JP6261002B2 - Fluid pressure circuit and work machine - Google Patents

Fluid pressure circuit and work machine Download PDF

Info

Publication number
JP6261002B2
JP6261002B2 JP2014238227A JP2014238227A JP6261002B2 JP 6261002 B2 JP6261002 B2 JP 6261002B2 JP 2014238227 A JP2014238227 A JP 2014238227A JP 2014238227 A JP2014238227 A JP 2014238227A JP 6261002 B2 JP6261002 B2 JP 6261002B2
Authority
JP
Japan
Prior art keywords
accumulator
fluid pressure
passage
valve
boom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014238227A
Other languages
Japanese (ja)
Other versions
JP2016098955A (en
Inventor
岸田 耕治
耕治 岸田
充啓 豊田
充啓 豊田
嘉彦 畑
嘉彦 畑
裕也 金縄
裕也 金縄
周平 居本
周平 居本
的場 信明
信明 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar SARL
Original Assignee
Caterpillar SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar SARL filed Critical Caterpillar SARL
Priority to JP2014238227A priority Critical patent/JP6261002B2/en
Priority to PCT/EP2015/077443 priority patent/WO2016083340A1/en
Publication of JP2016098955A publication Critical patent/JP2016098955A/en
Application granted granted Critical
Publication of JP6261002B2 publication Critical patent/JP6261002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Description

本発明は、アキュムレータを備えた流体圧回路およびその流体圧回路を搭載した作業機械に関する。   The present invention relates to a fluid pressure circuit including an accumulator and a work machine equipped with the fluid pressure circuit.

作業機械において、ブーム下げ時にブーム用油圧シリンダから吐出される圧油をアキュムレータに蓄圧するとともに、旋回の加減速時に旋回用油圧モータからリリーフされる圧油も上記アキュムレータに蓄圧するようにしている(例えば、特許文献1参照)。   In the work machine, the pressure oil discharged from the boom hydraulic cylinder when the boom is lowered is stored in the accumulator, and the pressure oil that is relieved from the swing hydraulic motor when the swing is accelerated or decelerated is also stored in the accumulator ( For example, see Patent Document 1).

特開2010−84888号公報JP 2010-84888 A

ブーム用油圧シリンダから吐出される圧油をアキュムレータに蓄圧している間は、ブーム用油圧シリンダから吐出される圧油をブーム用油圧シリンダに再生することはできないため、必要なポンプ流量を確保できず、ブーム用油圧シリンダの作動速度が遅くなる場合がある。したがって、より簡素な構成で、ブーム用油圧シリンダから吐出される圧油を再生して、必要なポンプ流量を確保することが望まれている。   While the pressure oil discharged from the boom hydraulic cylinder is accumulated in the accumulator, the pressure oil discharged from the boom hydraulic cylinder cannot be regenerated into the boom hydraulic cylinder, so the necessary pump flow rate can be secured. Therefore, the operating speed of the boom hydraulic cylinder may be slow. Therefore, it is desired to regenerate the pressure oil discharged from the boom hydraulic cylinder with a simpler configuration to ensure the necessary pump flow rate.

本発明は、このような点に鑑みなされたもので、より簡素な構成で作動流体をアキュムレータに蓄圧させているときも必要なポンプ流量を確保できる流体圧回路および作業機械を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a fluid pressure circuit and a work machine that can secure a necessary pump flow rate even when a working fluid is accumulated in an accumulator with a simpler configuration. And

請求項1に記載された発明は、操作体の操作に応じてポンプから加圧供給された作動流体により同一動作を同時作動する複数の流体圧シリンダと、作動流体により蓄圧されるアキュムレータと、一の流体圧シリンダのヘッド側とアキュムレータとの連通量を操作体の操作量に応じて変化させる一のバルブを備え、この一のバルブを介して一の流体圧シリンダのヘッド側から押し出された作動流体をアキュムレータに蓄圧させる蓄圧回路と、蓄圧回路によりアキュムレータに蓄圧させるときに複数の流体圧シリンダのヘッド側間の連通を遮断しつつ複数の流体圧シリンダのうち他の流体圧シリンダのヘッド側と一および他の流体圧シリンダのそれぞれのロッド側との連通量を操作体の操作量に応じて変化させるとともに蓄圧回路によるアキュムレータへの蓄圧を停止させているときに複数の流体圧シリンダのロッド側をタンクと連通させる他のバルブを備え、この他のバルブを介して、他の流体圧シリンダのヘッド側から押し出された作動流体を一および他の流体圧シリンダのロッド側に再生する再生回路とを具備した流体圧回路である。 According to the first aspect of the present invention, there are provided a plurality of fluid pressure cylinders that simultaneously operate the same operation by a working fluid pressurized and supplied from a pump according to an operation of an operating body, an accumulator that accumulates pressure by the working fluid, The fluid pressure cylinder head side and the accumulator are provided with one valve that changes the communication amount in accordance with the operation amount of the operating body, and pushed out from the head side of one fluid pressure cylinder through this one valve. An accumulator for accumulating the working fluid in the accumulator, and a head side of another fluid pressure cylinder among the plurality of fluid pressure cylinders while blocking communication between the head sides of the plurality of fluid pressure cylinders when accumulating the accumulator with the accumulator circuit accumulator by the accumulator circuit with varying according to the amount of operation of the communication amount operations of the first and respectively the rod side of the other hydraulic cylinder when Include other valve which communicates with the tank to the rod side of the plurality of fluid pressure cylinders when they are stopping the accumulator to chromatography data, through the other valve, extruded from the head side of the other hydraulic cylinder And a regeneration circuit that regenerates the working fluid to the rod side of one and other fluid pressure cylinders.

請求項2に記載された発明は、請求項1記載の流体圧回路における一のバルブは、操作体の操作量およびアキュムレータ圧に応じて一の流体圧シリンダのヘッド側とアキュムレータとの連通量を変化させる流体圧回路である。   According to a second aspect of the present invention, the one valve in the fluid pressure circuit according to the first aspect is configured such that the communication amount between the head side of the one fluid pressure cylinder and the accumulator corresponds to the operation amount of the operating body and the accumulator pressure. It is a fluid pressure circuit which changes.

請求項3に記載された発明は、機体と、機体に搭載された作業装置と、作業装置を上下動する複数の流体圧シリンダに対して設けられた請求項1または2記載の流体圧回路とを具備した作業機械である。   According to a third aspect of the present invention, there is provided an airframe, a work device mounted on the airframe, and a fluid pressure circuit according to claim 1 or 2 provided for a plurality of fluid pressure cylinders that move up and down the work device. Is a working machine.

請求項1記載の発明によれば、蓄圧回路と再生回路とを切離して、一の流体圧シリンダのヘッド側から押し出された作動流体を一のバルブによりアキュムレータに蓄圧すると同時に、他の流体圧シリンダのヘッド側から押し出された作動流体を他のバルブにより一および他の流体圧シリンダのロッド側に再生するので、アキュムレータに蓄圧しているときも再生流量分のポンプ流量を節約でき、一および他のバルブを用いる簡素な構成で必要なポンプ流量を容易に確保できるとともにポンプを小型化できる。また、複数の流体圧シリンダの全てではなく、より少ない流体圧シリンダに荷重を集中させることで、その流体圧シリンダから発生する圧力を高めて、アキュムレータの蓄圧エネルギを増すことができ、アキュムレータを小型化できる。   According to the first aspect of the present invention, the accumulator circuit and the regeneration circuit are separated from each other, and the working fluid pushed out from the head side of one fluid pressure cylinder is accumulated in the accumulator by one valve, and at the same time, another fluid pressure cylinder Since the working fluid pushed out from the head side is regenerated to the rod side of one and other fluid pressure cylinders by other valves, the pump flow rate corresponding to the regenerated flow rate can be saved even when accumulator is accumulating. The required pump flow rate can be easily secured with a simple configuration using this valve, and the pump can be downsized. In addition, by concentrating the load on a smaller number of fluid pressure cylinders rather than all of the plurality of fluid pressure cylinders, the pressure generated from the fluid pressure cylinder can be increased, and the accumulated energy of the accumulator can be increased, making the accumulator smaller. Can be

請求項2記載の発明によれば、一のバルブが、操作体の操作量およびアキュムレータ圧に応じて一の流体圧シリンダのヘッド側とアキュムレータとの連通量を変化させるので、より適切にアキュムレータに蓄圧できる。   According to the second aspect of the present invention, the one valve changes the communication amount between the head side of one fluid pressure cylinder and the accumulator in accordance with the operation amount of the operating body and the accumulator pressure. Can accumulate pressure.

請求項3記載の発明によれば、作業機械の作業装置を下降させる際にアキュムレータが蓄圧作用しているときも再生流量分のポンプ流量を節約でき、必要なポンプ流量を容易に確保できるとともにポンプを小型化でき、また、複数の流体圧シリンダの全てではなく、より少ない流体圧シリンダに作業装置の荷重を集中させることで、その流体圧シリンダから発生する圧力を高めて、アキュムレータの蓄圧エネルギを増すことができ、アキュムレータを小型化できる。   According to the invention described in claim 3, when the accumulator is accumulating when lowering the working device of the work machine, the pump flow rate corresponding to the regeneration flow rate can be saved, and the necessary pump flow rate can be easily secured and the pump can be secured. In addition, by concentrating the load of the working device on a smaller number of fluid pressure cylinders rather than all of the plurality of fluid pressure cylinders, the pressure generated from the fluid pressure cylinders can be increased and the accumulated energy of the accumulator can be increased. The accumulator can be reduced in size.

本発明に係る流体圧回路の一実施の形態の切替状態を示す回路図である。It is a circuit diagram which shows the switching state of one Embodiment of the fluid pressure circuit which concerns on this invention. 同上回路の他の切替状態を示す回路図である。It is a circuit diagram which shows the other switching state of a circuit same as the above. (a)は同上回路の一のバルブの制御アルゴリズムを模式的に示す説明図、(b)は同上回路の他のバルブの制御アルゴリズムを模式的に示す説明図である。(A) is explanatory drawing which shows typically the control algorithm of one valve | bulb of the same circuit, (b) is explanatory drawing which shows typically the control algorithm of the other valve | bulb of the same circuit. 本発明に係る作業機械の一実施の形態を示す斜視図である。1 is a perspective view showing an embodiment of a work machine according to the present invention.

以下、本発明を、図1乃至図4に示された一実施の形態に基いて詳細に説明する。   Hereinafter, the present invention will be described in detail based on one embodiment shown in FIGS.

図4に示されるように、作業機械としての油圧ショベルHEは、機体1が下部走行体2とその上に旋回モータ3mにより旋回可能に設けられた上部旋回体3とにより形成され、この上部旋回体3上にエンジンおよびポンプなどが搭載された機械室4と、オペレータを保護するキャブ5と、作業装置6とが搭載されている。   As shown in FIG. 4, a hydraulic excavator HE as a work machine is formed by a lower traveling body 2 and an upper revolving body 3 provided on the upper traveling body 3 so as to be turnable by a turning motor 3m. A machine room 4 in which an engine, a pump, and the like are mounted on the body 3, a cab 5 that protects an operator, and a work device 6 are mounted.

この作業装置6は、2本並列された流体圧シリンダとしてのブームシリンダ7c1,7c2により上下方向に回動されるブーム7の基端が上部旋回体3に軸支され、ブーム7の先端にスティックシリンダ8cにより前後方向に回動されるスティック8が軸支され、このスティック8の先端にバケットシリンダ9cにより回動されるバケット9が軸支されている。2本のブームシリンダ7c1,7c2は、共通のブーム7に対して並設され、同一動作を同時作動する。   In this working device 6, the base end of the boom 7 that is pivoted up and down by two boom cylinders 7 c 1 and 7 c 2 as fluid pressure cylinders arranged in parallel is pivotally supported on the upper swing body 3, and a stick is attached to the tip of the boom 7. A stick 8 rotated in the front-rear direction is pivotally supported by a cylinder 8c, and a bucket 9 rotated by a bucket cylinder 9c is pivotally supported at the tip of the stick 8. The two boom cylinders 7c1 and 7c2 are arranged side by side with respect to the common boom 7 and operate simultaneously in the same operation.

図1は、作業装置6が有する位置エネルギを、ブームシリンダ7c1を介してアキュムレータに蓄えるとともに上部旋回体3が有する運動エネルギを、旋回モータ3mを介してアキュムレータに蓄えてエンジンパワーのアシストに利用するエンジンパワーアシストシステムを示す。   In FIG. 1, the potential energy of the working device 6 is stored in the accumulator via the boom cylinder 7c1, and the kinetic energy of the upper swing body 3 is stored in the accumulator via the swing motor 3m and used for assisting the engine power. An engine power assist system is shown.

次に、このシステムの回路構成を説明する。   Next, the circuit configuration of this system will be described.

機械室4内の搭載エンジン11により駆動されるポンプとしてのメインポンプ12,13のメインポンプシャフト14にアシストモータ15を直結またはギヤなどを介して連結し、メインポンプ12,13およびアシストモータ15は、ポンプ/モータ容量(ピストンストローク)を角度により可変調整することが可能な斜板を備え、その斜板角(傾転角)はレギュレータ16,17,18により制御するとともに斜板角センサ16φ,17φ,18φにより検出し、レギュレータ16,17,18は、電磁弁により制御する。例えば、メインポンプ12,13のレギュレータ16,17は、ネガティブフローコントロール通路19ncで導かれたネガティブフローコントロール圧(いわゆるネガコン圧)によって自動的に制御可能であるとともに、ネガティブフローコントロール弁19の電磁式切替弁19a,19bによってネガコン圧以外の信号でも制御可能である。   An assist motor 15 is connected to the main pump shaft 14 of the main pumps 12 and 13 as pumps driven by the mounted engine 11 in the machine room 4 directly or via a gear, and the main pumps 12 and 13 and the assist motor 15 are , Equipped with a swash plate that can variably adjust the pump / motor capacity (piston stroke) according to the angle, and its swash plate angle (tilt angle) is controlled by regulators 16, 17, 18 and swash plate angle sensor 16φ, Detection is performed by 17φ and 18φ, and regulators 16, 17 and 18 are controlled by electromagnetic valves. For example, the regulators 16 and 17 of the main pumps 12 and 13 can be automatically controlled by the negative flow control pressure (so-called negative control pressure) guided by the negative flow control passage 19nc, and the electromagnetic type of the negative flow control valve 19 It is possible to control with signals other than the negative control pressure by the switching valves 19a and 19b.

メインポンプ12,13は、タンク21から吸い上げた作動流体としての作動油を通路22,23に吐出し、それらのポンプ吐出圧は圧力センサ24,25により検出する。メインポンプ12,13に接続した方向制御および流量制御用のパイロット式制御弁のうち、ブームシリンダ7c1,7c2を制御するメインのブーム用制御弁26から引き出した一方の出力通路27およびサブのブーム用制御弁28から引き出した出力通路29を、通路30によって複合弁としてのブームエネルギ・リカバリ弁31に接続する。   The main pumps 12 and 13 discharge the working oil as the working fluid sucked up from the tank 21 to the passages 22 and 23, and the pump discharge pressures are detected by the pressure sensors 24 and 25. Of the pilot control valves for directional control and flow control connected to the main pumps 12 and 13, one output passage 27 drawn from the main boom control valve 26 for controlling the boom cylinders 7c1 and 7c2 and the sub boom An output passage 29 drawn from the control valve 28 is connected to a boom energy recovery valve 31 as a composite valve by a passage 30.

このブームエネルギ・リカバリ弁31は、図1に示される蓄圧回路Aおよび再生回路Bと、図2に示されるブーム上げ操作時にメインポンプ12,13から加圧供給された作動油を2つのブームシリンダ7c1,7c2のヘッド側に導く回路とを切り替える複数の回路機能を、単一ブロック内に組み込んだ複合弁である。   This boom energy recovery valve 31 includes two accumulator circuits and a regeneration circuit B shown in FIG. 1 and hydraulic oil supplied from the main pumps 12 and 13 during boom raising operation shown in FIG. It is a composite valve that incorporates multiple circuit functions to switch between the circuits leading to the head side of 7c1 and 7c2 in a single block.

このブームエネルギ・リカバリ弁31に一方のブームシリンダ7c1のヘッド側端から引き出した通路32をドリフト低減弁33を経て通路34により接続し、他方のブームシリンダ7c2のヘッド側端から引き出した通路35をドリフト低減弁36を経て通路37により接続する。メインのブーム用制御弁26から引き出した他方の出力通路38は、ブームエネルギ・リカバリ弁31の再生回路Bに接続する。ブームシリンダ7c1,7c2の各ロッド側は、通路39,40によりブームエネルギ・リカバリ弁31に接続する。ドリフト低減弁33,36は、それぞれ図示しないパイロット弁によりスプリング室内のパイロット圧を制御することで、ポート間の開閉および開度を制御する。   A passage 32 drawn from the head side end of one boom cylinder 7c1 is connected to the boom energy recovery valve 31 by a passage 34 via a drift reduction valve 33, and a passage 35 drawn from the head side end of the other boom cylinder 7c2 is connected. Connection is made by a passage 37 through a drift reduction valve 36. The other output passage 38 drawn from the main boom control valve 26 is connected to the regeneration circuit B of the boom energy recovery valve 31. Each rod side of the boom cylinders 7c1 and 7c2 is connected to the boom energy recovery valve 31 through passages 39 and 40. The drift reduction valves 33 and 36 control the opening and closing and the opening degree between the ports by controlling the pilot pressure in the spring chamber by a pilot valve (not shown).

メインのブーム用制御弁26から引き出した一方の出力通路27は、電磁式切替弁42および逆止弁43を介して他方の出力通路38に連通可能とする。   One output passage 27 drawn out from the main boom control valve 26 can communicate with the other output passage 38 via the electromagnetic switching valve 42 and the check valve 43.

また、アシストモータ15の吐出側は、吐出通路44を介してタンク21に接続する。さらに、アシストモータ15の吸込側には、複数のアキュムレータである第1のアキュムレータ46を設けたアキュムレータ通路47から、リリーフ弁48および逆止弁49を経てタンク通路50と、電磁式切替弁51を経て吸込側通路52とを接続する。アキュムレータ通路47には、第1のアキュムレータ46に蓄圧された圧力を検出する圧力センサ55を接続する。また、タンク通路50は、タンク通路56からスプリング付き逆止弁57を経て、さらにオイルクーラ58またはスプリング付き逆止弁59を経てタンク21に接続する。そして、これら第1のアキュムレータ46、アキュムレータ通路47、リリーフ弁48、電磁式切替弁51および圧力センサ55は、単一ブロック内に組み込まれてアキュムレータブロック60を構成している。   Further, the discharge side of the assist motor 15 is connected to the tank 21 via the discharge passage 44. Furthermore, on the suction side of the assist motor 15, an accumulator passage 47 provided with a plurality of first accumulators 46, a tank passage 50 and an electromagnetic switching valve 51 via a relief valve 48 and a check valve 49 are provided. Then, the suction side passage 52 is connected. A pressure sensor 55 that detects the pressure accumulated in the first accumulator 46 is connected to the accumulator passage 47. The tank passage 50 is connected to the tank 21 from the tank passage 56 via a check valve 57 with a spring and further via an oil cooler 58 or a check valve 59 with a spring. The first accumulator 46, accumulator passage 47, relief valve 48, electromagnetic switching valve 51, and pressure sensor 55 are incorporated in a single block to constitute an accumulator block 60.

ブームエネルギ・リカバリ弁31は、蓄圧回路Aの一部を構成する一のバルブとしての制御弁61と、再生回路Bの一部を構成する他のバルブとしてのブーム回路切替弁であるメイン制御弁62とを備えている。これら制御弁61およびメイン制御弁62は、例えばキャブ5(図4)内などのオペレータによって操作される図示しない操作体であるレバーの操作により動作される電磁式切替弁によってパイロット圧の給排を制御することで切り替わるパイロット操作式のものが用いられるが、図面上は説明をより明確にするために電磁比例方向制御弁として図示する。   The boom energy recovery valve 31 is a main control valve which is a control valve 61 as one valve constituting a part of the accumulator circuit A and a boom circuit switching valve as another valve constituting a part of the regeneration circuit B. 62. These control valve 61 and main control valve 62 supply and discharge pilot pressure by an electromagnetic switching valve operated by operating a lever which is an operating body (not shown) operated by an operator such as in the cab 5 (FIG. 4). A pilot-operated type that is switched by control is used. However, in order to clarify the explanation, it is illustrated as an electromagnetic proportional directional control valve.

制御弁61は、逆止弁67を経て第1のアキュムレータ46(アキュムレータブロック60)に接続する通路68と、通路34との連通および遮断を切り替えることで、ブームシリンダ7c1からの第1のアキュムレータ46の蓄圧を許容する流量制御弁である。この制御弁61は、通常のシリンダ(ブームシリンダ7c1,7c2など)からタンク21へと戻すよりも作動油を大きく流せるバルブであり、第1のアキュムレータ46に圧油を溜めることを優先したものとなっている。   The control valve 61 switches the communication between the passage 68 connected to the first accumulator 46 (accumulator block 60) via the check valve 67 and the passage 34, thereby switching the first accumulator 46 from the boom cylinder 7c1. This is a flow control valve that allows the accumulation of pressure. This control valve 61 is a valve that allows a larger amount of hydraulic oil to flow than returning from a normal cylinder (boom cylinders 7c1, 7c2, etc.) to the tank 21, and priority is given to storing pressure oil in the first accumulator 46. It has become.

メイン制御弁62は、通路71と通路72との関係、通路73と通路74との関係、および、通路75および通路76との関係をそれぞれ切り替えることで、ブームシリンダ7c1とブームシリンダ7c2とを蓄圧用シリンダと自己再生用シリンダとに分離するものである。すなわち、このメイン制御弁62は、制御弁61の切り替えによって第1のアキュムレータ46に蓄圧するときに、ブームシリンダ7c1,7c2のヘッド側間の連通を遮断するとともにブームシリンダ7c2のヘッド側とブームシリンダ7c1,7c2のそれぞれのロッド側とを連通するように構成されている。   The main control valve 62 accumulates pressure between the boom cylinder 7c1 and the boom cylinder 7c2 by switching the relationship between the passage 71 and the passage 72, the relationship between the passage 73 and the passage 74, and the relationship between the passage 75 and the passage 76, respectively. The cylinder is separated into a self-reproducing cylinder and a self-reproducing cylinder. That is, when the main control valve 62 accumulates pressure in the first accumulator 46 by switching the control valve 61, the main control valve 62 cuts off the communication between the head sides of the boom cylinders 7c1 and 7c2, and the boom cylinder 7c2 head side and the boom cylinder 7c1 and 7c2 are configured to communicate with each rod side.

通路71には、通路30が逆止弁78を経て接続し、通路72は、通路37および通路30から分岐する通路79と接続し、通路73は、通路72から分岐され、通路74は、逆止弁80を経て通路40と接続し、通路75は、出力通路38および通路39と接続し、通路76は、通路40から分岐される。   The passage 30 is connected to the passage 71 via the check valve 78, the passage 72 is connected to the passage 37 and the passage 79 branched from the passage 30, the passage 73 is branched from the passage 72, and the passage 74 is reversed. The passage 40 is connected to the passage 40 through the stop valve 80, the passage 75 is connected to the output passage 38 and the passage 39, and the passage 76 is branched from the passage 40.

図1に示されるように、蓄圧回路Aは、一方のブームシリンダ7c1のヘッド側端より引き出された通路32からドリフト低減弁33および通路34を経て、ブームエネルギ・リカバリ弁31内の制御弁61、逆止弁67を経て、通路68から第1のアキュムレータ46に至る回路であり、ブームシリンダ7c1のヘッド側から押し出された油を第1のアキュムレータ46に蓄圧させる機能を有する。   As shown in FIG. 1, the pressure accumulating circuit A is connected to a control valve 61 in the boom energy recovery valve 31 through a drift reduction valve 33 and a passage 34 from a passage 32 drawn from the head side end of one boom cylinder 7c1. The circuit extends from the passage 68 to the first accumulator 46 through the check valve 67, and has a function of accumulating the oil pushed out from the head side of the boom cylinder 7c1 in the first accumulator 46.

また、再生回路Bは、他方のブームシリンダ7c2のヘッド側端より引き出された通路35からドリフト低減弁36および通路37を経て、ブームエネルギ・リカバリ弁31内の通路73、メイン制御弁62、通路74、逆止弁80および通路40を経て他方のブームシリンダ7c2のロッド側端に至るとともに、通路35からドリフト低減弁36および通路37を経て、ブームエネルギ・リカバリ弁31内の通路73、メイン制御弁62、通路74、逆止弁80、通路76、メイン制御弁62、通路75および通路39を経て一方のブームシリンダ7c1のロッド側端に至る回路であり、ブームシリンダ7c2のヘッド側から押し出された油をブームシリンダ7c1,7c2のそれぞれのロッド側に再生する機能を有する。   Further, the regeneration circuit B passes through the passage 35 drawn out from the head side end of the other boom cylinder 7c2 through the drift reduction valve 36 and the passage 37, to the passage 73 in the boom energy recovery valve 31, the main control valve 62, the passage 74, through the check valve 80 and the passage 40 to the rod side end of the other boom cylinder 7c2, and from the passage 35 through the drift reduction valve 36 and the passage 37 to the passage 73 in the boom energy recovery valve 31, the main control It is a circuit that reaches the rod side end of one boom cylinder 7c1 through the valve 62, the passage 74, the check valve 80, the passage 76, the main control valve 62, the passage 75, and the passage 39, and is pushed out from the head side of the boom cylinder 7c2. Has a function of regenerating the oil on the rod side of each of the boom cylinders 7c1 and 7c2.

また、前記旋回モータ3mの旋回方向および速度を制御する旋回用制御弁91と旋回モータ3mとを接続するモータ駆動回路Cの通路92,93間に、相互に逆向きのリリーフ弁94,95および逆止弁97,98を設け、これらのリリーフ弁94,95間および逆止弁97,98間に、モータ駆動回路Cから排出された油をタンク21に戻すタンク通路機能と、モータ駆動回路Cに作動油を補充することが可能なメイクアップ機能とを有するメイクアップ通路99を接続し、このメイクアップ通路99は、圧油を供給する第2のアキュムレータ100に接続する。そして、このメイクアップ通路99から、スプリング付き逆止弁57のスプリング付勢圧を超えない圧力で、逆止弁97,98を経て通路92,93のバキューム発生のおそれのある側に作動油を補充する。   Relief valves 94, 95 opposite to each other are provided between the passages 92, 93 of the motor drive circuit C for connecting the turning control valve 91 for controlling the turning direction and speed of the turning motor 3m and the turning motor 3m. A check valve 97, 98 is provided, and between these relief valves 94, 95 and between the check valves 97, 98, a tank passage function for returning oil discharged from the motor drive circuit C to the tank 21, and a motor drive circuit C A makeup passage 99 having a makeup function capable of replenishing hydraulic oil is connected to the second accumulator 100. The makeup passage 99 is connected to a second accumulator 100 that supplies pressure oil. Then, hydraulic fluid is passed from the makeup passage 99 to the side of the passages 92 and 93 where there is a risk of vacuum generation via the check valves 97 and 98 at a pressure not exceeding the spring biasing pressure of the check valve 57 with spring. refill.

さらに、モータ駆動回路Cの通路92,93を、逆止弁102,103を経て旋回エネルギ回収用の通路104に連通し、この通路104を、出口側の背圧によって入口側の元圧が変化しにくいシーケンス弁105を経て通路106に接続し、この通路106が第1のアキュムレータ46および通路68に接続する。   Further, the passages 92 and 93 of the motor drive circuit C are communicated with the turning energy recovery passage 104 via the check valves 102 and 103, and the original pressure on the inlet side of the passage 104 is changed by the back pressure on the outlet side. The passage 106 is connected to the first accumulator 46 and the passage 68 through the difficult sequence valve 105.

以上のような回路構成において、各々の斜板角センサ16φ,17φ,18φ、圧力センサ24,25,55は、検出した斜板角信号および圧力信号を車載コントローラ(図示せず)に入力し、また、各弁42,51は、車載コントローラ(図示せず)から出力された駆動信号によりオン・オフ動作または駆動信号に応じた比例動作で切り替わる。また、ブーム用制御弁26,28、旋回用制御弁91および図示しない他の油圧アクチュエータ用制御弁(走行モータ用、スティックシリンダ用、バケットシリンダ用など)は、キャブ5(図4)内などのオペレータによりレバー操作またはペダル操作される手動操作弁いわゆるリモコン弁によってパイロット操作され、ドリフト低減弁33,36の図示しないパイロット弁も連動してパイロット操作される。   In the circuit configuration as described above, each swash plate angle sensor 16φ, 17φ, 18φ, pressure sensor 24, 25, 55 inputs the detected swash plate angle signal and pressure signal to an in-vehicle controller (not shown), The valves 42 and 51 are switched by an on / off operation or a proportional operation according to the drive signal according to a drive signal output from an in-vehicle controller (not shown). The boom control valves 26 and 28, the turning control valve 91, and other hydraulic actuator control valves (not shown) (for travel motors, stick cylinders, bucket cylinders, etc.) are provided in the cab 5 (FIG. 4). A pilot operation is performed by a so-called remote control valve, which is a manually operated valve operated by a lever or a pedal by an operator, and pilot valves (not shown) of the drift reduction valves 33 and 36 are also pilot operated in conjunction.

以下に、上記車載コントローラによって制御される内容を機能的に説明する。   Below, the content controlled by the said vehicle-mounted controller is demonstrated functionally.

図1は、ブーム7を下降させるブーム下げ操作時の回路状態を示し、作業装置6の荷重などにより一方のブームシリンダ7c1のヘッド側から押し出された作動油は、通路32およびドリフト低減弁33を経て通路34からブームエネルギ・リカバリ弁31の連通位置に切り替えた制御弁61で逆止弁67を経て通路68と連通され、この通路68から第1のアキュムレータ46に蓄圧させる。このとき、制御弁61は、レバーの操作量、すなわちこの操作量により設定されるパイロット圧と、圧力センサ55により検出した第1のアキュムレータ46のアキュムレータ圧とに応じて一方のブームシリンダ7c1のヘッド側と第1のアキュムレータ46側との連通量を切り替える。具体的に、レバーの操作量により設定されるパイロット圧に対して所定のテーブルにより補正を行うとともに、アキュムレータ圧に対して所定のテーブルにより補正を行い、これらの積算結果を、制御弁61を動作させる出力とする。さらに具体的に、本実施の形態では、図3(a)に示されるように、レバーの操作量により設定されるパイロット圧が相対的に小さいときにはその入力圧の増加量に対して出力圧の増加量が相対的に大きくなり、レバーの操作量により設定されるパイロット圧が所定の閾値TH1を超えた領域では入力圧の増加量に対する出力圧の増加量が閾値TH1以下のときよりも抑制され、さらに所定の閾値TH1より大きい所定の閾値TH2を超えた領域では出力圧が一定に設定される。また、アキュムレータ圧が所定の閾値TH3以下の領域では、アキュムレータ圧の増加量に対してゲインが増加し、アキュムレータ圧が所定の閾値TH3を超えた領域ではゲインが一定(例えば1)に設定される。このとき、逆止弁78により、この作動油がブーム用制御弁26側に戻ることはない。   FIG. 1 shows a circuit state during a boom lowering operation for lowering the boom 7, and hydraulic oil pushed out from the head side of one boom cylinder 7 c 1 due to a load of the work device 6 or the like passes through the passage 32 and the drift reduction valve 33. Then, the control valve 61 switched from the passage 34 to the communication position of the boom energy recovery valve 31 is communicated with the passage 68 through the check valve 67, and the first accumulator 46 is accumulated through the passage 68. At this time, the control valve 61 controls the head of one boom cylinder 7c1 in accordance with the lever operation amount, that is, the pilot pressure set by this operation amount and the accumulator pressure of the first accumulator 46 detected by the pressure sensor 55. The communication amount between the side and the first accumulator 46 side is switched. Specifically, the pilot pressure set by the lever operation amount is corrected by a predetermined table, and the accumulator pressure is corrected by a predetermined table. Output. More specifically, in the present embodiment, as shown in FIG. 3A, when the pilot pressure set by the lever operation amount is relatively small, the output pressure is increased with respect to the increase amount of the input pressure. In the region where the increase amount is relatively large and the pilot pressure set by the lever operation amount exceeds the predetermined threshold value TH1, the increase amount of the output pressure with respect to the increase amount of the input pressure is suppressed more than when it is less than the threshold value TH1. Further, the output pressure is set to be constant in a region exceeding a predetermined threshold value TH2 that is larger than the predetermined threshold value TH1. Further, in the region where the accumulator pressure is equal to or lower than the predetermined threshold TH3, the gain increases with respect to the increase amount of the accumulator pressure, and in the region where the accumulator pressure exceeds the predetermined threshold TH3, the gain is set to be constant (for example, 1). . At this time, the hydraulic oil does not return to the boom control valve 26 side by the check valve 78.

同時に、他方のブームシリンダ7c2のヘッド側から押し出された作動油は、通路35およびドリフト低減弁36を経て通路37からブームエネルギ・リカバリ弁31のメイン制御弁62で通路73から通路74へと方向制御し、さらに逆止弁80および通路40を経て他方のブームシリンダ7c2のロッド側に再生させるとともに、逆止弁80を経て通路76へと分岐した作動油をメイン制御弁62内の逆止弁を経て通路75へと方向制御し、通路39を経て一方のブームシリンダ7c1のロッド側にも再生させる。このとき、メイン制御弁62は、レバーの操作量、すなわちこの操作量により設定されるパイロット圧に応じて動作量が変化する。具体的に、レバーの操作量により設定されるパイロット圧に対して所定のテーブルにより補正を行って、メイン制御弁62を動作させる出力とする。さらに具体的に、本実施の形態では、図3(b)に示されるように、図3(a)のテーブルと同様のテーブルにより、レバーの操作量により設定されるパイロット圧の入力圧と出力圧が設定され、基本的にはブーム下げ操作を検知すると即座に切り替わる。なお、他方のブームシリンダ7c2のヘッド側から押し出された作動油の余剰流量は、通路37から通路79および通路30を経て、ブーム用制御弁26からタンク21へと戻す。また、例えばブームシリンダ7c1,7c2のヘッド圧に基づいて作業装置6(図4)の接地を検知することなどによりブーム下げにより機体1を持ち上げていることを検知した場合には、所定の設定値に応じてブームシリンダ7c1,7c2の蓄圧用シリンダと自己再生用シリンダとの分離を解除する。   At the same time, the hydraulic oil pushed out from the head side of the other boom cylinder 7c2 passes from the passage 37 to the passage 74 through the passage 35 and the drift reduction valve 36 and from the passage 37 to the main control valve 62 of the boom energy recovery valve 31. The control oil is further regenerated to the rod side of the other boom cylinder 7c2 through the check valve 80 and the passage 40, and the hydraulic oil branched into the passage 76 through the check valve 80 is returned to the check valve in the main control valve 62. Then, the direction is controlled to the passage 75 and is also regenerated to the rod side of one boom cylinder 7c1 via the passage 39. At this time, the operation amount of the main control valve 62 changes according to the operation amount of the lever, that is, the pilot pressure set by the operation amount. Specifically, the pilot pressure set by the lever operation amount is corrected by a predetermined table to obtain an output for operating the main control valve 62. More specifically, in the present embodiment, as shown in FIG. 3B, the input pressure and the output of the pilot pressure set by the amount of operation of the lever by a table similar to the table of FIG. The pressure is set and basically switches immediately when a boom lowering operation is detected. The surplus flow rate of the hydraulic oil pushed out from the head side of the other boom cylinder 7c2 is returned from the boom control valve 26 to the tank 21 through the passage 37, the passage 79 and the passage 30. For example, when it is detected that the body 1 is being lifted by lowering the boom by detecting the grounding of the working device 6 (FIG. 4) based on the head pressure of the boom cylinders 7c1 and 7c2, a predetermined set value is set. Accordingly, the separation of the pressure accumulating cylinder and the self-regenerating cylinder of the boom cylinders 7c1 and 7c2 is released.

このように、ブームエネルギ・リカバリ弁31は、制御弁61とメイン制御弁62とにより、ブーム下げ時の第1のアキュムレータ46への蓄圧と、ブームシリンダ7c1,7c2のロッド側への再生とを同時に行なう。   In this way, the boom energy recovery valve 31 uses the control valve 61 and the main control valve 62 to accumulate pressure on the first accumulator 46 when the boom is lowered and to regenerate the boom cylinders 7c1 and 7c2 to the rod side. Do it at the same time.

図2は、ブーム7を上昇させるブーム上げ操作時の回路状態を示し、このブーム上げ操作時のブームエネルギ・リカバリ弁31は、制御弁61を遮断位置へと切り替えるとともにメイン制御弁62を切替えて、第1のアキュムレータ46への蓄圧と、ブームシリンダ7c1,7c2のロッド側への再生とを停止し、メインポンプ12,13からブーム用制御弁26,28を経て通路30に供給された作動油を、通路79から通路37、ドリフト低減弁36および通路35を経て他方のブームシリンダ7c2のヘッド側に導くとともに、逆止弁78から通路34、ドリフト低減弁33および通路32を経て一方のブームシリンダ7c1のヘッド側に導く。また、ブームシリンダ7c1のロッド側から押し出された作動油は、通路39および出力通路38からブーム用制御弁26を経てタンク21へと戻し、ブームシリンダ7c2のロッド側から押し出された作動油は、通路40および通路76を経てメイン制御弁62で通路75へと方向制御され、出力通路38からブーム用制御弁26を経てタンク21へと戻す。   FIG. 2 shows a circuit state during a boom raising operation for raising the boom 7. The boom energy recovery valve 31 during the boom raising operation switches the control valve 61 to the cutoff position and switches the main control valve 62. The hydraulic oil supplied to the passage 30 from the main pumps 12 and 13 through the boom control valves 26 and 28 is stopped after the pressure accumulation in the first accumulator 46 and the regeneration of the boom cylinders 7c1 and 7c2 to the rod side are stopped. From the passage 79 to the head side of the other boom cylinder 7c2 through the passage 37, the drift reduction valve 36 and the passage 35, and from the check valve 78 to the one boom cylinder through the passage 34, the drift reduction valve 33 and the passage 32. Lead to the head side of 7c1. The hydraulic oil pushed out from the rod side of the boom cylinder 7c1 returns to the tank 21 via the boom control valve 26 from the passage 39 and the output passage 38, and the hydraulic oil pushed out from the rod side of the boom cylinder 7c2 The direction is controlled to the passage 75 by the main control valve 62 through the passage 40 and the passage 76, and is returned from the output passage 38 to the tank 21 through the boom control valve 26.

また、上記のブーム下げ操作およびブーム上げ操作時などには、それぞれメインポンプシャフト14に直結またはギヤを介して連結したモータ機能を有するアシストモータ15を、図2に示されるように油圧モータとして機能させてエンジン負荷を低減する、エンジンパワーアシストを行うことができる。例えばブーム下げ操作時には、圧力センサ55により検出した第1のアキュムレータ46のアキュムレータ圧が所定の第1の閾値圧以上である場合にエンジンパワーアシストを行い、ブーム下げ操作時以外、例えばブーム上げ操作時などには、圧力センサ55により検出した第1のアキュムレータ46のアキュムレータ圧が上記の所定の第1の閾値圧と異なる所定の第2の閾値圧以上であるときにエンジンパワーアシストを行う。このエンジンパワーアシストの際には、電磁式切替弁51を連通位置に切り替えて、第1のアキュムレータ46に蓄圧されたエネルギでアシストモータ15を回転させ、メインポンプ12,13の油圧出力をアシストしてエンジン負荷を低減する。なお、機体1を持ち上げている場合には、アシストモータ15によるエンジンパワーアシストをしない。   Further, at the time of the boom lowering operation and boom raising operation described above, the assist motor 15 having a motor function directly connected to the main pump shaft 14 or connected via a gear functions as a hydraulic motor as shown in FIG. Thus, engine power assist can be performed to reduce the engine load. For example, when the boom lowering operation is performed, engine power assist is performed when the accumulator pressure of the first accumulator 46 detected by the pressure sensor 55 is equal to or higher than a predetermined first threshold pressure. For example, when the accumulator pressure of the first accumulator 46 detected by the pressure sensor 55 is equal to or higher than a predetermined second threshold pressure different from the predetermined first threshold pressure, engine power assist is performed. In this engine power assist, the electromagnetic switching valve 51 is switched to the communication position, the assist motor 15 is rotated by the energy accumulated in the first accumulator 46, and the hydraulic output of the main pumps 12, 13 is assisted. Reduce the engine load. Note that when the airframe 1 is lifted, engine power assist by the assist motor 15 is not performed.

このように、エンジンパワーアシスト機能は、一方のブームシリンダ7c1のヘッド側から第1のアキュムレータ46に蓄圧されたエネルギによってアシストモータ15を回転させることで、このアシストモータ15によりメインポンプシャフト14を介して連結された搭載エンジン11の負荷を低減させる。   As described above, the engine power assist function rotates the assist motor 15 by the energy accumulated in the first accumulator 46 from the head side of one boom cylinder 7c1, and this assist motor 15 causes the main pump shaft 14 to pass through. To reduce the load on the mounted engine 11 connected.

そして、上記のように、蓄圧回路Aと再生回路Bとを切離して、油圧ショベルHEの作業装置6を下降させる際に、ブームシリンダ7c1のヘッド側から押し出された作動油を制御弁61により第1のアキュムレータ46に蓄圧すると同時に、ブームシリンダ7c2のヘッド側から押し出された作動油をメイン制御弁62によりブームシリンダ7c1,7c2のロッド側に再生するので、第1のアキュムレータ46を蓄圧作用させているときも再生流量分のポンプ流量を節約でき、制御弁61,62を用いる簡素な構成で他の油圧アクチュエータで必要とするメインポンプ流量を含む必要なポンプ流量を容易に確保できるとともにメインポンプ12,13を小型化できる。   As described above, when the pressure accumulating circuit A and the regeneration circuit B are separated and the working device 6 of the hydraulic excavator HE is lowered, the hydraulic oil pushed out from the head side of the boom cylinder 7c1 is controlled by the control valve 61. At the same time as accumulating in the accumulator 46, the hydraulic oil pushed out from the head side of the boom cylinder 7c2 is regenerated to the rod side of the boom cylinders 7c1 and 7c2 by the main control valve 62, so that the first accumulator 46 is accumulated. In this case, the pump flow rate corresponding to the regeneration flow rate can be saved, and the necessary pump flow rate including the main pump flow rate required by other hydraulic actuators can be easily secured with the simple configuration using the control valves 61 and 62 and the main pump 12 , 13 can be miniaturized.

また、片側のブームシリンダ7c1のヘッド側油を第1のアキュムレータ46への蓄圧に回すことで、すなわち作業装置6の荷重を2本のブームシリンダ7c1,7c2に分散させるのではなく、1本のブームシリンダ7c1に集中させることで、エネルギ密度を増すことができ、ブームシリンダ7c1から発生する圧力を高めて、第1のアキュムレータ46への蓄圧エネルギを増すことができ、言い換えれば、第1のアキュムレータ46やアシストモータ15などのコンポーネントを小型化でき、コストを抑えられ、レイアウトが容易になる。   Further, by turning the head side oil of the boom cylinder 7c1 on one side for accumulating the pressure on the first accumulator 46, that is, the load of the working device 6 is not distributed to the two boom cylinders 7c1 and 7c2, but one By concentrating on the boom cylinder 7c1, the energy density can be increased, the pressure generated from the boom cylinder 7c1 can be increased, and the accumulated energy in the first accumulator 46 can be increased, in other words, the first accumulator. Components such as 46 and assist motor 15 can be miniaturized, cost can be reduced, and layout can be facilitated.

さらに、制御弁61は、レバーの操作量と第1のアキュムレータ46のアキュムレータ圧とに応じてブームシリンダ7c1のヘッド側と第1のアキュムレータ46との連通量を変化させるので、ブーム下げ操作の操作性を犠牲にすることなくより適切に第1のアキュムレータ46に蓄圧でき、操作性とエネルギ蓄圧とを同時に満たすことができる。   Further, the control valve 61 changes the communication amount between the head side of the boom cylinder 7c1 and the first accumulator 46 in accordance with the lever operation amount and the accumulator pressure of the first accumulator 46. The pressure can be more appropriately stored in the first accumulator 46 without sacrificing the operability, and the operability and the energy storage can be satisfied simultaneously.

ブームシリンダ7c1,7c2と他の油圧アクチュエータ(旋回モータ3m、スティックシリンダ8c、バケットシリンダ9cなど)との連動操作時に、片側のブームシリンダ7c2のヘッド側から押し出された作動油をブームシリンダ7c1,7c2のロッド側に再生するので、その再生分の油量をメインポンプ12,13から他の油圧アクチュエータに回すことができ、連動操作時の速度低下を防止でき、連動操作性を向上させることができる。   When the boom cylinders 7c1, 7c2 and other hydraulic actuators (swing motor 3m, stick cylinder 8c, bucket cylinder 9c, etc.) are operated in conjunction, the hydraulic oil pushed out from the head side of the boom cylinder 7c2 on one side is boom cylinders 7c1, 7c2. Because the oil is regenerated to the rod side, the amount of regenerated oil can be turned from the main pumps 12 and 13 to other hydraulic actuators, speed reduction during interlock operation can be prevented, and interlock operability can be improved. .

さらに、複数の回路機能を単一ブロックに集約させたブームエネルギ・リカバリ弁31により、レイアウトが容易となり、組立工数の低減によるコスト低減が可能となる。   Furthermore, the boom energy recovery valve 31 that integrates a plurality of circuit functions into a single block facilitates layout and enables cost reduction by reducing the number of assembly steps.

また、一方のブームシリンダ7c1に荷重を集中させることで、第1のアキュムレータ46の蓄圧エネルギを増すことができ、小型のアキュムレータで大きなアシストができるため、コストを抑え、機体レイアウトをコンパクトにまとめることができる。   In addition, by concentrating the load on one boom cylinder 7c1, the accumulated energy of the first accumulator 46 can be increased, and a large accumulator can provide great assistance, thus reducing costs and making the aircraft layout compact. Can do.

本発明は、流体圧回路または作業機械を製造、販売などする事業者にとって産業上の利用可能性がある。   The present invention has industrial applicability to operators who manufacture and sell fluid pressure circuits or work machines.

A 蓄圧回路
B 再生回路
HE 作業機械としての油圧ショベル
1 機体
6 作業装置
7c1,7c2 流体圧シリンダとしてのブームシリンダ
12,13 ポンプとしてのメインポンプ
46 アキュムレータである第1のアキュムレータ
61 一のバルブとしての制御弁
62 他のバルブとしてのメイン制御弁
A pressure accumulation circuit B regeneration circuit
HE Excavator as work machine 1 Airframe 6 Work device
7c1, 7c2 Boom cylinder as fluid pressure cylinder
12, 13 Main pump as a pump
46 The first accumulator that is an accumulator
61 Control valve as a single valve
62 Main control valve as other valve

Claims (3)

操作体の操作に応じてポンプから加圧供給された作動流体により同一動作を同時作動する複数の流体圧シリンダと、
作動流体により蓄圧されるアキュムレータと、
一の流体圧シリンダのヘッド側とアキュムレータとの連通量を操作体の操作量に応じて変化させる一のバルブを備え、この一のバルブを介して一の流体圧シリンダのヘッド側から押し出された作動流体をアキュムレータに蓄圧させる蓄圧回路と、
蓄圧回路によりアキュムレータに蓄圧させるときに複数の流体圧シリンダのヘッド側間の連通を遮断しつつ複数の流体圧シリンダのうち他の流体圧シリンダのヘッド側と一および他の流体圧シリンダのそれぞれのロッド側との連通量を操作体の操作量に応じて変化させるとともに蓄圧回路によるアキュムレータへの蓄圧を停止させているときに複数の流体圧シリンダのロッド側をタンクと連通させる他のバルブを備え、この他のバルブを介して、他の流体圧シリンダのヘッド側から押し出された作動流体を一および他の流体圧シリンダのロッド側に再生する再生回路と
を具備したことを特徴とする流体圧回路。
A plurality of fluid pressure cylinders that simultaneously operate the same operation by a working fluid pressurized and supplied from a pump according to the operation of the operating body;
An accumulator that accumulates pressure with the working fluid;
It is equipped with one valve that changes the amount of communication between the head side of one fluid pressure cylinder and the accumulator according to the amount of operation of the operating body, and is pushed out from the head side of one fluid pressure cylinder through this one valve. A pressure accumulation circuit for accumulating the accumulated working fluid in an accumulator;
While accumulating the accumulator by the pressure accumulator circuit, the communication between the head sides of the plurality of fluid pressure cylinders is interrupted, and the head side of the other fluid pressure cylinder among the plurality of fluid pressure cylinders and each of the one and other fluid pressure cylinders Other valves that connect the rod side of multiple fluid pressure cylinders to the tank when changing the amount of communication with the rod side according to the amount of operation of the operating body and stopping accumulator accumulation by the accumulator circuit And a regeneration circuit that regenerates the working fluid pushed out from the head side of another fluid pressure cylinder to the rod side of one and other fluid pressure cylinders through the other valve. Pressure circuit.
一のバルブは、操作体の操作量およびアキュムレータ圧に応じて一の流体圧シリンダのヘッド側とアキュムレータとの連通量を変化させる
ことを特徴とする請求項1記載の流体圧回路。
The fluid pressure circuit according to claim 1, wherein the one valve changes a communication amount between the head side of the fluid pressure cylinder and the accumulator in accordance with an operation amount of the operation body and an accumulator pressure.
機体と、
機体に搭載された作業装置と、
作業装置を上下動する複数の流体圧シリンダに対して設けられた請求項1または2記載の流体圧回路と
を具備したことを特徴とする作業機械。
The aircraft,
Working equipment mounted on the aircraft,
A working machine comprising: the fluid pressure circuit according to claim 1 or 2 provided for a plurality of fluid pressure cylinders that move up and down the work device.
JP2014238227A 2014-11-25 2014-11-25 Fluid pressure circuit and work machine Active JP6261002B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014238227A JP6261002B2 (en) 2014-11-25 2014-11-25 Fluid pressure circuit and work machine
PCT/EP2015/077443 WO2016083340A1 (en) 2014-11-25 2015-11-24 Fluid pressure circuit and working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238227A JP6261002B2 (en) 2014-11-25 2014-11-25 Fluid pressure circuit and work machine

Publications (2)

Publication Number Publication Date
JP2016098955A JP2016098955A (en) 2016-05-30
JP6261002B2 true JP6261002B2 (en) 2018-01-17

Family

ID=54695751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238227A Active JP6261002B2 (en) 2014-11-25 2014-11-25 Fluid pressure circuit and work machine

Country Status (2)

Country Link
JP (1) JP6261002B2 (en)
WO (1) WO2016083340A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493916B2 (en) * 2015-04-21 2019-04-03 キャタピラー エス エー アール エル Fluid pressure circuit and work machine
JP6549543B2 (en) * 2016-09-29 2019-07-24 日立建機株式会社 Hydraulic drive of work machine
JP6636977B2 (en) * 2017-03-14 2020-01-29 日立建機株式会社 Hydraulic drive for work machines
CN109914520B (en) * 2019-04-22 2021-06-08 江苏师范大学 Energy-saving device for recycling potential energy of movable arm of excavator based on supercharger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054035A1 (en) * 2006-11-14 2008-06-12 HUSCO International, Inc., Waukesha Hydraulic system for hydraulically-operated machine e.g. excavator, has recovery control valve which regulates flow of pressurized fluid from head chamber of second boom cylinder to accumulator
US20090025379A1 (en) * 2007-07-24 2009-01-29 Parker-Hannifin Corporation System for recovering energy from a hydraulic lift
JP2009275775A (en) * 2008-05-13 2009-11-26 Caterpillar Japan Ltd Fluid pressure cylinder control circuit
JP5246759B2 (en) * 2008-09-04 2013-07-24 キャタピラー エス エー アール エル Hydraulic control system for work machines
JP5412077B2 (en) 2008-10-01 2014-02-12 キャタピラー エス エー アール エル Power regeneration mechanism for hydraulic work machines
JP5574375B2 (en) * 2010-06-30 2014-08-20 キャタピラー エス エー アール エル Energy regeneration control circuit and work machine
JP6090781B2 (en) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル Engine assist device and work machine

Also Published As

Publication number Publication date
WO2016083340A1 (en) 2016-06-02
JP2016098955A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6112559B2 (en) Fluid pressure circuit and work machine
JP5574375B2 (en) Energy regeneration control circuit and work machine
US20160238041A1 (en) Hydraulic Pressure Circuit and Working Machine
CN107949707B (en) Hydraulic drive device for working machine
JP6601835B2 (en) Fluid pressure circuit and work machine
US8881519B2 (en) Slewing type working machine
JP6532081B2 (en) Fluid pressure circuit and working machine
US10280589B2 (en) Hydraulic drive apparatus for construction machine
JP2015090193A (en) Fluid pressure circuit, and work machine
US20140150415A1 (en) Energy Recovery Hydraulic System
JP6261002B2 (en) Fluid pressure circuit and work machine
US9903393B2 (en) Construction machine
US9618019B2 (en) Hydraulic pressure control device for construction machinery
JP6601834B2 (en) Fluid pressure circuit and work machine
JP6493916B2 (en) Fluid pressure circuit and work machine
JP2008185182A (en) Hydraulic control system of working machine
JP6579571B2 (en) Fluid pressure circuit and work machine
JP7324370B2 (en) construction machinery
JP6529028B2 (en) Fluid pressure circuit and working machine
JP2009058096A (en) Fluid control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6261002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250