JP6274446B2 - Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device - Google Patents

Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device Download PDF

Info

Publication number
JP6274446B2
JP6274446B2 JP2015024318A JP2015024318A JP6274446B2 JP 6274446 B2 JP6274446 B2 JP 6274446B2 JP 2015024318 A JP2015024318 A JP 2015024318A JP 2015024318 A JP2015024318 A JP 2015024318A JP 6274446 B2 JP6274446 B2 JP 6274446B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizer
crystal display
ips liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015024318A
Other languages
Japanese (ja)
Other versions
JP2016148724A (en
Inventor
敏行 飯田
敏行 飯田
丈治 喜多川
丈治 喜多川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2015024318A priority Critical patent/JP6274446B2/en
Publication of JP2016148724A publication Critical patent/JP2016148724A/en
Application granted granted Critical
Publication of JP6274446B2 publication Critical patent/JP6274446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、インプレーンスイッチング(IPS)モードで動作するIPS液晶パネルに適した、広視野角かつ高偏光度で加湿光学耐久性が良好な偏光板及び位相差フィルムを積層した光学フィルム積層体に関する。また、その光学フィルム積層体を用いたIPS液晶表示装置において広視野角かつ加熱反り(カール)が良好な液晶表示装置に関する。   The present invention relates to an optical film laminate in which a polarizing plate and a retardation film, which are suitable for an IPS liquid crystal panel operating in an in-plane switching (IPS) mode, have a wide viewing angle, a high degree of polarization, and good humidifying optical durability are laminated. . The present invention also relates to a liquid crystal display device having a wide viewing angle and good heat warping (curl) in an IPS liquid crystal display device using the optical film laminate.

IPSモードで動作するIPS液晶表示装置は、非駆動状態において液晶分子が基板面に対して略平行なホモジニアス配向を有するため、光は液晶層を、その偏光面をほとんど変化させること無く通過し、その結果基板の上下に偏光板を配置することにより非駆動状態でほぼ完全な黒色表示が可能である。IPSモードではパネル法線方向においては、ほぼ完全な黒色表示ができるものの、法線方向からズレた方向からパネルを観察する場合、液晶セルの上下に配置する偏光板の光軸方向からズレた方向では偏光板の特性上避けられない光漏れが発生する結果、視野角が狭くなるという問題があった。   In the IPS liquid crystal display device operating in the IPS mode, since the liquid crystal molecules have a homogeneous alignment substantially parallel to the substrate surface in the non-driven state, the light passes through the liquid crystal layer with almost no change in its polarization plane. As a result, by disposing polarizing plates above and below the substrate, almost complete black display is possible in a non-driven state. In the IPS mode, almost complete black display is possible in the panel normal direction, but when observing the panel from the direction shifted from the normal direction, the direction shifted from the optical axis direction of the polarizing plate arranged above and below the liquid crystal cell However, there is a problem that the viewing angle is narrowed as a result of light leakage that is unavoidable due to the characteristics of the polarizing plate.

このような問題を解決するために、例えば、特開3,687,854号公報(特許文献1)では、偏光板の吸収軸と位相差フィルムの遅相軸が直交または平行になるように積層した光学フィルムの屈折率、位相差及び厚さ等のパラメータをIPS液晶表示パネルに適した値に定めている。1つの実施例では、厚さ20μmの偏光子の両面に、厚さ80μmの透明保護フィルムを、接着剤を用いて積層した偏光板と、厚さ45μmの位相差フィルム等が用いられている。   In order to solve such a problem, for example, in Japanese Patent Laid-Open No. 3,687,854 (Patent Document 1), lamination is performed so that the absorption axis of the polarizing plate and the slow axis of the retardation film are orthogonal or parallel to each other. Parameters such as the refractive index, retardation and thickness of the optical film are set to values suitable for the IPS liquid crystal display panel. In one embodiment, a polarizing plate in which a transparent protective film having a thickness of 80 μm is laminated on both surfaces of a polarizer having a thickness of 20 μm using an adhesive, a retardation film having a thickness of 45 μm, and the like are used.

特許4,938,632号公報(特許文献2)には、厚さ10μmから50μmの偏光子が、IPS液晶表示装置に用いられていることが記載されている。また、特許4,804,588号公報(特許文献3)には、IPS液晶表示パネルの視認側の面に粘着剤層を介して位相差フィルムが接合され、該位相差フィルムに厚さ10μm以下の偏光子が接合されることが記載されている。さらに、特許4,757,347号公報(特許文献4)には、位相差フィルムとして20μm以下の光学フィルムが記載されている。   Japanese Patent No. 4,938,632 (Patent Document 2) describes that a polarizer having a thickness of 10 μm to 50 μm is used in an IPS liquid crystal display device. Further, in Japanese Patent No. 4,804,588 (Patent Document 3), a retardation film is bonded to the viewing side surface of the IPS liquid crystal display panel via an adhesive layer, and the thickness of the retardation film is 10 μm or less. Are described as being bonded. Further, Japanese Patent No. 4,757,347 (Patent Document 4) describes an optical film of 20 μm or less as a retardation film.

このような偏光子、位相差フィルム等の光学フィルムが用いられるIPS液晶表示パネルは、液晶テレビや液晶ディスプレイ等の比較的大きな画面に用いられるだけでなく、近年、スマートフォンやタブレットPC等の携帯可能な小型電子機器の画面にも応用されている。近年、それら携帯可能な電子機器の薄型化に伴い、IPS液晶表示パネル(ガラス)も薄く製造されるようになった。   IPS liquid crystal display panels using such optical films such as polarizers and retardation films are not only used for relatively large screens such as liquid crystal televisions and liquid crystal displays, but are also recently portable for smartphones, tablet PCs, etc. It is also applied to the screens of small electronic devices. In recent years, IPS liquid crystal display panels (glass) have been manufactured thinly as the portable electronic devices become thinner.

特許第3,687,854号公報Japanese Patent No. 3,687,854 特許第4,938,632号公報Japanese Patent No. 4,938,632 特許第4,804,588号公報Japanese Patent No. 4,804,588 特許第4,757,347号公報Japanese Patent No. 4,757,347 特許第4,751,481号公報Japanese Patent No. 4,751,481 特許第4,751,486号公報Japanese Patent No. 4,751,486 特許第5,244,848号公報Japanese Patent No. 5,244,848 特許第4,853,920号公報Japanese Patent No. 4,853,920

IPS液晶表示パネルが薄くなったことにより、当該IPS液晶表示パネルに、偏光子、位相差フィルム等の光学フィルムを貼り合わせた構成において、反りが生じるようになった。このような反りは、偏光子や位相差フィルム等の機能に悪影響を与え、IPS液晶表示パネルを偏光子の吸収軸に対して斜め方向(例えば、45度の角度)から見た場合に生じ得るコントラストの低下や表示色が見る角度によって異なる現象(カラーシフト)を改善するという、本来偏光子や位相差フィルムが果たすべき機能が有効に作用しないという問題があった。   Due to the thinning of the IPS liquid crystal display panel, warping occurs in a configuration in which an optical film such as a polarizer or a retardation film is bonded to the IPS liquid crystal display panel. Such warpage adversely affects the functions of the polarizer, retardation film, and the like, and can occur when the IPS liquid crystal display panel is viewed from an oblique direction (for example, an angle of 45 degrees) with respect to the absorption axis of the polarizer. There is a problem that the function that the polarizer and the retardation film should originally perform, such as the reduction in contrast and the phenomenon (color shift) that varies depending on the viewing angle of the display color, does not work effectively.

そこで、本発明は、伸縮しやすい偏光子を薄くし、該偏光子とIPS液晶表示パネルとの間にある位相差フィルムも薄くすることで、従来のものよりも当該偏光子をさらにIPS液晶表示パネルに近づけ、これにより、IPS液晶表示パネルの反りを防止することを目的とする。そして、本発明は、当該目的を達成することに加えて、偏光子や位相差フィルムを薄くしても広視野角かつ高偏光度の性能を有し、加湿光学耐久性が良好な長尺光学フィルム積層体、該長尺光学フィルム積層体がロール状に巻かれた長尺光学フィルム積層体のロール、IPS液晶表示装置を提案する。   Therefore, the present invention reduces the thickness of the polarizer that is easily stretchable and the retardation film between the polarizer and the IPS liquid crystal display panel, thereby further reducing the IPS liquid crystal display to the polarizer. The object is to approach the panel and thereby prevent warping of the IPS liquid crystal display panel. And in addition to achieving the said objective, this invention has the performance of a wide viewing angle and a high degree of polarization even if it makes a polarizer and retardation film thin, and long optical with favorable humidification optical durability A film laminate, a roll of a long optical film laminate in which the long optical film laminate is wound into a roll, and an IPS liquid crystal display device are proposed.

本発明に係るIPS液晶表示装置用の長尺光学フィルム積層体の1つの実施形態として、長尺光学フィルム積層体は、12μm以下の厚みになるように長手方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含む長尺ウェブ状のPVA−ヨウ素系偏光子と、
前記偏光子の一方の面に第1の接着剤層を介して直接貼り合された長尺ウェブ状の位相差フィルムと、
前記位相差フィルムの前記偏光子とは反対側の面に配置された第1の粘着剤層と、
前記第1の粘着剤層の前記位相差フィルムとは反対側の面に貼り合わされた長尺ウェブ状の剥離フィルムと、
前記偏光子の前記位相差フィルムとは反対側の面に第2の接着剤層を介して貼り合わされた保護層と、を含み、
前記偏光子は、前記ポリビニルアルコール系樹脂に対するヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、
前記位相差フィルムは、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸としたとき、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、光弾性係数が5×10-11以上であり、長手方向に直角な幅方向に遅相軸を有し、
前記第1及び第2の接着剤層の各々は、厚みが2μm以下で、弾性率が1×105から3×109Paの範囲内にあり、
前記保護層は、厚みが10から50μmで、偏光子厚みが10μmより厚い場合は、透湿度が1500g/m2以下であり、偏光子厚みが10μm以下では、透湿度が200g/m2以下であることを特徴とする。
As one embodiment of the long optical film laminate for the IPS liquid crystal display device according to the present invention, the long optical film laminate is a polyvinyl alcohol-based resin layer stretched in the longitudinal direction so as to have a thickness of 12 μm or less. And an elongated web-like PVA-iodine polarizer comprising iodine adsorbed in the form of a PVA polyiodine ion complex to the PVA molecular chain oriented in the stretching direction of the polyvinyl alcohol resin layer,
A long web-like retardation film directly bonded to one surface of the polarizer via a first adhesive layer;
A first pressure-sensitive adhesive layer disposed on the surface of the retardation film opposite to the polarizer;
A long web-like release film bonded to the surface of the first pressure-sensitive adhesive layer opposite to the retardation film;
A protective layer bonded to the surface of the polarizer opposite to the retardation film via a second adhesive layer,
The polarizer has a concentration of iodine of 3% by weight or more with respect to the polyvinyl alcohol resin, an orientation of PVA molecules of 0.38 or more, and a polarization degree of 99.8% or more.
The retardation film has a x-axis direction in which the in-plane refractive index is maximum, a y-axis direction in the film plane perpendicular to the x-axis, and a z-axis film thickness direction. The refractive index nx, ny, nz in the y-axis and z-axis directions has a refractive index distribution in which nx>nz> ny, and the thickness d is 20 μm or less, and the in-plane refractive index difference Δnxy Is 5.5 × 10 −3 or more, Re defined as Re = (nx−ny) × d is 100 to 300 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.00. 3 to 0.8, the photoelastic coefficient is 5 × 10 −11 or more, and has a slow axis in the width direction perpendicular to the longitudinal direction,
Each of the first and second adhesive layers has a thickness of 2 μm or less and an elastic modulus in the range of 1 × 10 5 to 3 × 10 9 Pa,
When the thickness of the protective layer is 10 to 50 μm and the polarizer thickness is greater than 10 μm, the moisture permeability is 1500 g / m 2 or less, and when the polarizer thickness is 10 μm or less, the moisture permeability is 200 g / m 2 or less. It is characterized by being.

本発明に係るIPS液晶表示装置用の長尺光学フィルム積層体の好ましい実施形態として、前記偏光子の前記第2の接着剤層側の面と前記剥離フィルムの前記第1の粘着層側の面との間の距離が50μm以下であることを特徴とする。   As a preferred embodiment of the long optical film laminate for the IPS liquid crystal display device according to the present invention, the surface on the second adhesive layer side of the polarizer and the surface on the first adhesive layer side of the release film The distance between and is 50 μm or less.

本発明に係るIPS液晶表示装置用の長尺光学フィルム積層体の好ましい実施形態として、長尺光学フィルム積層体はロール状に巻かれたものとする。   As a preferred embodiment of the long optical film laminate for the IPS liquid crystal display device according to the present invention, the long optical film laminate is wound in a roll shape.

本発明に係るIPS液晶表示装置の1つの実施形態として、IPS液晶表示装置は、IPS液晶表示パネルと、
前記IPS液晶表示パネルの視認側に配置された、偏光子と位相差フィルムとを少なくとも含む視認側光学フィルム積層体と、
前記IPS液晶表示パネルのバックライト側に配置された、偏光子と輝度向上フィルムとを少なくとも含むバックライト側光学フィルム積層体と、を備え、
前記視認側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含む長尺ウェブ状のPVAヨウ素系偏光子とを含み、
前記視認側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、
前記位相差フィルムは、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸としたとき、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、光弾性率が5×10-11以上であり、遅相軸が前記偏光子の吸収軸に実質的に直交する関係で、厚み2μm以下で、弾性率が1×105から3×109Paの接着剤層を介して直接、前記視認側光学フィルム積層体の前記偏光子に接合され、
前記位相差フィルムは、粘着剤層を介して前記IPS液晶表示パネルの視認側表面に接合されており、前記IPS液晶表示パネルの視認側表面において、前記IPS液晶表示パネルの視認側表面から前記偏光子の第2の接着剤層側表面までの距離が50μm以下であり、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含むPVA−ヨウ素系偏光子とを含み、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、一方の面が厚み2μm以下で、弾性率が1×105から3×109Paの範囲内にある第3の接着剤層を介して保護層に接合され、
前記保護層は、第2の粘着剤層を介して前記IPS液晶表示パネルのバックライト側表面に接合されており、前記IPS液晶表示パネルのバックライト側において、前記IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離が50μm以下であり、
前記IPS液晶表示パネルの視認側表面から前記偏光子の保護層側表面までの距離と、前記IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離の差が10μm以下であることを特徴とする。
As one embodiment of the IPS liquid crystal display device according to the present invention, an IPS liquid crystal display device includes an IPS liquid crystal display panel,
A viewing-side optical film laminate including at least a polarizer and a retardation film, disposed on the viewing side of the IPS liquid crystal display panel;
A backlight side optical film laminate including at least a polarizer and a brightness enhancement film, disposed on the backlight side of the IPS liquid crystal display panel,
The polarizer contained in the viewing-side optical film laminate has a polyvinyl alcohol resin layer stretched in a uniaxial direction so that the thickness is 12 μm or less, and PVA oriented in the stretch direction of the polyvinyl alcohol resin layer. A long web-like PVA iodine-based polarizer containing iodine adsorbed on the molecular chain in the form of a PVA polyiodine ion complex;
The polarizer contained in the viewing-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more.
The retardation film has a x-axis direction in which the in-plane refractive index is maximum, a y-axis direction in the film plane perpendicular to the x-axis, and a z-axis film thickness direction. The refractive index nx, ny, nz in the y-axis and z-axis directions has a refractive index distribution in which nx>nz> ny, and the thickness d is 20 μm or less, and the in-plane refractive index difference Δnxy Is 5.5 × 10 −3 or more, Re defined as Re = (nx−ny) × d is 100 to 300 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.00. 3 to 0.8, the photoelastic modulus is 5 × 10 −11 or more, the slow axis is substantially perpendicular to the absorption axis of the polarizer, the thickness is 2 μm or less, and the elastic modulus is 1 × 10 5. To 3 × 10 9 Pa directly through the adhesive layer of the viewing-side optical film laminate Bonded to the polarizer,
The retardation film is bonded to the viewing-side surface of the IPS liquid crystal display panel via an adhesive layer, and the polarizing film is formed on the viewing-side surface of the IPS liquid crystal display panel from the viewing-side surface of the IPS liquid crystal display panel. The distance to the second adhesive layer side surface of the child is 50 μm or less,
The polarizer included in the backlight-side optical film laminate was oriented in the stretching direction of the polyvinyl alcohol-based resin layer stretched in a uniaxial direction so that the thickness was 12 μm or less, and the polyvinyl alcohol-based resin layer. A PVA-iodine-based polarizer comprising iodine adsorbed on the PVA molecular chain in the form of a PVA polyiodine ion complex,
The polarizer included in the backlight-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more. The surface is bonded to the protective layer through a third adhesive layer having a thickness of 2 μm or less and an elastic modulus in the range of 1 × 10 5 to 3 × 10 9 Pa,
The protective layer is bonded to the backlight side surface of the IPS liquid crystal display panel via a second pressure-sensitive adhesive layer, and on the backlight side of the IPS liquid crystal display panel, the backlight side of the IPS liquid crystal display panel The distance from the surface to the backlight side surface of the polarizer is 50 μm or less,
The difference between the distance from the viewing side surface of the IPS liquid crystal display panel to the protective layer side surface of the polarizer and the distance from the backlight side surface of the IPS liquid crystal display panel to the backlight side surface of the polarizer is 10 μm or less. It is characterized by being.

本発明に係るIPS液晶表示装置の好ましい実施形態として、前記視認側光学フィルム積層体に含まれる前記偏光子には、前記位相差フィルムとは反対側の面に、接着剤層を介して保護フィルムが接合されたことを特徴とする。また、前記バックライト側光学フィルム積層体に含まれる前記偏光子には、両面、あるいはどちらか片面に保護層を備えていることを特徴とする。   As a preferred embodiment of the IPS liquid crystal display device according to the present invention, the polarizer contained in the viewing-side optical film laminate has a protective film on the surface opposite to the retardation film via an adhesive layer. Is characterized by being joined. Further, the polarizer included in the backlight-side optical film laminate is provided with a protective layer on both sides or one side.

本発明に係るIPS液晶表示装置の好ましい実施形態として、前記接着剤層は、厚み2μm以下で弾性率が1×105から3×109であることを特徴とする。 As a preferred embodiment of the IPS liquid crystal display device according to the present invention, the adhesive layer has a thickness of 2 μm or less and an elastic modulus of 1 × 10 5 to 3 × 10 9 .

本発明に係るIPS液晶表示装置の別の実施形態として、前記視認側光学フィルム積層体と同じ構成をバックライト側に、バックライト側光学フィルム積層体として備え、その他の構成を上述した実施形態と同様とする。   As another embodiment of the IPS liquid crystal display device according to the present invention, the same configuration as the viewing-side optical film laminate is provided on the backlight side as the backlight-side optical film laminate, and the other configurations described above are the embodiments described above. The same shall apply.

本発明は、偏光子の厚みを薄くすると共に、該偏光子とIPS液晶表示パネルとの間にある位相差フィルムの厚みも薄くしたIPS液晶表示装置用の長尺光学フィルム積層体により、偏光子をIPS液晶表示パネルに近づけることができ、光学フィルム積層体を貼りつけたIPS液晶表示パネルの反りを防ぐことができる。   The present invention provides a polarizer with a long optical film laminate for an IPS liquid crystal display device in which the thickness of the polarizer is reduced and the thickness of the retardation film between the polarizer and the IPS liquid crystal display panel is also reduced. Can be brought close to the IPS liquid crystal display panel, and warping of the IPS liquid crystal display panel to which the optical film laminate is attached can be prevented.

また、本発明に係る長尺光学フィルム積層体、長尺光学フィルム積層体がロール状に巻かれた長尺光学フィルム積層体のロール、又は、IPS液晶表示装置は、偏光子及び位相差フィルムの厚みを薄くするだけでなく、偏光子のPVA分子の配向性、偏光度及び位相差フィルムの屈折率、光弾性率、保護フィルムの透湿度等のパラメータを、複数の実施例の比較結果に基づいて、IPS液晶表示装置に適した値に設定したことにより、偏光子や位相差フィルムを薄くしても広視野角かつ高偏光度の性能を有し、加湿光学耐久性が良好となった。   Moreover, the long optical film laminate according to the present invention, the roll of the long optical film laminate in which the long optical film laminate is wound in a roll shape, or the IPS liquid crystal display device includes a polarizer and a retardation film. In addition to reducing the thickness, parameters such as the orientation of the PVA molecules in the polarizer, the degree of polarization, the refractive index of the retardation film, the photoelastic modulus, and the moisture permeability of the protective film are based on the comparison results of a plurality of examples. By setting the value suitable for the IPS liquid crystal display device, even when the polarizer and the retardation film were thinned, the performance of a wide viewing angle and a high degree of polarization was obtained, and the humidifying optical durability was good.

本発明の一実施形態に係るIPS液晶表示装置用の長尺光学フィルム積層体の構成を示す断面図である。It is sectional drawing which shows the structure of the elongate optical film laminated body for IPS liquid crystal display devices which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光学フィルム積層体を視認側に備えるIPS液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the IPS liquid crystal display device provided with the optical film laminated body which concerns on one Embodiment of this invention in the visual recognition side. 本発明の別の実施形態に係る光学フィルム積層体を視認側に備えるIPS液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the IPS liquid crystal display device provided with the optical film laminated body which concerns on another embodiment of this invention in the visual recognition side. 本発明の一実施形態に係る光学フィルム積層体をバックライト側に備えるIPS液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the IPS liquid crystal display device provided with the optical film laminated body which concerns on one Embodiment of this invention in the backlight side. 本発明の別の実施形態に係る光学フィルム積層体をバックライト側に備えるIPS液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the IPS liquid crystal display device provided with the optical film laminated body which concerns on another embodiment of this invention in the backlight side.

図1は、本発明の一実施形態に係るIPS液晶表示装置用の長尺光学フィルム積層体の構成を示す。光学フィルム積層体100は、位相差フィルム101の一方の面(図1では上方の面)に、接着剤層102、偏光子103、接着剤層104、保護フィルム105が積層され、位相差フィルム101の他方の面(図1では下方の面)に粘着剤層106と剥離フィルム107を備える。位相差フィルム101と偏光子103は、接着剤層102を介して直接貼り合わされる。光学フィルム積層体100を粘着剤層106によってIPS液晶パネル等の対象物に貼り合わせる際に、剥離フィルム107は粘着剤層106から剥がされる。   FIG. 1 shows a configuration of a long optical film laminate for an IPS liquid crystal display device according to an embodiment of the present invention. In the optical film laminate 100, an adhesive layer 102, a polarizer 103, an adhesive layer 104, and a protective film 105 are laminated on one surface of the retardation film 101 (upper surface in FIG. 1). Is provided with an adhesive layer 106 and a release film 107 on the other surface (the lower surface in FIG. 1). The retardation film 101 and the polarizer 103 are directly bonded together via the adhesive layer 102. When the optical film laminate 100 is bonded to an object such as an IPS liquid crystal panel by the pressure-sensitive adhesive layer 106, the release film 107 is peeled off from the pressure-sensitive adhesive layer 106.

(位相差フィルム)
位相差フィルムは、例えば、特許4,757,347号公報(特許文献4)に記載される製造方法に基づいて製造することができる。当該位相差フィルムを製造する方法は、収縮性フィルム上に、Δnxz=nx’−nz’で表される厚み方向の複屈折率(Δnxz)が0.0007以上の非液晶性材料を含む複屈折層形成材料を直接塗布して塗膜を形成する塗膜形成工程と、前記収縮性フィルムの収縮により、前記塗膜の屈折率分布がnx>nz>nyとなるように前記塗膜を収縮させることにより、複屈折層を形成する複屈折層形成工程とを含む。ただし、それぞれの変数は下記のとおりである。
nx’:前記非液晶性材料を固化層としたときの層の面内で屈折率が最大となる方向(遅相軸方向)の屈折率
nz’:前記nx’の方向および前記固化層の面内で前記nx’の方向と直交する方向(進相軸方向)の各方向に対し直交する前記固化層の厚み方向の屈折率
nx:前記複屈折層の面内で屈折率が最大となる方向(遅相軸方向)の屈折率
ny:前記複屈折層の面内で前記nxの方向と直交する方向(進相軸方向)の屈折率
nz:前記nxおよび前記nyの各方向に対し直交する前記複屈折層の厚み方向の屈折率
(Retardation film)
A retardation film can be manufactured based on the manufacturing method described in patent 4,757,347 (patent document 4), for example. The method for producing the retardation film includes a birefringence including a non-liquid crystalline material having a birefringence (Δnxz) in the thickness direction represented by Δnxz = nx′−nz ′ of 0.0007 or more on a shrinkable film. The coating film is contracted so that the refractive index distribution of the coating film becomes nx>nz> ny by the coating film forming process in which the layer forming material is directly applied to form the coating film and the shrinkage of the shrinkable film. And a birefringent layer forming step of forming a birefringent layer. However, each variable is as follows.
nx ′: refractive index nz ′ in the direction (slow axis direction) in which the refractive index is maximum in the plane of the layer when the non-liquid crystalline material is used as a solidified layer: the direction of nx ′ and the plane of the solidified layer The refractive index nx in the thickness direction of the solidified layer orthogonal to each direction of the direction (fast axis direction) orthogonal to the direction of nx ′ in the direction in which the refractive index is maximum in the plane of the birefringent layer Refractive index ny in the slow axis direction: Refractive index nz in the direction (fast axis direction) orthogonal to the nx direction in the plane of the birefringent layer: orthogonal to the nx and ny directions Refractive index in the thickness direction of the birefringent layer

上記定義に従って、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸とした場合に、図1に示す本発明の一実施形態における位相差フィルム101は、下記実施例(表1参照)の結果を考慮して、例えば、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、好ましくは130から300nm、特に好ましくは250から290nmである。Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、より好ましくは0.35から0.75、特に好ましくは0.4から0.6である。光弾性係数が5×10-11以上、より好ましくは1×10-10以上であり、長手方向に直角な幅方向に遅相軸を有するように構成できる。 In accordance with the above definition, when the film in-plane refractive index is the maximum in the x-axis, the in-plane direction perpendicular to the x-axis is the y-axis, and the film thickness direction is the z-axis, the book shown in FIG. Retardation film 101 in one embodiment of the invention takes into account the results of the following examples (see Table 1), for example, the refractive indexes nx, ny, and nz in the x-axis, y-axis, and z-axis directions are nx>. The film is formed as a single-layer film having a refractive index distribution satisfying nz> ny and having a thickness d of 20 μm or less, and the in-plane refractive index difference Δnxy is 5.5 × 10 −3 or more, Re = (nx−ny) Re defined as xd is 100 to 300 nm, preferably 130 to 300 nm, particularly preferably 250 to 290 nm. Nz defined as Nz = (nx−nz) / (nx−ny) is 0.3 to 0.8, more preferably 0.35 to 0.75, and particularly preferably 0.4 to 0.6. . The photoelastic coefficient is 5 × 10 −11 or more, more preferably 1 × 10 −10 or more, and it can be configured to have a slow axis in the width direction perpendicular to the longitudinal direction.

(偏光子)
偏光子は、一般的に、二色性物質を染色工程により含浸及び吸着させたポリビニルアルコール(PVA)系樹脂フィルムを一軸又は二軸延伸して、含浸された二色性物質を配向させることにより作成される。近年では、二色性物質としてヨウ素を用いることが通常である。染色工程においては、PVA系樹脂フィルムをヨウ素水溶液に浸漬することとなるが、ヨウ素分子(I2)のみでは、水に溶解しないため、ヨウ化カリウム(KI)とともにヨウ素を水に溶かして、ヨウ素・ヨウ化カリウム水溶液を作成する。ヨウ素・ヨウ化カリウム水溶液には、カリウムイオン(K+)及びヨウ素イオン(I-)に加え、ヨウ素イオンとヨウ素分子が結合したポリヨウ素イオン(I3-やI5-)が存在する。染色工程では、ヨウ素イオン及びポリヨウ素イオンが、PVA系樹脂フィルム内に浸透し、PVA系樹脂の分子に吸着される。そして、その後の延伸工程において、PVA系樹脂フィルムが延伸され、分子が配向するときに、ポリヨウ素イオンも延伸方向に配向する。配向したポリヨウ素イオンは、入射光の偏光方向の、ポリヨウ素イオンの配向方向に対する角度により、入射光の透過率が異なるため、染色、延伸されたPVA樹脂は、偏光子として機能する。
(Polarizer)
In general, a polarizer is formed by uniaxially or biaxially stretching a polyvinyl alcohol (PVA) resin film impregnated and adsorbed with a dichroic substance by a dyeing process and orienting the impregnated dichroic substance. Created. In recent years, it is common to use iodine as a dichroic substance. In the dyeing process, the PVA resin film is immersed in an iodine aqueous solution. However, since only iodine molecules (I2) do not dissolve in water, iodine is dissolved in water together with potassium iodide (KI). An aqueous potassium iodide solution is prepared. In the iodine / potassium iodide aqueous solution, in addition to potassium ions (K +) and iodine ions (I−), polyiodine ions (I3− and I5−) in which iodine ions and iodine molecules are combined exist. In the dyeing step, iodine ions and polyiodine ions penetrate into the PVA resin film and are adsorbed by the PVA resin molecules. In the subsequent stretching step, when the PVA resin film is stretched and the molecules are oriented, the polyiodine ions are also oriented in the stretching direction. Since oriented polyiodine ions have different transmittances of incident light depending on the angle of the polarization direction of incident light with respect to the orientation direction of polyiodine ions, the dyed and stretched PVA resin functions as a polarizer.

このように、偏光子は、少なくともPVA系樹脂とポリヨウ素イオンを含む。ポリヨウ素イオンは、PVA系樹脂分子との相互作用により、偏光子中でPVA‐ヨウ素錯体(PVA・I3-やPVA・I5-)を形成した状態で存在する。この錯体状態を形成することにより、可視光の波長範囲に於いて吸収二色性を示す。ヨウ素イオン(I-)は、230nm付近に吸光ピークをもつ。また、PVAと錯体状態にある三ヨウ化物イオン(PVA・I3-)は、470nm付近に吸光ピークをもつ。PVAと錯体状態にある五ヨウ化物イオン(PVA・I5-)の吸光ピークは、600nm付近に存在する。PVA−ヨウ素錯体の態様に応じて、吸収する光の波長が変わるため、ポリヨウ素イオンの吸光ピークは、幅広いものとなる。PVA−ヨウ素錯体は、可視光を吸光する。一方で、ヨウ素イオンは、230nm付近にピークが存在することから、可視光を吸収しない。従って、PVAと錯体状態となったポリヨウ素イオンが、偏光子の液晶表示装置等の表示装置に関する偏光子の性能に影響する。図1に示す本発明の一実施形態における偏光子103は、下記実施例(表1参照)の結果を考慮して、例えば、前記ポリビニルアルコール系樹脂に対するヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上となるように構成することができる。   Thus, the polarizer includes at least a PVA-based resin and polyiodine ions. The polyiodine ion exists in a state where a PVA-iodine complex (PVA • I 3− or PVA • I 5−) is formed in the polarizer by interaction with the PVA resin molecule. By forming this complex state, absorption dichroism is exhibited in the wavelength range of visible light. Iodine ion (I-) has an absorption peak near 230 nm. Further, triiodide ion (PVA · I 3−) in a complex state with PVA has an absorption peak near 470 nm. An absorption peak of pentaiodide ion (PVA · I5−) in a complex state with PVA exists in the vicinity of 600 nm. Depending on the mode of the PVA-iodine complex, the wavelength of light to be absorbed changes, so that the absorption peak of polyiodine ions is wide. The PVA-iodine complex absorbs visible light. On the other hand, iodine ions do not absorb visible light because they have a peak near 230 nm. Therefore, the polyiodine ion complexed with PVA affects the performance of the polarizer relating to a display device such as a liquid crystal display device of the polarizer. In consideration of the results of the following examples (see Table 1), the polarizer 103 in one embodiment of the present invention shown in FIG. 1 has, for example, a concentration of iodine of 3% by weight or more relative to the polyvinyl alcohol-based resin. The orientation can be 0.38 or more and the degree of polarization can be 99.8% or more.

図1に示す本発明の一実施形態においては、偏光子103の厚みは12μm以下、好ましくは5μm以下である。例えば、厚さ12μmの偏光子は、原反フィルム厚みが30μmのポリビニルアルコールを用いて、上述した作成方法に従って作成することができる。このように、偏光子を薄くすることにより、周囲の環境の変化により偏光子に生じる伸縮力を小さくすることができる。偏光子が比較的厚い場合には、偏光子に生じる伸縮力が大きくなるため、偏光子の伸縮を抑制するのに十分な程度の厚みをもった保護層又は位相差層を貼り合わせることが必要になる。一方で、偏光子を薄くして偏光子に発生する伸縮力を小さくすることにより、偏光子と貼り合わされる保護層又は位相差層の厚みを薄くすることができ、光学積層体全体の厚みを薄くすることができる。また、偏光子の厚みが薄く周囲の環境の変化により偏光子に発生する伸縮力が小さくなることにより、これに貼り合わされる部材との間で発生する応力が小さくなり貼り合わされた部材に発生する光学的な歪も抑制される効果がある。   In one embodiment of the present invention shown in FIG. 1, the polarizer 103 has a thickness of 12 μm or less, preferably 5 μm or less. For example, a polarizer having a thickness of 12 μm can be produced according to the production method described above using polyvinyl alcohol having a thickness of the original film of 30 μm. Thus, by making the polarizer thin, the stretching force generated in the polarizer due to changes in the surrounding environment can be reduced. When the polarizer is relatively thick, the stretching force generated in the polarizer increases, so it is necessary to attach a protective layer or retardation layer with a thickness sufficient to suppress the stretching of the polarizer. become. On the other hand, the thickness of the protective layer or retardation layer bonded to the polarizer can be reduced by reducing the stretching force generated in the polarizer by thinning the polarizer, and the thickness of the entire optical laminate can be reduced. Can be thinned. In addition, since the thickness of the polarizer is thin and the expansion and contraction force generated in the polarizer is reduced due to the change in the surrounding environment, the stress generated between the polarizer and the member to be bonded to the member is reduced, which occurs in the bonded member. The optical distortion is also suppressed.

偏光子103は、好ましくは、波長380nm〜780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは40.5%以上、さらに好ましくは41.0%以上、特に好ましくは41.5%以上である。偏光子の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。このように薄型で高い偏光性能を示す偏光子を製造することは、容易ではない。しかし、本出願人による上述の特許文献5〜7に記載された方法のいずれかを採用することにより、望む特性の薄型偏光子を製造することができる。   The polarizer 103 preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is preferably 40.0% or more, more preferably 40.5% or more, further preferably 41.0% or more, and particularly preferably 41.5% or more. The polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more. Thus, it is not easy to manufacture a thin polarizer that exhibits high polarization performance. However, by adopting any of the methods described in Patent Documents 5 to 7 described above by the present applicant, a thin polarizer having desired characteristics can be manufactured.

(保護フィルム)
保護フィルムは、任意の適切な樹脂フィルムを採用することができる。本発明において使用するのに適した保護フィルムの形成材料としては、例えば、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂、セルロースエステル系樹脂等が挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂およびメタクリル系樹脂の少なくとも一方の樹脂をいう。
(Protective film)
Any appropriate resin film can be adopted as the protective film. Examples of the material for forming a protective film suitable for use in the present invention include cycloolefin resins such as norbornene resins, olefin resins such as polyethylene and polypropylene, polyester resins, (meth) acrylic resins, and cellulose. Examples include ester resins. The “(meth) acrylic resin” means at least one of an acrylic resin and a methacrylic resin.

図1に示す本発明の一実施形態においては、保護フィルム105の厚みは、10μm〜50μm、好ましくは15μm〜45μmである。保護フィルムには、液晶表示装置の視認側に配置される場合、適宜アンチグレア層又は反射防止層、キズ防止のためのハードコート処理などの表面処理層を設けることができる。また、特に限定するものではないが、インセル型の静電容量型タッチパネルでは、ディスプレイ近傍の低周波ノイズによるディスプレイ動作の妨害を阻止するために、電磁遮蔽且つ帯電防止の機能を有する透明導電膜を保護フィルムに付与する必要となる。さらに、保護フィルム自体がλ/4板となる場合は、偏光サングラスでの視認性低下の対策となっている。   In one embodiment of the present invention shown in FIG. 1, the thickness of the protective film 105 is 10 μm to 50 μm, preferably 15 μm to 45 μm. When the protective film is disposed on the viewing side of the liquid crystal display device, a surface treatment layer such as an antiglare layer or an antireflection layer and a hard coat treatment for preventing scratches can be appropriately provided. In addition, although not particularly limited, in-cell capacitive touch panels include a transparent conductive film having an electromagnetic shielding and antistatic function in order to prevent interference with display operations due to low-frequency noise near the display. It is necessary to apply to the protective film. Further, when the protective film itself is a λ / 4 plate, it is a measure for reducing visibility in polarized sunglasses.

保護フィルム105の透過湿度は、偏光子の厚みが10μm以下の場合、200g/m2以下、好ましくは170g/m2以下、より好ましくは130g/m2以下、特に好ましくは90g/m2以下である。偏光子は、厚みが薄くなると、耐湿性が低下する、という問題がある。保護層の透湿度を上記のように小さくすることにより、湿度による偏光子の劣化を抑制することができ、偏光子の厚みを薄くすることが可能になる。偏光子厚みが10μmより厚い場合は、透湿度が1500g/m2以下であれば、湿度による偏光子の劣化は抑制することが可能である。偏光子を薄くできることにより、前述したように偏光子と貼合せる保護層又は位相差層の厚みも薄くすることができるので、結果として、光学積層体全体の厚みを薄くすることが可能になる。 When the thickness of the polarizer is 10 μm or less, the transmission humidity of the protective film 105 is 200 g / m 2 or less, preferably 170 g / m 2 or less, more preferably 130 g / m 2 or less, and particularly preferably 90 g / m 2 or less. is there. The polarizer has a problem that the moisture resistance decreases as the thickness decreases. By reducing the moisture permeability of the protective layer as described above, it is possible to suppress the deterioration of the polarizer due to the humidity and to reduce the thickness of the polarizer. When the thickness of the polarizer is larger than 10 μm, the deterioration of the polarizer due to the humidity can be suppressed if the moisture permeability is 1500 g / m 2 or less. By reducing the thickness of the polarizer, the thickness of the protective layer or retardation layer to be bonded to the polarizer can be reduced as described above, and as a result, the thickness of the entire optical laminate can be reduced.

図2は、発明の一実施形態に係る光学フィルム積層体を視認側に備えるIPS液晶表示装置の構成を示す。IPS液晶表示装置200は、インセルタッチパネル型の液晶セル(T/P)201の一方の面(図2では上方の面)に、粘着剤層202、下塗り層203、位相差フィルム204、下塗り層205、接着剤層206、偏光子207、接着剤層208、保護フィルム209、表面処理(導電)層210、層間充填層211、ガラス212が積層される。一方、液晶セル(T/P)201の他方の面(図2では下方の面)に、粘着剤層213、保護フィルム214、接着剤層215、偏光子216、接着剤層217、保護フィルム218、粘着剤層219、輝度向上フィルム220が積層される。IPS液晶表示装置200は、さらに、輝度向上フィルム220から間隔を空けて、拡散板221と、拡散板221に接合されたバックライト222を含む。バックライト222は、拡散板221において、輝度向上フィルム220とは反対側の面に接合される。   FIG. 2 shows a configuration of an IPS liquid crystal display device including an optical film laminate according to an embodiment of the invention on the viewing side. The IPS liquid crystal display device 200 includes an adhesive layer 202, an undercoat layer 203, a retardation film 204, and an undercoat layer 205 on one surface (an upper surface in FIG. 2) of an in-cell touch panel type liquid crystal cell (T / P) 201. The adhesive layer 206, the polarizer 207, the adhesive layer 208, the protective film 209, the surface treatment (conductive) layer 210, the interlayer filling layer 211, and the glass 212 are laminated. On the other hand, the pressure-sensitive adhesive layer 213, the protective film 214, the adhesive layer 215, the polarizer 216, the adhesive layer 217, and the protective film 218 are formed on the other surface (the lower surface in FIG. 2) of the liquid crystal cell (T / P) 201. The adhesive layer 219 and the brightness enhancement film 220 are laminated. The IPS liquid crystal display device 200 further includes a diffusion plate 221 and a backlight 222 joined to the diffusion plate 221 at a distance from the brightness enhancement film 220. The backlight 222 is bonded to the surface of the diffusion plate 221 opposite to the brightness enhancement film 220.

粘着剤層202、位相差フィルム204、接着剤層206、偏光子207、接着剤層208、保護フィルム209は、図1に示される光学フィルム積層体100の粘着剤層106、位相差フィルム101、接着剤層102、偏光子103、接着剤層104、保護フィルム105に相当するものである。下塗り層203,205は、位相差フィルム204と粘着剤層202及び接着剤層206との接着が強ければ省略することもできる。   The pressure-sensitive adhesive layer 202, the retardation film 204, the adhesive layer 206, the polarizer 207, the adhesive layer 208, and the protective film 209 are the pressure-sensitive adhesive layer 106, the phase difference film 101, and the optical film laminate 100 shown in FIG. 1. This corresponds to the adhesive layer 102, the polarizer 103, the adhesive layer 104, and the protective film 105. The undercoat layers 203 and 205 can be omitted if the retardation film 204, the adhesive layer 202, and the adhesive layer 206 are strongly bonded.

液晶セル(T/P)201は、IPS方式の液晶セルであり、電界無印加の状態で、液晶分子が面内一方向に一様に配向したホモジニアス配向となる。この構成のIPS方式の液晶セルを備えたIPS液晶表示装置においては、一対の偏光子が、その吸収軸を互いに直交させた状態で、液晶セルの両側に配置される。   The liquid crystal cell (T / P) 201 is an IPS liquid crystal cell, and has a homogeneous alignment in which liquid crystal molecules are uniformly aligned in one in-plane direction when no electric field is applied. In the IPS liquid crystal display device including the IPS liquid crystal cell having this configuration, a pair of polarizers are arranged on both sides of the liquid crystal cell with their absorption axes orthogonal to each other.

電界無印加の状態では、一方の偏光子の吸収軸が液晶分子の配向方向に平行になるように、該偏光子が液晶セルに対して配置される。通常は、この電界無印加の状態が「黒表示」に該当する。液晶セルに電界を印加して、液晶分子を面内で水平方向に回転させることにより、位相差を発現させ該一方の偏光子を通った光が、他方の偏光子を透過できるようにして、「白状態」を実現する。「白状態」は、液晶分子が一対の偏光子の吸収軸の交差角の中間角度、すなわち45°の方向に向く、最大の透過率となる状態で実現される。実際には、液晶分子を理想的な方位である45°まで回転させることは難しく、実質的に45°に近い方位角度が「白状態」とされる。バックライト光源側の偏光子が電界無印加状態での液晶分子の配向方向に平行に配列されるIPS液晶表示装置は、「Oモード」と呼ばれ、逆に、視認側の偏光子が電解無印加状態での液晶分子の配向方向に平行に配列されるIPS液晶表示装置は、「Eモード」と呼ばれる。   When no electric field is applied, the polarizer is arranged with respect to the liquid crystal cell so that the absorption axis of one polarizer is parallel to the alignment direction of the liquid crystal molecules. Normally, this state where no electric field is applied corresponds to “black display”. By applying an electric field to the liquid crystal cell and rotating the liquid crystal molecules in the horizontal direction in the plane, the phase difference is developed and the light passing through the one polarizer can pass through the other polarizer, "White state" is realized. The “white state” is realized in a state where the liquid crystal molecules have the maximum transmittance toward the intermediate angle between the crossing angles of the absorption axes of the pair of polarizers, that is, in the direction of 45 °. Actually, it is difficult to rotate the liquid crystal molecules to the ideal orientation of 45 °, and an orientation angle substantially close to 45 ° is regarded as a “white state”. The IPS liquid crystal display device in which the polarizer on the backlight source side is arranged in parallel with the alignment direction of the liquid crystal molecules in the state where no electric field is applied is called “O mode”. An IPS liquid crystal display device arranged in parallel with the alignment direction of liquid crystal molecules in an applied state is called an “E mode”.

(輝度向上フィルム)
輝度向上フィルムは、液晶表示装置等のバックライトや裏面側からの反射等により自然光が入射すると所定偏光軸の直線偏光又は所定方向の円偏光を反射し、他の光は透過する特性を示すものである。輝度向上フィルムを積層させた偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光を透過させずに反射させる。この輝度向上フィルム面で反射した光を更にその後ろ側に設けた反射層等を介して反転させて輝度向上フィルムに再入射させることで、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収されにくい偏光を供給して、液晶画像表示等に利用しうる光量の増大を図ることにより輝度を向上させ得るものである。
(Brightness enhancement film)
The brightness enhancement film reflects the linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction and transmits other light when natural light is incident on the backlight of a liquid crystal display device or the like by reflection from the back side. It is. The polarizing plate on which the brightness enhancement film is laminated allows light from a light source such as a backlight to enter to obtain transmitted light in a predetermined polarization state, and reflects the light other than the predetermined polarization state without transmitting it. By reversing the light reflected by the brightness enhancement film surface through a reflective layer or the like provided behind the brightness enhancement film and re-entering the brightness enhancement film, part or all of the light is transmitted as light having a predetermined polarization state. Thus, the luminance can be improved by increasing the amount of light transmitted through the brightness enhancement film and supplying the polarized light that is not easily absorbed by the polarizer to increase the amount of light that can be used for liquid crystal image display and the like.

図3は、本発明の別の実施形態に係る光学フィルム積層体を視認側に備えるIPS液晶表示装置の構成を示す。IPS液晶表示装置300は、図2に示したIPS液晶表示装置200の液晶セル(T/P)201と異なり、液晶パネルとしてインセルタッチパネル型ではない液晶セル301を採用し、層間充填層311の表面処理層310とは反対側の面に、タッチパネル323を備える。IPS液晶表示装置300のその他の構成については、図2に示されるIPS液晶表示装置200のものと同様である。   FIG. 3 shows a configuration of an IPS liquid crystal display device including an optical film laminate according to another embodiment of the present invention on the viewing side. Unlike the liquid crystal cell (T / P) 201 of the IPS liquid crystal display device 200 shown in FIG. 2, the IPS liquid crystal display device 300 employs a liquid crystal cell 301 that is not an in-cell touch panel type as a liquid crystal panel, and the surface of the interlayer filling layer 311 A touch panel 323 is provided on the surface opposite to the treatment layer 310. The other configuration of the IPS liquid crystal display device 300 is the same as that of the IPS liquid crystal display device 200 shown in FIG.

図4は、本発明の一実施形態に係る光学フィルム積層体をバックライト側に備えるIPS液晶表示装置の構成を示す。IPS液晶表示装置400は、図2に示したIPS液晶表示装置200とは異なり、バックライト側に位相差フィルム412を備えたものである。
IPS液晶表示装置400は、インセルタッチパネル型の液晶セル(T/P)401の一方の面(図4では上方の面)に、粘着剤層402、コート層あるいは保護層403、偏光子404、接着剤層405、保護フィルム206、表面処理(導電)層407、層間充填層408、ガラス409が積層される。一方、液晶セル(T/P)401の他方の面(図4では下方の面)に、粘着剤層410、下塗り層411、位相差フィルム412、下塗り層413、接着剤層414、偏光子415、接着剤層416、保護フィルム417、粘着剤層418、輝度向上フィルム419が積層される。下塗り層411,413においても、位相差フィルム412と粘着剤層410及び接着剤層414との接着が強ければ省略することもできる。IPS液晶表示装置400は、さらに、輝度向上フィルム419から間隔を空けて、拡散板420と、拡散板420に接合されたバックライト421を含む。バックライト421は、拡散板420において、輝度向上フィルム419とは反対側の面に接合される。
FIG. 4 shows a configuration of an IPS liquid crystal display device including the optical film laminate according to one embodiment of the present invention on the backlight side. Unlike the IPS liquid crystal display device 200 shown in FIG. 2, the IPS liquid crystal display device 400 includes a retardation film 412 on the backlight side.
The IPS liquid crystal display device 400 includes an adhesive layer 402, a coat layer or a protective layer 403, a polarizer 404, an adhesive on one surface (an upper surface in FIG. 4) of an in-cell touch panel type liquid crystal cell (T / P) 401. The agent layer 405, the protective film 206, the surface treatment (conductive) layer 407, the interlayer filling layer 408, and the glass 409 are laminated. On the other hand, the pressure-sensitive adhesive layer 410, the undercoat layer 411, the retardation film 412, the undercoat layer 413, the adhesive layer 414, and the polarizer 415 are formed on the other surface (the lower surface in FIG. 4) of the liquid crystal cell (T / P) 401. The adhesive layer 416, the protective film 417, the pressure-sensitive adhesive layer 418, and the brightness enhancement film 419 are laminated. The undercoat layers 411 and 413 can also be omitted if the retardation film 412 and the adhesive layer 410 and the adhesive layer 414 are strongly bonded. The IPS liquid crystal display device 400 further includes a diffusion plate 420 and a backlight 421 bonded to the diffusion plate 420 with a space from the brightness enhancement film 419. The backlight 421 is bonded to the surface of the diffusion plate 420 opposite to the brightness enhancement film 419.

一般的に、偏光子の片側のみに透明保護フィルムを設けた薄型の粘着型偏光板では、耐久性が悪く、過酷な環境下におかれると偏光子の延伸方向にクラックが生じやすいが、コート層あるいは保護層403は、耐クラック性を向上させるために、偏光子404に接合することができる。IPS液晶表示装置400のその他の構成については、図2に示されるIPS液晶表示装置200のものと同様である。   In general, a thin adhesive polarizing plate with a transparent protective film only on one side of the polarizer has poor durability and is prone to cracks in the stretching direction of the polarizer when placed in a harsh environment. The layer or protective layer 403 can be bonded to the polarizer 404 in order to improve crack resistance. The other configuration of the IPS liquid crystal display device 400 is the same as that of the IPS liquid crystal display device 200 shown in FIG.

図5は、本発明の別の実施形態に係る光学フィルム積層体をバックライト側に備えるIPS液晶表示装置の構成を示す。IPS液晶表示装置500は、図4に示したIPS液晶表示装置400の液晶セル(T/P)401と異なり、液晶パネルとしてインセルタッチパネル型ではない液晶セル501を採用し、層間充填層508の表面処理層507とは反対側の面に、タッチパネル522を備える。IPS液晶表示装置500のその他の構成については、図4に示されるIPS液晶表示装置400のものと同様である。   FIG. 5 shows a configuration of an IPS liquid crystal display device including an optical film laminate according to another embodiment of the present invention on the backlight side. Unlike the liquid crystal cell (T / P) 401 of the IPS liquid crystal display device 400 shown in FIG. 4, the IPS liquid crystal display device 500 employs a liquid crystal cell 501 that is not an in-cell touch panel type as the liquid crystal panel, and the surface of the interlayer filling layer 508 A touch panel 522 is provided on the surface opposite to the treatment layer 507. The other configuration of the IPS liquid crystal display device 500 is the same as that of the IPS liquid crystal display device 400 shown in FIG.

以下に本発明の実施例1から7についての説明を記載する。また、比較参考のため、比較例1から3についても説明を記載する。また、実施例及び比較例をまとめた表を表1として示す。表1の縦の上段の列の項目は、液晶セルの上面及び下面に積層したものを表す。例えば、表1の縦の上段の列に示される、「保護層」、「第2接着剤層」、「視認側偏光子」、「第1の接着剤層」、「位相差フィルム」、「第1の粘着剤層」、「第2の粘着剤層」、「保護層」、「第3の接着剤層」、「バックライト側偏光子」は、それぞれ、図2に示す本発明の一実施形態では、「保護フィルム209」、「接着剤層208」、「偏光子207」、「接着剤層206」、「位相差フィルム204」、「粘着剤層202」、「粘着剤層213」、「保護フィルム214」、「接着剤層215」、「偏光子216」に対応する。   The description about Examples 1 to 7 of the present invention will be described below. In addition, for comparative reference, description is also given for Comparative Examples 1 to 3. Table 1 summarizes the examples and comparative examples. The items in the upper upper column in Table 1 represent those stacked on the upper and lower surfaces of the liquid crystal cell. For example, the “protective layer”, “second adhesive layer”, “viewing-side polarizer”, “first adhesive layer”, “retardation film”, “ The “first pressure-sensitive adhesive layer”, “second pressure-sensitive adhesive layer”, “protective layer”, “third adhesive layer”, and “backlight-side polarizer” are each a part of the present invention shown in FIG. In the embodiment, “protective film 209”, “adhesive layer 208”, “polarizer 207”, “adhesive layer 206”, “retardation film 204”, “adhesive layer 202”, “adhesive layer 213”. , “Protective film 214”, “adhesive layer 215”, and “polarizer 216”.

(位相差フィルム1の製造例)
攪拌装置を備えた反応容器中、2,2−ビス(4−ヒドロキシフェニル)-4−メチルペンタン2.70kg、テトラブチルアンモニウムクロライド0.06kgを1M水酸化ナトリウム溶液25Lに溶解させた。この溶液に、テレフタル酸クロライド1.22kgとイソフタル酸クロライド0.81kgを30Lのトルエンに溶解させた溶液を攪拌しながら加え、室温で90分間攪拌した。その後、重合溶液を静置分離してポリマーを含んだトルエン溶液を分離し、ついで酢酸水で洗浄し、イオン交換水で洗浄した後、メタノールに投入してポリマーを析出させた。析出したポリマーを濾過し、減圧下で乾燥することで、白色のポリマー3.41kg(収率92%)を得た。
(Production example of retardation film 1)
In a reaction vessel equipped with a stirrer, 2.70 kg of 2,2-bis (4-hydroxyphenyl) -4-methylpentane and 0.06 kg of tetrabutylammonium chloride were dissolved in 25 L of 1M sodium hydroxide solution. A solution prepared by dissolving 1.22 kg of terephthalic acid chloride and 0.81 kg of isophthalic acid chloride in 30 L of toluene was added to this solution while stirring, and the mixture was stirred at room temperature for 90 minutes. Thereafter, the polymerization solution was allowed to stand to separate the toluene solution containing the polymer, then washed with acetic acid water, washed with ion-exchanged water, and then poured into methanol to precipitate the polymer. The precipitated polymer was filtered and dried under reduced pressure to obtain 3.41 kg of white polymer (yield 92%).

得られたポリマーをトルエンに溶解させ、ニ軸延伸ポリプロピレン上に塗布し、80℃で5分乾燥させた後に、110℃で5分間乾燥させ、塗布膜が15μmである積層フィルムを作製した。得られた積層フィルムを同時二軸延伸機を用いて、搬送させながら、145℃で幅方向に1.2倍延伸し、かつ、MDに0.75倍になるよう収縮させることでロール状の位相差フィルム1を得た。得られた位相差フィルム1は厚み15.0μmで、Re=275nm、Rth=138nm、Nz係数=0.5であった。   The obtained polymer was dissolved in toluene, applied onto biaxially stretched polypropylene, dried at 80 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes to produce a laminated film having a coating film of 15 μm. While transporting the obtained laminated film using a simultaneous biaxial stretching machine, the film is stretched 1.2 times in the width direction at 145 ° C. and contracted to 0.75 times in MD to form a roll. A retardation film 1 was obtained. The obtained retardation film 1 had a thickness of 15.0 μm, Re = 275 nm, Rth = 138 nm, and Nz coefficient = 0.5.

(位相差フィルム2の製造例)
上記、得られたポリマーをトルエンに溶解させ、ニ軸延伸ポリプロピレン上に塗布し、80℃で5分乾燥させた後に、110℃で5分間乾燥させ、塗布膜が15μmである積層フィルムを作製した。得られた積層フィルムを同時二軸延伸機を用いて、搬送させながら、145℃で幅方向に1.25倍延伸し、かつ、MDに0.80倍になるよう収縮させることでロール状の位相差フィルム2を得た。得られた位相差フィルム2は厚み15.0μmで、Re=275nm、Rth=206nm、Nz係数=0.75であった。

Figure 0006274446
(Production example of retardation film 2)
The polymer obtained above was dissolved in toluene, applied onto biaxially stretched polypropylene, dried at 80 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes to produce a laminated film having a coating film of 15 μm. . While transporting the obtained laminated film using a simultaneous biaxial stretching machine, the film is stretched 1.25 times in the width direction at 145 ° C. and contracted to 0.80 times in MD to form a roll. A retardation film 2 was obtained. The obtained retardation film 2 had a thickness of 15.0 μm, Re = 275 nm, Rth = 206 nm, and Nz coefficient = 0.75.
Figure 0006274446

(位相差フィルム3の製造例)
上記、得られたポリマーをトルエンに溶解させ、ニ軸延伸ポリプロピレン上に塗布し、80℃で5分乾燥させた後に、110℃で5分間乾燥させ、塗布膜が15μmである積層フィルムを作製した。得られた積層フィルムを、同時二軸延伸機を用いて、搬送させながら、145℃で幅方向に1.15倍延伸し、かつ、MDに0.7倍になるよう収縮させることでロール状の位相差フィルム3を得た。得られた複屈折性フィルムは厚み15.0μmで、Re=275nm、Rth=96nm、Nz係数=0.35であった。
(Production example of retardation film 3)
The polymer obtained above was dissolved in toluene, applied onto biaxially stretched polypropylene, dried at 80 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes to produce a laminated film having a coating film of 15 μm. . While transporting the obtained laminated film using a simultaneous biaxial stretching machine, the film is stretched 1.15 times in the width direction at 145 ° C. and contracted to 0.7 times in MD to form a roll. Of retardation film 3 was obtained. The obtained birefringent film had a thickness of 15.0 μm, Re = 275 nm, Rth = 96 nm, and Nz coefficient = 0.35.

(位相差フィルム4の製造例)
上記、得られたポリマーをトルエンに溶解させ、ニ軸延伸ポリプロピレン上に塗布し、80℃で5分乾燥させた後に、110℃で5分間乾燥させ、塗布膜が20μmである積層フィルムを作製した。得られた積層フィルムを同時二軸延伸機を用いて、搬送させながら、145℃で幅方向に1.18倍延伸し、かつ、MDに0.78倍になるよう収縮させることでロール状の位相差フィルム4を得た。得られた位相差フィルム4は厚み20.0μmで、Re=275nm、Rth=138nm、Nz係数=0.50であった。
(Production example of retardation film 4)
The obtained polymer was dissolved in toluene, applied onto biaxially stretched polypropylene, dried at 80 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes to produce a laminated film having a coating film of 20 μm. . While transporting the obtained laminated film using a simultaneous biaxial stretching machine, the film is stretched 1.18 times in the width direction at 145 ° C. and contracted to 0.78 times in MD to form a roll. A retardation film 4 was obtained. The obtained retardation film 4 had a thickness of 20.0 μm, Re = 275 nm, Rth = 138 nm, and Nz coefficient = 0.50.

(位相差フィルム5の製造例)
上記、得られたポリマーをトルエンに溶解させ、ニ軸延伸ポリプロピレン上に塗布し、80℃で5分乾燥させた後に、110℃で5分間乾燥させ、塗布膜が10μmである積層フィルムを作製した。得られた積層フィルムを同時二軸延伸機を用いて、搬送させながら、145℃で幅方向に1.22倍延伸し、かつ、MDに0.73倍になるよう収縮させることでロール状の位相差フィルム5を得た。得られた位相差フィルム5は厚み10μmで、Re=275nm、Rth=138nm、Nz係数=0.50であった。
(Production example of retardation film 5)
The obtained polymer was dissolved in toluene, applied onto biaxially stretched polypropylene, dried at 80 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes to produce a laminated film having a coating film of 10 μm. . While transporting the obtained laminated film using a simultaneous biaxial stretching machine, the film is stretched 1.22 times in the width direction at 145 ° C. and contracted to 0.73 times in MD to form a roll. A retardation film 5 was obtained. The obtained retardation film 5 had a thickness of 10 μm, Re = 275 nm, Rth = 138 nm, and Nz coefficient = 0.50.

(偏光子の製造例)
A−PET(アモルファス‐ポリエチレンテレフタレート)フィルム、(三菱樹脂(株)製 商品名:ノバクリア SH046 200μm)を基材として用意し、表面にコロナ処理(58W/m2/min)を施した。一方、アセトアセチル変性PVA(日本合成化学工業(株)製 商品名:ゴーセファイマー Z200(重合度1200、ケン化度99.0%以上、アセトアセチル変性度4.6%))を1wt%添加したPVA(重合度4200、ケン化度99.2%)を用意して、乾燥後の膜厚が12μmになるように塗布し、60℃の雰囲気下において熱風乾燥により10分間乾燥して、基材上にPVA系樹脂の層を設けた積層体を作製した。
(Production example of polarizer)
An A-PET (amorphous-polyethylene terephthalate) film (trade name: Novaclear SH046 200 μm, manufactured by Mitsubishi Plastics, Inc.) was prepared as a base material, and the surface was subjected to corona treatment (58 W / m 2 / min). On the other hand, 1 wt% of acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsephimer Z200 (degree of polymerization 1200, degree of saponification 99.0% or more, degree of acetoacetyl modification 4.6%)) Prepared PVA (polymerization degree 4200, saponification degree 99.2%) was applied so that the film thickness after drying was 12 μm, dried in hot air at 60 ° C. for 10 minutes, A laminate in which a PVA resin layer was provided on the material was produced.

次いで、この積層体を、まず空気中130℃でMD方向を2.0倍に延伸して、延伸積層体を生成した。次に、延伸積層体を液温30℃のホウ酸不溶化水溶液に30秒間浸漬することによって、延伸積層体に含まれるPVA分子が配向されたPVA層を不溶化する工程を行った。この工程における不溶化用ホウ酸水溶液は、ホウ酸含有量を、水100重量部に対して3重量部含むものとした。不溶化工程を経たこの延伸積層体を染色することによって、着色積層体を生成した。この着色積層体は、延伸積層体を染色液に、浸漬することによって、延伸積層体に含まれるPVA層にヨウ素を吸着させたものである。染色液は、ヨウ素及びヨウ化カリウムを含んでおり、染色液の液温は30℃とし、水を溶媒として、ヨウ素濃度を0.08〜0.25重量%の範囲内とし、ヨウ化カリウム濃度を0.56〜1.75重量%の範囲内とした。ヨウ素とヨウ化カリウムの濃度の比は、1対7とした。染色条件として、偏光子を構成するPVA系樹脂層の単体透過率が40.9%になるように、ヨウ素濃度及び浸漬時間を設定した。   Next, the laminate was first stretched 2.0 times in the MD direction at 130 ° C. in air to produce a stretched laminate. Next, a step of insolubilizing the PVA layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insolubilized aqueous solution having a liquid temperature of 30 ° C. for 30 seconds. The boric acid aqueous solution for insolubilization in this step contains 3 parts by weight of boric acid content with respect to 100 parts by weight of water. A colored laminate was produced by dyeing the stretched laminate after the insolubilization step. In this colored laminate, iodine is adsorbed on the PVA layer contained in the stretched laminate by immersing the stretched laminate in a dyeing solution. The staining solution contains iodine and potassium iodide, the temperature of the staining solution is 30 ° C., water is the solvent, the iodine concentration is in the range of 0.08 to 0.25% by weight, and the potassium iodide concentration Was in the range of 0.56 to 1.75% by weight. The ratio of iodine to potassium iodide concentration was 1: 7. As dyeing conditions, the iodine concentration and the immersion time were set so that the single transmittance of the PVA resin layer constituting the polarizer was 40.9%.

次に、着色積層体を30℃の架橋用ホウ酸水溶液に60秒間浸漬することによって、ヨウ素を吸着させたPVA層のPVA分子同士に架橋処理を施す工程を行った。この架橋工程に使用する架橋用ホウ酸水溶液は、ホウ酸含有量を、水100重量部に対して3重量部とし、ヨウ化カリウム含有量を、水100重量部に対して3重量部としたものである。さらに、得られた着色積層体を、ホウ酸水溶液中において、延伸温度70℃で、先の空気中での延伸と同様の方向に2.7倍に延伸することにより、最終的な延伸倍率が5.4倍となる延伸を行って、供試用偏光子を含む光学フィルム積層体を得た。この延伸工程において使用されるホウ酸水溶液は、ホウ酸含有量を水100重量部に対して4.0重量部とし、ヨウ化カリウム含有量を水100重量部に対して5重量部としたものである。得られた光学フィルム積層体をホウ酸水溶液から取り出し、PVA層の表面に付着したホウ酸を、ヨウ化カリウム含有量が水100重量部に対して4重量部含む水溶液で洗浄した。洗浄された光学フィルム積層体を60℃の温風による乾燥工程によって乾燥し、PETフィルムに積層された厚みが5μmの偏光子を得た。   Next, the colored laminate was immersed in an aqueous boric acid solution for crosslinking at 30 ° C. for 60 seconds to perform a step of crosslinking the PVA molecules of the PVA layer on which iodine was adsorbed. The boric acid aqueous solution for crosslinking used in this crosslinking step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 3 parts by weight with respect to 100 parts by weight of water. Is. Further, the obtained colored laminate is stretched 2.7 times in a boric acid aqueous solution at a stretching temperature of 70 ° C. in the same direction as the previous stretching in air, whereby the final stretching ratio is increased. The film was stretched by 5.4 times to obtain an optical film laminate including the test polarizer. The boric acid aqueous solution used in this stretching step has a boric acid content of 4.0 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 5 parts by weight with respect to 100 parts by weight of water. It is. The obtained optical film laminate was taken out from the boric acid aqueous solution, and the boric acid adhering to the surface of the PVA layer was washed with an aqueous solution containing 4 parts by weight of potassium iodide with respect to 100 parts by weight of water. The washed optical film laminate was dried by a drying process using hot air at 60 ° C. to obtain a polarizer having a thickness of 5 μm laminated on the PET film.

(第1の位相差板付偏光板の製造)
上述の偏光子製造例により作製した、PETフィルムに積層された厚みが5μmの偏光子に対し、PETとは反対側の面に、UV硬化型接着剤を介して、上述の方法により作成された位相差フィルム1をロールtoロールで貼り合せた。さらに、この積層体からPETフィルムを剥離した後、UV硬化型接着剤を介して、アクリル系保護フィルムを貼り合せ位相差板付偏光板を作製した。
(Production of first polarizing plate with retardation plate)
For the polarizer having a thickness of 5 μm laminated on the PET film prepared by the above-described polarizer production example, the polarizer was prepared by the above-described method via a UV curable adhesive on the surface opposite to the PET. The retardation film 1 was bonded by a roll to roll. Furthermore, after peeling the PET film from this laminate, an acrylic protective film was bonded via a UV curable adhesive to produce a polarizing plate with a retardation plate.

(第2の位相差板付偏光板の製造)
上述の偏光子製造例により作製した、PETフィルムに積層された厚みが5μmの偏光子に対し、PETとは反対側の面に、UV硬化型接着剤を介して、上述の方法により作成された位相差フィルム1をロールtoロールで貼り合せた。さらに、この積層体からPETフィルムを剥離した後、アクリル系粘着剤を用いて、輝度向上フィルムを貼り合せ、位相差板付偏光板を作製した。
(Production of second polarizing plate with retardation plate)
For the polarizer having a thickness of 5 μm laminated on the PET film prepared by the above-described polarizer production example, the polarizer was prepared by the above-described method via a UV curable adhesive on the surface opposite to the PET. The retardation film 1 was bonded by a roll to roll. Furthermore, after peeling a PET film from this laminate, a brightness enhancement film was bonded using an acrylic adhesive to produce a polarizing plate with a retardation plate.

(第1の偏光板の製造)
上述の偏光子製造例により作製した、PETフィルムに積層された厚みが5μmの偏光子に対し、PETとは反対側の面に、UV硬化型接着剤を介して、アクリル系保護フィルムをロールtoロールで貼り合せた。さらに、この積層体からPETフィルムを剥離した後、アクリル系粘着剤を用いて、輝度向上フィルムを貼り合せ、偏光板を作製した。
(Production of first polarizing plate)
For the polarizer having a thickness of 5 μm laminated on the PET film produced by the above-described polarizer production example, an acrylic protective film is rolled on the surface opposite to the PET via a UV curable adhesive. Bonded with a roll. Furthermore, after peeling the PET film from this laminate, a brightness enhancement film was bonded using an acrylic pressure-sensitive adhesive to produce a polarizing plate.

(第2の偏光板の製造)
上述の偏光子製造例により作製した、PETフィルムに積層された厚みが5μmの偏光子に対し、PETとは反対側の面に、UV硬化型接着剤を介して、アクリル系保護フィルムをロールtoロールで貼り合せた。さらに、この積層体からPETフィルムを剥離した後、UV硬化型接着剤を介して、アクリル系保護フィルムを貼り合せ、偏光板を作製した。
(Production of second polarizing plate)
For the polarizer having a thickness of 5 μm laminated on the PET film produced by the above-described polarizer production example, an acrylic protective film is rolled on the surface opposite to the PET via a UV curable adhesive. Bonded with a roll. Furthermore, after peeling the PET film from this laminate, an acrylic protective film was bonded through a UV curable adhesive to produce a polarizing plate.

(実施例1)
IPS方式の液晶セルを備えるスマートフォン(米国アップル社製iPhone5)から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板を取り除いて、該液晶セルの両側のガラス面を洗浄した。続いて、上記液晶セルの視認側の表面に、上述の方法で作製した第1の位相差板付偏光板を、偏光子の吸収軸が該液晶セルの初期配向方向に対して直交するように、アクリル系粘着剤(厚み20μm)を介して積層した。次いで、上記液晶セルの光源側の表面に、上記の方法で作製した第1の偏光板を、偏光子の吸収軸方向と、該液晶セルの初期配向方向とが平行となるように、アクリル系粘着剤(厚み20μm)を介して積層し、液晶パネルを得た。
(Example 1)
A liquid crystal panel was taken out from a smartphone (iPhon 5 manufactured by Apple Inc., USA) equipped with an IPS liquid crystal cell, the polarizing plates arranged above and below the liquid crystal cell were removed, and the glass surfaces on both sides of the liquid crystal cell were washed. Subsequently, on the surface on the viewing side of the liquid crystal cell, the first retardation plate-attached polarizing plate produced by the above-described method, so that the absorption axis of the polarizer is orthogonal to the initial alignment direction of the liquid crystal cell. It laminated | stacked through the acrylic adhesive (thickness 20 micrometers). Next, on the surface of the liquid crystal cell on the light source side, the first polarizing plate produced by the method described above is acrylic so that the absorption axis direction of the polarizer and the initial alignment direction of the liquid crystal cell are parallel to each other. It laminated | stacked through the adhesive (thickness 20 micrometers), and obtained the liquid crystal panel.

(加熱反り試験)
偏光板が積層された液晶パネルを85℃、24時間加熱した後のパネルの反りを目視で確認を行った。反りが発生していないものを〇、液晶パネルが反っているものを×をした。
(Heating warpage test)
The curvature of the panel after heating the liquid crystal panel on which the polarizing plate was laminated at 85 ° C. for 24 hours was visually confirmed. A mark indicates that no warpage occurred, and a mark indicates that the liquid crystal panel was warped.

(加熱輝度ムラ試験)
85℃で48時間加熱処理した後の影響パネルとバックライト上の置き、輝度ムラについて確認を行った。ムラが発生していないものを〇とし、ムラが発生しているものを×とした。
(Heating brightness unevenness test)
After the heat treatment at 85 ° C. for 48 hours, the panel was placed on the influence panel and the backlight, and the brightness unevenness was confirmed. A sample in which no unevenness occurred was marked with ◯, and a sample with unevenness was marked with x.

(実施例2〜5)
実施例1と同様に位相差フィルム1の代わりに位相差フィルム2−5を用いることで偏光板が積層された液晶パネルを作製した。同様に加熱による反り、輝度ムラについて確認を行った。
(Examples 2 to 5)
In the same manner as in Example 1, a retardation film 2-5 was used instead of the retardation film 1 to produce a liquid crystal panel on which polarizing plates were laminated. Similarly, warping due to heating and luminance unevenness were confirmed.

(実施例6)
平均重合度2400、ケン化度99.9モル%の厚み30μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=0.5/8)の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、トータルの延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、偏光子を得た。得られた12μmの偏光子の片側にハードコート処理されたTAC25μmを、もう一方の面に位相差フィルム1を、水系の接着剤を用いて貼り合せた。実施例1と同様に視認側に上記作製した偏光板を貼り合せることで液晶パネルを得た。得られた液晶パネルについて加熱による反り、輝度ムラについて確認を行った。
Example 6
A polyvinyl alcohol film having an average polymerization degree of 2400 and a saponification degree of 99.9 mol% and a thickness of 30 μm was immersed in warm water at 30 ° C. for 60 seconds to swell. Next, the film was dyed while being immersed in an aqueous solution of 0.3% concentration of iodine / potassium iodide (weight ratio = 0.5 / 8) and stretched to 3.5 times. Then, it extended | stretched so that the total draw ratio might be 6 times in 65 degreeC borate ester aqueous solution. After extending | stretching, it dried for 3 minutes in 40 degreeC oven, and obtained the polarizer. TAC 25 μm hard-coated on one side of the obtained 12 μm polarizer and the retardation film 1 on the other side were bonded using a water-based adhesive. The liquid crystal panel was obtained by bonding the produced said polarizing plate on the visual recognition side similarly to Example 1. FIG. About the obtained liquid crystal panel, the curvature by heating and the brightness nonuniformity were confirmed.

(実施例7)
実施例1と同様に、上記液晶セルの視認側の表面に、上述の方法で作製した第2の偏光板を、偏光子の吸収軸が該液晶セルの初期配向方向に対して平行となるように、アクリル系粘着剤(厚み20μm)を介して積層した。次いで、上記液晶セルの光源側の表面に、上記の方法で作製した第2の位相差板付偏光板を、偏光子の吸収軸方向と、該液晶セルの初期配向方向とが直交となるように、アクリル系粘着剤(厚み20μm)を介して積層し、液晶パネルを得た。得られた液晶パネルについて加熱による反り、輝度ムラについて確認を行った。
(Example 7)
As in Example 1, the second polarizing plate produced by the above-described method is provided on the surface on the viewing side of the liquid crystal cell so that the absorption axis of the polarizer is parallel to the initial alignment direction of the liquid crystal cell. And an acrylic pressure-sensitive adhesive (thickness: 20 μm). Next, on the surface on the light source side of the liquid crystal cell, the second polarizing plate with a retardation plate prepared by the above method is set so that the absorption axis direction of the polarizer and the initial alignment direction of the liquid crystal cell are orthogonal to each other. Then, an acrylic pressure-sensitive adhesive (thickness 20 μm) was laminated to obtain a liquid crystal panel. About the obtained liquid crystal panel, the curvature by heating and the brightness nonuniformity were confirmed.

(比較例1)
厚み100μmのノルボルネン系樹脂フィルム(日本ゼオン(株)製商品名「ゼオノアZF14−100」)の両側に、二軸延伸ポリプロピレンフィルム〔東レ製商品名「トレファン」(厚み60μm)〕を、アクリル系粘着剤層(厚み15μm)を介して貼り合せた。その後、ロール延伸機でフィルムの長手方向を保持して、146℃の空気循環式恒温オーブン内で1.38倍に延伸して位相差フィルム6を作製した。得られた位相差フィルム6は厚み100μmで、Re=270nm、Rth=135nm、Nz係数=0.50であった。
(Comparative Example 1)
A biaxially stretched polypropylene film (trade name “Treffan” (thickness 60 μm) manufactured by Toray Industries, Inc.) on both sides of a 100 μm-thick norbornene resin film (trade name “ZEONOR ZF14-100” manufactured by Nippon Zeon Co., Ltd.) It bonded together through the adhesive layer (thickness 15 micrometers). Thereafter, the longitudinal direction of the film was held with a roll stretching machine, and the film was stretched 1.38 times in an air circulation type thermostatic oven at 146 ° C. to prepare a retardation film 6. The obtained retardation film 6 had a thickness of 100 μm, Re = 270 nm, Rth = 135 nm, and Nz coefficient = 0.50.

得られた位相差フィルム6の遅相軸と偏光板の吸収軸が直交となるようにアクリル系粘着剤で用いては貼り合せた。
実施例1と同様に視認側に上記作製した偏光板を貼り合せることで液晶パネルを得た。得られた液晶パネルについて加熱による反り、輝度ムラについて確認を行った。
The obtained retardation film 6 was laminated with an acrylic pressure-sensitive adhesive so that the slow axis of the retardation film 6 and the absorption axis of the polarizing plate were orthogonal to each other.
The liquid crystal panel was obtained by bonding the produced said polarizing plate on the visual recognition side similarly to Example 1. FIG. About the obtained liquid crystal panel, the curvature by heating and the brightness nonuniformity were confirmed.

(比較例2)
カーボネート前駆物質としてホスゲン、芳香族2価フェノール成分として2,2−ビス(4−ヒドロキシフェニル)プロパンおよび1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンを用いて、常法に従い重量比が4:6であって、重量平均分子量(Mw)60,000であるポリカーボネート系樹脂〔数平均分子量(Mn)=33,000、Mw/Mn=1.78〕を得た。上記ポリカーボネート系樹脂70重量部と、重量平均分子量(Mw)1,300のスチレン系樹脂〔数平均分子量(Mn)=716、Mw/Mn=1.78〕(三洋化成製ハイマーSB75)30重量部とをジクロロメタン300重量部に加え、室温下で4時間攪拌混合して透明な溶液を得た。この溶液をガラス板上にキャストし、室温で15分間放置した後、ガラス板から剥離して、80℃のオーブンで10分、120℃で20分乾燥して、厚み55μm、ガラス転移温度(Tg)が140℃の高分子フィルムを得た。
(Comparative Example 2)
Using phosgene as the carbonate precursor, 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane as the aromatic dihydric phenol component, According to a conventional method, a polycarbonate resin (number average molecular weight (Mn) = 33,000, Mw / Mn = 1.78) having a weight ratio of 4: 6 and a weight average molecular weight (Mw) of 60,000 was obtained. . 70 parts by weight of the above polycarbonate resin and 30 parts by weight of a styrene resin having a weight average molecular weight (Mw) of 1,300 [number average molecular weight (Mn) = 716, Mw / Mn = 1.78] (Sanyo Kasei Himer SB75) Was added to 300 parts by weight of dichloromethane and stirred and mixed at room temperature for 4 hours to obtain a transparent solution. This solution was cast on a glass plate, allowed to stand at room temperature for 15 minutes, then peeled off from the glass plate, dried in an oven at 80 ° C. for 10 minutes, and then at 120 ° C. for 20 minutes, and had a thickness of 55 μm and a glass transition temperature (Tg ) Obtained a polymer film of 140 ° C.

上記高分子フィルム(厚み55μm)の両側に、二軸延伸ポリプロピレンフィルム〔東レ製 商品名「トレファン」(厚み60μm)〕を、アクリル系粘着剤層(厚み15μm)を介して貼り合せた。その後、ロール延伸機でフィルムの長手方向を保持して、147℃の空気循環式恒温オーブン内で1.27倍に延伸して位相差フィルム8を作製した。得られた位相差フィルム7は厚み55μmで、Re=270nm、Rth=135nm、Nz係数=0.50であった。   A biaxially stretched polypropylene film [trade name “Trephan” (thickness: 60 μm) manufactured by Toray] was bonded to both sides of the polymer film (thickness: 55 μm) via an acrylic pressure-sensitive adhesive layer (thickness: 15 μm). Thereafter, the longitudinal direction of the film was held with a roll stretching machine, and the film was stretched 1.27 times in an air circulation type thermostatic oven at 147 ° C. to prepare a retardation film 8. The obtained retardation film 7 had a thickness of 55 μm, Re = 270 nm, Rth = 135 nm, and Nz coefficient = 0.50.

得られた位相差フィルム7の遅相軸と偏光板の吸収軸が直交となるようにアクリル系粘着剤で用いては貼り合せた。実施例1と同様に視認側に上記作製した偏光板を貼り合せることで液晶パネルを得た。得られた液晶パネルについて加熱による反り、輝度ムラについて確認を行った。   The obtained retardation film 7 was laminated using an acrylic pressure-sensitive adhesive so that the slow axis of the retardation film 7 and the absorption axis of the polarizing plate were orthogonal to each other. The liquid crystal panel was obtained by bonding the produced said polarizing plate on the visual recognition side similarly to Example 1. FIG. About the obtained liquid crystal panel, the curvature by heating and the brightness nonuniformity were confirmed.

(比較例3)
厚みが16μmの偏光子の片側にハードコート処理されたTAC25μmを、もう一方の面に位相差フィルム1を、水系の接着剤を用いて貼り合せた。実施例1と同様に視認側に上記作製した偏光板を貼り合せることで液晶パネルを得た。得られた液晶パネルについて加熱による反り、輝度ムラについて確認を行った。
(Comparative Example 3)
A TAC of 25 μm that was hard-coated on one side of a polarizer having a thickness of 16 μm, and the retardation film 1 were bonded to the other side using a water-based adhesive. The liquid crystal panel was obtained by bonding the produced said polarizing plate on the visual recognition side similarly to Example 1. FIG. About the obtained liquid crystal panel, the curvature by heating and the brightness nonuniformity were confirmed.

(偏光子の透過率及び偏光度の測定)
偏光子の単体透過率T、平行透過率Tp、直交透過率Tcは、紫外可視分光光度計(日本分光社製V7100)を用いて測定した。ここに「平行透過率」とは、同一の構成を有する2枚の偏光子を、吸収軸が互いに平行になるように重ねた状態で測定した透過率であり、「直交透過率」とは、同一の構成を有する2枚の偏光子を、吸収軸が互いに直交するように重ねた状態で測定した透過率である。これに対して、「単体透過率」は、1枚の偏光子の透過率である。これらのT、Tp、Tcの値は、JIS Z 8701の2度視野(C光源)により測定して視感度補正を行なったY値である。測定において、偏光子の取り扱いを容易にするため、偏光子に保護層(アクリル系樹脂フィルム、またはシクロオレフィン系樹脂フィルム)を貼合せた状態で測定が行われた。保護層の吸光は、偏光子の吸光と比べて無視できる程小さいため、偏光子に保護層を積層した積層体の透過率を、偏光子の透過率とした。
(Measurement of transmittance and polarization degree of polarizer)
The single transmittance T, the parallel transmittance Tp, and the orthogonal transmittance Tc of the polarizer were measured using an ultraviolet-visible spectrophotometer (V7100 manufactured by JASCO Corporation). Here, the “parallel transmittance” is a transmittance measured in a state where two polarizers having the same configuration are stacked so that the absorption axes are parallel to each other, and the “orthogonal transmittance” It is the transmittance measured in a state where two polarizers having the same configuration are overlapped so that the absorption axes are orthogonal to each other. On the other hand, the “single transmittance” is the transmittance of one polarizer. These values of T, Tp, and Tc are Y values measured by a JIS Z 8701 2 degree visual field (C light source) and corrected for visibility. In the measurement, in order to facilitate the handling of the polarizer, the measurement was performed in a state where a protective layer (acrylic resin film or cycloolefin resin film) was bonded to the polarizer. Since the light absorption of the protective layer is negligibly small compared to the light absorption of the polarizer, the transmittance of the laminate in which the protective layer is laminated on the polarizer is defined as the transmittance of the polarizer.

偏光度Pは、上記の平行透過率と直交透過率を用いて、次式により求めた。
偏光度P(%)={(Tp−Tc)/(Tp+Tc)}×(1/2)×100
The degree of polarization P was obtained by the following equation using the parallel transmittance and the orthogonal transmittance.
Degree of polarization P (%) = {(Tp−Tc) / (Tp + Tc)} × (1/2) × 100

(PVAの配向関数の評価方法)
測定装置は、フーリエ変換赤外分光光度計(FT−IR)(Perkin Elmer社製、商品名:「SPECTRUM2000」)を用いた。偏光を測定光として、全反射減衰分光(ATR:attenuated total reflection)測定により、PVA樹脂層表面の評価を行った。配向関数の算出は以下の手順で行った。測定偏光を延伸方向に対して0°と90°にした状態で測定を実施した。得られたスペクトルの2941cm-1の強度を用いて、以下に記した(式1)に従い算出した。また、下記強度Iは3330cm-1を参照ピークとして、2941cm-1/3330cm-1の値を用いた。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、PVAの主鎖(−CH2−)の振動起因の吸収といわれている。
(式1)f=(3<cos2θ>−1)/2
=(1−D)/[c(2D+1)]
但し
c=(3cos2β−1)/2
β=90deg⇒f=−2×(1−D)/(2D+1)
θ:分子鎖・延伸方向
β:分子鎖・遷移双極子モーメント
D=(I⊥)/(I//)
(PVAが配向するほどDの値が大きくなる。)
I⊥:偏光を延伸方向と垂直方向に入射して測定したときの強度
I//:偏光を延伸方向と平行方向に入射して測定したときの強度
(Evaluation method of orientation function of PVA)
As a measuring apparatus, a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name: “SPECTRUM2000”) was used. The surface of the PVA resin layer was evaluated by measuring total reflection attenuation (ATR) using polarized light as measurement light. The orientation function was calculated according to the following procedure. Measurement was carried out with the measured polarized light at 0 ° and 90 ° with respect to the stretching direction. It calculated according to (Formula 1) described below using the intensity | strength of 2941cm < -1 > of the obtained spectrum. The following intensity I as a reference peak to 3330cm -1, using the value of 2941cm -1 / 3330cm -1. Note that perfect orientation is obtained when f = 1, and random orientation when f = 0. The peak at 2941 cm −1 is said to be absorption due to vibration of the main chain (—CH 2 —) of PVA.
(Formula 1) f = (3 <cos 2 θ> −1) / 2
= (1-D) / [c (2D + 1)]
Where c = (3 cos 2 β−1) / 2
β = 90deg => f = -2 × (1-D) / (2D + 1)
θ: Molecular chain / stretch direction β: Molecular chain / transition dipole moment D = (I⊥) / (I //)
(The value of D increases as PVA is oriented.)
I⊥: Intensity when measured with polarized light incident in a direction perpendicular to the stretching direction I //: Intensity when measured with polarized light incident in a direction parallel to the stretching direction

(位相差測定)
位相差フィルムの位相差測定は、王子計測機器(株)製の商品名「KOBRA−WPR」を用いて測定した。なお、フィルム面内屈折率差Δnxyは、Re=(nx−ny)×dで定義されるReを厚みdで割ることで算出された。また、厚み方向位相差Rthは、Rth=(nx−nz)×dで定義される。
(Phase difference measurement)
The retardation of the retardation film was measured using a trade name “KOBRA-WPR” manufactured by Oji Scientific Instruments. The film in-plane refractive index difference Δnxy was calculated by dividing Re defined by Re = (nx−ny) × d by the thickness d. The thickness direction retardation Rth is defined by Rth = (nx−nz) × d.

(厚み測定)
偏光子及び保護層の厚みは、デジタルマイクロメーター(アンリツ社製KC−351C)を用いて測定した。また、位相差フィルムの厚みは、大塚電子(株)製の薄膜用分光光度計(商品名:MCPD2000)を用いて測定した。
(Thickness measurement)
The thickness of the polarizer and the protective layer was measured using a digital micrometer (KC-351C manufactured by Anritsu Corporation). The thickness of the retardation film was measured using a spectrophotometer for thin film (trade name: MCPD2000) manufactured by Otsuka Electronics Co., Ltd.

(光弾性係数の測定)
分光エリプソメーター[日本分光(株)製 製品名「M−220」]を用いて、サンプル(サイズ2cm×10cm)の両端を挟持して応力(5〜15N)をかけながら、サンプル中央の位相差値(23℃)を測定し、応力と位相差値の関数の傾きから算出した。
(Measurement of photoelastic coefficient)
Using a spectroscopic ellipsometer [product name “M-220” manufactured by JASCO Corporation], the sample (size 2 cm × 10 cm) is sandwiched at both ends and stress (5 to 15 N) is applied to the phase difference at the center of the sample. The value (23 ° C.) was measured and calculated from the slope of the function of stress and phase difference value.

以上の実施例及び比較例の結果に基づいて、IPS液晶表示パネルに、偏光子、位相差フィルム等の光学フィルムを貼り合わせた構成において、反りが生じないようにするために、図1に示す本発明の一実施形態における偏光子103を、例えば、ポリビニルアルコール系樹脂に対するヨウ素の濃度を3重量%以上、PVA分子の配向性を0.38以上で、偏光度を99.8%以上となるように構成することができ、また、位相差フィルム101を、例えば、x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成し、フィルム面内屈折率差Δnxyを5.5×10-3以上、Re=(nx−ny)×dと定義されるReを100から300nm、好ましくは130から300nm、特に好ましくは250から290nmとし、Nz=(nx−nz)/(nx−ny)と定義されるNzを0.3から0.8、より好ましくは0.35から0.75、特に好ましくは0.4から0.6とし、光弾性係数を5×10-11以上、より好ましくは1×10-10以上であり、長手方向に直角な幅方向に遅相軸を有するように構成することができる。 In order to prevent warping from occurring in a configuration in which an optical film such as a polarizer and a retardation film is bonded to an IPS liquid crystal display panel based on the results of the above-described examples and comparative examples, FIG. In the polarizer 103 according to the embodiment of the present invention, for example, the concentration of iodine with respect to the polyvinyl alcohol-based resin is 3% by weight or more, the orientation of the PVA molecules is 0.38 or more, and the degree of polarization is 99.8% or more. The retardation film 101 has a refractive index distribution in which the refractive indexes nx, ny, and nz in the x-axis, y-axis, and z-axis directions have a relationship of nx>nz> ny, for example. the thickness d is configured as the following monolayer films 20 [mu] m, the film in-plane refractive index difference Δnxy 5.5 × 10 -3 or more, 300 nm and Re defined as Re = (nx-ny) × d 100 The thickness is preferably 130 to 300 nm, particularly preferably 250 to 290 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.3 to 0.8, more preferably 0.35 to 0.00. 75, particularly preferably 0.4 to 0.6, the photoelastic coefficient is 5 × 10 −11 or more, more preferably 1 × 10 −10 or more, and has a slow axis in the width direction perpendicular to the longitudinal direction. It can be constituted as follows.

また、以上の実施例及び比較例の結果を考慮して、IPS液晶表示パネルに、上記のような特徴を有する偏光子、位相差フィルム等からなる光学フィルム積層体を用いて、例えば、図2に示す本発明の一実施形態に係るIPS液晶表示装置200を構成する際に、液晶表示パネルである液晶セル(T/P)201の反りを防止するために、例えば、IPS液晶表示パネルのバックライト側において、IPS液晶表示パネルのバックライト側表面から偏光子のバックライト側表面までの距離を50μm以下とし、IPS液晶表示パネルの視認側表面から偏光子の保護層側表面までの距離と、IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離の差を10μm以下となるように構成することができる。   In consideration of the results of the above examples and comparative examples, an optical film laminate including a polarizer, a retardation film and the like having the above characteristics is used for an IPS liquid crystal display panel, for example, FIG. In order to prevent the liquid crystal cell (T / P) 201 that is a liquid crystal display panel from warping when the IPS liquid crystal display device 200 according to the embodiment of the present invention shown in FIG. On the light side, the distance from the backlight side surface of the IPS liquid crystal display panel to the backlight side surface of the polarizer is 50 μm or less, and the distance from the viewing side surface of the IPS liquid crystal display panel to the protective layer side surface of the polarizer, A difference in distance from the backlight side surface of the IPS liquid crystal display panel to the backlight side surface of the polarizer may be 10 μm or less.

さらに、図3から5に示すその他の実施形態に係るIPS液晶表示装置についても、上記と同様の特徴を有するように構成することができる。   Furthermore, IPS liquid crystal display devices according to other embodiments shown in FIGS. 3 to 5 can also be configured to have the same characteristics as described above.

以上、本発明を特定の実施形態について図示し、詳細に説明したが、本発明の保護範囲は、図示した実施形態の細部に限定されるものではなく、特許請求の範囲の記載により定められる範囲によって定まるものである。   While the present invention has been illustrated and described in detail with reference to specific embodiments, the scope of protection of the present invention is not limited to the details of the illustrated embodiments, but is defined by the scope of the claims. It is determined by.

100 光学フィルム積層体
101、204,304,412,512 位相差フィルム
103,207,216,307,316 偏光子
404,415,504,515 偏光子
104,206,208,215,217,306,308,315,317 接着剤層
405,414,416,505,514,516 接着剤層
105,209,214,218,309,314,318 保護フィルム
406,417,506,517 保護フィルム
106,202,213,219,302,313,319 粘着剤層
402,410,418,502,510,518 粘着剤層
107 剥離フィルム
200,300,400,500 IPS液晶表示装置
201,401 液晶セル(T/P)
203,205,303,305,411,413,511,513 下塗り層
210,407 表面処理(導電)層
310,507 表面処理層
211,311,408,508 層間充填層
212,312,409,509 ガラス
220,320,419,519 輝度向上フィルム
221,321,420,520 拡散板
222,322,421,521 バックライト
301,501 液晶セル
323,522 タッチパネル
403,503 コート層あるいは保護層
100 Optical film laminate 101, 204, 304, 412, 512 Retardation film 103, 207, 216, 307, 316 Polarizer 404, 415, 504, 515 Polarizer 104, 206, 208, 215, 217, 306, 308 , 315, 317 Adhesive layer 405, 414, 416, 505, 514, 516 Adhesive layer 105, 209, 214, 218, 309, 314, 318 Protective film 406, 417, 506, 517 Protective film 106, 202, 213 , 219, 302, 313, 319 Adhesive layer 402, 410, 418, 502, 510, 518 Adhesive layer 107 Release film 200, 300, 400, 500 IPS liquid crystal display device 201, 401 Liquid crystal cell (T / P)
203, 205, 303, 305, 411, 413, 511, 513 Undercoat layer 210, 407 Surface treatment (conductive) layer 310, 507 Surface treatment layer 211, 311, 408, 508 Interlayer filling layer 212, 312, 409, 509 Glass 220, 320, 419, 519 Brightness enhancement films 221, 321, 420, 520 Diffusers 222, 322, 421, 521 Backlight 301, 501 Liquid crystal cells 323, 522 Touch panel 403, 503 Coat layer or protective layer

Claims (9)

12μm以下の厚みになるように長手方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含む長尺ウェブ状のPVA−ヨウ素系偏光子と、
前記偏光子の一方の面に第1の接着剤層を介して直接貼り合された長尺ウェブ状の位相差フィルムと、
前記位相差フィルムの前記偏光子とは反対側の面に配置された第1の粘着剤層と、
前記第1の粘着剤層の前記位相差フィルムとは反対側の面に貼り合わされた長尺ウェブ状の剥離フィルムと、
前記偏光子の前記位相差フィルムとは反対側の面に第2の接着剤層を介して貼り合わされた保護層と、を含み、
前記偏光子は、前記ポリビニルアルコール系樹脂に対するヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、
前記位相差フィルムは、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸としたとき、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、光弾性係数が5×10-11以上であり、長手方向に直角な幅方向に遅相軸を有し、
前記第1及び第2の接着剤層の各々は、厚みが2μm以下で、弾性率が1×105から3×109Paの範囲内にあり、
前記保護層は、厚みが10から50μmであり、
前記位相差フィルムは、Δnxz=nx’−nz’で表される厚み方向の複屈折率(Δnxz)が0.0007以上の非液晶性材料を含む複屈折層形成材料の塗膜を含み、
前記nx’は、前記非液晶性材料を固化層としたときの層の面内で屈折率が最大となる方向(遅相軸方向)の屈折率であり、
前記nz’は、前記nx’の方向および前記固化層の面内で前記nx’の方向と直交する方向(進相軸方向)の各方向に対し直交する前記固化層の厚み方向の屈折率であることを特徴とするIPS液晶表示装置用の長尺光学フィルム積層体。
Iodine adsorbed in the form of a PVA polyiodine ion complex to a polyvinyl alcohol-based resin layer stretched in the longitudinal direction so as to have a thickness of 12 μm or less, and a PVA molecular chain oriented in the stretching direction of the polyvinyl alcohol-based resin layer A long web-like PVA-iodine polarizer containing
A long web-like retardation film directly bonded to one surface of the polarizer via a first adhesive layer;
A first pressure-sensitive adhesive layer disposed on the surface of the retardation film opposite to the polarizer;
A long web-like release film bonded to the surface of the first pressure-sensitive adhesive layer opposite to the retardation film;
A protective layer bonded to the surface of the polarizer opposite to the retardation film via a second adhesive layer,
The polarizer has a concentration of iodine of 3% by weight or more with respect to the polyvinyl alcohol resin, an orientation of PVA molecules of 0.38 or more, and a polarization degree of 99.8% or more.
The retardation film has a x-axis direction in which the in-plane refractive index is maximum, a y-axis direction in the film plane perpendicular to the x-axis, and a z-axis film thickness direction. The refractive index nx, ny, nz in the y-axis and z-axis directions has a refractive index distribution in which nx>nz> ny, and the thickness d is 20 μm or less, and the in-plane refractive index difference Δnxy Is 5.5 × 10 −3 or more, Re defined as Re = (nx−ny) × d is 100 to 300 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.00. 3 to 0.8, the photoelastic coefficient is 5 × 10 −11 or more, and has a slow axis in the width direction perpendicular to the longitudinal direction,
Each of the first and second adhesive layers has a thickness of 2 μm or less and an elastic modulus in the range of 1 × 10 5 to 3 × 10 9 Pa,
The protective layer, Ri 50μm der from thickness 10,
The retardation film includes a coating film of a birefringent layer forming material including a non-liquid crystalline material having a birefringence (Δnxz) in the thickness direction represented by Δnxz = nx′−nz ′ of 0.0007 or more,
The nx ′ is a refractive index in a direction (slow axis direction) in which the refractive index is maximum in the plane of the layer when the non-liquid crystalline material is a solidified layer,
The nz ′ is a refractive index in the thickness direction of the solidified layer perpendicular to each direction of the direction of the nx ′ and the direction (fast axis direction) perpendicular to the direction of the nx ′ in the plane of the solidified layer. continuous optical film laminate for IPS liquid crystal display device according to claim Rukoto Oh.
前記偏光子の前記保護層面と前記剥離フィルムの前記第1の粘着層側の面との間の距離が50μm以下であることを特徴とする請求項1に記載のIPS液晶表示装置用の長尺光学フィルム積層体。   The long distance for an IPS liquid crystal display device according to claim 1, wherein a distance between the protective layer surface of the polarizer and a surface of the release film on the first adhesive layer side is 50 µm or less. Optical film laminate. 請求項1又は2に記載した長尺光学フィルム積層体がロール状に巻かれた長尺光学フィルム積層体のロール。   The roll of the elongate optical film laminated body by which the elongate optical film laminated body described in Claim 1 or 2 was wound by roll shape. IPS液晶表示パネルと、
前記IPS液晶表示パネルの視認側に配置された、偏光子と位相差フィルムとを少なくとも含む視認側光学フィルム積層体と、
前記IPS液晶表示パネルのバックライト側に配置された、偏光子と輝度向上フィルムとを少なくとも含むバックライト側光学フィルム積層体と、を備え、
前記視認側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含む長尺ウェブ状のPVAヨウ素系偏光子とを含み、
前記視認側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、
前記位相差フィルムは、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸としたとき、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、光弾性率が5×10-11以上であり、遅相軸が前記偏光子の吸収軸に実質的に直交する関係で、厚み2μm以下で、弾性率が1×105から3×109Paの接着剤層を介して直接、前記視認側光学フィルム積層体の前記偏光子に接合され、
前記位相差フィルムは、粘着剤層を介して前記IPS液晶表示パネルの視認側表面に接合されており、前記IPS液晶表示パネルの視認側表面において、前記IPS液晶表示パネルの視認側表面から前記偏光子の保護層側表面までの距離が50μm以下であり、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含むPVA−ヨウ素系偏光子とを含み、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、一方の面が厚み2μm以下で、弾性率が1×105から3×109Paの範囲内にある接着剤層を介して保護層に接合され、
前記保護層は、粘着剤層を介して前記IPS液晶表示パネルのバックライト側表面に接合されており、前記IPS液晶表示パネルのバックライト側において、前記IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離が50μm以下であり、
前記IPS液晶表示パネルの視認側表面から前記偏光子の保護層側表面までの距離と、前記IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離の差が10μm以下であり、
前記位相差フィルムは、Δnxz=nx’−nz’で表される厚み方向の複屈折率(Δnxz)が0.0007以上の非液晶性材料を含む複屈折層形成材料の塗膜を含み、
前記nx’は、前記非液晶性材料を固化層としたときの層の面内で屈折率が最大となる方向(遅相軸方向)の屈折率であり、
前記nz’は、前記nx’の方向および前記固化層の面内で前記nx’の方向と直交する方向(進相軸方向)の各方向に対し直交する前記固化層の厚み方向の屈折率であることを特徴とするIPS液晶表示装置。
An IPS liquid crystal display panel;
A viewing-side optical film laminate including at least a polarizer and a retardation film, disposed on the viewing side of the IPS liquid crystal display panel;
A backlight side optical film laminate including at least a polarizer and a brightness enhancement film, disposed on the backlight side of the IPS liquid crystal display panel,
The polarizer contained in the viewing-side optical film laminate has a polyvinyl alcohol resin layer stretched in a uniaxial direction so that the thickness is 12 μm or less, and PVA oriented in the stretch direction of the polyvinyl alcohol resin layer. A long web-like PVA iodine-based polarizer containing iodine adsorbed on the molecular chain in the form of a PVA polyiodine ion complex;
The polarizer contained in the viewing-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more.
The retardation film has a x-axis direction in which the in-plane refractive index is maximum, a y-axis direction in the film plane perpendicular to the x-axis, and a z-axis film thickness direction. The refractive index nx, ny, nz in the y-axis and z-axis directions has a refractive index distribution in which nx>nz> ny, and the thickness d is 20 μm or less, and the in-plane refractive index difference Δnxy Is 5.5 × 10 −3 or more, Re defined as Re = (nx−ny) × d is 100 to 300 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.00. 3 to 0.8, the photoelastic modulus is 5 × 10 −11 or more, the slow axis is substantially perpendicular to the absorption axis of the polarizer, the thickness is 2 μm or less, and the elastic modulus is 1 × 10 5. To 3 × 10 9 Pa directly through the adhesive layer of the viewing-side optical film laminate Bonded to the polarizer,
The retardation film is bonded to the viewing-side surface of the IPS liquid crystal display panel via an adhesive layer, and the polarizing film is formed on the viewing-side surface of the IPS liquid crystal display panel from the viewing-side surface of the IPS liquid crystal display panel. The distance to the protective layer side surface of the child is 50 μm or less,
The polarizer included in the backlight-side optical film laminate was oriented in the stretching direction of the polyvinyl alcohol-based resin layer stretched in a uniaxial direction so that the thickness was 12 μm or less, and the polyvinyl alcohol-based resin layer. A PVA-iodine-based polarizer comprising iodine adsorbed on the PVA molecular chain in the form of a PVA polyiodine ion complex,
The polarizer included in the backlight-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more. The surface is bonded to the protective layer through an adhesive layer having a thickness of 2 μm or less and an elastic modulus in the range of 1 × 10 5 to 3 × 10 9 Pa,
The protective layer is bonded to the backlight side surface of the IPS liquid crystal display panel via an adhesive layer, and on the backlight side of the IPS liquid crystal display panel, from the backlight side surface of the IPS liquid crystal display panel, The distance to the backlight side surface of the polarizer is 50 μm or less,
The difference between the distance from the viewing side surface of the IPS liquid crystal display panel to the protective layer side surface of the polarizer and the distance from the backlight side surface of the IPS liquid crystal display panel to the backlight side surface of the polarizer is 10 μm or less. der is,
The retardation film includes a coating film of a birefringent layer forming material including a non-liquid crystalline material having a birefringence (Δnxz) in the thickness direction represented by Δnxz = nx′−nz ′ of 0.0007 or more,
The nx ′ is a refractive index in a direction (slow axis direction) in which the refractive index is maximum in the plane of the layer when the non-liquid crystalline material is a solidified layer,
The nz ′ is a refractive index in the thickness direction of the solidified layer perpendicular to each direction of the direction of the nx ′ and the direction (fast axis direction) perpendicular to the direction of the nx ′ in the plane of the solidified layer. Oh IPS liquid crystal display device according to claim Rukoto.
請求項4に記載したIPS液晶表示装置であって、前記視認側光学フィルム積層体に含まれる前記偏光子には、前記位相差フィルムとは反対側の面に、接着剤層を介して保護フィルムが接合されたことを特徴とするIPS液晶表示装置。   5. The IPS liquid crystal display device according to claim 4, wherein the polarizer included in the viewing-side optical film laminate has a protective film on an opposite surface to the retardation film via an adhesive layer. An IPS liquid crystal display device, wherein: 請求項5に記載したIPS液晶表示装置であって、前記接着剤層は、厚み2μm以下で弾性率が1×105から3×109であることを特徴とするIPS液晶表示装置。 6. The IPS liquid crystal display device according to claim 5, wherein the adhesive layer has a thickness of 2 μm or less and an elastic modulus of 1 × 10 5 to 3 × 10 9 . IPS液晶表示パネルと、
前記IPS液晶表示パネルのバックライト側に配置された、偏光子と位相差フィルムとを少なくとも含むバックライト側光学フィルム積層体と、
前記IPS液晶表示パネルの視認側に配置された、偏光子を少なくとも含む視認側光学フィルム積層体と、を備え、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含む長尺ウェブ状のPVAヨウ素系偏光子とを含み、
前記バックライト側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、
前記位相差フィルムは、フィルム面内屈折率が最大となる方向をx軸、該x軸に直交するフィルム面内の方向をy軸とし、フィルム厚み方向をz軸としたとき、前記x軸、y軸及びz軸方向の屈折率nx、ny、nzがnx>nz>nyの関係となる屈折率分布を有する、厚みdが20μm以下の単層フィルムとして構成され、フィルム面内屈折率差Δnxyが5.5×10-3以上、Re=(nx−ny)×dと定義されるReが100から300nm、Nz=(nx−nz)/(nx−ny)と定義されるNzが0.3から0.8、光弾性率が5×10-11以上であり、遅相軸が前記偏光子の吸収軸に実質的に直交する関係で、厚み2μm以下で、弾性率が1×105から3×109Paの接着剤層を介して直接、前記バックライト側光学フィルム積層体の前記偏光子に接合され、
前記位相差フィルムは、粘着剤層を介して前記IPS液晶表示パネルのバックライト側表面に接合されており、前記IPS液晶表示パネルのバックライト側表面において、前記IPS液晶表示パネルのバックライト側表面から前記偏光子のバックライト側表面までの距離が50μm以下であり、
前記視認側光学フィルム積層体に含まれる前記偏光子は、厚みが12μm以下となるように一軸方向に延伸されたポリビニルアルコール系樹脂層と、前記ポリビニルアルコール系樹脂層の延伸方向に配向されたPVA分子鎖にPVAポリヨウ素イオン錯体の形態で吸着されたヨウ素とを含むPVA−ヨウ素系偏光子とを含み、
前記視認側光学フィルム積層体に含まれる前記偏光子は、ヨウ素の濃度が3重量%以上、PVA分子の配向性が0.38以上で、偏光度が99.8%以上であり、一方の面が厚み2μm以下で、弾性率が1×105から3×109Paの範囲内にある接着剤層を介して保護層に接合され、
前記保護層は、粘着剤層を介して前記IPS液晶表示パネルの視認側表面に接合されており、前記IPS液晶表示パネルの視認側において、前記IPS液晶表示パネルの視認側表面から前記偏光子の視認側表面までの距離が50μm以下であり、
前記IPS液晶表示パネルのバックライト側表面から前記偏光子の保護層側表面までの距離と、前記IPS液晶表示パネルの視認側表面から前記偏光子の視認側表面までの距離の差が10μm以下であり、
前記位相差フィルムは、Δnxz=nx’−nz’で表される厚み方向の複屈折率(Δnxz)が0.0007以上の非液晶性材料を含む複屈折層形成材料の塗膜を含み、
前記nx’は、前記非液晶性材料を固化層としたときの層の面内で屈折率が最大となる方向(遅相軸方向)の屈折率であり、
前記nz’は、前記nx’の方向および前記固化層の面内で前記nx’の方向と直交する方向(進相軸方向)の各方向に対し直交する前記固化層の厚み方向の屈折率であることを特徴とするIPS液晶表示装置。
An IPS liquid crystal display panel;
A backlight-side optical film laminate including at least a polarizer and a retardation film, disposed on the backlight side of the IPS liquid crystal display panel;
A viewing-side optical film laminate including at least a polarizer, disposed on the viewing side of the IPS liquid crystal display panel,
The polarizer included in the backlight-side optical film laminate was oriented in the stretching direction of the polyvinyl alcohol-based resin layer stretched in a uniaxial direction so that the thickness was 12 μm or less, and the polyvinyl alcohol-based resin layer. A long web-like PVA iodine-based polarizer containing iodine adsorbed on the PVA molecular chain in the form of a PVA polyiodine ion complex,
The polarizer contained in the backlight-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more,
The retardation film has a x-axis direction in which the in-plane refractive index is maximum, a y-axis direction in the film plane perpendicular to the x-axis, and a z-axis film thickness direction. The refractive index nx, ny, nz in the y-axis and z-axis directions has a refractive index distribution in which nx>nz> ny, and the thickness d is 20 μm or less, and the in-plane refractive index difference Δnxy Is 5.5 × 10 −3 or more, Re defined as Re = (nx−ny) × d is 100 to 300 nm, and Nz defined as Nz = (nx−nz) / (nx−ny) is 0.00. 3 to 0.8, the photoelastic modulus is 5 × 10 −11 or more, the slow axis is substantially perpendicular to the absorption axis of the polarizer, the thickness is 2 μm or less, and the elastic modulus is 1 × 10 5. Directly from the backlight side optical film through an adhesive layer of 3 × 10 9 Pa Bonded to the polarizer of the laminate,
The retardation film is bonded to the backlight side surface of the IPS liquid crystal display panel via an adhesive layer, and the backlight side surface of the IPS liquid crystal display panel is the backlight side surface of the IPS liquid crystal display panel. The distance from the backlight side surface of the polarizer is 50 μm or less,
The polarizer contained in the viewing-side optical film laminate has a polyvinyl alcohol resin layer stretched in a uniaxial direction so that the thickness is 12 μm or less, and PVA oriented in the stretch direction of the polyvinyl alcohol resin layer. A PVA-iodine-based polarizer comprising iodine adsorbed on the molecular chain in the form of a PVA polyiodine ion complex,
The polarizer included in the viewing-side optical film laminate has an iodine concentration of 3% by weight or more, a PVA molecule orientation of 0.38 or more, and a polarization degree of 99.8% or more. Is bonded to the protective layer through an adhesive layer having a thickness of 2 μm or less and an elastic modulus in the range of 1 × 10 5 to 3 × 10 9 Pa,
The protective layer is bonded to the viewing side surface of the IPS liquid crystal display panel via an adhesive layer, and on the viewing side of the IPS liquid crystal display panel, from the viewing side surface of the IPS liquid crystal display panel, The distance to the viewing side surface is 50 μm or less,
The difference between the distance from the backlight side surface of the IPS liquid crystal display panel to the protective layer side surface of the polarizer and the distance from the viewing side surface of the IPS liquid crystal display panel to the viewing side surface of the polarizer is 10 μm or less. Oh it is,
The retardation film includes a coating film of a birefringent layer forming material including a non-liquid crystalline material having a birefringence (Δnxz) in the thickness direction represented by Δnxz = nx′−nz ′ of 0.0007 or more,
The nx ′ is a refractive index in a direction (slow axis direction) in which the refractive index is maximum in the plane of the layer when the non-liquid crystalline material is a solidified layer,
The nz ′ is a refractive index in the thickness direction of the solidified layer perpendicular to each direction of the direction of the nx ′ and the direction (fast axis direction) perpendicular to the direction of the nx ′ in the plane of the solidified layer. Oh IPS liquid crystal display device according to claim Rukoto.
請求項7に記載したIPS液晶表示装置であって、前記バックライト側光学フィルム積層体に含まれる前記偏光子には、前記位相差フィルムとは反対側の面に、アクリル系粘着剤層を介して輝度向上フィルムが接合されたことを特徴とするIPS液晶表示装置。   The IPS liquid crystal display device according to claim 7, wherein the polarizer included in the backlight-side optical film laminate has an acrylic pressure-sensitive adhesive layer on a surface opposite to the retardation film. An IPS liquid crystal display device, wherein a brightness enhancement film is bonded. 請求項8に記載したIPS液晶表示装置であって、前記接着剤層は、厚み2μm以下で弾性率が1×105から3×109であることを特徴とするIPS液晶表示装置。 9. The IPS liquid crystal display device according to claim 8, wherein the adhesive layer has a thickness of 2 μm or less and an elastic modulus of 1 × 10 5 to 3 × 10 9 .
JP2015024318A 2015-02-10 2015-02-10 Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device Active JP6274446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024318A JP6274446B2 (en) 2015-02-10 2015-02-10 Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024318A JP6274446B2 (en) 2015-02-10 2015-02-10 Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2016148724A JP2016148724A (en) 2016-08-18
JP6274446B2 true JP6274446B2 (en) 2018-02-07

Family

ID=56691184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024318A Active JP6274446B2 (en) 2015-02-10 2015-02-10 Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device

Country Status (1)

Country Link
JP (1) JP6274446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114862A (en) * 2020-03-11 2021-09-24 수미토모 케미칼 컴퍼니 리미티드 Optical laminate and display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057065B1 (en) * 2017-02-23 2019-12-18 동우 화인켐 주식회사 Optical stack structure integrated with polarizer and touch sensor and display device including the same
CN110462498B (en) * 2017-03-28 2021-06-29 日东电工株式会社 Embedded liquid crystal panel and liquid crystal display device
CN110462499A (en) * 2017-03-28 2019-11-15 日东电工株式会社 Inline type liquid crystal display panel and liquid crystal display device
KR102651368B1 (en) * 2017-03-28 2024-03-26 닛토덴코 가부시키가이샤 Polarizing film with added adhesive layer for in-cell liquid crystal panel
CN111788504B (en) 2018-02-28 2022-04-19 日东电工株式会社 Polarizing film laminate for power traveling vehicle, and optical display panel using same
JP6804168B2 (en) * 2018-10-15 2020-12-23 日東電工株式会社 Polarizing plate with retardation layer and image display device using it
JP6797499B2 (en) * 2018-10-15 2020-12-09 日東電工株式会社 Polarizing plate with retardation layer and image display device using it
KR102476698B1 (en) * 2018-10-15 2022-12-14 닛토덴코 가부시키가이샤 Polarizing plate with retardation layer and image display using the same
KR102236534B1 (en) * 2018-11-02 2021-04-06 주식회사 엘지화학 Preparation Method of Polarizer
JP6979432B2 (en) * 2018-11-29 2021-12-15 住友化学株式会社 Polarizer
WO2020110538A1 (en) * 2018-11-29 2020-06-04 住友化学株式会社 Polarizing plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122740A (en) * 2000-10-18 2002-04-26 Nitto Denko Corp Polarizing plate and liquid crystal display using the same
JP2005345990A (en) * 2004-06-07 2005-12-15 Nitto Denko Corp Liquid crystal panel, polarizing plate and liquid crystal display
JP2006251224A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Method for manufacturing polarizing plate
WO2010082620A1 (en) * 2009-01-19 2010-07-22 株式会社カネカ Method for manufacturing phase difference film, optical film, image display apparatus, liquid crystal display apparatus, and phase difference film
JP2012137695A (en) * 2010-12-27 2012-07-19 Sumitomo Chemical Co Ltd Set of roll-shaped polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2015011059A (en) * 2013-06-26 2015-01-19 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114862A (en) * 2020-03-11 2021-09-24 수미토모 케미칼 컴퍼니 리미티드 Optical laminate and display device
KR102345851B1 (en) 2020-03-11 2022-01-03 수미토모 케미칼 컴퍼니 리미티드 Optical laminate and display device

Also Published As

Publication number Publication date
JP2016148724A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6274446B2 (en) Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device
WO2017221405A1 (en) Long optical film laminated body, roll of long optical film laminated body, and ips liquid crystal display device
KR101727870B1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
WO2016035636A1 (en) Circularly polarizing film, optical film and image display device
TWI708966B (en) Polarizing plate set and ips mode liquid crystal display device using the same
WO2021065075A1 (en) Set of polarizing plates, and image display device including said set
WO2017169168A1 (en) Polarizing plate with optical compensation layer and organic el panel using same
KR20200110182A (en) Image display apparatus and circularly polarizing plate to be used in the image display apparatus
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP2023057094A (en) Set of polarizing plates and image display device including the same
TWI720253B (en) Polarizing plate set and ips mode liquid crystal display device using the same
WO2018008523A1 (en) Optical member and liquid crystal display device
TWI625242B (en) Long optical film laminate, long optical film laminate roll and IPS liquid crystal display device
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
KR20220076468A (en) Polarizing plate with retardation layer and organic electroluminescent display device using same
JP2020091316A (en) Polarizing plate having retardation layer and picture display unit using the same
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
JP2018054887A (en) Polarizing plate set and ips mode liquid crystal display using the same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer
JP2022146118A (en) Polarizing plate with retardation layer, manufacturing method of the same and image display device using the polarizing plate with retardation layer
KR20230145362A (en) Manufacturing method of laminate and image display panel
JP2018054884A (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2018060147A (en) Set of polarizing plates and ips mode liquid crystal display using the same
JP2018054883A (en) Polarizing plate set and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6274446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250