JP6280519B2 - Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor - Google Patents

Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor Download PDF

Info

Publication number
JP6280519B2
JP6280519B2 JP2015094295A JP2015094295A JP6280519B2 JP 6280519 B2 JP6280519 B2 JP 6280519B2 JP 2015094295 A JP2015094295 A JP 2015094295A JP 2015094295 A JP2015094295 A JP 2015094295A JP 6280519 B2 JP6280519 B2 JP 6280519B2
Authority
JP
Japan
Prior art keywords
temperature
heating
electronic component
insulating substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015094295A
Other languages
Japanese (ja)
Other versions
JP2016211921A (en
Inventor
谷口 秀夫
秀夫 谷口
重政 砂田
重政 砂田
小田 一夫
一夫 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIT DEVICES LTD.
Original Assignee
HIT DEVICES LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIT DEVICES LTD. filed Critical HIT DEVICES LTD.
Priority to JP2015094295A priority Critical patent/JP6280519B2/en
Publication of JP2016211921A publication Critical patent/JP2016211921A/en
Application granted granted Critical
Publication of JP6280519B2 publication Critical patent/JP6280519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、LED、IC、LSI、抵抗器などが搭載された回路基板などにおけるICなどの個別部品(狭義の電子部品)の他に、回路基板、配線材料などを含む広義の電子部品の温度特性評価に用いられる温度制御ユニットおよびそれを用いた電子部品の温度特性評価装置並びにその温度特性評価方法に関する。   The present invention relates to the temperature of electronic components in a broad sense including circuit boards, wiring materials, etc. in addition to individual components (narrow sense electronic components) such as ICs on circuit boards on which LEDs, ICs, LSIs, resistors, etc. are mounted. The present invention relates to a temperature control unit used for characteristic evaluation, a temperature characteristic evaluation apparatus for an electronic component using the same, and a temperature characteristic evaluation method thereof.

近年、スマートフォンなどの携帯機器や携帯端末などの小形化に伴って、回路基板上に非常に多くの電子部品が搭載される傾向にある。また、LSIやICはムーアの法則に従って、年々素子サイズが小さくなり、または高機能化しており、より一層発熱の問題が表面化してきている。特に高機能のLSIやICが搭載されると、これらの電子部品は、動作によりかなり高温になる場合があり、その電子部品や周囲に配置される電子部品や回路基板自体の温度上昇により損傷する危険性に晒されている。このような問題を解消するため、特に熱を発生しやすい電子部品に放熱板を付けて熱を放散しやすくしたり、近くにブロアを設けて送風冷却をしたりすることが行われている。   In recent years, with the miniaturization of portable devices such as smartphones and portable terminals, a large number of electronic components tend to be mounted on circuit boards. In addition, LSIs and ICs are becoming smaller and more sophisticated year by year according to Moore's Law, and the problem of heat generation is becoming more apparent. Especially when high-performance LSIs and ICs are mounted, these electronic components may become quite hot due to their operation, and are damaged by the temperature rise of the electronic components, surrounding electronic components, and the circuit board itself. Exposed to danger. In order to solve such a problem, a heat sink is attached to an electronic component that is particularly likely to generate heat to make it easy to dissipate heat, or a blower is provided nearby to perform air cooling.

一方、同じICやLSIでも、使用環境や使用条件などによって熱の発生状態も変わるし、ICやLSIの耐熱性も異なってくる。従って、必要のない場合でも、放熱フィンが設けられたり、ブロアが設置されたり、部品間のスペースが確保されたりすることがある。このような過剰な放熱対策は電子機器の小形化の要請にも反するし、コストアップの原因にもなる。そのため、実装状態での電子部品の温度特性を知ることが必要となる。   On the other hand, even in the same IC or LSI, the heat generation state changes depending on the use environment or use conditions, and the heat resistance of the IC or LSI also differs. Therefore, even when it is not necessary, a radiation fin may be provided, a blower may be installed, or a space between parts may be secured. Such excessive heat dissipation measures are contrary to the demand for downsizing of electronic devices, and also cause an increase in cost. Therefore, it is necessary to know the temperature characteristics of the electronic component in the mounted state.

このような電子部品の温度対策としては、例えば特許文献1の要約に示されるように、圧縮機、凝縮器、膨張器、および蒸発器(ヒートシンク)を循環させる冷却流路を有する冷却サイクル装置と、そのヒートシンクと電子部品とを接続する熱伝導ブロックおよびその熱伝導ブロックを加熱する加熱器等を有する温度制御装置が知られている。この熱伝導ブロックに温度センサが取り付けられ、電子部品の温度が制御されるようになっている。   As a countermeasure for the temperature of such electronic components, for example, as shown in the summary of Patent Document 1, a cooling cycle apparatus having a cooling flow path for circulating a compressor, a condenser, an expander, and an evaporator (heat sink), and A temperature control device having a heat conduction block for connecting the heat sink and the electronic component, a heater for heating the heat conduction block, and the like is known. A temperature sensor is attached to the heat conduction block so that the temperature of the electronic component is controlled.

また、特許文献2には、電子部品に直接接触し得るプッシャ本体と、プッシャ本体に設けられた吸放熱体と、被試験電子部品と直接的または間接的に接触し得るようにプッシャ本体に設けられたヒータと、プッシャ本体とヒータとの間に設けられた断熱材とを備えた電子部品ハンドリング装置が開示されている。   Further, in Patent Document 2, a pusher body that can be in direct contact with an electronic component, a heat sink that is provided in the pusher body, and a pusher body that can be in direct or indirect contact with an electronic component to be tested. There is disclosed an electronic component handling device including a heater and a heat insulating material provided between the pusher body and the heater.

特開2012−208132号公報JP2012-208132A 特開2003−028923号公報JP 2003-028923 A

前述のように、電子部品の温度制御を行うことができる電子部品のハンドリング装置では、電子部品を回路基板などに組み込む前の電子部品単独の状態でなければ利用することができない。すなわち、大掛かりな装置であるハンドラーに電子部品を装着してその温度を制御しながら評価をするもので、実際の回路基板に組み込まれた状態で個々の電子部品の温度特性を評価することができないという問題がある。しかし、実装状態では、その環境等により特性も変化し、実際に回路基板などに搭載した状態で温度特性を知ることが必要となる。また、回路基板上で発熱するLSIなどの近傍に配置される他の電子部品等への影響を調べることも必要であるが、電子部品単独の評価では、他の電子部品への影響も知ることができない。   As described above, the electronic component handling apparatus capable of controlling the temperature of the electronic component cannot be used unless the electronic component is in a single state before being incorporated into a circuit board or the like. In other words, evaluation is performed by mounting electronic components on a handler, which is a large-scale device, and controlling the temperature thereof, and it is not possible to evaluate the temperature characteristics of individual electronic components when they are incorporated in an actual circuit board. There is a problem. However, in the mounted state, the characteristics also change depending on the environment and the like, and it is necessary to know the temperature characteristics in a state where the circuit board is actually mounted. In addition, it is necessary to investigate the effect on other electronic components placed near the LSI that generates heat on the circuit board. However, the evaluation of the electronic component alone also knows the effect on other electronic components. I can't.

さらに、前述の特許文献2に記載の装置では、これらの装置がケーシングにより被覆され、そのケーシング内で温度調節用送風装置により送風してケーシング内の温度を調整し、ケーシング内の温度を測定する構成になっている。換言すると、個々の電子部品の温度を検出してその温度を制御するものではない。   Further, in the devices described in the above-mentioned Patent Document 2, these devices are covered with a casing, and the temperature in the casing is adjusted by blowing with a temperature adjusting blower in the casing, and the temperature in the casing is measured. It is configured. In other words, the temperature of each electronic component is not detected and the temperature is not controlled.

本発明は、このような状況に鑑みてなされたもので、電子部品等を回路基板に搭載して動作させた状態でも、その電子部品の温度がどの程度上がるか、またはどの程度まで温度が上昇しても電気特性に悪い影響を及ぼさないか、またはその隣接する電子部品の温度がどの程度になり、特性にどのような影響を及ぼすかなどを正確に把握して、回路基板の設計に寄与することができる電子部品の温度特性評価装置およびそれに用いる温度制御ユニットを提供することを目的とする。   The present invention has been made in view of such a situation. Even when an electronic component or the like is mounted on a circuit board and operated, the temperature of the electronic component is increased or the temperature is increased. Even if the electrical characteristics are not adversely affected, or the temperature of the adjacent electronic components is affected and the characteristics are affected accurately, it contributes to the circuit board design. It is an object of the present invention to provide an electronic component temperature characteristic evaluation apparatus and a temperature control unit used therefor.

本発明の他の目的は、電子機器の回路設計および試作段階で、適正な設計および電子部品の設計ができ、無駄なエネルギーを使用しないで、地球にやさしい省電力の電子機器の開発に寄与することにある。   Another object of the present invention is to contribute to the development of power-saving electronic equipment that is friendly to the earth without using wasted energy, in which appropriate design and electronic parts can be designed at the circuit design and prototyping stage of the electronic equipment. There is.

本発明の電子部品の温度特性評価用の温度制御ユニットは、絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備し、前記少なくとも2列の発熱抵抗体、前記一対の電極、前記温度測定用抵抗体、および前記測定端子の組が、少なくとも2組になるように前記絶縁基板の前記一面に並列して形成され、かつ、前記2組の発熱抵抗体の間にも前記温度測定用抵抗体が形成されている。 A temperature control unit for evaluating temperature characteristics of an electronic component according to the present invention includes an insulating substrate, a belt-like heating resistor that is formed in parallel in at least two rows on one surface of the insulating substrate, and heats the insulating substrate. At least one pair of electrodes capable of flowing a current in the longitudinal direction of the heating resistors formed in at least two rows, and at least one temperature measurement formed on the insulating substrate between the at least two rows of heating resistors. A resistor and at least a pair of measurement terminals for measuring an electrical resistance between a predetermined length of the temperature measurement resistor, the at least two rows of heating resistors, the pair of electrodes, The temperature measurement resistor and the set of measurement terminals are formed in parallel on the one surface of the insulating substrate so that there are at least two sets, and the temperature measurement is also performed between the two sets of heating resistors. Resistor for It has been made.

ここに電子部品には、回路基板上で回路を形成する個々の狭義の電子部品の他に、その個々の部品が搭載される回路基板、またはその一部、またはその基板上に形成される配線材料など、広範囲の部品類を含む(広義の電子部品)場合がある。   Here, in addition to the individual electronic components in a narrow sense that form a circuit on the circuit board, the electronic component includes a circuit board on which the individual parts are mounted, a part thereof, or a wiring formed on the board. It may include a wide range of parts such as materials (broadly defined electronic parts).

本発明の電子部品の温度特性評価用の温度制御ユニットの他の形態は、絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備する加熱基板を有し、前記加熱基板の前記発熱抵抗体側に前記絶縁基板と同じ材料で形成されたカバー基板が設けられることにより、熱膨張率差に基づく加熱基板の反りもなくなり好ましい。 Another embodiment of the temperature control unit for evaluating temperature characteristics of the electronic component of the present invention is an insulating substrate and a belt-like heating resistor that is formed in parallel in at least two rows on one surface of the insulating substrate and heats the insulating substrate. A body, at least a pair of electrodes capable of flowing current in the longitudinal direction of the heating resistors formed in at least two rows, and at least one formed on the insulating substrate between the at least two rows of heating resistors And a heating substrate having at least a pair of measurement terminals for measuring an electrical resistance between a predetermined length of the temperature measuring resistor and the heat generation of the heating substrate. By providing a cover substrate made of the same material as the insulating substrate on the resistor side, it is preferable that the heating substrate is not warped due to a difference in thermal expansion coefficient.

前記加熱基板が2段以上に重ねられた多重加熱基板の上面にカバー基板が設けられることにより、電子部品を加熱するための熱量を増加させることができる。この積層は3段以上にすることもできる。カバー基板が設けられた制御ユニットが2段以上に重ねられてもよいが、熱の逃げの無駄をなくするためには、カバー基板が除去された状態の加熱基板で積層されるのが好ましい。温度測定用抵抗体は設けられたままでもよい。   By providing the cover substrate on the upper surface of the multiple heating substrate in which the heating substrates are stacked in two or more stages, the amount of heat for heating the electronic component can be increased. This lamination can be made in three or more stages. The control units provided with the cover substrate may be stacked in two or more stages. However, in order to eliminate waste of heat, it is preferable that the control units are stacked with the heating substrate from which the cover substrate is removed. The temperature measurement resistor may be provided.

前記加熱基板が2個前記発熱抵抗体の側を向き合わせて接合されることにより多重加熱基板とされてもよい。熱の無駄をなくすることができる。   Two heating substrates may be formed as a multiple heating substrate by bonding the heating resistors facing each other. Waste of heat can be eliminated.

本発明の電子部品の温度特性評価用の温度制御ユニットのさらに他の形態は、絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備する加熱基板を有し、前記少なくとも2列に形成される発熱抵抗体のそれぞれの一端部が、少なくとも一部に形成される発熱抵抗体を介して接続されることにより、U字形状に形成され前記U字形状のコーナ部の少なくとも一部は導体層で接続されているU字形状の底部に発熱抵抗体が設けられることにより、加熱領域が増え、効果的に加熱することができる。また、コーナ部では発熱抵抗体に流れる電流はコーナ部では一番内側の距離が短い所に電流が集中し、コーナ部の外側では殆んど電流が流れなくなるため、電流集中が起こる。その結果、発熱抵抗体を均一加熱することができなくなると共に、寿命劣化につながる。そのため、コーナ部では導体層にして直線部で電流が均一に流れるようにすることが好ましい。 Still another embodiment of the temperature control unit for evaluating temperature characteristics of an electronic component according to the present invention is an insulating substrate and a belt-like heat generating member formed in parallel in at least two rows on one surface of the insulating substrate and heating the insulating substrate. A resistor, at least a pair of electrodes capable of flowing a current in a longitudinal direction of the heating resistors formed in at least two rows, and at least one formed on the insulating substrate between the at least two rows of heating resistors. A heating substrate comprising a plurality of temperature measuring resistors and at least a pair of measuring terminals for measuring an electrical resistance between a predetermined length of the temperature measuring resistors, the at least two rows one ends of the heating resistor to be formed, by being connected through the heating resistor formed at least in part, is formed in a U-shape, at least a portion of the corner portion of the U-shaped Is It is connected by the body layer. By providing the heating resistor at the bottom of the U shape, the heating area is increased and heating can be effectively performed. Further, in the corner portion, the current flowing through the heating resistor is concentrated at the shortest inner distance in the corner portion, and almost no current flows outside the corner portion, so that current concentration occurs. As a result, the heating resistor cannot be uniformly heated and the life is deteriorated. Therefore, it is preferable to use a conductor layer in the corner portion so that current flows uniformly in the straight portion.

前記絶縁基板の一面と反対面である他面に、熱伝導性弾性部材が直接形成されてもよい。前記熱伝導性弾性部材が、前記電子部品の外形形状と相似形の外形形状を有することにより、電子部品の温度を正確に測定できると共に、電子部品を加熱する場合により確実に、かつ、早く所望の温度に上昇させやすい。   A heat conductive elastic member may be directly formed on the other surface opposite to the one surface of the insulating substrate. The heat conductive elastic member has an outer shape similar to the outer shape of the electronic component, so that the temperature of the electronic component can be accurately measured, and more reliably and quickly desired when the electronic component is heated. Easy to raise the temperature.

本発明の電子部品の温度特性評価用の温度制御ユニットのさらに他の形態は、絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子と、前記発熱抵抗体の表面側に形成されるカバー基板を具備する加熱基板を有し、前記カバー基板上に取付板が固定され、温度特性が評価される電子部品に前記加熱基板を押し付け、前記電子部品が取り付けられている。前記制御ユニットの前記カバー基板上に取付板が固定されることにより、温度制御ユニットを電子部品に押し付ける場合に便利である。 Still another embodiment of the temperature control unit for evaluating temperature characteristics of an electronic component according to the present invention is an insulating substrate and a belt-like heat generating member formed in parallel in at least two rows on one surface of the insulating substrate and heating the insulating substrate. A resistor, at least a pair of electrodes capable of flowing a current in a longitudinal direction of the heating resistors formed in at least two rows, and at least one formed on the insulating substrate between the at least two rows of heating resistors. A plurality of temperature measurement resistors, at least a pair of measurement terminals for measuring an electrical resistance between the predetermined lengths of the temperature measurement resistors, and a cover substrate formed on the surface side of the heating resistor The mounting board is fixed on the cover substrate, the heating substrate is pressed against an electronic component to be evaluated for temperature characteristics, and the electronic component is attached. The mounting plate is fixed on the cover substrate of the control unit, which is convenient when pressing the temperature control unit against the electronic component.

本発明の回路基板または回路基板に搭載される電子部品の温度特性評価装置は、請求項1〜9のいずれか1項に記載の温度制御ユニットと、前記温度制御ユニットに形成される温度測定用抵抗体の抵抗変化に基づいて前記温度制御ユニットの絶縁基板の温度を検出する温度検出手段と、前記温度制御ユニットに形成される発熱抵抗体に電流を流して前記絶縁基板の温度を所定の温度に制御する温度制御手段と、前記温度制御ユニットの前記絶縁基板の他面に形成される熱伝導性弾性部材または別途用意される熱伝導性弾性シートとを有し、前記温度制御ユニットの前記絶縁基板の他面側が、前記熱伝導性弾性部材または前記熱伝導性弾性シートを介して回路基板に搭載される電子部品に密着され、前記電子部品の温度を測定し、または特定の電子部品の温度を所定の温度にしたときの前記電子部品の温度特性を評価する装置である。   A temperature characteristic evaluation apparatus for a circuit board or an electronic component mounted on a circuit board according to the present invention includes the temperature control unit according to any one of claims 1 to 9 and a temperature measurement unit formed in the temperature control unit. A temperature detecting means for detecting the temperature of the insulating substrate of the temperature control unit based on a resistance change of the resistor; and a current is passed through the heating resistor formed in the temperature control unit to set the temperature of the insulating substrate to a predetermined temperature. Temperature control means for controlling the temperature control unit, and a heat conductive elastic member formed on the other surface of the insulating substrate of the temperature control unit or a heat conductive elastic sheet prepared separately, and the insulation of the temperature control unit The other surface side of the substrate is in close contact with the electronic component mounted on the circuit board via the thermally conductive elastic member or the thermally conductive elastic sheet, and measures the temperature of the electronic component or a specific A device for evaluating the temperature characteristics of the electronic components when the temperature of the child component to a predetermined temperature.

本発明の回路基板の温度特性評価方法は、回路基板に組み込まれている電子部品または該回路基板の温度特性を評価する方法であって、回路基板に搭載される電子部品を動作させ、前記回路基板に搭載されている電子部品または前記回路基板に熱伝導性弾性部材または熱伝導性弾性シートを介して請求項1〜9のいずれか1項に記載の温度制御ユニットを押し付け、前記電子部品または前記回路基板の温度を変化させながら、前記電子部品または前記回路基板の温度に対する電気的特性の関係を調べることにより、前記回路基板に搭載される電子部品または前記回路基板の温度制御に利用することを特徴とする。   The method for evaluating temperature characteristics of a circuit board according to the present invention is a method for evaluating an electronic component incorporated in a circuit board or a temperature characteristic of the circuit board, wherein the electronic component mounted on the circuit board is operated, and the circuit The temperature control unit according to any one of claims 1 to 9 is pressed against an electronic component mounted on a substrate or the circuit board via a heat conductive elastic member or a heat conductive elastic sheet, and the electronic component or Utilizing the temperature control of the electronic component mounted on the circuit board or the circuit board by examining the relationship of the electrical characteristics with respect to the temperature of the electronic component or the circuit board while changing the temperature of the circuit board. It is characterized by.

前記回路基板の温度制御に利用することは、前記回路基板の周囲温度を所定の温度以下になるように冷却手段を設けること、前記電子部品の温度が規定の温度以下で動作し得る最高の入力状態で動作させること、前記電子部品の放熱特性の低下の原因を究明すること、のいずれかである。   Utilizing the temperature control of the circuit board includes providing cooling means so that the ambient temperature of the circuit board is lower than a predetermined temperature, and the highest input at which the temperature of the electronic component can operate at a predetermined temperature or lower. Operating in a state, or investigating the cause of the deterioration of the heat dissipation characteristics of the electronic component.

本発明の電子部品の温度特性評価用の制御ユニットは、絶縁基板上に少なくとも2本の発熱抵抗体が並列して設けられ、その2本の発熱抵抗体の間に温度測定用抵抗体が形成されている。この絶縁基板は、例えば温度特性を評価する電子部品の大きさにほぼ合せて形成される。従って、温度測定用抵抗体は、少なくとも電子部品の端部側ではなく、中心部よりに設けられる。そのため、電子部品などの温度を非常に正確に測定することができる。すなわち、制御ユニットの絶縁基板の端部の温度は外部に熱が逃げやすいので低めに測定するという傾向にある。しかし本発明では、並列される発熱抵抗体の間に温度測定用抵抗体が形成されているため、温度を上昇させるときはより一層、端部での熱の放散を受けずに正確な基板温度が測定される。換言すると、記録や転写などのための加熱ヘッドとして使用する場合には、温度をたとえば400℃以上ぐらいとかなり上昇させるため、また、基板の中心部と端部側とでたとえ温度差が多少生じても、その測定部の温度を基準にして必要な温度まで上昇されるため、絶対的な温度を必要としないが、本発明のように、電子部品などの温度を余り上昇させないで、かつ、正確に知りたい場合には、温度の逃げの影響を受けない、中心部での正確な温度の測定が必要となる。その観点から、少なくとも2本の発熱抵抗体の間に温度測定用の抵抗体が設けられることが非常に有効である。すなわち、正確な温度を測定することができ、加熱する熱量も最低限に抑えることができるので、機能を落とすことなく省電力化に寄与する。なお、電子部品を加熱する場合で、その温度を所望の温度まで上げられない場合には、このような制御ユニットを2個上下に重ねて使用したり、多重加熱基板を用いたりすることもできる。   In the control unit for evaluating the temperature characteristics of the electronic component of the present invention, at least two heating resistors are provided in parallel on an insulating substrate, and a temperature measuring resistor is formed between the two heating resistors. Has been. This insulating substrate is formed, for example, approximately in accordance with the size of the electronic component whose temperature characteristics are to be evaluated. Accordingly, the temperature measuring resistor is provided not at least on the end side of the electronic component but on the central portion. Therefore, it is possible to measure the temperature of electronic parts and the like very accurately. That is, the temperature of the end portion of the insulating substrate of the control unit tends to be measured low because heat easily escapes to the outside. However, in the present invention, since the temperature measuring resistor is formed between the parallel heating resistors, when the temperature is increased, the substrate temperature is more accurate without receiving heat dissipation at the end. Is measured. In other words, when used as a heating head for recording or transfer, the temperature is considerably raised to, for example, about 400 ° C. or more, and there is a slight temperature difference between the center and the end of the substrate. However, since the temperature is raised to the required temperature based on the temperature of the measurement unit, an absolute temperature is not required, but as in the present invention, the temperature of the electronic component or the like is not increased so much, and If you want to know exactly, you need to measure the temperature accurately in the center without being affected by the temperature escape. From this point of view, it is very effective to provide a temperature measuring resistor between at least two heating resistors. That is, an accurate temperature can be measured, and the amount of heat to be heated can be minimized, which contributes to power saving without reducing the function. When heating an electronic component and the temperature cannot be raised to a desired temperature, two such control units can be used one above the other or a multiple heating substrate can be used. .

本発明の制御ユニットは、発熱抵抗体と温度測定用抵抗体を備えているため、ただ電子部品の温度を知りたい場合には、発熱抵抗体を動作せずに、温度測定用抵抗体のみを動作させることで電子部品等の温度を知ることができる。また、電子部品が何度まで上昇したときにその電子部品の特性が影響を受けるかを知りたい場合には、電子部品に温度制御ユニットを当てつけて温度を測定しながら、発熱抵抗体も動作させて徐々に電子部品の温度を上昇させることができる。さらに、所定の温度に電子部品を維持させて、どのくらいの時間、影響を受けずに動作させることができるかを調べることもできる。さらに、回路基板の動作をさせて、温度の上昇する電子部品に隣接する電子部品への影響や、回路基板自身の温度上昇を調べることもできる。   Since the control unit of the present invention includes a heating resistor and a temperature measuring resistor, only the temperature measuring resistor is used without operating the heating resistor when it is desired to know the temperature of the electronic component. By operating it, the temperature of the electronic component or the like can be known. In addition, if you want to know how many times the electronic component rises, the characteristics of the electronic component will be affected, apply the temperature control unit to the electronic component and measure the temperature while operating the heating resistor. The temperature of the electronic component can be gradually increased. Further, it is possible to check how long the electronic component can be operated without being affected by maintaining the electronic component at a predetermined temperature. Furthermore, by operating the circuit board, it is possible to investigate the influence on the electronic component adjacent to the electronic component whose temperature rises and the temperature rise of the circuit board itself.

また、本発明の回路基板または回路基板に搭載される電子部品の温度特性評価装置によれば、制御ユニット自身は非常に小形でも、大型でも形成され得るので、その電子部品の大きさに合せた絶縁基板が用いられた制御ユニットを用いることにより、狭い場所に配置される電子部品でも、直接制御ユニットの部分を電子部品に圧接することができる。その結果、電子部品が込み入った場所に配置される電子部品であっても、正確な温度制御をすることができる。   In addition, according to the circuit board of the present invention or the temperature characteristic evaluation apparatus for electronic components mounted on the circuit board, the control unit itself can be formed in a very small size or a large size. By using the control unit in which the insulating substrate is used, even the electronic component arranged in a narrow place can directly press the part of the control unit against the electronic component. As a result, accurate temperature control can be performed even with an electronic component placed in a place where the electronic component is complicated.

さらに、本発明の回路基板または回路基板に搭載される電子部品の温度特性評価方法によれば、例えば設計段階の試作で、ある電子部品の温度が所定の特性を維持できないほど上がることが検出された場合に、その電子部品の温度を所定の温度以下になるように冷却手段を設けることができる。また、電子部品の温度が規定の温度以下で動作し得る最高の入力状態で動作するように設計することもできる。すなわち、電子部品の機能を最大限に利用することができるように設計することもできる。さらに、設計段階で、電子部品に代えて放熱特性の優れた電子部品に変更することもできる。このように、設計段階で試作品を作りながら、その設計諸元を変更して最適な設計をすることができる。   Furthermore, according to the temperature characteristic evaluation method for a circuit board or an electronic component mounted on the circuit board of the present invention, it is detected that the temperature of a certain electronic component rises so as to be unable to maintain a predetermined characteristic, for example, in a prototype at the design stage. In this case, the cooling means can be provided so that the temperature of the electronic component is equal to or lower than a predetermined temperature. Moreover, it can also be designed to operate in the highest input state in which the temperature of the electronic component can operate at a specified temperature or lower. That is, it is possible to design so that the function of the electronic component can be utilized to the maximum extent. Furthermore, it can be changed to an electronic component having excellent heat dissipation characteristics in place of the electronic component at the design stage. In this way, while making a prototype at the design stage, it is possible to change the design parameters and design optimally.

本発明の電子部品の温度特性評価用の温度制御ユニットの一実施形態を示す平面説明図およびそのB−B断面図である。It is a plane explanatory view showing one embodiment of a temperature control unit for temperature characteristic evaluation of electronic parts of the present invention, and its BB sectional view. 図1の発熱抵抗体のパターンの形成例を示す図である。It is a figure which shows the example of formation of the pattern of the heating resistor of FIG. 図1の発熱抵抗体のパターンの他の形成例を示す図である。It is a figure which shows the other example of a pattern of the heating resistor of FIG. 図1の制御ユニットの絶縁基板が大きい場合のパターンの例である。It is an example of a pattern in case the insulating substrate of the control unit of FIG. 1 is large. 図1に示される加熱基板を重ねて多重加熱基板とした例を示す図である。It is a figure which shows the example which overlapped the heating substrate shown by FIG. 1, and was set as the multiple heating substrate. 本発明の温度制御ユニットの一実施形態の側面図、背面図、上面図である。It is the side view, rear view, and top view of one embodiment of the temperature control unit of the present invention. 回路基板に搭載された電子部品の温度制御をする概略図で、(a)は回路基板の例を示す図、(b)は電子部品が搭載され、その上に制御ユニットが密着された状態を示す図である。FIG. 4 is a schematic diagram for controlling the temperature of an electronic component mounted on a circuit board, where (a) is a diagram showing an example of the circuit board, and (b) is a state in which the electronic component is mounted and the control unit is in close contact therewith. FIG. 図1の発熱抵抗体を駆動する回路例を示す図である。It is a figure which shows the example of a circuit which drives the heating resistor of FIG. 基板温度制御の一例を示す回路図である。It is a circuit diagram which shows an example of substrate temperature control.

つぎに、図面を参照しながら本発明の電子部品の温度特性評価用の温度制御ユニットおよびそれを用いた電子部品の温度特性評価装置が説明される。図1に、本発明の一実施形態による温度特性評価用の制御ユニットの一実施形態を示す平面説明図およびそのB−B断面の説明図が示されている。図1に示されるように、絶縁基板1の一面に少なくとも2列に並列して絶縁基板1を加熱する帯状の発熱抵抗体2が形成され、その2列に形成される発熱抵抗体2の長手方向に電流を流し得る少なくとも一対の電極3が接続されている。そして、少なくとも2列の発熱抵抗体2の間の絶縁基板1上に少なくとも1個の温度測定用抵抗体4が形成され、温度測定用抵抗体4の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子5が接続されている。これらにより加熱基板10aが形成されている。さらに、発熱抵抗体2の表面側にカバー基板6がガラス接着層9により接合されて温度制御ユニット10が形成されている。   Next, a temperature control unit for evaluating temperature characteristics of an electronic component and an apparatus for evaluating temperature characteristics of an electronic component using the same according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory plan view showing an embodiment of a temperature characteristic evaluation control unit according to an embodiment of the present invention, and an explanatory view of the B-B cross section thereof. As shown in FIG. 1, strip-shaped heating resistors 2 for heating the insulating substrate 1 are formed in parallel on at least two rows on one surface of the insulating substrate 1, and the length of the heating resistors 2 formed in the two rows is formed. At least a pair of electrodes 3 capable of flowing a current in the direction are connected. Then, at least one temperature measuring resistor 4 is formed on the insulating substrate 1 between at least two rows of the heating resistors 2, and the electric resistance between the temperature measuring resistors 4 for a predetermined length is measured. At least a pair of measurement terminals 5 are connected. Thus, the heating substrate 10a is formed. Further, the temperature control unit 10 is formed by bonding the cover substrate 6 to the surface side of the heating resistor 2 by the glass adhesive layer 9.

なお、図1には、発熱抵抗体と温度測定用抵抗体の配置などの主要部の構成だけが示されている。しかし、制御ユニット10としては、図6に示されるように、リード線31、51も接続され、温度測定用抵抗体4の抵抗変化に基づいて温度制御ユニット10の絶縁基板1の温度を検出する温度検出手段、および発熱抵抗体2に電流を流して絶縁基板1の温度を所定の温度に制御する温度制御手段とを有している。また、電子部品の温度特性評価装置としては、これらの温度検出手段や温度制御手段を含み、発熱抵抗体に電流を流して発熱させ、また、温度を測定するための具体的な回路を有すると共に、温度測定用抵抗体の抵抗値の変化から絶縁基板の温度を計算する回路などを有している。これらの制御部の動作は、後述される。この温度制御手段は、カードなどの印刷や消去等に用いられる一般的な加熱ヘッドの加熱制御部と同様のものを使用することもできる。   FIG. 1 shows only the configuration of the main part such as the arrangement of the heating resistor and the temperature measuring resistor. However, as shown in FIG. 6, lead wires 31 and 51 are also connected as the control unit 10, and the temperature of the insulating substrate 1 of the temperature control unit 10 is detected based on the resistance change of the temperature measuring resistor 4. Temperature detection means, and temperature control means for controlling the temperature of the insulating substrate 1 to a predetermined temperature by passing a current through the heating resistor 2. The electronic component temperature characteristic evaluation apparatus includes these temperature detection means and temperature control means, and has a specific circuit for causing a heating resistor to generate heat by flowing a current and measuring the temperature. And a circuit for calculating the temperature of the insulating substrate from the change in the resistance value of the temperature measuring resistor. The operation of these control units will be described later. As this temperature control means, the same one as a heating control unit of a general heating head used for printing or erasing cards can be used.

すなわち、本実施形態の電子部品の温度特性評価用の温度制御ユニットは、カードなどに記録や消去をするのに用いられる従来の加熱ヘッドと同様の構造になっており、絶縁基板1の一面に発熱抵抗体2と温度測定用抵抗体4とが設けられている。しかし、本発明では、発熱抵抗体2が少なくとも2列に並列して設けられ、その2列の発熱抵抗体2の間に温度測定用抵抗体4が設けられていることに特徴がある。「少なくとも2列」の意味は、並列している部分があればよいという意味で、図1(a)に示されるように、2本の発熱抵抗体2のそれぞれの一端部が接続導体7で接続されたものが並設されていてもよく、図2(a)に示されるように、1本の発熱抵抗体2がU字状に曲げられることにより並列する部分が形成されていてもよく、図3(a)〜(b)に示されるように、一部の発熱抵抗体2a、2bを介して接続されていてもよい。図1(a)に示される構造では、2本の発熱抵抗体2のそれぞれの一端部が接続導体7により接続され、それぞれの他端部に設けられる電極3を一対の電極とされている。しかし、接続導体7に代えて、それぞれ別個または共通の電極3が設けられ、2本の発熱抵抗体2のそれぞれの他端部の電極3に異なる電圧、または同じ電圧を印加するようにすることもできる。さらに、部分的に抵抗値もしくは幅を変え、または中間部から電極端子を取り出して、部分的に温度を変えられるようにすることもできる。特に、U字形にすることにより、不均一加熱を行いやすい。また、本発明では、並列して2列に設けられた発熱抵抗体2の間に温度測定用抵抗体4が設けられていることに特徴がある。温度測定用抵抗体4がこのように設けられることにより、より正確に絶縁基板1の温度、ひいては評価する電子部品の温度を正確に制御することができる。   That is, the temperature control unit for evaluating the temperature characteristics of the electronic component of the present embodiment has the same structure as a conventional heating head used for recording or erasing on a card or the like. A heating resistor 2 and a temperature measuring resistor 4 are provided. However, the present invention is characterized in that the heating resistors 2 are provided in parallel in at least two rows, and the temperature measuring resistors 4 are provided between the two rows of heating resistors 2. The meaning of “at least two rows” means that it is only necessary to have a portion in parallel. As shown in FIG. 1A, one end of each of the two heating resistors 2 is a connection conductor 7. The connected ones may be arranged side by side, and as shown in FIG. 2A, one heating resistor 2 may be bent in a U shape to form a parallel portion. As shown in FIGS. 3A to 3B, they may be connected via some of the heating resistors 2a and 2b. In the structure shown in FIG. 1 (a), one end of each of the two heating resistors 2 is connected by a connecting conductor 7, and the electrodes 3 provided at the other ends are a pair of electrodes. However, separate or common electrodes 3 are provided in place of the connection conductors 7 so that different voltages or the same voltages are applied to the electrodes 3 at the other ends of the two heating resistors 2. You can also. Furthermore, the resistance value or width can be partially changed, or the electrode terminal can be taken out from the intermediate portion so that the temperature can be partially changed. In particular, non-uniform heating is facilitated by using a U-shape. Further, the present invention is characterized in that the temperature measuring resistors 4 are provided between the heating resistors 2 provided in two rows in parallel. By providing the temperature measuring resistor 4 in this way, the temperature of the insulating substrate 1 and thus the temperature of the electronic component to be evaluated can be accurately controlled.

絶縁基板1は、アルミナなどからなる熱伝導率の優れた絶縁性の基板が用いられる。形状および寸法は、評価される電子部品の形状で、少し小さめの大きさに形成されることが好ましい。しかし、電子部品の形状が円形とか、複雑な形状の場合には、後述されるように、絶縁基板1は矩形でも、熱伝導性弾性部材11(図6参照)を電子部品の形状に合せることができる。絶縁基板1を介して、電子部品の熱を放散するのを避けるため、電子部品の形状に合せて、電子部品よりやや小さめの形状にされることが好ましい。   As the insulating substrate 1, an insulating substrate made of alumina or the like and having excellent thermal conductivity is used. The shape and dimensions are preferably the shape of the electronic component to be evaluated and are formed in a slightly smaller size. However, when the shape of the electronic component is circular or complex, as will be described later, the heat conductive elastic member 11 (see FIG. 6) is matched to the shape of the electronic component even if the insulating substrate 1 is rectangular. Can do. In order to avoid dissipating the heat of the electronic component through the insulating substrate 1, it is preferable to make the shape slightly smaller than the electronic component in accordance with the shape of the electronic component.

発熱抵抗体2は、たとえばAg+Pd+RuO2+Pt+金属酸化物+ガラスなどの粉末を選択してペースト状にして塗布して、焼成することにより形成されている。焼成により形成される抵抗膜のシート抵抗は固形絶縁粉末の量によって変えられる。両者の比率により抵抗値や温度係数を変えることができる。また、導体(電極3、5、接続導体7、8、連結導体7a、7b)として使用する材料としては、Agの割合を多くし、Pdを少なくした同様のペースト状にしたものが用いられる。そうすることにより、発熱抵抗体と同様に、印刷により形成することができる。端子接続により使用温度を変えることができる。Agが多い程抵抗を低くすることができる。この発熱抵抗体2の抵抗温度係数は正に高い方が好ましく、とくに1000〜3500ppm/℃の材料を用いることが好ましい。また、図示されていないが、発熱抵抗体2の長手方向に沿って適当な位置に電極が設けられることにより、部分的に電圧を印加することができ、場所によって温度を変えることもできるし、絶縁基板内で、均一な温度に加熱することもできる。 The heating resistor 2 is formed, for example, by selecting a powder such as Ag + Pd + RuO 2 + Pt + metal oxide + glass, applying it in a paste form, and baking it. The sheet resistance of the resistance film formed by firing is changed depending on the amount of the solid insulating powder. The resistance value and the temperature coefficient can be changed according to the ratio of the two. In addition, as a material used as the conductor (electrodes 3 and 5, connection conductors 7 and 8, and connection conductors 7a and 7b), the same paste-like material in which the ratio of Ag is increased and Pd is decreased is used. By doing so, it can be formed by printing in the same manner as the heating resistor. The operating temperature can be changed by connecting the terminals. The more Ag, the lower the resistance. It is preferable that the resistance temperature coefficient of the heat generating resistor 2 is exactly high, and it is particularly preferable to use a material of 1000 to 3500 ppm / ° C. Although not shown, by providing electrodes at appropriate positions along the longitudinal direction of the heating resistor 2, a voltage can be applied partially, and the temperature can be changed depending on the location, It can also be heated to a uniform temperature within the insulating substrate.

抵抗温度係数が正に大きいということは、温度が上昇すると抵抗値の増加が大きいことであるから、発熱させた状態における抵抗値測定により基準抵抗値からのずれにより実際の発熱温度の検出を容易に精度よく行え、印加電圧を調整し、または印加パルスのデューティを調整することにより所望の発熱温度からのずれを修正しやすくなる。また、抵抗温度係数が正であることにより、温度が上昇し過ぎた場合に抵抗値が増大して電流値が下がり、抵抗による発熱量が下がるため、より早く温度が飽和状態となり、高温時の温度安定性に優れているからであり、熱暴走などによる過熱を防止できるからである。なお、発熱抵抗体2の幅も前述の例に限定されず、用途に応じて設定され、複数本並列に並べてもよい。   The fact that the temperature coefficient of resistance is positively large means that the resistance value increases greatly when the temperature rises. Therefore, it is easy to detect the actual heat generation temperature due to deviation from the reference resistance value by measuring the resistance value in the heated state. It is easy to correct the deviation from the desired heat generation temperature by adjusting the applied voltage or adjusting the duty of the applied pulse. Also, since the temperature coefficient of resistance is positive, if the temperature rises too much, the resistance value increases, the current value decreases, and the amount of heat generated by the resistance decreases, so the temperature becomes saturated sooner, This is because it is excellent in temperature stability and can prevent overheating due to thermal runaway. In addition, the width of the heating resistor 2 is not limited to the above-described example, and may be set according to the application and may be arranged in parallel.

また、発熱抵抗体2の両端部には、たとえばパラジウムの比率を小さくした銀・パラジウム合金やAg-Pt合金などの良導電体からなる電極3や接続導体7が印刷形成されている。この電極3は、後述される図6に示されるように、リード31が接続され、電源が接続されて発熱抵抗体2に通電される構造になっている。この電源は、直流でも、交流でもよく、また、パルス電圧でもよい。パルス電圧であれば、そのデューティを変えることにより、印加電力を制御することができる。   In addition, electrodes 3 and connection conductors 7 made of a good conductor such as a silver / palladium alloy or an Ag—Pt alloy with a reduced palladium ratio are printed on both ends of the heating resistor 2. As shown in FIG. 6 which will be described later, the electrode 3 has a structure in which a lead 31 is connected and a power source is connected to energize the heating resistor 2. This power source may be a direct current, an alternating current, or a pulse voltage. If it is a pulse voltage, the applied power can be controlled by changing its duty.

図1および図2に示される例では、電極3や接続導体7が発熱抵抗体の下側に形成されている。しかし、この上下関係は、図3に示されるように、発熱抵抗体2が下側で、電極3や連結用導体7a、7bが上側に形成されてもよい。図3は、図2(b)〜(c)の発熱抵抗体2と電極3の上下関係を逆にした例である。   In the example shown in FIGS. 1 and 2, the electrode 3 and the connection conductor 7 are formed on the lower side of the heating resistor. However, in this vertical relationship, as shown in FIG. 3, the heating resistor 2 may be formed on the lower side, and the electrodes 3 and the connecting conductors 7a and 7b may be formed on the upper side. FIG. 3 shows an example in which the vertical relationship between the heating resistor 2 and the electrode 3 in FIGS. 2B to 2C is reversed.

図1に示される例では、直線状の発熱抵抗体2が2本並列に形成され、それぞれの他端部の電極3が形成され、一端部が接続導体7により連結される構造であったが、図2(a)に示されるように、1本の発熱抵抗体2がU字状に曲げられて形成されても、コーナ部以外の部分は直線状で並列して形成される。このように、発熱抵抗体2をU字状に曲げる場合でも、図2(b)〜(c)に示されるように、少なくともコーナ部には、連結用導体7a、7bが設けられることが好ましい。コーナ部では、道程が短く抵抗の小さい内側部分に電流が集中して、外周側の電流が少なくなり、均一な発熱をし難くなるからである。図2(b)に示されるように、コーナ部全体に連結用導体7aが設けられることにより、一定幅の発熱抵抗体2を平行に流れた電流は、連結用導体7aでは全体に均一に電流が流れるため、底部の発熱抵抗体2aでも均一に電流が流れ、並列の関係になるもう一方の発熱抵抗体2も全体を電流が流れて均一な加熱をすることができる。その結果、図1に示される発熱抵抗体2と同様に2本の並列の発熱抵抗体に底部の発熱抵抗体2aが接続されているだけで、全体の発熱に寄与する効果のみが余分に得られる。   In the example shown in FIG. 1, two linear heating resistors 2 are formed in parallel, the electrodes 3 at the other end portions are formed, and one end portions are connected by the connection conductor 7. As shown in FIG. 2A, even if one heating resistor 2 is bent and formed in a U-shape, the portions other than the corner portion are formed in a straight line in parallel. Thus, even when the heating resistor 2 is bent in a U shape, it is preferable that the connecting conductors 7a and 7b are provided at least in the corner as shown in FIGS. 2 (b) to 2 (c). . This is because, at the corner portion, the current is concentrated on the inner portion where the path is short and the resistance is small, the current on the outer peripheral side is reduced, and uniform heat generation is difficult. As shown in FIG. 2B, the connection conductor 7a is provided in the entire corner portion, so that the current flowing in parallel through the heating resistor 2 having a certain width is uniformly distributed throughout the connection conductor 7a. Therefore, the current flows even in the heat generating resistor 2a at the bottom, and the other heat generating resistor 2 in the parallel relationship also flows through the whole and can be heated uniformly. As a result, only the bottom heating resistor 2a is connected to the two parallel heating resistors in the same manner as the heating resistor 2 shown in FIG. It is done.

図2(c)に示される例は、コーナ部の内側のみに発熱抵抗体2が形成され、コーナ部の外周側が連結用導体7bで形成されたものである。コーナ部の外周で抵抗が大きくなる部分に連結用導体7bが形成されることにより、図2(b)の例と同様に、コーナ部での電流の均一化を図り、連結部の発熱抵抗体2bにも均一な電流が得られやすくなる。図3(a)〜(b)に示される例は、図2(b)〜(c)と同様の例で、前述のように、電極3および連結用導体7a、7bが発熱抵抗体2の上側に形成された例である。この発熱抵抗体2、電極3などはスクリーン印刷により形成されるので、異なる材料は異なる印刷工程で形成されるが、どちらが先に形成されてもよい。   In the example shown in FIG. 2C, the heating resistor 2 is formed only inside the corner portion, and the outer peripheral side of the corner portion is formed by the connecting conductor 7b. By forming the connecting conductor 7b on the outer periphery of the corner portion where the resistance is increased, similarly to the example of FIG. 2B, the current at the corner portion is made uniform, and the heating resistor of the connecting portion is formed. It becomes easy to obtain a uniform current in 2b. The examples shown in FIGS. 3A to 3B are the same as those shown in FIGS. 2B to 2C. As described above, the electrode 3 and the connecting conductors 7a and 7b are made of the heating resistor 2. It is an example formed in the upper side. Since the heating resistor 2, the electrode 3, and the like are formed by screen printing, different materials are formed in different printing processes, either of which may be formed first.

温度測定用抵抗体3は、図1(a)に示されるように、2個の発熱抵抗体2の間に形成されている。図1(a)に示される例では、発熱抵抗体2と同様に、2個の温度測定用抵抗体4が並列して設けられ、それぞれの一方の端部が測定用端子5に接続され、他方の端部は接続導体8で連結されている。その結果、2個の温度測定用抵抗体4の一端部のそれぞれに接続されている測定用端子5の間に電圧が印加されることによりその抵抗の変化から絶縁基板1の温度を知ることができる。この温度の測定方法に関しては後述される。   The temperature measuring resistor 3 is formed between two heating resistors 2 as shown in FIG. In the example shown in FIG. 1A, similarly to the heating resistor 2, two temperature measuring resistors 4 are provided in parallel, and one end of each is connected to the measuring terminal 5, The other end is connected by a connection conductor 8. As a result, the temperature of the insulating substrate 1 can be known from the change in resistance by applying a voltage between the measuring terminals 5 connected to one end of each of the two temperature measuring resistors 4. it can. A method for measuring this temperature will be described later.

温度測定用抵抗体4は、発熱抵抗体2と同じ材料で形成されてもよいが、できるだけ温度係数の絶対値(%)が大きい材料が好ましい。この温度測定用抵抗体4は、発熱させるものではなく、絶縁基板1の温度を検出して、評価する電子部品の温度を推定するもので、たとえば0.5mm幅で、発熱抵抗体2より若干短い長さで形成される。また、温度測定用抵抗体4自身は発熱しないよう印加電圧が低く抑えられて、たとえば5V程度が印加される。すなわち、この温度測定用抵抗体4は絶縁基板1上に直接設けられているため、両者の温度は殆ど同じで、温度測定用抵抗体4の温度を測定することにより、絶縁基板1表面の温度、ひいては絶縁基板1と密着する評価用の電子部品の温度を推測することができる。温度検出手段については後述するが、この温度測定用抵抗体4の両端の電圧変化を検出することにより温度測定用抵抗体4の温度を検出するため、温度係数が大きい方が測定誤差を小さくすることができる。なお、この場合は、温度係数は正でも負でもよい。   The temperature measuring resistor 4 may be formed of the same material as that of the heat generating resistor 2, but a material having as large an absolute value (%) of a temperature coefficient as possible is preferable. This temperature measuring resistor 4 does not generate heat, but detects the temperature of the insulating substrate 1 to estimate the temperature of the electronic component to be evaluated. For example, it has a width of 0.5 mm and is slightly larger than the heating resistor 2. It is formed with a short length. Further, the applied voltage is kept low so that the temperature measuring resistor 4 itself does not generate heat, and, for example, about 5 V is applied. That is, since the temperature measuring resistor 4 is directly provided on the insulating substrate 1, both temperatures are almost the same. By measuring the temperature of the temperature measuring resistor 4, the temperature of the surface of the insulating substrate 1 is measured. As a result, the temperature of the evaluation electronic component that is in close contact with the insulating substrate 1 can be estimated. Although the temperature detecting means will be described later, the temperature of the temperature measuring resistor 4 is detected by detecting the voltage change at both ends of the temperature measuring resistor 4, so that the larger the temperature coefficient, the smaller the measurement error. be able to. In this case, the temperature coefficient may be positive or negative.

温度測定用抵抗体4は、発熱抵抗体2と同じ材料とは限らず用途に応じて印刷などにより形成する。すなわち、微小の温度差を必要とする場合には、AgとPdの混合比率を変えたものや、全く別の材料で温度係数の大きいものを用いることもできる。この温度測定用抵抗体4の測定端子5および接続導体8も、発熱抵抗体2の場合と同様に、Agを多くしてPdを少なくした良導電性の材料により形成される。この温度測定用端子5の形成は、温度測定用抵抗体4の端部に設けられるとは限らない。たとえば、図2(a)〜(c)に示されるように、温度測定用抵抗体4がU字状に1本で形成され、その途中のところから測定用リード5eを介して温度測定用端子5c、5dが形成され、両端部に接続される測定用端子5a、5bが形成されることにより、局部的な温度測定が可能となる。すなわち、測定用端子5aと測定用端子5cを用いることにより、U字形の温度測定用抵抗体4の測定端子5a側の1/3程度の部分の温度を測定することができるし、測定用端子5cと測定用端子5dとを用いて測定することにより、U字形のコーナ部近傍の温度を測定することができる。さらに、測定用端子5dと測定用端子5bとを用いて測定することにより、温度測定用抵抗体4の残り1/3程度の部分の温度を測定することができる。さらに、測定用端子5aと測定用端子5bとで測定することにより、全体の平均の絶縁基板1の温度を測定することができる。この測定用端子の数は、1/3程度の位置に限定されず、さらに細かく設けることもできるし、粗く設けることもできる。特に絶縁基板1が大きい場合には、絶縁基板1の位置により温度がばらつく可能性があるので、細かく測定点を設けることが好ましい。この測定位置は、発熱抵抗体2の近傍で行うことが好ましい。   The temperature measuring resistor 4 is not limited to the same material as the heating resistor 2 and is formed by printing or the like depending on the application. That is, when a very small temperature difference is required, it is possible to change the mixing ratio of Ag and Pd or use a completely different material having a large temperature coefficient. The measurement terminal 5 and the connection conductor 8 of the temperature measuring resistor 4 are also formed of a highly conductive material in which Ag is increased and Pd is decreased, as in the case of the heating resistor 2. The formation of the temperature measuring terminal 5 is not necessarily provided at the end of the temperature measuring resistor 4. For example, as shown in FIGS. 2 (a) to 2 (c), the temperature measuring resistor 4 is formed in a single U-shape, and the temperature measuring terminal is interposed from the middle through the measuring lead 5e. 5c and 5d are formed, and the measurement terminals 5a and 5b connected to both ends are formed, thereby enabling local temperature measurement. That is, by using the measurement terminal 5a and the measurement terminal 5c, the temperature of about 1/3 of the U-shaped temperature measurement resistor 4 on the measurement terminal 5a side can be measured. By measuring using 5c and the measurement terminal 5d, the temperature in the vicinity of the U-shaped corner can be measured. Furthermore, by measuring using the measurement terminal 5d and the measurement terminal 5b, it is possible to measure the temperature of the remaining one third of the temperature measurement resistor 4. Furthermore, by measuring with the measurement terminal 5a and the measurement terminal 5b, the average temperature of the insulating substrate 1 as a whole can be measured. The number of the measurement terminals is not limited to a position of about 1/3, and can be provided more finely or roughly. In particular, when the insulating substrate 1 is large, the temperature may vary depending on the position of the insulating substrate 1, so it is preferable to provide measurement points in detail. This measurement position is preferably performed in the vicinity of the heating resistor 2.

なお、温度測定用抵抗体4は、絶縁基板1(制御ユニット10)の大きさ、均一温度にするか、または温度勾配を持たせるか、部分加熱にするか、などの目的に応じて、形成される位置や測定端子5の位置が設定される。また、この発熱抵抗体2および温度測定用抵抗体4は、絶縁基板1上に直接設けられないで、熱絶縁層(グレース層)6が2〜3層程度スクリーン印刷などにより設けられる場合もあるが、絶縁基板1の他面側を電子部品に当て付ける場合には、熱が他面側に伝わりやすいようにグレーズ層は無い方が好ましい。   The temperature measuring resistor 4 is formed in accordance with the size of the insulating substrate 1 (control unit 10), a uniform temperature, a temperature gradient, or partial heating. And the position of the measurement terminal 5 are set. Further, the heat generating resistor 2 and the temperature measuring resistor 4 are not directly provided on the insulating substrate 1, and there are cases in which about two to three thermal insulating layers (grace layers) 6 are provided by screen printing or the like. However, when the other surface side of the insulating substrate 1 is applied to the electronic component, it is preferable that there is no glaze layer so that heat is easily transmitted to the other surface side.

前述の例では、2個の発熱抵抗体2が並列して設けられ、その間に2個の温度測定用抵抗体4が設けられる例であったが、図4に示されるように、4個の発熱抵抗体2が並列して設けられ、それぞれの発熱抵抗体2の間に温度測定用抵抗体4が設けられる構造でもよい。絶縁基板1が評価する電子部品の大きさに応じて発熱抵抗体2の数が調整され、または各発熱抵抗体2の幅が調整される。この際、前述のように、各発熱抵抗体2の幅を変えたものを並列させることにより、通電する発熱抵抗体2を選択して、全体で所望の発熱量とすることができ、所望の温度に調整しやすい。勿論、温度調整は、発熱抵抗体2で調整しなくても、印加する電圧、またはパルス駆動の場合にはそのデューティサイクルにより変化させることができる。   In the example described above, two heating resistors 2 are provided in parallel, and two temperature measuring resistors 4 are provided between them. However, as shown in FIG. A structure in which the heating resistors 2 are provided in parallel and the temperature measuring resistor 4 is provided between the heating resistors 2 may be employed. The number of heating resistors 2 is adjusted or the width of each heating resistor 2 is adjusted according to the size of the electronic component evaluated by the insulating substrate 1. At this time, as described above, by changing the width of each heating resistor 2 in parallel, the heating resistor 2 to be energized can be selected to obtain a desired amount of heat generation as a whole. Easy to adjust to temperature. Of course, the temperature adjustment can be changed according to the voltage to be applied or the duty cycle in the case of pulse driving without being adjusted by the heating resistor 2.

このように絶縁基板1の一面に発熱抵抗体2、温度測定用抵抗体4、電極3および測定用端子5が形成されることにより、加熱基板10aが形成される。この加熱基板10aの表面側にガラス接着層9を介してカバー基板6が貼り付けられる(図1参照)ことにより、本発明の制御ユニット10が形成されている。カバー基板6は、絶縁基板1と同様のセラミック基板で0.6mm程度の厚さのものが用いられ、熱の放散をし難くすると共に、熱膨張率差に基づく絶縁基板1の反りの防止を図っている。従って、絶縁基板1よりも熱伝導率が小さくてもよいが、絶縁基板1と同じ材料で同じ厚さであることが好ましい。一方でこの制御ユニットで十分な発熱量が得られない場合には、図5に示されるように多重加熱基板10bが用いられてもよい。単に制御ユニットを重ねて熱量を増やすことができる。そういう可能性のある場合には、このカバー基板6も絶縁基板1と同程度の熱伝導率を持つことが好ましい。   Thus, the heating substrate 10a is formed by forming the heating resistor 2, the temperature measuring resistor 4, the electrode 3, and the measuring terminal 5 on one surface of the insulating substrate 1. The control substrate 10 of the present invention is formed by attaching the cover substrate 6 to the surface side of the heating substrate 10a via the glass adhesive layer 9 (see FIG. 1). The cover substrate 6 is a ceramic substrate similar to the insulating substrate 1 and having a thickness of about 0.6 mm, making it difficult to dissipate heat and preventing warping of the insulating substrate 1 based on the difference in thermal expansion coefficient. I am trying. Therefore, although the thermal conductivity may be smaller than that of the insulating substrate 1, it is preferable that the insulating substrate 1 has the same material and the same thickness. On the other hand, when a sufficient calorific value cannot be obtained with this control unit, a multiple heating substrate 10b may be used as shown in FIG. The amount of heat can be increased simply by stacking control units. In such a case, it is preferable that the cover substrate 6 also has a thermal conductivity comparable to that of the insulating substrate 1.

図5(a)に示される例は、絶縁基板1上に発熱抵抗体2、温度測定用抵抗体4および電極3、測定用端子5などが形成された加熱基板10aが2個重ねられ、ガラス接着層9で接合され、その表面にカバー基板6が接合された多重加熱基板10bの例である。このように加熱基板10aが2段以上に積層されることにより、熱容量が大きくなり、電子部品の温度を所望の温度にすることができる。   In the example shown in FIG. 5A, two heating substrates 10a each having a heating resistor 2, a temperature measuring resistor 4 and an electrode 3, a measuring terminal 5 and the like formed on an insulating substrate 1 are stacked. This is an example of a multiple heating substrate 10b bonded by an adhesive layer 9 and having a cover substrate 6 bonded to the surface thereof. Thus, by laminating | stacking the heating board | substrate 10a in two or more steps, heat capacity becomes large and the temperature of an electronic component can be made into desired temperature.

図5(b)に示される例は、前述の加熱基板10aを発熱抵抗体2側を向き合わせて接合した例であり、このようにすれば、2個の加熱基板10aの発熱量を無駄なく利用することができる。この場合、電子部品に密着させる絶縁基板1と反対側の絶縁基板1は、前述のカバー基板6の代わりになる。そのため、この絶縁基板1には、熱伝導率の小さい材料のものを用いることもできる。この図5(b)に示される構造でも、さらに他の加熱基板10aを接合することもできる。   The example shown in FIG. 5B is an example in which the heating substrate 10a described above is joined with the heating resistor 2 facing each other, and in this way, the heat generation amount of the two heating substrates 10a can be used without waste. Can be used. In this case, the insulating substrate 1 on the opposite side to the insulating substrate 1 to be in close contact with the electronic component is used instead of the cover substrate 6 described above. Therefore, a material having a low thermal conductivity can be used for the insulating substrate 1. In the structure shown in FIG. 5B, another heating substrate 10a can be bonded.

このような制御ユニット10を回路基板などに搭載された電子部品に当て付けて電子部品の温度特性を評価する電子部品の温度特性評価装置にするには、例えば図6に示されるように、制御ユニット10の絶縁基板1の他面(発熱抵抗体2などが設けられた面と反対面)に熱伝導性弾性部材11が形成され、電子部品の露出面と密着して熱伝導が速やかに行われるようになっている。そのため、この熱伝導性弾性部材11は、熱伝導特性が優れると共に、弾力性があり、接着性の良いシリコーンゴムのようなものが好ましい。このようなシリコーンゴムのようなシートが貼り付けられてもよいし、この絶縁基板1の他面側に直接印刷などにより形成されてもよい。また、この熱伝導性弾性部材11は、貼り付けられなくても、別部品として制御ユニットが押しつけられる際に熱伝導性弾性シートを挟んで押しつけられてもよい。このような熱伝導性弾性シートは、市販されているものを使用することができる。   In order to make an electronic component temperature characteristic evaluation apparatus that applies the control unit 10 to an electronic component mounted on a circuit board or the like and evaluates the temperature characteristic of the electronic component, for example, as shown in FIG. A heat conductive elastic member 11 is formed on the other surface of the insulating substrate 1 of the unit 10 (the surface opposite to the surface on which the heating resistor 2 and the like are provided), and is in close contact with the exposed surface of the electronic component so that the heat conduction is performed quickly. It has come to be. For this reason, the heat conductive elastic member 11 is preferably a silicone rubber having excellent heat conduction characteristics, elasticity, and good adhesion. Such a sheet such as silicone rubber may be attached, or may be formed directly on the other surface side of the insulating substrate 1 by printing or the like. Moreover, even if this heat conductive elastic member 11 is not affixed, when a control unit is pressed as another component, it may be pressed on both sides of a heat conductive elastic sheet. As such a heat conductive elastic sheet, a commercially available one can be used.

図6に示される例では、カバー基板6の表面に取付板12が貼り付けられている。この取付板12は、制御ユニット10が電子部品に密着するように押し付けて固定するためのものである。この取付板12には、取付孔12aが形成されている。しかし、この取付板12は、評価しようとする電子部費が搭載されている回路基板などのスペースなどとの関連で、取付板12を固定するスペースがない場合には不要である。取付板12により制御ユニット10をしっかりと電子部品に密着させることにより、正確な電子部品の温度を測定することができるため好ましい。しかし、取付板12で固定するスペースがない場合には、電子部品に制御ユニット10の絶縁基板1の裏面に設けられた熱伝導性弾性部材11を押し付けて特性評価が行われる。   In the example shown in FIG. 6, the mounting plate 12 is attached to the surface of the cover substrate 6. The mounting plate 12 is for pressing and fixing the control unit 10 so as to be in close contact with the electronic component. The mounting plate 12 has a mounting hole 12a. However, the mounting plate 12 is unnecessary when there is no space for fixing the mounting plate 12 in relation to the space of the circuit board or the like on which the electronic part cost to be evaluated is mounted. It is preferable because the temperature of the electronic component can be accurately measured by firmly attaching the control unit 10 to the electronic component by the mounting plate 12. However, when there is no space to be fixed by the mounting plate 12, the thermal evaluation is performed by pressing the heat conductive elastic member 11 provided on the back surface of the insulating substrate 1 of the control unit 10 to the electronic component.

このような回路基板15に搭載されたIC16などに温度制御ユニット10を密着させて温度特性を評価する例が図7に示されている。すなわち、図7(a)にIC16が搭載される前の回路基板15の簡略化した平面図の例が示され、図7(b)にIC16が搭載され、その表面に温度制御ユニット10が当て付けられた状態の概念図が示されている。この例では、温度制御ユニット10には取付板12が取り付けられておらず、図示してない押し付け手段により温度制御ユニット10がIC16に押し付けられている。なお、回路基板15の18は配線を示している。図7(a)の回路基板15では、明瞭化のため、IC16だけが搭載される例になっているが、実際には、他のIC、LED、コンデンサ、抵抗器など種々の電子部品が搭載され、その他の種々の電子部品が動作することにより、IC16の1個だけの動作の場合と異なる温度特性が評価される。そのような総合的な状況下での回路基板15を含む各電子部品の温度特性を個別に評価することができる。   FIG. 7 shows an example in which the temperature characteristics are evaluated by bringing the temperature control unit 10 into close contact with the IC 16 or the like mounted on the circuit board 15. That is, FIG. 7A shows an example of a simplified plan view of the circuit board 15 before the IC 16 is mounted, and FIG. 7B shows the IC 16 mounted on which the temperature control unit 10 is applied. A conceptual diagram of the attached state is shown. In this example, the mounting plate 12 is not attached to the temperature control unit 10, and the temperature control unit 10 is pressed against the IC 16 by pressing means (not shown). Note that reference numeral 18 of the circuit board 15 indicates wiring. In the circuit board 15 in FIG. 7A, for the sake of clarity, only the IC 16 is mounted, but in reality, various electronic components such as other ICs, LEDs, capacitors, resistors are mounted. When other various electronic components are operated, temperature characteristics different from the case of the operation of only one IC 16 are evaluated. The temperature characteristics of each electronic component including the circuit board 15 under such a comprehensive situation can be individually evaluated.

電子部品には、前述のように、IC、LEDなどのディスクリートな部品に限らず、たとえば電子部品が搭載された回路基板15やプリント配線板なども含まれる。回路基板の特定の場所の温度を制御する必要もあり得る。その他では、電池、電源回路、ディスプレイ、コネクタなども含まれる。最近では、スマートフォンの発熱事故なども生じており、どの部分でどの程度の温度まで上昇するかということを事前に把握しておくことが必要となっている。これら回路基板の温度の上昇しやすい場所を把握し、その温度上昇の対策を施しておくことにより、スマートフォンなどの携帯機器の発熱事故などを未然に防止することができる。   As described above, electronic components are not limited to discrete components such as ICs and LEDs, but also include, for example, a circuit board 15 on which electronic components are mounted, a printed wiring board, and the like. It may also be necessary to control the temperature at a particular location on the circuit board. Others include batteries, power supply circuits, displays, connectors, and the like. Recently, accidents such as smartphone heat generation have occurred, and it is necessary to know in advance which part of the device will rise to what temperature. By grasping the place where the temperature of the circuit board easily rises and taking measures against the temperature rise, it is possible to prevent a heat generation accident of a portable device such as a smartphone.

図6に戻って、本発明の温度制御ユニット10は、発熱抵抗体2の電極3(図6には示されていない)に発熱抵抗体用リード31が接続され、温度測定用抵抗体4の測定端子(図6には示されていない)に温度測定用リード51がそれぞれハンダ付けなどにより接続されている。その接続部ではリード31、51が折れやすいため、固定部材13により固定されている。この発熱抵抗体用および温度測定用のリード31、51が図示しない制御部に接続され、絶縁基板1の温度が測定されると共に、発熱抵抗体2に電圧が印加されることにより発熱する。この発熱抵抗体2への電圧の印加は、後述されるように、温度測定により検出された温度により制御される。   Returning to FIG. 6, in the temperature control unit 10 of the present invention, the heating resistor lead 31 is connected to the electrode 3 (not shown in FIG. 6) of the heating resistor 2, and the temperature measuring resistor 4 Temperature measurement leads 51 are connected to measurement terminals (not shown in FIG. 6) by soldering or the like. Since the leads 31 and 51 are easily broken at the connecting portion, they are fixed by the fixing member 13. The heating resistor and temperature measuring leads 31 and 51 are connected to a control unit (not shown) to measure the temperature of the insulating substrate 1 and to generate heat when a voltage is applied to the heating resistor 2. The application of voltage to the heating resistor 2 is controlled by the temperature detected by temperature measurement, as will be described later.

図1に示される温度制御ユニット10の温度制御手段(駆動回路)が図8に示されている。すなわち、この駆動回路は直流または交流の電源29で駆動する例で電源29としては、電池、商用電源または商用電源29をトランスなどにより電圧や印加時間を調整して、印加電力を調整する調整部27を介して発熱抵抗体2に接続される電極3(図1参照)に駆動電力が供給されるようになっている。その結果、交流電源をそのまま使用することもでき、商用の交流電源29により供給される電圧は、電力の調整部27により調整され、所望の温度になるように調整される。その結果、直流電源が不要で、電源冷却ファンも不要になる。しかし、電池による直流電源を用いることもできる。また、図示されていないが、パルスを印加するパルス駆動により加熱することもできる。その場合、電圧を変える以外にもデューティサイクルを変えることにより印加電力を調整することができる。その温度は、温度測定用抵抗体4を利用して、定電流源25により供給される電流と、温度測定用抵抗体4の両端の電圧Vの測定により、その時点の温度測定用抵抗体4の抵抗値を知り、その抵抗値の変化により温度測定用抵抗体4、すなわち絶縁基板1の温度を測定して、その温度により電力の調整部27で電圧などを調整できるようになっている。調整部27は、特に複数の発熱抵抗体2を並べて加熱する場合に、各発熱抵抗体2の温度を均一にするために有効である。そのため、複数の温度測定用抵抗体4が設けられている場合には、それぞれ別々にその近傍の温度を測定し、各発熱抵抗体2で印加電圧などが調整されることが好ましい。   The temperature control means (drive circuit) of the temperature control unit 10 shown in FIG. 1 is shown in FIG. That is, this drive circuit is driven by a direct current or alternating current power supply 29. As the power supply 29, a battery, a commercial power supply, or a commercial power supply 29 is adjusted by a transformer or the like to adjust the voltage and application time to adjust the applied power. The driving power is supplied to the electrode 3 (see FIG. 1) connected to the heating resistor 2 via the heater 27. As a result, the AC power supply can be used as it is, and the voltage supplied from the commercial AC power supply 29 is adjusted by the power adjustment unit 27 and adjusted to a desired temperature. As a result, no DC power supply is required, and no power supply cooling fan is required. However, a direct current power source using a battery can also be used. Although not shown, heating can also be performed by pulse driving in which a pulse is applied. In that case, the applied power can be adjusted by changing the duty cycle in addition to changing the voltage. The temperature is measured by measuring the current supplied from the constant current source 25 and the voltage V across the temperature measuring resistor 4 by using the temperature measuring resistor 4. The temperature of the temperature measurement resistor 4, that is, the temperature of the insulating substrate 1 is measured based on the change in the resistance value, and the voltage and the like can be adjusted by the power adjustment unit 27 according to the temperature. The adjusting unit 27 is effective for making the temperature of each heating resistor 2 uniform, particularly when heating a plurality of heating resistors 2 side by side. Therefore, when a plurality of temperature measuring resistors 4 are provided, it is preferable that the temperature in the vicinity thereof is separately measured and the applied voltage or the like is adjusted by each heating resistor 2.

この温度測定の原理を、もう少し詳しくした図9を参照しながら説明する。たとえば直流電源からなる測定用電源21の両端に定電流装置CCR(current controlled regulator)25を温度測定用抵抗体4と直列に接続しておき、温度測定用抵抗体3の両端の電圧Vを測定すれば、温度検出手段23により、その電圧を定電流で割り算することにより、温度測定用抵抗体4のその時点での抵抗値を知ることができ、予め分っている温度測定用抵抗体4の温度係数(材料により定まる)とから温度を算出することができる。その検出温度に応じて、制御手段26から調整部27により発熱抵抗体2の両端に印加する電力を制御することにより、絶縁基板1の温度を所定の温度に維持することができる。この制御手段26による発熱用抵抗体2の温度制御は、前述のように、印加電圧をパルスにして、そのパルスのデューティサイクルを変えてもよいし、電圧そのものを変化させてもよい。図9に示される例では、定電流回路25が設けられたが、それに代えて、温度が変化しない場所に基準抵抗を設けて、その基準抵抗の電圧を測定することにより、電流を求めて、温度測定用抵抗体2の両端の電圧を測定してもよい。また、温度測定用電源21は、直流電源とは限らない。交流でもパルス的に定電流を得ることができる。   The principle of this temperature measurement will be described with reference to FIG. 9 which is a little more detailed. For example, a constant current device CCR (current controlled regulator) 25 is connected in series with the temperature measuring resistor 4 at both ends of a measuring power source 21 composed of a DC power source, and the voltage V across the temperature measuring resistor 3 is measured. Then, by dividing the voltage by the constant current by the temperature detecting means 23, the resistance value of the temperature measuring resistor 4 at that time can be known, and the temperature measuring resistor 4 that is known in advance can be obtained. The temperature can be calculated from the temperature coefficient (determined by the material). According to the detected temperature, the temperature of the insulating substrate 1 can be maintained at a predetermined temperature by controlling the power applied from the control means 26 to the both ends of the heating resistor 2 by the adjusting unit 27. As described above, the temperature control of the heating resistor 2 by the control means 26 may be performed by changing the duty cycle of the pulse by changing the applied voltage to a pulse or the voltage itself. In the example shown in FIG. 9, the constant current circuit 25 is provided. Instead, a reference resistor is provided in a place where the temperature does not change, and the voltage of the reference resistor is measured to obtain the current. The voltage at both ends of the temperature measuring resistor 2 may be measured. Further, the temperature measurement power source 21 is not necessarily a DC power source. A constant current can be obtained in a pulsed manner even with an alternating current.

温度測定用の抵抗体は、前述のように、好ましくはできるだけ温度係数の絶対値(%)が大きい方(正でも負でもよい)が好ましい。また、温度測定のみに用いる場合には、たとえば0.3〜0.5mm幅程度で、絶縁基板1の適当な位置(発熱抵抗体2の近傍)に取り付けることが好ましく、温度測定用抵抗体4自身は発熱しないよう印加電圧が低く抑えられて5V程度の直流電圧の印加が好ましい。これにより、絶縁基板1の裏面、ひいては電子部品の温度を推測することができる。   As described above, the temperature measurement resistor is preferably as large as possible in absolute value (%) of the temperature coefficient (which may be positive or negative). When used only for temperature measurement, for example, it is preferably about 0.3 to 0.5 mm wide and attached to an appropriate position of the insulating substrate 1 (in the vicinity of the heating resistor 2). The temperature measuring resistor 4 It is preferable to apply a DC voltage of about 5V because the applied voltage is kept low so as not to generate heat. Thereby, the temperature of the back surface of the insulating substrate 1 and by extension, the electronic component can be estimated.

本発明によれば、温度測定手段と発熱手段とが設けられているため、また評価したい電子部品に合せて小さいものから大きいものを準備できるので、評価したい電子部品の実装状態での温度を測定することもできるし、その電子部品を特定の温度まで上昇させてその状態での電気特性などへの影響を調べることができる。その結果、スマートフォンのような電子機器が異常発熱したり、環境温度により特性が悪化したりすることを未然に防止することができる設計に寄与し得る。このように、回路基板の温度制御に利用する例としては、回路基板の周囲温度を所定の温度以下になるように冷却手段を設けること、電子部品の温度が規定の温度以下で動作し得る最高の入力状態で動作させること、電子部品の放熱特性の低下の原因を究明すること、などが挙げられる。   According to the present invention, since the temperature measuring means and the heat generating means are provided, and it is possible to prepare from small to large according to the electronic component to be evaluated, so the temperature in the mounted state of the electronic component to be evaluated is measured. It is also possible to increase the temperature of the electronic component to a specific temperature and investigate the influence on the electrical characteristics in that state. As a result, it can contribute to a design that can prevent an electronic device such as a smartphone from abnormally generating heat or deteriorating characteristics due to environmental temperature. As described above, as an example used for temperature control of the circuit board, a cooling means is provided so that the ambient temperature of the circuit board becomes a predetermined temperature or less, and the maximum temperature at which the temperature of the electronic component can operate at a specified temperature or less. For example, to investigate the cause of the deterioration of the heat dissipation characteristics of the electronic component.

1 絶縁基板
2 発熱抵抗体
2a、2b 連結用発熱抵抗体
3 電極
31 発熱抵抗体用リード
4 温度測定用抵抗体
5 測定用端子
5a〜5d 測定用端子
5e 温度測定用リード
51 温度測定用リード
6 カバー基板
7 接続導体
7a、7b 連結用導体
8 接続導体
9 ガラス接着層
10 温度制御ユニット
10a 加熱基板
10b 多重加熱基板
11 熱伝導性弾性部材
12 取付板
13 固定部材
15 回路基板
16 IC
17 接続端子
18 配線
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Heating resistor 2a, 2b Connecting heating resistor 3 Electrode 31 Heating resistor lead 4 Temperature measuring resistor 5 Measuring terminal 5a to 5d Measuring terminal 5e Temperature measuring lead 51 Temperature measuring lead 6 Cover substrate 7 Connection conductor 7a, 7b Connection conductor 8 Connection conductor 9 Glass adhesive layer 10 Temperature control unit 10a Heating substrate 10b Multiple heating substrate 11 Thermally conductive elastic member 12 Mounting plate 13 Fixing member 15 Circuit substrate 16 IC
17 Connection terminal 18 Wiring

Claims (11)

絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備し、前記少なくとも2列の発熱抵抗体、前記一対の電極、前記温度測定用抵抗体、および前記測定端子の組が、少なくとも2組になるように前記絶縁基板の前記一面に並列して形成され、かつ、前記2組の発熱抵抗体の間にも前記温度測定用抵抗体が形成されてなる加熱基板を有する電子部品の温度特性評価用の温度制御ユニット。 An insulating substrate; a belt-like heating resistor formed in parallel in at least two rows on one surface of the insulating substrate for heating the insulating substrate; and a current in a longitudinal direction of the heating resistor formed in the at least two rows. At least one pair of electrodes that can flow, at least one temperature measurement resistor formed on the insulating substrate between the at least two rows of heating resistors, and a predetermined length of the temperature measurement resistor At least a pair of measurement terminals for measuring the electrical resistance between the at least two rows of heating resistors, the pair of electrodes, the temperature measurement resistor, and the measurement terminals. wherein said insulating substrate so as to set formed in parallel on one side, and the electronic component having a heating substrate ing is formed the temperature measuring resistor in between the two pairs of heating resistors For temperature characteristic evaluation Temperature control unit. 絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備する加熱基板を有し、前記加熱基板の前記発熱抵抗体側に前記絶縁基板と同じ材料で形成されたカバー基板が設けられてなる電子部品の温度特性評価用の温度制御ユニット。 An insulating substrate; a belt-like heating resistor formed in parallel in at least two rows on one surface of the insulating substrate for heating the insulating substrate; and a current in a longitudinal direction of the heating resistor formed in the at least two rows. At least one pair of electrodes that can flow, at least one temperature measurement resistor formed on the insulating substrate between the at least two rows of heating resistors, and a predetermined length of the temperature measurement resistor A heating substrate having at least a pair of measurement terminals for measuring an electrical resistance between them, and a cover substrate made of the same material as the insulating substrate is provided on the heating resistor side of the heating substrate. Temperature control unit for evaluating temperature characteristics of electronic components . 絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備する加熱基板を有し、前記加熱基板が2個前記発熱抵抗体の側を向き合せて接合された多重加熱基板を有する電子部品の温度特性評価用の温度制御ユニット。 An insulating substrate; a belt-like heating resistor formed in parallel in at least two rows on one surface of the insulating substrate for heating the insulating substrate; and a current in a longitudinal direction of the heating resistor formed in the at least two rows. At least one pair of electrodes that can flow, at least one temperature measurement resistor formed on the insulating substrate between the at least two rows of heating resistors, and a predetermined length of the temperature measurement resistor a heating substrate and at least a pair of measurement terminals for measuring the electrical resistance between two said heating substrate, electrons having multiple heating substrate bonded side of the heating resistor orientation combined with Temperature control unit for evaluating temperature characteristics of parts . 絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子とを具備する加熱基板を有し、前記少なくとも2列に形成される発熱抵抗体のそれぞれの一端部が、少なくとも一部に形成される発熱抵抗体を介して接続されることにより、U字形状に形成され、前記U字形状のコーナ部の少なくとも一部は導体層で接続されてなる電子部品の温度制御ユニット。 An insulating substrate; a belt-like heating resistor formed in parallel in at least two rows on one surface of the insulating substrate for heating the insulating substrate; and a current in a longitudinal direction of the heating resistor formed in the at least two rows. At least one pair of electrodes that can flow, at least one temperature measurement resistor formed on the insulating substrate between the at least two rows of heating resistors, and a predetermined length of the temperature measurement resistor A heating substrate having at least a pair of measurement terminals for measuring an electrical resistance between them, and each heating element formed in at least two rows has one end formed at least in part. A temperature control unit for an electronic component which is formed in a U shape by being connected through a resistor, and at least a part of the U-shaped corner portion is connected by a conductor layer . 前記加熱基板が2段以上に重ねられた多重加熱基板の上面にカバー基板が設けられてなる請求項1または記載の電子部品の温度制御ユニット。 Temperature control unit of the electronic components of the heating substrate cover substrate is provided on the upper surface of the multi-heated substrates superposed in two or more stages according to claim 1 or 4, wherein. 前記発熱抵抗体の少なくとも2列に形成される発熱抵抗体のそれぞれの一端部が、少なくとも一部に形成される発熱抵抗体を介して接続されることにより、U字形状に形成され、前記U字形状のコーナ部の少なくとも一部は導体層で接続されてなる請求項1〜3および5のいずれか1項に記載の電子部品の温度制御ユニット。 One end of each of the heating resistors formed in at least two rows of the heating resistors is connected via a heating resistor formed in at least a part, thereby forming a U-shape. The temperature control unit for an electronic component according to any one of claims 1 to 3 and 5 , wherein at least a part of the letter-shaped corner portion is connected by a conductor layer . 前記温度制御ユニットの前記カバー基板上に取付板が固定され、温度特性が評価される電子部品に前記加熱基板を押し付け、前記電子部品が取り付けられている基板に固定する請求項2または5に記載の電子部品の温度制御ユニット。 Mounting plate is fixed on the cover substrate of the temperature control unit, pressing the heated substrate to the electronic component temperature characteristics are evaluated, according to claim 2 or 5 is fixed to the substrate on which the electronic component is mounted Electronic component temperature control unit. 絶縁基板と、該絶縁基板の一面に少なくとも2列に並列して形成され、前記絶縁基板を加熱する帯状の発熱抵抗体と、前記少なくとも2列に形成される発熱抵抗体の長手方向に電流を流し得る少なくとも一対の電極と、前記少なくとも2列の発熱抵抗体の間の前記絶縁基板上に形成される少なくとも1個の温度測定用抵抗体と、前記温度測定用抵抗体の所定の長さの間の電気抵抗を測定するための少なくとも一対の測定端子と、前記発熱抵抗体の表面側に形成されるカバー基板を具備する加熱基板を有し、前記カバー基板上に取付板が固定され、温度特性が評価される電子部品に前記加熱基板を押し付け、前記電子部品が取り付けられている基板に固定する電子部品の温度制御ユニット。 An insulating substrate; a belt-like heating resistor formed in parallel in at least two rows on one surface of the insulating substrate for heating the insulating substrate; and a current in a longitudinal direction of the heating resistor formed in the at least two rows. At least one pair of electrodes that can flow, at least one temperature measurement resistor formed on the insulating substrate between the at least two rows of heating resistors, and a predetermined length of the temperature measurement resistor And a heating substrate having a cover substrate formed on the surface side of the heating resistor , a mounting plate is fixed on the cover substrate, and a temperature is measured. An electronic component temperature control unit that presses the heating substrate against an electronic component to be evaluated and fixes the electronic substrate to the substrate on which the electronic component is mounted . 請求項1〜のいずれか1項に記載の温度制御ユニットと、前記温度制御ユニットに形成される温度測定用抵抗体の抵抗変化に基づいて前記温度制御ユニットの絶縁基板の温度を検出する温度検出手段と、前記温度制御ユニットに形成される発熱抵抗体に電流を流して前記絶縁基板の温度を所定の温度に制御する温度制御手段と、前記温度制御ユニットの前記絶縁基板の他面に形成される熱伝導性弾性部材または別途用意される熱伝導性弾性シートとを有し、前記温度制御ユニットの前記絶縁基板の他面側が、前記熱伝導性弾性部材または前記熱伝導性弾性シートを介して回路基板に搭載される電子部品に密着され、前記電子部品の温度を測定し、または特定の電子部品の温度を所定の温度にしたときの前記電子部品の温度特性を評価する回路基板に搭載される電子部品の温度特性評価装置。 The temperature which detects the temperature of the insulating substrate of the said temperature control unit based on the resistance change of the temperature control unit of any one of Claims 1-8 , and the temperature measurement resistor formed in the said temperature control unit Formed on the other surface of the insulating substrate of the temperature control unit, detection means, temperature control means for controlling the temperature of the insulating substrate to a predetermined temperature by passing a current through a heating resistor formed in the temperature control unit A thermally conductive elastic member or a separately prepared thermally conductive elastic sheet, and the other surface side of the insulating substrate of the temperature control unit is interposed via the thermally conductive elastic member or the thermally conductive elastic sheet. The electronic component is closely attached to the electronic component mounted on the circuit board, and the temperature of the electronic component is measured, or the temperature characteristic of the electronic component when the temperature of the specific electronic component is set to a predetermined temperature is evaluated. Equipment for evaluating temperature characteristics of electronic components mounted on road boards. 回路基板に組み込まれている電子部品または該回路基板の温度特性を評価する方法であって、回路基板に搭載される電子部品を動作させ、前記回路基板に搭載されている電子部品または前記回路基板に熱伝導性弾性部材または熱伝導性弾性シートを介して請求項1〜のいずれか1項に記載の温度制御ユニットを押し付け、前記電子部品または前記回路基板の温度を変化させながら、前記電子部品または前記回路基板の温度に対する電気的特性の関係を調べることにより、前記回路基板に搭載される電子部品または前記回路基板の温度制御に利用することを特徴とする電子部品の温度特性評価方法。 An electronic component incorporated in a circuit board or a method for evaluating temperature characteristics of the circuit board, the electronic component mounted on the circuit board being operated, and the electronic component or circuit board mounted on the circuit board The temperature control unit according to any one of claims 1 to 8 is pressed through a heat conductive elastic member or a heat conductive elastic sheet to change the temperature of the electronic component or the circuit board while changing the temperature of the electronic component or the circuit board. A method of evaluating temperature characteristics of an electronic component, which is used for temperature control of an electronic component mounted on the circuit board or the circuit board by examining a relationship of electrical characteristics with respect to the temperature of the component or the circuit board. 前記回路基板の温度制御に利用することは、前記回路基板の周囲温度を所定の温度以下になるように冷却手段を設けること、前記電子部品の温度が規定の温度以下で動作し得る最高の入力状態で動作させること、前記電子部品の放熱特性の低下の原因を究明すること、のいずれか1つである請求項10記載の電子部品の温度特性評価方法。 Utilizing the temperature control of the circuit board includes providing cooling means so that the ambient temperature of the circuit board is lower than a predetermined temperature, and the highest input at which the temperature of the electronic component can operate at a predetermined temperature or lower. The method for evaluating temperature characteristics of an electronic component according to claim 10, wherein the method is any one of operating in a state and investigating a cause of a decrease in heat dissipation characteristics of the electronic component.
JP2015094295A 2015-05-01 2015-05-01 Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor Active JP6280519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094295A JP6280519B2 (en) 2015-05-01 2015-05-01 Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094295A JP6280519B2 (en) 2015-05-01 2015-05-01 Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor

Publications (2)

Publication Number Publication Date
JP2016211921A JP2016211921A (en) 2016-12-15
JP6280519B2 true JP6280519B2 (en) 2018-02-14

Family

ID=57550198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094295A Active JP6280519B2 (en) 2015-05-01 2015-05-01 Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor

Country Status (1)

Country Link
JP (1) JP6280519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755492B (en) * 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 Carbon nanotube-based thermal interface materials and methods of making and using thereof
JP7219276B2 (en) * 2017-11-15 2023-02-07 カプレス・アクティーゼルスカブ Probes and associated proximity detectors for testing electrical properties of test specimens
CN108451053A (en) * 2018-06-15 2018-08-28 东莞市麦斯莫科电子科技有限公司 Heating device and electrical smoking system for heating electronic cigarette
CN114184921A (en) * 2020-08-24 2022-03-15 北京科益虹源光电技术有限公司 Capacitance detection method and device under high pulse voltage and different working temperatures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025084U (en) * 1988-06-22 1990-01-12
JP2001281295A (en) * 2000-03-28 2001-10-10 Ando Electric Co Ltd Ic socket
US7965094B2 (en) * 2008-07-14 2011-06-21 Honeywell International Inc. Packaged die heater
JP5199859B2 (en) * 2008-12-24 2013-05-15 株式会社日本マイクロニクス Probe card
KR101058095B1 (en) * 2009-09-22 2011-08-24 박순명 Performance Measurement System and Method of Semiconductor Devices

Also Published As

Publication number Publication date
JP2016211921A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6280519B2 (en) Electronic component temperature characteristic evaluation apparatus and temperature control unit used therefor
JP6451484B2 (en) Heat flux sensor manufacturing method and heat flow generator used therefor
JP2017525122A (en) Planar heating element having PTC resistance structure
JP2006078478A (en) Film temperature sensor and substrate for temperature measurement
JP2019079036A5 (en)
JP6905549B2 (en) Thermal system
JP2011033479A (en) Temperature sensor
JP2017063778A (en) Temperature control device, nucleic acid amplification device and temperature control method
JP4602181B2 (en) Socket for semiconductor inspection
TWM444590U (en) Thermistor component and circuit board
JP2007024702A5 (en)
JP2011070446A (en) Cooling control circuit for peltier element
KR101337225B1 (en) Apparatus and method for assessing heat dissipation performance by using peltier thermoelectric device
JP2007044737A (en) Soldering iron device
JP5933475B2 (en) Heating head unit and heating head
JP4749688B2 (en) Semiconductor wafer for temperature measurement
JP3195208U (en) Metal resistor
JP2014211408A (en) Capacitor degradation diagnosis device, inverter device, and household electrical appliance
JP2021032806A (en) Heat flow rate measurement sheet and method for measuring heat flow rate
CN110573230B (en) Air filtration monitoring based on thermoelectric devices
KR20210114481A (en) Heater temperature control method, heater and mount
TWI598576B (en) Test equipment and sample evaluation methods
TWM500361U (en) Thermoelectric conversion device
JP2009023002A (en) Soldering iron device
JP2020060464A (en) Infrared sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250