer composition was prepared. Example 2 To about 20 parts of this t-Boc-modified PVP, about 2 parts of triphenylsulfonium triflate as an ultraviolet functional substance, about 30 parts of ethyl lactate and about 70 parts of propylene glycol monomethyl ether acetate as a solvent were added. A release layer material was prepared.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した。
その後、実施例6では、上述の実施例5の場合と同様に、剥離層に紫外線を照射した際の剥離層内での気体発生量が不十分であったため、剥離層に紫外線を照射した後、溶剤によって剥離層を溶解させて、支持基板を剥離した。 After that, in Example 6, as in the case of Example 5 described above, the amount of gas generated in the release layer when the release layer was irradiated with ultraviolet rays was insufficient, so that after the release layer was irradiated with ultraviolet rays. , The release layer was dissolved with a solvent to peel off the support substrate. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate.
Thereafter, in Example 6, as in the case of Example 5 described above, since the amount of gas generated in the release layer when the release layer was irradiated with ultraviolet rays was insufficient, the release layer was irradiated with ultraviolet rays. The release layer was dissolved with a solvent, and the support substrate was peeled off. The release layer was in the case of Example 5 described above, since the amount of gas generated in the release layer when the release layer was irradiated with ultraviolet rays was insufficient, the release layer was particularly with ultraviolet rays. was dissolved with a solvent, and the support substrate was peeled off.

ここでは、まず、上述の実施例1の場合と同様に、支持基板である石英ウエハ側から剥離層の全面に紫外線である波長約365nmのi線を約200mJ/cm照射して、剥離層内に気体を発生させた。また、上述の実施例1の場合と同様に、約120℃のホットプレートで約1分加熱して剥離層の反応を進行させた。その後、上述の実施例5の場合と同様に、溶剤[剥離溶剤;例えばテトラメチルアンモニウムハイドロオキサイド水溶液(TMAH;2.38%TMAH)]に浸漬し、剥離層を溶解させて、支持基板である石英ウエハを剥離した。ここで、保護基の導入量が上述の実施例5の場合よりも少ないため、剥離するのに要した浸漬時間は約240秒であった。これにより、剥離面側の樹脂配線層のランド(電極)が露出した。 Here, first, as in the case of Example 1 described above, i-rays having a wavelength of about 365 nm, which is ultraviolet rays, are irradiated to the entire surface of the release layer from the side of the quartz wafer, which is the support substrate, for about 200 mJ / cm 2. Gas was generated inside. Further, as in the case of Example 1 described above, the reaction of the release layer was advanced by heating for about 1 minute on a hot plate at about 120 ° C. Thereafter, in the same manner as in Example 5 described above, the substrate was immersed in a solvent [peeling solvent; for example, tetramethylammonium hydroxide aqueous solution (TMAH; 2.38% TMAH)] to dissolve the peeling layer, and this was the support substrate. The quartz wafer was peeled off. Here, since the introduction amount of the protecting group was smaller than that in Example 5 described above, the immersion time required for peeling was about 240 seconds. Thereby, the land (electrode) of the resin wiring layer on the peeling surface side was exposed.

この結果、剥離層に紫外線を照射して剥離層内で気体を生成させているため、支持基板である石英ウエハと樹脂配線層との間に挟まれている剥離層に対する溶剤の浸み込みが促進され、比較的短時間で剥離層を溶解して容易かつ簡単に支持基板を剥離することができた。このように容易かつ簡単に支持基板である石英ウエハを剥離することができたため、樹脂配線層にダメージを与えないで、信頼性や歩留まりを向上させることができた。
[比較例1]
比較例1では、以下のようにして、剥離層の材料を調製した。 In Comparative Example 1, the material of the release layer was prepared as follows. As a result, the release layer is irradiated with ultraviolet rays to generate gas in the release layer, so that the solvent penetrates into the release layer sandwiched between the quartz wafer as the support substrate and the resin wiring layer. As a result, it was possible to easily and easily peel the support substrate by dissolving the release layer in a relatively short time. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer. As a result, the release layer is particularly with ultraviolet rays to generate gas in the release layer, so that the solvent penetrates into the release layer sandwiched between the quartz wafer as the support substrate and the resin wiring layer. As a result, it was possible to easily and easily peel the support substrate by oxidizing the release layer in a relatively short time. Since the quartz wafer as the supporting substrate could be peeled off easily and simply in this way, the reliability and yield could be improved without damaging the resin wiring layer.
[Comparative Example 1] [Comparative Example 1]
In Comparative Example 1, a release layer material was prepared as follows. In Comparative Example 1, a release layer material was prepared as follows.

つまり、高分子組成物であるポリビニルフェノール樹脂(PVP)の水酸基をt−Boc化していない非t−Boc化PVPを調製した。この非t−Boc化PVP約20部に対し、紫外線官能物質であるトリフェニルスルフォニウムトリフレートを約1部、溶媒としてγブチロラクトン約50部及びプロピレングリコールモノメチルエーテルアセテート約70部を加え、比較例1の剥離層の材料を調製した。   That is, non-t-Boc-ized PVP in which the hydroxyl group of polyvinylphenol resin (PVP), which is a polymer composition, is not t-Boc-prepared was prepared. About 20 parts of this non-t-Bocated PVP, about 1 part of triphenylsulfonium triflate, which is an ultraviolet functional substance, about 50 parts of γ-butyrolactone and about 70 parts of propylene glycol monomethyl ether acetate as a solvent were added. One release layer material was prepared.

そして、上述の実施例1の場合と同様に、支持基板としての石英ウエハ上に剥離層を形成し、剥離層上に透過防止層を形成し、透過防止層上に配線層としての樹脂配線層を形成し、樹脂配線層を配線基板としてのビルドアップ基板に接合した。
その後、上述の実施例5、6の場合と同様に、剥離層に紫外線を照射した後、溶剤[剥離溶剤;例えばテトラメチルアンモニウムハイドロオキサイド水溶液(TMAH;例えば2.38%TMAH)]によって剥離層を溶解させて、支持基板である石英ウエハを剥離した。 Then, as in the case of Examples 5 and 6 described above, the peeling layer is irradiated with ultraviolet rays, and then the peeling layer is used with a solvent [peeling solvent; for example, tetramethylammonium hydroxide aqueous solution (TMAH; for example, 2.38% TMAH)]. Was melted, and the quartz wafer as the support substrate was peeled off. ここで、保護基が導入されていないため、剥離するのに要した浸漬時間は約1800秒以上であった。 Here, since the protecting group was not introduced, the immersion time required for peeling was about 1800 seconds or more. これにより、剥離面側の樹脂配線層のランド(電極)が露出した。 As a result, the lands (electrodes) of the resin wiring layer on the peeled surface side were exposed. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate. Then, as in the case of Example 1 described above, a release layer is formed on a quartz wafer as a support substrate, a transmission preventing layer is formed on the release layer, and a resin wiring layer as a wiring layer is formed on the transmission preventing layer. The resin wiring layer was bonded to a build-up substrate as a wiring substrate.
Thereafter, in the same manner as in Examples 5 and 6 described above, the release layer was irradiated with ultraviolet rays, and then the release layer was coated with a solvent [peeling solvent; eg, tetramethylammonium hydroxide aqueous solution (TMAH; eg 2.38% TMAH)] The quartz wafer as the supporting substrate was peeled off. Here, since no protective group was introduced, the immersion time required for peeling was about 1800 seconds or more. Thereby, the land (electrode) of the resin wiring layer on the peeling surface side was exposed. Wafer, in the same manner as in Examples 5 and 6 described above, the release layer was comprising with ultraviolet rays, and then the release layer was coated with a solvent [peeling solvent; eg, tetramethylammonium hydroxide aqueous solution (TMAH; eg 2.38%) TMAH)] The quartz wafer as the supporting substrate was peeled off. Here, since no protective group was introduced, the emulsion time required for peeling was about 1800 seconds or more. Thus, the land (electrode) of the resin wiring layer on the peeling surface side was exposed.

しかしながら、保護基が導入されていない非t−Boc化PVPを用いているため、剥離層に紫外線を照射しても剥離層内で気体は生成されず、支持基板である石英ウエハと樹脂配線層との間に挟まれている剥離層に対する溶剤の浸み込みが促進されなかった。このため、容易かつ簡単に支持基板である石英ウエハを剥離することができず、剥離層を溶解して支持基板である石英ウエハを剥離するのに長時間を要してしまった。この結果、例えば樹脂配線層が膨潤する等の樹脂配線層にダメージが発現してしまい、信頼性や歩留まりが低かった。   However, since non-t-Boc-modified PVP into which a protecting group is not introduced is used, no gas is generated in the release layer even when the release layer is irradiated with ultraviolet rays, and the quartz wafer and the resin wiring layer that are the support substrates The penetration of the solvent into the release layer sandwiched between the two layers was not promoted. For this reason, the quartz wafer that is the supporting substrate cannot be easily and easily peeled off, and it takes a long time to dissolve the peeling layer and peel the quartz wafer that is the supporting substrate. As a result, for example, damage was developed in the resin wiring layer such as swelling of the resin wiring layer, and reliability and yield were low.

なお、本発明は、上述した実施形態及び変形例さらには実施例に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
以下、上述の実施形態及び変形例さらには実施例に関し、更に、付記を開示する。
(付記1)
紫外線を透過する支持基板上に、紫外線の照射に起因して気体を生成する組成物を含む剥離層を形成する工程と、
前記剥離層の上方に配線層を形成する工程と、
前記配線層の一方の表面側を配線基板に接合する工程と、
前記剥離層に紫外線を照射して前記剥離層に気体を生成させ、前記支持基板を剥離する工程とを含むことを特徴とする回路基板の製造方法。 A method for manufacturing a circuit board, which comprises a step of irradiating the peeling layer with ultraviolet rays to generate gas in the peeling layer and peeling the support substrate. The present invention is not limited to the configurations described in the above-described embodiments, modification examples, and examples, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the configurations described in the above-described embodiments, modification examples, and examples, and various modifications can be made without departing from the spirit of the present invention.
Hereinafter, additional notes will be disclosed regarding the above-described embodiment, modifications, and examples. Emerging, additional notes will be disclosed regarding the above-described embodiment, modifications, and examples.
(Appendix 1) (Appendix 1)
Forming a release layer containing a composition that generates gas due to irradiation of ultraviolet rays on a supporting substrate that transmits ultraviolet rays; and Forming a release layer containing a composition that generates gas due to irradiation of ultraviolet rays on a supporting substrate that transmits ultraviolet rays; and
Forming a wiring layer above the release layer; Forming a wiring layer above the release layer;
Bonding one surface side of the wiring layer to a wiring board; Bonding one surface side of the wiring layer to a wiring board;
Irradiating the release layer with ultraviolet rays to generate gas in the release layer, and releasing the support substrate. Irradiating the release layer with ultraviolet rays to generate gas in the release layer, and releasing the support substrate.

(付記2)
前記支持基板を剥離することによって露出した前記配線層の他方の表面側に半導体チップを接合する工程を含むことを特徴とする、付記1に記載の回路基板の製造方法。
(付記3)
前記紫外線の照射に起因して気体を生成する組成物は、紫外線の照射に起因して脱離して気体となる保護基を有する組成物を含むことを特徴とする、付記1又は2に記載の回路基板の製造方法。
(Appendix 2)
The method for manufacturing a circuit board according to claim 1, further comprising a step of bonding a semiconductor chip to the other surface side of the wiring layer exposed by peeling off the support substrate.
(Appendix 3)
The composition that generates gas due to the irradiation of ultraviolet rays includes a composition having a protecting group that is desorbed and becomes gas due to irradiation of ultraviolet rays. A method of manufacturing a circuit board. The composition that generates gas due to the irradiation of ultraviolet rays includes a composition having a protecting group that is desorbed and becomes gas due to irradiation of ultraviolet rays. A method of manufacturing a circuit board.

(付記4)
前記紫外線の照射に起因して気体を生成する組成物は、紫外線の照射によって酸を発生する組成物と、前記酸によって脱離して気体となる保護基を有する組成物とを含むことを特徴とする、付記1〜3のいずれか1項に記載の回路基板の製造方法。
(付記5)

前記紫外線の照射によって酸を発生する組成物は、オニウム塩系化合物光酸発生剤、オキシムスルホネート系光酸発生剤、ビスアルキル又はビスアリールスルホニルジアゾメタン系光酸発生剤、ニトロベンジルスルホネート系光酸発生剤、イミノスルホネート系光酸発生剤、ジスルホン系光酸発生剤からなる群から選ばれる少なくとも1種を含むことを特徴とする、付記4に記載の回路基板の製造方法。 The composition that generates an acid by irradiation with ultraviolet rays includes an onium salt-based compound photoacid generator, an oxime sulfonate-based photoacid generator, a bisalkyl or bisarylsulfonyldiazomethane-based photoacid generator, and a nitrobenzylsulfonate-based photoacid generator. The method for producing a circuit substrate according to Appendix 4, wherein the method comprises at least one selected from the group consisting of an agent, an iminosulfonate-based photoacid generator, and a disulfone-based photoacid generator. (Appendix 4) (Appendix 4)
The composition that generates a gas due to the irradiation with ultraviolet rays includes a composition that generates an acid upon irradiation with ultraviolet rays, and a composition that has a protective group that is eliminated by the acid to become a gas. The method for manufacturing a circuit board according to any one of appendices 1 to 3. The composition that generates a gas due to the irradiation with ultraviolet rays includes a composition that generates an acid upon irradiation with ultraviolet rays, and a composition that has a protective group that is eliminated by the acid to become a gas. The method for manufacturing a circuit board according to any one of appendices 1 to 3.
(Appendix 5) (Appendix 5)
The composition that generates an acid upon irradiation with ultraviolet rays includes an onium salt compound photoacid generator, an oxime sulfonate photoacid generator, a bisalkyl or bisarylsulfonyldiazomethane photoacid generator, and a nitrobenzyl sulfonate photoacid generator. The method for producing a circuit board according to appendix 4, comprising at least one selected from the group consisting of an agent, an iminosulfonate photoacid generator, and a disulfone photoacid generator. The composition that generates an acid upon irradiation with ultraviolet rays includes an onium salt compound photoacid generator, an oxime sulfonate photoacid generator, a bisalkyl or bisarylsulfonyldiazomethane photoacid generator, and a nitrobenzyl sulfonate photoacid generator. The method for producing a circuit board according to appendix 4 , comprising at least one selected from the group consisting of an agent, an iminosulfonate photoacid generator, and a disulfone photoacid generator.

(付記6)
前記保護基は、ターシャリブチル基又はターシャリブトキシカルボニル基であることを特徴とする、付記3〜5のいずれか1項に記載の回路基板の製造方法。
(付記7)

前記保護基を有する組成物は、水酸基又はアミノ基の一部又は全部が前記保護基で保護された組成物であることを特徴とする、付記3〜6のいずれか1項に記載の回路基板の製造方法。 The circuit board according to any one of Supplementary note 3 to 6, wherein the composition having the protecting group is a composition in which a part or all of the hydroxyl group or the amino group is protected by the protecting group. Manufacturing method. (Appendix 6) (Appendix 6)
6. The method for manufacturing a circuit board according to any one of appendices 3 to 5, wherein the protecting group is a tertiary butyl group or a tertiary riboxycarbonyl group. 6. The method for manufacturing a circuit board according to any one of appendices 3 to 5, wherein the protecting group is a tertiary butyl group or a tertiary riboxycarbonyl group.
(Appendix 7) (Appendix 7)
The circuit board according to any one of appendices 3 to 6, wherein the composition having the protecting group is a composition in which a hydroxyl group or an amino group is partially or entirely protected with the protecting group. Manufacturing method. The circuit board according to any one of appendices 3 to 6, which the composition having the protecting group is a composition in which a hydroxyl group or an amino group is partially or entirely protected with the protecting group. Manufacturing method.

(付記8)
前記支持基板を剥離する工程において、前記剥離層に紫外線を照射して前記剥離層に気体を生成させた後、溶剤によって前記剥離層を溶解させて、前記支持基板を剥離することを特徴とする、付記1〜7のいずれか1項に記載の回路基板の製造方法。 In the step of peeling the support substrate, the peeling layer is irradiated with ultraviolet rays to generate gas in the peeling layer, and then the peeling layer is dissolved by a solvent to peel the support substrate. , The method for manufacturing a circuit board according to any one of Appendix 1 to 7.
(付記9) (Appendix 9)
前記保護基を有する組成物は、前記保護基が脱離すると、極性が変化し、前記保護基の脱離前に不溶であった溶剤に対する溶解性が発現する組成物であり、 The composition having the protecting group is a composition in which the polarity changes when the protecting group is eliminated and the solubility in a solvent which was insoluble before the removal of the protecting group is exhibited.
前記支持基板を剥離する工程において、前記剥離層に紫外線を照射して前記剥離層に気体を生成させた後、前記溶剤によって前記剥離層を溶解させて、前記支持基板を剥離することを特徴とする、付記3〜7のいずれか1項に記載の回路基板の製造方法。 In the step of peeling the support substrate, the peeling layer is irradiated with ultraviolet rays to generate gas in the peeling layer, and then the peeling layer is dissolved by the solvent to peel the support substrate. The method for manufacturing a circuit board according to any one of Supplementary note 3 to 7. (Appendix 8) (Appendix 8)
In the step of peeling the support substrate, the release layer is irradiated with ultraviolet rays to generate gas in the release layer, and then the release layer is dissolved with a solvent to peel the support substrate. The manufacturing method of the circuit board of any one of Additional remarks 1-7. In the step of peeling the support substrate, the release layer is comprising with ultraviolet rays to generate gas in the release layer, and then the release layer is dissolved with a solvent to peel the support substrate. The manufacturing method of the circuit board of any one of Additional remarks 1-7.
(Appendix 9) (Appendix 9)
The composition having the protective group is a composition that changes its polarity when the protective group is released and exhibits solubility in a solvent that was insoluble before the removal of the protective group, The composition having the protective group is a composition that changes its polarity when the protective group is released and exhibits solubility in a solvent that was in soluble before the removal of the protective group,
In the step of peeling the support substrate, after the release layer is irradiated with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. The method for manufacturing a circuit board according to any one of appendices 3 to 7. In the step of peeling the support substrate, after the release layer is utilizing with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. The method for manufacturing a circuit board according to any one of appendices 3 to 7.

(付記10)
前記保護基を有する組成物は、前記保護基が脱離すると、前記配線層を溶解しない溶剤に対する溶解性が発現する組成物であり、 The composition having the protecting group is a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protecting group is removed.
前記支持基板を剥離する工程において、前記剥離層に紫外線を照射して前記剥離層に気体を生成させた後、前記溶剤によって前記剥離層を溶解させて、前記支持基板を剥離することを特徴とする、付記3〜7のいずれか1項に記載の回路基板の製造方法。 In the step of peeling the support substrate, the peeling layer is irradiated with ultraviolet rays to generate gas in the peeling layer, and then the peeling layer is dissolved by the solvent to peel the support substrate. The method for manufacturing a circuit board according to any one of Supplementary note 3 to 7. (Appendix 10) (Appendix 10)
The composition having the protective group is a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protective group is eliminated, The composition having the protective group is a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protective group is eliminated,
In the step of peeling the support substrate, after the release layer is irradiated with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. The method for manufacturing a circuit board according to any one of appendices 3 to 7. In the step of peeling the support substrate, after the release layer is utilizing with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. The method for manufacturing a circuit board according to any one of appendices 3 to 7.

(付記11)
前記配線層を溶解しない溶剤は、水、アルコール及びアルカリ水溶液からなる群から選ばれる少なくとも1種を含むことを特徴とする、付記10に記載の回路基板の製造方法。
(付記12)

前記剥離層を形成する工程の後、前記配線層を形成する工程の前に、前記剥離層上に紫外線を透過しない材料からなる透過防止層を形成することを特徴とする、付記1〜11のいずれか1項に記載の回路基板の製造方法。 Addendum 1 to 11, wherein after the step of forming the release layer and before the step of forming the wiring layer, a transmission prevention layer made of a material that does not transmit ultraviolet rays is formed on the release layer. The method for manufacturing a circuit board according to any one item. (Appendix 11) (Appendix 11)
11. The method for manufacturing a circuit board according to appendix 10, wherein the solvent that does not dissolve the wiring layer includes at least one selected from the group consisting of water, alcohol, and an alkaline aqueous solution. 11. The method for manufacturing a circuit board according to appendix 10, which the solvent that does not dissolve the wiring layer includes at least one selected from the group consisting of water, alcohol, and an alkaline aqueous solution.
(Appendix 12) (Appendix 12)
After the step of forming the release layer and before the step of forming the wiring layer, a transmission preventing layer made of a material that does not transmit ultraviolet light is formed on the release layer. The manufacturing method of the circuit board of any one of Claims 1. After the step of forming the release layer and before the step of forming the wiring layer, a transmission preventing layer made of a material that does not transmit ultraviolet light is formed on the release layer. The manufacturing method of the circuit board of any one of Claims 1. Claims 1.

(付記13)
前記透過防止層が、Cu,Ti,Ta,W,Cr,Ni,Coからなる群から選ばれる少なくとも1種を含む材料からなることを特徴とする、付記12に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to Appendix 12, wherein the permeation prevention layer is made of a material containing at least one selected from the group consisting of Cu, Ti, Ta, W, Cr, Ni, and Co. (Appendix 13) (Appendix 13)
13. The method for manufacturing a circuit board according to appendix 12, wherein the permeation preventive layer is made of a material containing at least one selected from the group consisting of Cu, Ti, Ta, W, Cr, Ni, and Co. 13. The method for manufacturing a circuit board according to appendix 12, wherein the permeation preventive layer is made of a material containing at least one selected from the group consisting of Cu, Ti, Ta, W, Cr, Ni, and Co.

1 支持基板
2 剥離層
3 配線層
3A 配線
3B 樹脂層
4 バンプ
5 配線基板
6 バンプ
7 半導体チップ
8 回路基板
9 透過防止層
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Peeling layer 3 Wiring layer 3A Wiring 3B Resin layer 4 Bump 5 Wiring board 6 Bump 7 Semiconductor chip 8 Circuit board 9 Transmission prevention layer

Claims (5)

  1. 紫外線を透過する支持基板上に、紫外線の照射に起因して気体を生成する組成物を含む剥離層を形成する工程と、
    前記剥離層の上方に配線層を形成する工程と、
    前記配線層の一方の表面側を配線基板に接合する工程と、
    前記剥離層に紫外線を照射して前記剥離層に気体を生成させ、前記支持基板を剥離する工程とを含み、
    前記紫外線の照射に起因して気体を生成する組成物は、紫外線の照射によって酸を発生する組成物と、前記酸によって脱離して気体となる保護基を有する組成物とを含むことを特徴とする回路基板の製造方法。
    Forming a release layer containing a composition that generates gas due to irradiation of ultraviolet rays on a supporting substrate that transmits ultraviolet rays; and
    Forming a wiring layer above the release layer; Forming a wiring layer above the release layer;
    Bonding one surface side of the wiring layer to a wiring board; Bonding one surface side of the wiring layer to a wiring board;
    The peeling layer ultraviolet irradiation was generated gas to said release layer, seen including a step of peeling the supporting substrate, The peeling layer ultraviolet irradiation was generated gas to said release layer, seen including a step of peeling the supporting substrate,
    The composition that generates a gas due to the irradiation with ultraviolet rays includes a composition that generates an acid upon irradiation with ultraviolet rays, and a composition that has a protective group that is eliminated by the acid to become a gas. Circuit board manufacturing method. The composition that generates a gas due to the irradiation with ultraviolet rays includes a composition that generates an acid upon irradiation with ultraviolet rays, and a composition that has a protective group that is eliminated by the acid to become a gas. Circuit board manufacturing method.
  2. 前記紫外線の照射に起因して気体を生成する組成物は、紫外線の照射に起因して脱離して気体となる保護基を有する組成物を含むことを特徴とする、請求項1に記載の回路基板の製造方法 2. The circuit according to claim 1, wherein the composition that generates a gas due to the irradiation of ultraviolet rays includes a composition having a protecting group that is desorbed and becomes a gas due to the irradiation of ultraviolet rays. 3. A method for manufacturing a substrate .
  3. 前記支持基板を剥離する工程において、前記剥離層に紫外線を照射して前記剥離層に気体を生成させた後、溶剤によって前記剥離層を溶解させて、前記支持基板を剥離することを特徴とする、請求項1又は2に記載の回路基板の製造方法。 In the step of peeling the support substrate, the release layer is irradiated with ultraviolet rays to generate gas in the release layer, and then the release layer is dissolved with a solvent to peel the support substrate. A method for manufacturing a circuit board according to claim 1 or 2 .
  4. 前記保護基を有する組成物は、前記保護基が脱離すると、前記配線層を溶解しない溶剤に対する溶解性が発現する組成物であり、
    前記支持基板を剥離する工程において、前記剥離層に紫外線を照射して前記剥離層に気体を生成させた後、前記溶剤によって前記剥離層を溶解させて、前記支持基板を剥離することを特徴とする、請求項1又は2に記載の回路基板の製造方法。 In the step of peeling the support substrate, the peeling layer is irradiated with ultraviolet rays to generate gas in the peeling layer, and then the peeling layer is dissolved by the solvent to peel the support substrate. The method for manufacturing a circuit board according to claim 1 or 2 . The composition having the protective group is a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protective group is eliminated, The composition having the protective group is a composition that exhibits solubility in a solvent that does not dissolve the wiring layer when the protective group is eliminated,
    In the step of peeling the support substrate, after the release layer is irradiated with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. A method for manufacturing a circuit board according to claim 1 or 2 . In the step of peeling the support substrate, after the release layer is utilizing with ultraviolet rays to generate a gas in the release layer, the release layer is dissolved by the solvent, and the support substrate is peeled off. A method for manufacturing a circuit board according to claim 1 or 2 .
  5. 前記剥離層を形成する工程の後、前記配線層を形成する工程の前に、前記剥離層上に紫外線を透過しない材料からなる透過防止層を形成することを特徴とする、請求項1〜のいずれか1項に記載の回路基板の製造方法。 After the step of forming the peeling layer, prior to the step of forming the wiring layer, and forming a light transmission preventing layer made of a material which does not transmit ultraviolet rays on the release layer, according to claim 1-4 The manufacturing method of the circuit board of any one of these.
JP2014045242A 2014-03-07 2014-03-07 Circuit board manufacturing method Active JP6299290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045242A JP6299290B2 (en) 2014-03-07 2014-03-07 Circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045242A JP6299290B2 (en) 2014-03-07 2014-03-07 Circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2015170767A JP2015170767A (en) 2015-09-28
JP6299290B2 true JP6299290B2 (en) 2018-03-28

Family

ID=54203223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045242A Active JP6299290B2 (en) 2014-03-07 2014-03-07 Circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP6299290B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947570B2 (en) * 2015-12-30 2018-04-17 International Business Machines Corporation Handler bonding and debonding for semiconductor dies
CN109691246A (en) 2016-10-06 2019-04-26 三井金属矿业株式会社 The manufacturing method of multiwiring board
US20200045830A1 (en) 2016-10-06 2020-02-06 Mitsui Mining & Smelting Co., Ltd. Production method for multilayer wiring board
WO2018097265A1 (en) 2016-11-28 2018-05-31 三井金属鉱業株式会社 Multilayer circuit board manufacturing method
US20190378727A1 (en) 2016-11-28 2019-12-12 Mitsui Mining & Smelting Co., Ltd. Multilayer circuit board manufacturing method
KR20190098952A (en) 2016-12-22 2019-08-23 미쓰이금속광업주식회사 Manufacturing method of multilayer wiring board
WO2020085382A1 (en) * 2018-10-26 2020-04-30 凸版印刷株式会社 Wiring substrate for semiconductor package and method for manufacturing wiring substrate for semiconductor package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135874B2 (en) * 2002-05-28 2008-08-20 旭化成エレクトロニクス株式会社 Photosensitive resin composition and laminate
JP2004107650A (en) * 2002-08-28 2004-04-08 Kansai Paint Co Ltd Releasable adhesive composition
JP2009043962A (en) * 2007-08-09 2009-02-26 Sony Corp Method for manufacturing semiconductor apparatus
JP2010147358A (en) * 2008-12-22 2010-07-01 Casio Computer Co Ltd Method of manufacturing semiconductor device
JP2012069734A (en) * 2010-09-24 2012-04-05 Toshiba Corp Manufacturing method of semiconductor device
WO2013142054A1 (en) * 2012-03-20 2013-09-26 3M Innovative Properties Company Laminate body, method, and materials for temporary substrate support and support separation

Also Published As

Publication number Publication date
JP2015170767A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US10629469B2 (en) Solder resist layers for coreless packages and methods of fabrication
US9484277B2 (en) Materials, structures and methods for microelectronic packaging
CN103298272B (en) Manufacture the method for just-flexible printed circuit board
JP5240380B1 (en) Resin composition, polymer, cured film and electronic component
TWI326912B (en) Electronic parts packaging structure and method of manufacturing the same
US6861345B2 (en) Method of disposing conductive bumps onto a semiconductor device
JP4336310B2 (en) Silicon-containing antireflection layer as hard mask layer and method for forming the same
US5641608A (en) Direct imaging process for forming resist pattern on a surface and use thereof in fabricating printing plates
US7173322B2 (en) COF flexible printed wiring board and method of producing the wiring board
EP0001429B1 (en) Process for forming thin film patterns by use of lift-off processing
KR101236559B1 (en) Optical dry-films and methods of forming optical devices with dry-films
US20060096781A1 (en) Substrate having high electrical connection reliability of a penetrating via connected to wirings and a method for manufacturing the same
KR20060045975A (en) Method of manufacturing semiconductor device
US6338936B1 (en) Photosensitive resin composition and method for formation of resist pattern by use thereof
JP2007520081A (en) Partially etched dielectric film with conductive mechanism
JP4159094B2 (en) Photosensitive resin composition and photosensitive dry film using the same
US10020276B2 (en) Protrusion bump pads for bond-on-trace processing
TWI300884B (en) Chemically amplified positive photosensitive thermosetting resin composition, method of forming cured article, and method of producing functional device
US5653019A (en) Repairable chip bonding/interconnect process
US6977349B2 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
US20030062334A1 (en) Method for forming a micro-pattern on a substrate by using capillary force
CN1849560B (en) Photosensitive resin composition and pattern forming method using the composition
JPH10135634A (en) Multilayer wiring board and its manufacture
JP2004240143A (en) Negative photosensitive resin composition and its cured product
CN101065709B (en) Process for producing resist pattern and conductor pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150