JP6213395B2 - Battery module manufacturing method - Google Patents

Battery module manufacturing method Download PDF

Info

Publication number
JP6213395B2
JP6213395B2 JP2014132328A JP2014132328A JP6213395B2 JP 6213395 B2 JP6213395 B2 JP 6213395B2 JP 2014132328 A JP2014132328 A JP 2014132328A JP 2014132328 A JP2014132328 A JP 2014132328A JP 6213395 B2 JP6213395 B2 JP 6213395B2
Authority
JP
Japan
Prior art keywords
adhesive layer
viscosity
peripheral surface
battery
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014132328A
Other languages
Japanese (ja)
Other versions
JP2016012416A (en
Inventor
善亮 辰己
善亮 辰己
幸助 草場
幸助 草場
祥宜 中村
祥宜 中村
猛 服部
猛 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2014132328A priority Critical patent/JP6213395B2/en
Publication of JP2016012416A publication Critical patent/JP2016012416A/en
Application granted granted Critical
Publication of JP6213395B2 publication Critical patent/JP6213395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電池セルと当該電池セルを保持するホルダとを含む電池モジュールを製造する方法に関する。   The present invention relates to a method for manufacturing a battery module including a battery cell and a holder for holding the battery cell.

電池モジュールにおける電池セルはホルダに接着されるのが一般的である。例えば、特許文献1に紹介されている電池モジュールは、複数の電池セルをホルダに一体に接着してなるものである。この種の電池モジュールは組電池とも呼ばれ、例えば車両用のバッテリ等の種々の用途に供されている。   In general, the battery cell in the battery module is bonded to a holder. For example, the battery module introduced in Patent Document 1 is formed by integrally bonding a plurality of battery cells to a holder. This type of battery module is also called an assembled battery, and is used for various applications such as a vehicle battery.

特許文献1に紹介されている電池モジュールにおいて、ホルダには孔状をなす電池保持部が設けられており、電池セルはこの電池保持部に挿入される。そして、ホルダにおける電池保持部の内周面と電池セルの外周面との間に接着剤を注入し、この接着剤を固化することにより接着層を形成している。しかし、電池保持部の内周面と電池セルの外周面との間に接着剤を注入する方法(所謂ポッティング法)によると、接着剤を注入・固化するのに時間がかかり、作業効率に劣る。   In the battery module introduced in Patent Document 1, the holder is provided with a battery holding part having a hole shape, and the battery cell is inserted into the battery holding part. And an adhesive agent is inject | poured between the internal peripheral surface of the battery holding part in a holder, and the outer peripheral surface of a battery cell, and the adhesive layer is formed by solidifying this adhesive agent. However, according to the method of injecting the adhesive between the inner peripheral surface of the battery holding part and the outer peripheral surface of the battery cell (so-called potting method), it takes time to inject and solidify the adhesive, resulting in poor working efficiency. .

当該作業効率を向上させるためには、例えば接着剤を電池セルの外周面に塗布し、接着剤が塗布された状態の電池セルを電池保持部に挿入する方法が考えられる。   In order to improve the working efficiency, for example, a method of applying an adhesive to the outer peripheral surface of the battery cell and inserting the battery cell in a state where the adhesive is applied into the battery holding part is conceivable.

ところで、電池セルをホルダに安定して保持するためには、ホルダに設けた電池保持部の内周面と電池セルの外周面との隙間をあまり大きくしないのが良いと考えられる。この場合には、狭い隙間に接着剤を満たす必要がある。しかし接着剤は比較的粘度が高いため電池保持部の内周面との摩擦抵抗が比較的大きく、均一に塗り広げ難い。このため、電池保持部の内周面と電池セルの外周面との狭い隙間に接着剤を均一に行き渡らせるのは容易ではなかった。そして、電池保持部の内周面と電池セルの外周面との隙間に接着剤が行き渡らず、接着層の内部に空気が巻き込まれると、接着剤と相手材(つまり電池保持部の内周面および/または電池セルの外周面)との接着面積が低下したり、接着剤自体の強度低下が生じたりする可能性があった。このため、接着強度を向上させ難く、電池セルをホルダに安定して接着一体化し難い問題があった。   By the way, in order to stably hold the battery cell in the holder, it is considered that the gap between the inner peripheral surface of the battery holding portion provided in the holder and the outer peripheral surface of the battery cell should not be so large. In this case, it is necessary to fill the adhesive in a narrow gap. However, since the adhesive has a relatively high viscosity, the frictional resistance with the inner peripheral surface of the battery holding portion is relatively large, and it is difficult to spread it uniformly. For this reason, it was not easy to spread the adhesive uniformly in a narrow gap between the inner peripheral surface of the battery holding portion and the outer peripheral surface of the battery cell. When the adhesive does not reach the gap between the inner peripheral surface of the battery holding portion and the outer peripheral surface of the battery cell, and air is caught inside the adhesive layer, the adhesive and the counterpart material (that is, the inner peripheral surface of the battery holding portion) And / or the outer peripheral surface of the battery cell) may be reduced, or the strength of the adhesive itself may be reduced. For this reason, there is a problem that it is difficult to improve the adhesive strength and it is difficult to stably bond and integrate the battery cell to the holder.

特開2013−8655号公報JP 2013-8655 A

本発明は上記事情に鑑みてなされたものであり、ホルダの電池保持部と電池セルとの間に充分に接着剤が充填された電池モジュールを製造するための方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the method for manufacturing the battery module with which the adhesive agent was fully filled between the battery holding part of the holder and the battery cell. .

上記課題を解決する本発明の第1の電池モジュールの製造方法は、
孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面および前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着層形成工程において、
前記電池セルの外周面に形成する第1接着層と、前記電池保持部の内周面に形成する第2接着層と、を同一組成の接着剤で構成し、
前記電池セルの外周面における軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記第1接着層を形成するとともに、
前記電池保持部の内周面における軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記第2接着層を形成することで、
前記挿入工程において、前記第1接着層と前記第2接着層とを相互的に作用させる方法である。
The manufacturing method of the 1st battery module of the present invention which solves the above-mentioned subject is,
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell and the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
In the adhesive layer forming step,
The first adhesive layer formed on the outer peripheral surface of the battery cell and the second adhesive layer formed on the inner peripheral surface of the battery holding portion are composed of an adhesive having the same composition,
In at least a partial region of the outer peripheral surface of the battery cell in the axial direction, the first adhesive layer is formed over the entire outer periphery of the battery cell;
By forming the second adhesive layer over the entire circumference of the inner peripheral surface of the battery holding part in at least a partial region in the axial direction on the inner peripheral surface of the battery holding part,
In the inserting step, the first adhesive layer and the second adhesive layer interact with each other.

上記課題を解決する本発明の第2の電池モジュールの製造方法は、
孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面または前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着剤を、高粘度接着剤と、前記高粘度接着剤と同一組成であり且つ前記高粘度接着剤よりも粘度の低い低粘度接着剤と、で構成し、
前記接着層形成工程において、
先ず、前記電池セルの外周面の軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記高粘度接着剤からなる高粘度接着層を形成し、次いで、前記高粘度接着層の外周面の軸方向の少なくとも一部の領域において、前記高粘度接着層の外周面の全周にわたって前記低粘度接着剤からなる低粘度接着層を形成するか、
または、
先ず、前記電池保持部の内周面の軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記高粘度接着剤からなる高粘度接着層を形成し、次いで、前記高粘度接着層の外周面の軸方向の少なくとも一部の領域において、前記高粘度接着層の全周にわたって前記低粘度接着剤からなる低粘度接着層を形成することで、
前記挿入工程において、前記高粘度接着層と前記低粘度接着層とを相互的に作用させる方法である。
The manufacturing method of the second battery module of the present invention that solves the above problems is as follows.
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
The adhesive comprises a high-viscosity adhesive, and a low-viscosity adhesive having the same composition as the high-viscosity adhesive and having a lower viscosity than the high-viscosity adhesive,
In the adhesive layer forming step,
First, a high-viscosity adhesive layer made of the high-viscosity adhesive is formed over the entire circumference of the outer peripheral surface of the battery cell in at least a partial region of the outer peripheral surface of the battery cell, and then the high-viscosity adhesive Forming a low-viscosity adhesive layer composed of the low-viscosity adhesive over the entire circumference of the outer peripheral surface of the high-viscosity adhesive layer in at least a partial region of the outer peripheral surface of the layer;
Or
First, in at least a partial region of the inner peripheral surface of the battery holding portion in the axial direction, a high viscosity adhesive layer made of the high viscosity adhesive is formed over the entire inner peripheral surface of the battery holding portion, and then In at least a part of the axial direction of the outer peripheral surface of the high-viscosity adhesive layer, by forming a low-viscosity adhesive layer made of the low-viscosity adhesive over the entire circumference of the high-viscosity adhesive layer,
In the inserting step, the high-viscosity adhesive layer and the low-viscosity adhesive layer interact with each other.

上記課題を解決する本発明の第3の電池モジュールの製造方法は、
孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面または前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着層形成工程において、
先ず、前記電池セルの外周面の軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記接着層を形成し、次いで、前記接着層を外周面側から加熱することで、前記接着層における外周面側部分を内周面側部分に比べて低粘度にするか、
または、
前記電池保持部の内周面の軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記接着層を形成し、次いで、前記接着層を内周面側から加熱することで、前記接着層における内周面側部分を外周面側部分に比べて低粘度にすることで、
前記挿入工程において、前記接着層における前記外周面側部分と前記内周面側部分とを相互的に作用させる方法である。
The third battery module manufacturing method of the present invention that solves the above problems is as follows.
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
In the adhesive layer forming step,
First, in at least a partial region of the outer peripheral surface of the battery cell in the axial direction, the adhesive layer is formed over the entire outer periphery of the battery cell, and then the adhesive layer is heated from the outer peripheral surface side. , Or lower the viscosity of the outer peripheral surface side portion of the adhesive layer compared to the inner peripheral surface side portion,
Or
The adhesive layer is formed over the entire circumference of the inner peripheral surface of the battery holding portion in at least a partial region of the inner peripheral surface of the battery holding portion, and then the adhesive layer is heated from the inner peripheral surface side. By making the inner peripheral surface side portion in the adhesive layer lower in viscosity than the outer peripheral surface side portion,
In the inserting step, the outer peripheral surface side portion and the inner peripheral surface side portion of the adhesive layer are caused to interact with each other.

本発明の第1の電池モジュールの製造方法は、下記の要素(1)を有するのが好ましく、要素(1)および要素(2)を有するか、または、要素(1)および要素(3)を有するのがより好ましい。   The manufacturing method of the first battery module of the present invention preferably has the following element (1), and has the element (1) and the element (2) or the element (1) and the element (3). More preferably.

また、本発明の第2の電池モジュールの製造方法は、下記の要素(2)または要素(3)を有するのが好ましい。
(1)前記第1接着層を構成する接着剤と、前記第2接着層を構成する接着剤と、の一方は高粘度接着剤であり、他方は前記高粘度接着剤よりも粘度の低い低粘度接着剤である。
(2)前記高粘度接着剤および前記低粘度接着剤は、同一組成の接着剤からなり、温度制御することで粘度調整されたものである。
(3)前記高粘度接着剤および前記低粘度接着剤は、基材と硬化剤とを含む同一組成の接着剤からなり、前記基材と前記硬化剤との反応開始後の経過時間を制御することで粘度調整されたものである。
Moreover, it is preferable that the manufacturing method of the 2nd battery module of this invention has the following element (2) or element (3).
(1) One of the adhesive constituting the first adhesive layer and the adhesive constituting the second adhesive layer is a high-viscosity adhesive, and the other is a low viscosity having a lower viscosity than the high-viscosity adhesive. It is a viscous adhesive.
(2) The high-viscosity adhesive and the low-viscosity adhesive are made of an adhesive having the same composition, and the viscosity is adjusted by controlling the temperature.
(3) The high-viscosity adhesive and the low-viscosity adhesive are made of an adhesive having the same composition including a base material and a curing agent, and control an elapsed time after the start of the reaction between the base material and the curing agent. Thus, the viscosity is adjusted.

なお、本発明の第1の電池モジュールの製造方法〜第3の電池モジュールの製造方法においては、準備工程および挿入工程は同じであり、接着層形成工程のみが異なる。但し、後述するように、挿入工程における接着剤の挙動は、接着層の構成および形成位置に応じて異なる。   In the first battery module manufacturing method to the third battery module manufacturing method of the present invention, the preparation step and the insertion step are the same, and only the adhesive layer forming step is different. However, as will be described later, the behavior of the adhesive in the insertion step varies depending on the configuration and formation position of the adhesive layer.

本発明の第1の電池モジュールの製造方法〜第3の電池モジュールの製造方法は、何れも、接着層形成工程において、同一組成の接着剤を用いる。各電池モジュールの製造方法における接着層形成工程の象徴的な違いは、以下の点である。   The first battery module manufacturing method to the third battery module manufacturing method of the present invention all use an adhesive having the same composition in the adhesive layer forming step. The symbolic difference in the adhesive layer forming step in each battery module manufacturing method is as follows.

第1の電池モジュールの製造方法における接着層形成工程では、同一組成の接着剤からなる接着層を電池セルの外周面と電池保持部の内周面とにそれぞれ形成する。   In the adhesive layer forming step in the first battery module manufacturing method, an adhesive layer made of an adhesive having the same composition is formed on the outer peripheral surface of the battery cell and the inner peripheral surface of the battery holding part.

第2の電池モジュールの製造方法における接着層形成工程では、電池セルの外周面または電池保持部の内周面に接着層を形成し、当該接着層は同一組成の接着剤からなり粘度の異なる2層構造をなすとともに表面側が低粘度である。   In the adhesive layer forming step in the second battery module manufacturing method, an adhesive layer is formed on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion, and the adhesive layer is made of an adhesive having the same composition and has a different viscosity. It has a layer structure and has a low viscosity on the surface side.

第3の電池モジュールの製造方法における接着層形成工程では、電池セルの外周面または電池保持部の内周面に接着層を形成し、当該接着層を表面側から加熱することによって接着層を軟化させ、接着層における表面側つまり加熱した側の部分を他の部分よりも低粘度にする。   In the adhesive layer forming step in the third battery module manufacturing method, an adhesive layer is formed on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion, and the adhesive layer is softened by heating the adhesive layer from the surface side. The surface side, that is, the heated side portion of the adhesive layer is made to have a lower viscosity than the other portions.

以下、必要に応じて、本発明の第1の電池モジュールの製造方法を第1の製造方法と呼び、第2の電池モジュールの製造方法を第2の製造方法と呼び、第3の電池モジュールの製造方法を第3の製造方法と呼ぶ。   Hereinafter, the first battery module manufacturing method of the present invention is referred to as a first manufacturing method, the second battery module manufacturing method is referred to as a second manufacturing method, and the third battery module The manufacturing method is referred to as a third manufacturing method.

本発明の第1〜第3の電池モジュールの製造方法によると、ホルダの電池保持部と電池セルとの間に接着剤を充分に充填できる。   According to the manufacturing method of the 1st-3rd battery module of this invention, an adhesive agent can fully be filled between the battery holding part and battery cell of a holder.

実施例1の電池モジュールを模式的に表す斜視図である。3 is a perspective view schematically illustrating a battery module of Example 1. FIG. 実施例1の電池モジュールを模式的に表す分解斜視図である。2 is an exploded perspective view schematically showing the battery module of Example 1. FIG. 実施例1の電池モジュールを図1中X−X位置で切断した様子を模式的に表す断面図である。It is sectional drawing which represents typically a mode that the battery module of Example 1 was cut | disconnected in the XX position in FIG. 実施例1の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。It is explanatory drawing which represents typically the contact bonding layer formation process and insertion process in the manufacturing method of Example 1. FIG. 実施例2の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。It is explanatory drawing which represents typically the contact bonding layer formation process and insertion process in the manufacturing method of Example 2. FIG. 実施例4の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。It is explanatory drawing which represents typically the contact bonding layer formation process in the manufacturing method of Example 4, and an insertion process. 実施例5の電池モジュールを図1中X−X位置と同位置で切断した様子を模式的に表す断面図である。It is sectional drawing which represents typically a mode that the battery module of Example 5 was cut | disconnected in the same position as XX position in FIG. 実施例5の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。It is explanatory drawing which represents typically the contact bonding layer formation process in the manufacturing method of Example 5, and an insertion process.

以下、具体例を挙げて本発明の電池モジュールの製造方法を説明する。以下、必要に応じて、各実施例の電池モジュールの製造方法を単に各実施例の製造方法と略する。   Hereinafter, the manufacturing method of the battery module of the present invention will be described with specific examples. Hereinafter, the manufacturing method of the battery module of each embodiment is simply abbreviated as the manufacturing method of each embodiment, as necessary.

(実施例1)
実施例1は本発明の第2の電池モジュールの製造方法に関する。図1は実施例1の電池モジュールを模式的に表す斜視図である。図2は、図1に示す実施例1の電池モジュールの分解斜視図である。図3は、実施例1の電池モジュールを図1中X−X位置で切断した様子を模式的に表す断面図である。図4は実施例1の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。以下、実施例において、上、下、左、右、前、後とは図1に示す上、下、左、右、前、後を指す。実施例において、電池セルの軸方向Yとは図1に示す上下方向を指す。なお、電池セル以外の部材における軸方向Yとは、図1に示す組み付け状態において軸方向Yに一致する方向を指す。さらに、以下、電池セルの挿入方向とは、軸方向Yに一致する方向を指す。
Example 1
Example 1 relates to a method for manufacturing a second battery module of the present invention. 1 is a perspective view schematically showing a battery module of Example 1. FIG. FIG. 2 is an exploded perspective view of the battery module of Example 1 shown in FIG. FIG. 3 is a cross-sectional view schematically showing a state where the battery module of Example 1 is cut at the position XX in FIG. 1. 4 is an explanatory view schematically showing an adhesive layer forming step and an insertion step in the manufacturing method of Example 1. FIG. Hereinafter, in the embodiments, the terms “up”, “down”, “left”, “right”, “front”, and “rear” refer to “upper, lower, left, right, front, and rear” shown in FIG. In the examples, the axial direction Y of the battery cell refers to the vertical direction shown in FIG. In addition, the axial direction Y in members other than a battery cell refers to the direction which corresponds to the axial direction Y in the assembly | attachment state shown in FIG. Further, hereinafter, the insertion direction of the battery cell refers to a direction that coincides with the axial direction Y.

<電池モジュールの製造方法>
実施例1の電池モジュールの製造方法は、電池セル1、接着層4およびホルダ5を持つ電池モジュール(図1および図2参照)を製造する方法である。
<Production method of battery module>
The battery module manufacturing method of Example 1 is a method of manufacturing a battery module (see FIGS. 1 and 2) having the battery cell 1, the adhesive layer 4, and the holder 5.

各電池セル1は、ホルダ5に設けられた貫通孔状の電池保持部50に挿入される。接着層4は、後述する接着剤が固化してなる層であり、電池保持部50の内周面51と、電池セル1の外周面11と、の間に介在し、両者を固着する。実施例1の電池モジュールの製造方法は、準備工程、接着層形成工程および挿入工程を備える。   Each battery cell 1 is inserted into a through-hole battery holder 50 provided in the holder 5. The adhesive layer 4 is a layer formed by solidifying an adhesive, which will be described later. The adhesive layer 4 is interposed between the inner peripheral surface 51 of the battery holding unit 50 and the outer peripheral surface 11 of the battery cell 1 and fixes them together. The manufacturing method of the battery module of Example 1 includes a preparation process, an adhesive layer formation process, and an insertion process.

(準備工程)
準備工程においては、上述した電池セル1およびホルダ5を準備した。電池セル1は略円柱状をなし、ホルダ5の電池保持部50は電池セル1よりもやや大径の貫通孔状をなす。電池セル1は、図1および図3に示す組み付け状態において、ホルダ5の電池保持部50内部に配置される部分と、その他の部分、つまり電池保持部50の外部に配置される部分とを有する。したがって、電池セル1の外周面11は、組み付け状態において、ホルダ5の電池保持部50の内周面51に対面する領域(固着領域Zと呼ぶ)と、その他の領域と、を有する。固着領域Zは、電池セル1の外周面11における軸方向Yの一部の領域からなる。また、固着領域Zは電池セル1の周方向の全周にわたって連続的に形成された。
(Preparation process)
In the preparation step, the battery cell 1 and the holder 5 described above were prepared. The battery cell 1 has a substantially cylindrical shape, and the battery holding portion 50 of the holder 5 has a through-hole shape having a slightly larger diameter than the battery cell 1. The battery cell 1 has a portion disposed inside the battery holding portion 50 of the holder 5 and another portion, that is, a portion disposed outside the battery holding portion 50 in the assembled state shown in FIGS. 1 and 3. . Therefore, the outer peripheral surface 11 of the battery cell 1 has a region facing the inner peripheral surface 51 of the battery holding portion 50 of the holder 5 (referred to as a fixing region Z) and other regions in the assembled state. The fixing region Z is a partial region in the axial direction Y on the outer peripheral surface 11 of the battery cell 1. Further, the fixing region Z was continuously formed over the entire circumference of the battery cell 1 in the circumferential direction.

(接着層形成工程)
図4中左の部分に示すように、実施例1の製造方法における接着層形成工程では、電池セル1の外周面11に接着剤を塗布し、接着層4を形成した。接着剤としては、粘度の異なる2種の接着剤(つまり、高粘度接着剤、低粘度接着剤)を用いた。
(Adhesive layer forming process)
As shown in the left part of FIG. 4, in the adhesive layer forming step in the manufacturing method of Example 1, an adhesive was applied to the outer peripheral surface 11 of the battery cell 1 to form the adhesive layer 4. As the adhesive, two kinds of adhesives having different viscosities (that is, a high viscosity adhesive and a low viscosity adhesive) were used.

先ず、高粘度接着剤を電池セル1の外周面11における固着領域Zに塗布して、固着領域Zの全体に高粘度接着層41を形成した。次いで、高粘度接着層41の外周面に低粘度接着剤を塗布し、低粘度接着層45を形成した。低粘度接着層45は高粘度接着層41の外周面全体にわたって形成された。実施例1の製造方法においては、高粘度接着剤と低粘度接着剤とは同一組成の接着剤であり、低粘度接着剤は高粘度接着剤よりも高温にすることで粘度低下させたものである。このような接着剤としては、フェノール樹脂、エポキシ樹脂、アクリル樹脂に代表される合成樹脂系接着剤、酢酸ビニルに代表されるエマルジョン系接着剤、エチレン酢酸ビニル共重合体(EVA)に代表されるホットメルト系接着剤、クロロプレンに代表される合成ゴム系接着剤等を挙げることができる。   First, a high-viscosity adhesive was applied to the fixing region Z on the outer peripheral surface 11 of the battery cell 1 to form a high-viscosity adhesive layer 41 on the entire fixing region Z. Next, a low viscosity adhesive was applied to the outer peripheral surface of the high viscosity adhesive layer 41 to form a low viscosity adhesive layer 45. The low viscosity adhesive layer 45 was formed over the entire outer peripheral surface of the high viscosity adhesive layer 41. In the production method of Example 1, the high-viscosity adhesive and the low-viscosity adhesive are adhesives having the same composition, and the low-viscosity adhesive is obtained by lowering the viscosity by increasing the temperature to be higher than that of the high-viscosity adhesive. is there. Examples of such adhesives include synthetic resin adhesives represented by phenol resins, epoxy resins, and acrylic resins, emulsion adhesives represented by vinyl acetate, and ethylene vinyl acetate copolymers (EVA). Examples thereof include hot melt adhesives and synthetic rubber adhesives represented by chloroprene.

この工程によって、低粘度接着層45と高粘度接着層41とからなる接着層4を形成した。   By this step, the adhesive layer 4 composed of the low viscosity adhesive layer 45 and the high viscosity adhesive layer 41 was formed.

なお、接着層4の外径は、ホルダ5における電池保持部50の孔径よりも大きい。つまり、接着層4の厚さは、組み付け状態における電池セル1の外周面11と電池保持部50の内周面51との距離よりも大きい。さらに換言すると、図4中左側部分に示すように、挿入工程前の段階においてホルダ5の電池保持部50と電池セル1とを軸合わせして配置したとき(以下、必要に応じて軸合せ時と呼ぶ)に、筒状をなす接着層4の外周面は電池保持部50の内周面51よりも径方向外側に位置する。また、略筒状をなす接着層4の内径は、電池保持部50の孔径よりも小さい。つまり、筒状をなす接着層4の内周面は電池セルの外周面11と一致するため、軸合せ時には、接着層4の内周面は電池保持部50の内周面51よりも径方向内側に位置する。   The outer diameter of the adhesive layer 4 is larger than the hole diameter of the battery holding part 50 in the holder 5. That is, the thickness of the adhesive layer 4 is larger than the distance between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding part 50 in the assembled state. In other words, as shown in the left part of FIG. 4, when the battery holding part 50 of the holder 5 and the battery cell 1 are aligned and arranged in the stage before the insertion process (hereinafter referred to as alignment when necessary). In other words, the outer peripheral surface of the cylindrical adhesive layer 4 is located on the radially outer side of the inner peripheral surface 51 of the battery holding unit 50. Further, the inner diameter of the substantially cylindrical adhesive layer 4 is smaller than the hole diameter of the battery holding portion 50. That is, since the inner peripheral surface of the cylindrical adhesive layer 4 coincides with the outer peripheral surface 11 of the battery cell, the inner peripheral surface of the adhesive layer 4 is more radial than the inner peripheral surface 51 of the battery holding portion 50 during alignment. Located inside.

実施例1の製造方法において、高粘度接着剤の塗布厚さは0.3〜2.0mm程度であった。一方、低粘度接着剤の塗布厚さは0.05〜0.3mm程度であった。したがって、高粘度接着剤の塗布厚さは低粘度接着剤の塗布厚さよりも厚かった。高粘度接着剤の塗布厚さ、つまり、高粘度接着層41の厚さは、電池モジュールにおける電池セル1の外周面11と電池保持部50の内周面51との距離よりも大きかった。低粘度接着剤の塗布厚さ、つまり、低粘度接着層45の厚さは、電池モジュールにおける電池セル1の外周面11と電池保持部50の内周面51との距離よりも小さかった。なお、ここでいう低粘度接着層45の厚さおよび高粘度接着層41の厚さとは、各々の厚さの平均値を指し、電池セル1の外周面11と電池保持部50の内周面51との距離とは、当該距離の平均値を指す。   In the manufacturing method of Example 1, the coating thickness of the high viscosity adhesive was about 0.3 to 2.0 mm. On the other hand, the coating thickness of the low viscosity adhesive was about 0.05 to 0.3 mm. Therefore, the application thickness of the high viscosity adhesive was thicker than the application thickness of the low viscosity adhesive. The coating thickness of the high viscosity adhesive, that is, the thickness of the high viscosity adhesive layer 41 was larger than the distance between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding part 50 in the battery module. The coating thickness of the low viscosity adhesive, that is, the thickness of the low viscosity adhesive layer 45 was smaller than the distance between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding part 50 in the battery module. Here, the thickness of the low-viscosity adhesive layer 45 and the thickness of the high-viscosity adhesive layer 41 refer to the average values of the respective thicknesses, and the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface of the battery holding unit 50. The distance to 51 refers to the average value of the distances.

(挿入工程)
上述した接着層形成工程後に、接着層4を形成した電池セル1を、ホルダ5の電池保持部50に対して軸合わせして、電池セル1を電池保持部50に挿入した。具体的には、図4中の左側の部分に示すように、固定したホルダ5に対して電池セル1を軸方向Yに沿って移動させることで、電池セル1を電池保持部50に挿入した。このとき電池セル1は図1中下側から上側に向けてホルダ5に対して相対移動した。
(Insertion process)
After the adhesive layer forming step described above, the battery cell 1 on which the adhesive layer 4 was formed was aligned with the battery holding part 50 of the holder 5, and the battery cell 1 was inserted into the battery holding part 50. Specifically, as shown in the left part of FIG. 4, the battery cell 1 is inserted into the battery holder 50 by moving the battery cell 1 along the axial direction Y with respect to the fixed holder 5. . At this time, the battery cell 1 moved relative to the holder 5 from the lower side to the upper side in FIG.

上述したように、電池セル1の外周面11には接着層4が設けられ、低粘度接着層45は接着層4における外周側に位置し、高粘度接着層41は接着層4における内周側に位置する。また、高粘度接着層41の厚さと低粘度接着層45の厚さとの和は、電池モジュールにおける電池セル1の外周面11と電池保持部50の内周面51との距離よりも大きい。より詳しくは、電池セル1を電池保持部50に挿入する前の段階において、接着層4の厚さは、電池保持部50の内周面51と電池セル1の外周面11とで区画される空間(接着空間20と呼ぶ)の厚さ、すなわち、略筒状をなす接着空間20の外径と内径との差の1/2よりも、大きい。このため、図4中の中央部分に示すように、電池セル1を電池保持部50に挿入する際には、高粘度接着層41と低粘度接着層45とが圧接する。高粘度接着剤からなる高粘度接着層41の粘度は、低粘度接着剤からなる低粘度接着層45の粘度よりも高く、高粘度接着層41は低粘度接着層45に比べて変形し難い。したがって、このとき低粘度接着層45は高粘度接着層41に押圧されて大きく変形し、接着空間20に充填される。   As described above, the adhesive layer 4 is provided on the outer peripheral surface 11 of the battery cell 1, the low viscosity adhesive layer 45 is positioned on the outer peripheral side of the adhesive layer 4, and the high viscosity adhesive layer 41 is the inner peripheral side of the adhesive layer 4. Located in. The sum of the thickness of the high-viscosity adhesive layer 41 and the thickness of the low-viscosity adhesive layer 45 is larger than the distance between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding unit 50 in the battery module. More specifically, the thickness of the adhesive layer 4 is defined by the inner peripheral surface 51 of the battery holding unit 50 and the outer peripheral surface 11 of the battery cell 1 before the battery cell 1 is inserted into the battery holding unit 50. It is larger than the thickness of the space (referred to as the bonding space 20), that is, ½ of the difference between the outer diameter and the inner diameter of the bonding space 20 having a substantially cylindrical shape. For this reason, as shown in the center portion in FIG. 4, when the battery cell 1 is inserted into the battery holding portion 50, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are in pressure contact. The viscosity of the high-viscosity adhesive layer 41 made of a high-viscosity adhesive is higher than the viscosity of the low-viscosity adhesive layer 45 made of a low-viscosity adhesive, and the high-viscosity adhesive layer 41 is less likely to deform than the low-viscosity adhesive layer 45. Accordingly, at this time, the low-viscosity adhesive layer 45 is pressed by the high-viscosity adhesive layer 41 and greatly deformed, and is filled in the adhesive space 20.

換言すると、図4の中央の部分に示すように、電池セル1を電池保持部50に挿入する際には、高粘度接着層41と低粘度接着層45とが圧接し、高粘度接着層41と低粘度接着層45との境界面において、低粘度接着層45が高粘度接着層41に対して変形する。このため低粘度接着層45は、電池保持部50の内周面51と高粘度接着層41の外周面41aとの間に充填される充填材として機能し、高粘度接着層41は低粘度接着層45を塗り広げるための押圧材として機能する。さらに低粘度接着層45は高粘度接着層41に対する潤滑剤としても機能し、高粘度接着層41は充填材としても機能する。このため挿入工程後には、高粘度接着層41と低粘度接着層45とからなる接着層4は、電池保持部50と電池セル1との間に設けられた接着空間20に隙間なく充填される。   In other words, as shown in the center part of FIG. 4, when the battery cell 1 is inserted into the battery holding part 50, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are in pressure contact, and the high-viscosity adhesive layer 41. The low-viscosity adhesive layer 45 is deformed relative to the high-viscosity adhesive layer 41 at the interface between the low-viscosity adhesive layer 45 and the low-viscosity adhesive layer 45. Therefore, the low-viscosity adhesive layer 45 functions as a filler filled between the inner peripheral surface 51 of the battery holding unit 50 and the outer peripheral surface 41a of the high-viscosity adhesive layer 41, and the high-viscosity adhesive layer 41 has a low-viscosity adhesive. It functions as a pressing material for spreading the layer 45. Further, the low viscosity adhesive layer 45 also functions as a lubricant for the high viscosity adhesive layer 41, and the high viscosity adhesive layer 41 also functions as a filler. For this reason, after the insertion step, the adhesive layer 4 composed of the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 is filled in the adhesive space 20 provided between the battery holding part 50 and the battery cell 1 without a gap. .

さらに換言すると、低粘度接着層45は、高粘度接着層41とともに母材の外周面(実施例1では電池セル1の外周面11)に形成されるとともに、相手材(実施例1ではホルダ5)との境界に位置する。このため低粘度接着層45は、母材(電池セル1)および高粘度接着層41と相手材(ホルダ5)とを摺動させるための潤滑剤として機能するとともに、低粘度接着層45自体が相手材(ホルダ5)と高粘度接着層41との間で塗り広げられて、相手材(ホルダ5)と高粘度接着層41との隙間に充填される。したがって低粘度接着層45と相手材(ホルダ5)との間には隙間が生じ難い。   In other words, the low-viscosity adhesive layer 45 is formed on the outer peripheral surface of the base material (in the first embodiment, the outer peripheral surface 11 of the battery cell 1) together with the high-viscosity adhesive layer 41, and the counterpart material (the holder 5 in the first embodiment). ). For this reason, the low-viscosity adhesive layer 45 functions as a lubricant for sliding the base material (battery cell 1) and the high-viscosity adhesive layer 41 and the counterpart material (holder 5), and the low-viscosity adhesive layer 45 itself It is spread between the counterpart material (holder 5) and the high-viscosity adhesive layer 41 and filled in the gap between the counterpart material (holder 5) and the high-viscosity adhesive layer 41. Therefore, a gap is hardly generated between the low-viscosity adhesive layer 45 and the counterpart material (holder 5).

高粘度接着層41もまた変形可能であるため、このとき高粘度接着層41もまた低粘度接着層45の変形に伴って変形する。したがって、低粘度接着層45と高粘度接着層41との間にも隙間が生じ難い。そして、まだ接着剤で濡れていない相手材(ホルダ5)側に低粘度接着層45があることで、相手材(ホルダ5)が接着層4(主として低粘度接着層45)によって濡れ易く、上記した接着空間20には隙間なく、またはほぼ隙間なく接着層4が充填される。   Since the high-viscosity adhesive layer 41 is also deformable, the high-viscosity adhesive layer 41 is also deformed along with the deformation of the low-viscosity adhesive layer 45 at this time. Therefore, a gap is hardly generated between the low viscosity adhesive layer 45 and the high viscosity adhesive layer 41. Since the low-viscosity adhesive layer 45 is on the side of the counterpart material (holder 5) that has not yet been wetted with the adhesive, the counterpart material (holder 5) is easily wetted by the adhesive layer 4 (mainly the low-viscosity adhesive layer 45). The adhesive layer 4 is filled in the bonded space 20 without a gap or almost without a gap.

高粘度接着層41および低粘度接着層45の形状に着目すると、基本的には、高粘度接着層41の変形量は、挿入後端側(図1における下側)から挿入先端側(図1における上側)に向けて徐々に大きくなる。高粘度接着層41における挿入先端側の部分は、挿入後端側の部分に比べて、低粘度接着層45による反力をより大きく受けるためである。この高粘度接着層41の変形量の差は、高粘度接着層41と低粘度接着剤45との粘度の差が小さくなればなる程、顕著である。一方、高粘度接着層41と低粘度接着層45との粘度の差が大きければ、高粘度接着層41の変形量の差は小さく、高粘度接着層41の肉厚は、挿入後端側から挿入先端側に至るまで略一定となる。実施例1の製造方法においては、高粘度接着層41と低粘度接着層45との粘度の差が大きい。このため、上記した高粘度接着層41の変形量の差は小さく、高粘度接着層41の肉厚は略一定であるとともに、低粘度接着層45の肉厚もまた略一定である。   Focusing on the shapes of the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45, basically, the deformation amount of the high-viscosity adhesive layer 41 is changed from the insertion rear end side (lower side in FIG. 1) to the insertion front end side (FIG. 1). Gradually increases toward the upper side of This is because the insertion tip end portion of the high viscosity adhesive layer 41 receives a greater reaction force from the low viscosity adhesive layer 45 than the insertion rear end portion. The difference in the deformation amount of the high-viscosity adhesive layer 41 becomes more prominent as the difference in viscosity between the high-viscosity adhesive layer 41 and the low-viscosity adhesive 45 becomes smaller. On the other hand, if the difference in viscosity between the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 is large, the difference in deformation amount of the high-viscosity adhesive layer 41 is small, and the thickness of the high-viscosity adhesive layer 41 is from the rear end side of the insertion. It becomes substantially constant until reaching the insertion tip side. In the manufacturing method of Example 1, the difference in viscosity between the high viscosity adhesive layer 41 and the low viscosity adhesive layer 45 is large. Therefore, the difference in deformation amount of the high-viscosity adhesive layer 41 is small, the thickness of the high-viscosity adhesive layer 41 is substantially constant, and the thickness of the low-viscosity adhesive layer 45 is also substantially constant.

(セル固着工程)
上記した挿入工程後、電池保持部50に電池セル1が挿入され、かつ、接着空間20に高粘度接着層41および低粘度接着層45が充填されてなる、電池セル1、ホルダ5、および接着層4の複合体を静置し、流体状の接着層4を固体状に状態変化させることで、接着層4と電池セル1とホルダ5とを有する実施例1の電池モジュールを得た。
(Cell fixing process)
After the above-described insertion process, the battery cell 1 is inserted into the battery holding unit 50, and the adhesive space 20 is filled with the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45. The composite of the layer 4 was allowed to stand, and the fluid adhesive layer 4 was changed to a solid state, whereby the battery module of Example 1 having the adhesive layer 4, the battery cell 1, and the holder 5 was obtained.

実施例1の製造方法においては、接着層4を低粘度接着層45と高粘度接着層41との2層で構成し、上記したように挿入工程において、高粘度接着層41と低粘度接着層45とを相互的に作用させたことで、ホルダ5の電池保持部50と電池セル1との間に充分に接着層4が充填されてなる電池モジュールを容易に製造できる。   In the manufacturing method of Example 1, the adhesive layer 4 is composed of two layers of the low-viscosity adhesive layer 45 and the high-viscosity adhesive layer 41. As described above, in the insertion step, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer are formed. Thus, the battery module in which the adhesive layer 4 is sufficiently filled between the battery holding portion 50 of the holder 5 and the battery cell 1 can be easily manufactured.

なお、実施例1の製造方法の接着層形成工程では、低粘度接着層45は高粘度接着層41の外周面全体にわたって形成したが、低粘度接着層45の形成位置はこれに限定されない。つまり、本発明の第2の製造方法においては、低粘度接着層45は高粘度接着層41の周方向全周にわたって形成すれば良く、例えば、低粘度接着層45を高粘度接着層41の外周面における軸方向の一部にのみ形成しても良い。   In the adhesive layer forming step of the manufacturing method of Example 1, the low-viscosity adhesive layer 45 is formed over the entire outer peripheral surface of the high-viscosity adhesive layer 41, but the formation position of the low-viscosity adhesive layer 45 is not limited to this. That is, in the second manufacturing method of the present invention, the low-viscosity adhesive layer 45 may be formed over the entire circumference in the circumferential direction of the high-viscosity adhesive layer 41. You may form only in a part of axial direction in a surface.

また、実施例1では電池セル1の外周面11に接着層4を形成したが、接着層4は電池保持部50の内周面51に形成しても良い。この場合、低粘度接着層45を内周側に配置し、高粘度接着層41を外周側に配置すれば、実施例1の製造方法と同様に、挿入工程において相手材(この場合には電池セル1)側に低粘度接着層45が配置され、接着層4は接着空間20に隙間なく充填される。そして、この場合にも、低粘度接着層45は高粘度接着層41の周方向全周にわたって形成すれば良い。   In Example 1, the adhesive layer 4 is formed on the outer peripheral surface 11 of the battery cell 1. However, the adhesive layer 4 may be formed on the inner peripheral surface 51 of the battery holding unit 50. In this case, if the low-viscosity adhesive layer 45 is arranged on the inner peripheral side and the high-viscosity adhesive layer 41 is arranged on the outer peripheral side, the mating material (in this case the battery in this case) is inserted as in the manufacturing method of the first embodiment. The low-viscosity adhesive layer 45 is disposed on the cell 1) side, and the adhesive layer 4 is filled in the adhesive space 20 without a gap. In this case, the low-viscosity adhesive layer 45 may be formed over the entire circumference of the high-viscosity adhesive layer 41 in the circumferential direction.

以下、参考までに実施例1の電池モジュールを説明する。   Hereinafter, the battery module of Example 1 will be described for reference.

<電池モジュール>
実施例1の電池モジュールは、実施例1の電池モジュールの製造方法で得られたものである。図1および図2に示すように、実施例1の電池モジュールは、電池セル1、接着層4、ホルダ5、セパレータ90、および、バスバー91で構成されている。
<Battery module>
The battery module of Example 1 was obtained by the battery module manufacturing method of Example 1. As shown in FIGS. 1 and 2, the battery module of Example 1 includes a battery cell 1, an adhesive layer 4, a holder 5, a separator 90, and a bus bar 91.

実施例1の電池モジュールは16個の電池セル1を持つ。各電池セル1は、略同形の円筒形セルであり、軸方向Yの両端にそれぞれ端子19(正極端子、負極端子)を持つ。ホルダ5は略板状をなし、16個の電池保持部50を持つ。各電池保持部50は貫通孔状をなし、各電池保持部50の内径は各電池セル1の外径よりもやや大きい。各電池保持部50にはそれぞれ対応する電池セル1が挿入される。実施例1の電池モジュールにおいて、各電池セル1は、4本一組として二つのバスバー91によって直列に接続される。バスバー91と電池セル1との間には、図略の導電材層が設けられている。導電材層はバスバー91と電池セル1の端子19とを電気的に接続するための層である。導電材層の形状は特に限定されず、タブ溶接やワイヤーボンディング、ろう付け等の方法の既知の方法で形成できる。   The battery module of Example 1 has 16 battery cells 1. Each battery cell 1 is a substantially identical cylindrical cell, and has terminals 19 (a positive terminal and a negative terminal) at both ends in the axial direction Y, respectively. The holder 5 is substantially plate-shaped and has 16 battery holding portions 50. Each battery holding part 50 has a through hole shape, and the inner diameter of each battery holding part 50 is slightly larger than the outer diameter of each battery cell 1. Corresponding battery cells 1 are inserted into the respective battery holding portions 50. In the battery module of Example 1, each battery cell 1 is connected in series by two bus bars 91 as a set of four. A conductive material layer (not shown) is provided between the bus bar 91 and the battery cell 1. The conductive material layer is a layer for electrically connecting the bus bar 91 and the terminal 19 of the battery cell 1. The shape of the conductive material layer is not particularly limited and can be formed by a known method such as tab welding, wire bonding, or brazing.

バスバー91と電池セル1との間には、局所的に、セパレータ90が介在している。セパレータ90は、電池セル1とバスバー91との電気的接続を部分的に遮断することで、短絡を防ぎつつ、バスバー91によって電池セル1を接続するための部材である。セパレータ90は絶縁材で構成すれば良く、本実施例では絶縁樹脂製である。   A separator 90 is locally interposed between the bus bar 91 and the battery cell 1. The separator 90 is a member for connecting the battery cell 1 by the bus bar 91 while partially preventing the electrical connection between the battery cell 1 and the bus bar 91 to prevent a short circuit. The separator 90 may be made of an insulating material and is made of an insulating resin in this embodiment.

接着層4は、後述する接着剤が固化してなる層であり、ホルダ5に設けられている電池保持部50の内周面51と、電池セル1の外周面11と、の間に介在し、電池保持部50の内周面51および電池セル1の外周面11に固着している。図3に示すように、接着層4は同組成の接着剤からなる高粘度接着層41および低粘度接着層45とを持つ二層構造をなす。接着層4は、電池セル1の固着領域Zに設けられている。接着層4は固着領域Zにおいて、電池セル1の周方向全周にわたって電池保持部50の内周面51と電池セル1の外周面11との間に介在している。このため接着層4は、実施例1においては図2に示すように略筒状をなす。   The adhesive layer 4 is a layer formed by solidifying an adhesive, which will be described later, and is interposed between the inner peripheral surface 51 of the battery holding part 50 provided in the holder 5 and the outer peripheral surface 11 of the battery cell 1. The battery holder 50 is fixed to the inner peripheral surface 51 and the outer peripheral surface 11 of the battery cell 1. As shown in FIG. 3, the adhesive layer 4 has a two-layer structure having a high-viscosity adhesive layer 41 and a low-viscosity adhesive layer 45 made of an adhesive having the same composition. The adhesive layer 4 is provided in the fixing region Z of the battery cell 1. The adhesive layer 4 is interposed between the inner peripheral surface 51 of the battery holding unit 50 and the outer peripheral surface 11 of the battery cell 1 over the entire circumference in the circumferential direction of the battery cell 1 in the fixing region Z. For this reason, the adhesive layer 4 has a substantially cylindrical shape as shown in FIG.

高粘度接着層41は、固着領域Zにおいて、電池セル1の周方向全周にわたって電池セル1の外周面11に接し、電池セル1の外周面11に固着している。低粘度接着層45は、固着領域Zにおいて、電池セル1の周方向全周にわたって電池保持部50の内周面51に接し、電池保持部50の内周面51に固着している。また、高粘度接着層41と低粘度接着層45とは境界面において固着し一体化されている。より具体的には、高粘度接着層41および低粘度接着層45はそれぞれ略筒状をなし、高粘度接着層41の内周面41bは電池セル1の外周面11に接し、高粘度接着層41の外周面41aと低粘度接着層45の内周面45bとは互いに接し、低粘度接着層45の外周面45aは電池保持部50の内周面51に接している。つまり、接着層4は、固着領域Zにおいて、電池セル1の外周面11と電池保持部50の内周面51との間に行き渡り、隙間なく充填されている。   The high-viscosity adhesive layer 41 is in contact with the outer peripheral surface 11 of the battery cell 1 over the entire circumference in the circumferential direction of the battery cell 1 in the fixing region Z, and is fixed to the outer peripheral surface 11 of the battery cell 1. The low-viscosity adhesive layer 45 is in contact with the inner peripheral surface 51 of the battery holding unit 50 and fixed to the inner peripheral surface 51 of the battery holding unit 50 over the entire circumference in the circumferential direction of the battery cell 1 in the fixing region Z. Further, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are fixed and integrated at the boundary surface. More specifically, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 each have a substantially cylindrical shape, and the inner peripheral surface 41b of the high-viscosity adhesive layer 41 is in contact with the outer peripheral surface 11 of the battery cell 1, and the high-viscosity adhesive layer The outer peripheral surface 41 a of 41 and the inner peripheral surface 45 b of the low viscosity adhesive layer 45 are in contact with each other, and the outer peripheral surface 45 a of the low viscosity adhesive layer 45 is in contact with the inner peripheral surface 51 of the battery holding unit 50. That is, the adhesive layer 4 is spread between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding part 50 in the fixing region Z, and is filled without a gap.

上述したように、実施例1の製造方法においては、高粘度接着層41が高粘度接着剤からなり、低粘度接着層45が低粘度接着剤からなる。このため、実施例1の電池モジュールにおいては、図3に示すように、軸方向Yにおける接着層4の一端側(挿入先端側と呼ぶ)において、低粘度接着層45は高粘度接着層41を覆っている。なお、実施例1の製造方法で得られた実施例1の電池モジュールでは、軸方向Yにおける接着層4の他端側(挿入後端側)において、高粘度接着層41が低粘度接着層45を覆っている。しかし、これに限らず、挿入後端側では低粘度接着層45が高粘度接着層41を覆う場合もある。   As described above, in the manufacturing method of Example 1, the high viscosity adhesive layer 41 is made of a high viscosity adhesive, and the low viscosity adhesive layer 45 is made of a low viscosity adhesive. Therefore, in the battery module of Example 1, as shown in FIG. 3, the low-viscosity adhesive layer 45 is replaced with the high-viscosity adhesive layer 41 on one end side (referred to as the insertion tip side) of the adhesive layer 4 in the axial direction Y. Covering. In the battery module of Example 1 obtained by the manufacturing method of Example 1, the high-viscosity adhesive layer 41 is the low-viscosity adhesive layer 45 on the other end side (insertion rear end side) of the adhesive layer 4 in the axial direction Y. Covering. However, the present invention is not limited thereto, and the low-viscosity adhesive layer 45 may cover the high-viscosity adhesive layer 41 on the rear end side of the insertion.

(実施例2)
実施例2は本発明の第1の電池モジュールの製造方法に関する。実施例2の製造方法は、高粘度接着層41を電池セル1の外周面11に形成し、低粘度接着層45をホルダ5における電池保持部50の内周面51に形成したこと以外は、実施例1の電池モジュールの製造方法と概略同じである。したがって、実施例2の製造方法における準備工程およびセル固着工程は実施例1の製造方法と概略同じである。よって、実施例2では接着層形成工程および挿入工程のみを説明する。図5は実施例2の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。
(Example 2)
Example 2 relates to a method for manufacturing the first battery module of the present invention. In the manufacturing method of Example 2, the high viscosity adhesive layer 41 is formed on the outer peripheral surface 11 of the battery cell 1 and the low viscosity adhesive layer 45 is formed on the inner peripheral surface 51 of the battery holding portion 50 in the holder 5. This is substantially the same as the method for manufacturing the battery module of Example 1. Therefore, the preparation process and the cell fixing process in the manufacturing method of Example 2 are substantially the same as those of the manufacturing method of Example 1. Therefore, in Example 2, only the adhesive layer forming step and the inserting step will be described. FIG. 5 is an explanatory view schematically showing an adhesive layer forming step and an inserting step in the manufacturing method of Example 2.

(接着層形成工程)
実施例2の製造方法における接着層形成工程では、電池セル1の外周面11に高粘度接着層41を形成し、電池保持部50の内周面51に低粘度接着層45を形成した。高粘度接着層41は、第1の電池モジュールの製造方法における第1接着層に相当する。また、低粘度接着層45は、第1の電池モジュールの製造方法における第2接着層に相当する。高粘度接着剤および低粘度接着剤は実施例1と同じである。高粘度接着層41は電池セル1における固着領域Zの全体に形成し、低粘度接着層45は電池保持部50の内周面51全面に形成した。高粘度接着層41は電池セル1の全周にわたって連続的に形成され、低粘度接着層45もまた電池保持部50の全周にわたって連続的に形成された。
(Adhesive layer forming process)
In the adhesive layer forming step in the manufacturing method of Example 2, the high-viscosity adhesive layer 41 was formed on the outer peripheral surface 11 of the battery cell 1, and the low-viscosity adhesive layer 45 was formed on the inner peripheral surface 51 of the battery holding unit 50. The high-viscosity adhesive layer 41 corresponds to the first adhesive layer in the first battery module manufacturing method. The low-viscosity adhesive layer 45 corresponds to the second adhesive layer in the first battery module manufacturing method. The high viscosity adhesive and the low viscosity adhesive are the same as in Example 1. The high-viscosity adhesive layer 41 was formed on the entire fixing region Z in the battery cell 1, and the low-viscosity adhesive layer 45 was formed on the entire inner peripheral surface 51 of the battery holding unit 50. The high-viscosity adhesive layer 41 was continuously formed over the entire periphery of the battery cell 1, and the low-viscosity adhesive layer 45 was also formed continuously over the entire periphery of the battery holding unit 50.

図5中の左側部分に示すように、軸合せ時において、筒状をなす高粘度接着層41の外周面41aは電池保持部50の内周面51よりも径方向外側に位置する。また、筒状をなす高粘度接着層41の内周面41bは電池保持部50の内周面51よりも径方向内側に位置する。低粘度接着層45もまた筒状をなし、軸合せ時において、低粘度接着層45の外周面45aは高粘度接着層41の外周面41aと内周面41bとの間に位置する。高粘度接着層41の厚さは0.3〜2.0mm程度であり、低粘度接着層45の厚さは0.05〜0.3mm程度であった。   As shown in the left part of FIG. 5, the outer peripheral surface 41 a of the cylindrical high-viscosity adhesive layer 41 is positioned radially outside the inner peripheral surface 51 of the battery holding unit 50 during the alignment. Further, the inner peripheral surface 41 b of the cylindrical high-viscosity adhesive layer 41 is located on the radially inner side of the inner peripheral surface 51 of the battery holding unit 50. The low-viscosity adhesive layer 45 also has a cylindrical shape, and the outer peripheral surface 45a of the low-viscosity adhesive layer 45 is located between the outer peripheral surface 41a and the inner peripheral surface 41b of the high-viscosity adhesive layer 41 during alignment. The thickness of the high-viscosity adhesive layer 41 was about 0.3 to 2.0 mm, and the thickness of the low-viscosity adhesive layer 45 was about 0.05 to 0.3 mm.

(挿入工程)
上述した塗布工程後に、高粘度接着層41を形成した電池セル1を、低粘度接着層45を形成したホルダ5の電池保持部50に対して軸合わせし、電池セル1を電池保持部50に挿入した。電池セル1の外周面11には高粘度接着層41が設けられ、電池保持部50の内周面51には低粘度接着層45が設けられている。また、高粘度接着層41の厚さと低粘度接着層45の厚さとの和は、接着空間20の厚さよりも大きい。このため、実施例2の製造方法においても、電池セル1を電池保持部50に挿入する際には、高粘度接着層41と低粘度接着層45とが圧接する。そして、低粘度接着剤で構成されている低粘度接着層45は高粘度接着剤で構成されている高粘度接着層41に押圧されて大きく変形し、接着空間20に充填される。このため、図5中の右側部分に示すように、実施例2の製造方法においても、接着層4は、電池保持部50と電池セル1との間に設けられた接着空間20に隙間なく充填される。換言すると、実施例2の製造方法においては、挿入工程において、高粘度接着層41(つまり第1接着層)と低粘度接着層45(つまり第2接着層)とを相互的に作用させたことで、接着層4を接着空間20に隙間なく充填できる。
(Insertion process)
After the application step described above, the battery cell 1 on which the high-viscosity adhesive layer 41 is formed is aligned with the battery holding part 50 of the holder 5 on which the low-viscosity adhesive layer 45 is formed, and the battery cell 1 is attached to the battery holding part 50. Inserted. A high-viscosity adhesive layer 41 is provided on the outer peripheral surface 11 of the battery cell 1, and a low-viscosity adhesive layer 45 is provided on the inner peripheral surface 51 of the battery holding unit 50. The sum of the thickness of the high-viscosity adhesive layer 41 and the thickness of the low-viscosity adhesive layer 45 is greater than the thickness of the adhesive space 20. For this reason, also in the manufacturing method of Example 2, when the battery cell 1 is inserted in the battery holding part 50, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are in pressure contact. The low-viscosity adhesive layer 45 composed of the low-viscosity adhesive is pressed and greatly deformed by the high-viscosity adhesive layer 41 composed of the high-viscosity adhesive, and fills the adhesive space 20. Therefore, as shown in the right part of FIG. 5, also in the manufacturing method of Example 2, the adhesive layer 4 fills the adhesive space 20 provided between the battery holding part 50 and the battery cell 1 without a gap. Is done. In other words, in the manufacturing method of Example 2, in the insertion step, the high-viscosity adhesive layer 41 (that is, the first adhesive layer) and the low-viscosity adhesive layer 45 (that is, the second adhesive layer) were caused to interact with each other. Thus, the adhesive layer 4 can be filled in the adhesive space 20 without any gaps.

なお、実施例2の製造方法の接着層形成工程では、高粘度接着層41を電池セル1の外周面11に形成し、低粘度接着層45を電池保持部50の内周面51に形成したが、高粘度接着層41を電池保持部50の内周面51に形成し、低粘度接着層45を電池セル1の外周面11に形成しても良い。この場合、低粘度接着層45が第1の電池モジュールの製造方法における第1接着層に相当する。そして、高粘度接着層41が第1の電池モジュールの製造方法における第2接着層に相当する。また、実施例2の製造方法の接着層形成工程では、低粘度接着層45を電池保持部50の内周面51の全体に形成したが、低粘度接着層45は電池保持部50の内周面51の周方向全周にわたって形成されれば良く、内周面51の軸方向の一部にのみ形成しても良い。高粘度接着層41を電池保持部50の内周面51に形成する場合も同様である。また、高粘度接着層41を固着領域Zの全体に形成したが、高粘度接着層41は電池セル1の周方向全周にわたって形成されれば良く、固着領域Zの軸方向の一部にのみ形成しても良い。低粘度接着層45を電池セル1の外周面11に形成する場合も同様である。   In the adhesive layer forming step of the manufacturing method of Example 2, the high viscosity adhesive layer 41 was formed on the outer peripheral surface 11 of the battery cell 1, and the low viscosity adhesive layer 45 was formed on the inner peripheral surface 51 of the battery holding unit 50. However, the high-viscosity adhesive layer 41 may be formed on the inner peripheral surface 51 of the battery holding unit 50, and the low-viscosity adhesive layer 45 may be formed on the outer peripheral surface 11 of the battery cell 1. In this case, the low-viscosity adhesive layer 45 corresponds to the first adhesive layer in the first battery module manufacturing method. The high-viscosity adhesive layer 41 corresponds to the second adhesive layer in the first battery module manufacturing method. In the adhesive layer forming step of the manufacturing method of Example 2, the low-viscosity adhesive layer 45 is formed on the entire inner peripheral surface 51 of the battery holding unit 50, but the low-viscosity adhesive layer 45 is formed on the inner periphery of the battery holding unit 50. It may be formed over the entire circumference of the surface 51, and may be formed only on a part of the inner circumferential surface 51 in the axial direction. The same applies when the high-viscosity adhesive layer 41 is formed on the inner peripheral surface 51 of the battery holder 50. Moreover, although the high-viscosity adhesive layer 41 is formed over the entire fixing region Z, the high-viscosity adhesive layer 41 may be formed over the entire circumference in the circumferential direction of the battery cell 1, and only in a part of the fixing region Z in the axial direction. It may be formed. The same applies when the low-viscosity adhesive layer 45 is formed on the outer peripheral surface 11 of the battery cell 1.

(実施例3)
実施例3は本発明の第1の電池モジュールの製造方法に関する。実施例3の製造方法は、高粘度接着層41および低粘度接着層45の組成が実施例1および実施例2の製造方法と異なる以外は、実施例2の製造方法と概略同じ方法である。したがって実施例3の製造方法における接着層形成工程および挿入工程は、実施例2と同じ図5を用いて説明可能である。
(Example 3)
Example 3 relates to a method for manufacturing the first battery module of the present invention. The manufacturing method of Example 3 is substantially the same as the manufacturing method of Example 2 except that the compositions of the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are different from those of Example 1 and Example 2. Therefore, the adhesive layer forming step and the inserting step in the manufacturing method of the third embodiment can be described with reference to FIG.

実施例3の製造方法で用いた接着剤は、主材および硬化剤からなる二液型の接着剤である。より具体的には、当該二液型の接着剤は、流体状の主剤と硬化剤とを混ぜることで、重合反応や架橋反応等が生じて固化する。主剤は一般にモノマー或いはオリゴマーのものが多い。具体的な反応系接着剤としては、エポキシ樹脂系接着剤やシアノアクリレート系接着剤を挙げることができる。実施例3の製造方法においては、ビスフェノールA(BPA:主剤)とアミン(硬化剤)とを組み合わせたエポキシ樹脂系接着剤を用いたが、本発明の製造方法で使用可能な二液型の接着剤はこれに限定されない。   The adhesive used in the manufacturing method of Example 3 is a two-component adhesive composed of a main material and a curing agent. More specifically, the two-component adhesive is solidified by mixing a fluid main agent and a curing agent to cause a polymerization reaction or a crosslinking reaction. The main agent is generally a monomer or oligomer. Specific reactive adhesives include epoxy resin adhesives and cyanoacrylate adhesives. In the production method of Example 3, an epoxy resin adhesive in which bisphenol A (BPA: main agent) and an amine (curing agent) are combined was used. However, the two-component adhesive that can be used in the production method of the present invention. The agent is not limited to this.

高粘度接着剤および低粘度接着剤は、同じ主材と硬化剤とで構成されているが、主材と硬化剤とを混合した後の経過時間は、高粘度接着剤と低粘度接着剤とで異なる。具体的には、先ず、主材と硬化剤とを混合して電池セル1の外周面11に塗布した。その後これとは別に、所定の時間が経過した後に、主材と硬化剤とを混合して電池保持部50の内周面51に塗布した。電池セル1の外周面11に塗布形成した接着層は、電池保持部50の内周面51に塗布形成した接着層よりも先に形成され、主材と硬化剤との反応時間が長い。したがって、電池セル1の外周面11に形成された接着層は、電池保持部50の内周面51に形成された接着層よりも粘度の高い高粘度接着層41となる。そして、電池保持部50の内周面51に形成された接着層は当該高粘度接着層41よりも粘度の低い低粘度接着層45となる。なお、高粘度接着層41は、本発明の第1の電池モジュールの製造方法における第1接着層に相当し、低粘度接着層45は、本発明の第1の電池モジュールの製造方法における第2接着層に相当する。   The high-viscosity adhesive and the low-viscosity adhesive are composed of the same main material and curing agent, but the elapsed time after mixing the main material and the curing agent is different from the high-viscosity adhesive and the low-viscosity adhesive. It is different. Specifically, first, the main material and the curing agent were mixed and applied to the outer peripheral surface 11 of the battery cell 1. Then, separately from this, after a predetermined time had elapsed, the main material and the curing agent were mixed and applied to the inner peripheral surface 51 of the battery holding unit 50. The adhesive layer applied and formed on the outer peripheral surface 11 of the battery cell 1 is formed before the adhesive layer applied and formed on the inner peripheral surface 51 of the battery holding unit 50, and the reaction time between the main material and the curing agent is long. Therefore, the adhesive layer formed on the outer peripheral surface 11 of the battery cell 1 becomes a high-viscosity adhesive layer 41 having a higher viscosity than the adhesive layer formed on the inner peripheral surface 51 of the battery holding unit 50. The adhesive layer formed on the inner peripheral surface 51 of the battery holding unit 50 becomes a low-viscosity adhesive layer 45 having a lower viscosity than the high-viscosity adhesive layer 41. The high-viscosity adhesive layer 41 corresponds to the first adhesive layer in the method for manufacturing the first battery module of the present invention, and the low-viscosity adhesive layer 45 is the second in the method for manufacturing the first battery module of the present invention. Corresponds to the adhesive layer.

実施例3の製造方法は高粘度接着層41および低粘度接着層45の組成以外において実施例2の製造方法と同じであるため、実施例3の製造方法によっても接着層4は電池保持部50と電池セル1との間に設けられた接着空間20に隙間なく充填される。つまり、実施例3においては、挿入工程において、高粘度接着層41(つまり第1接着層)と低粘度接着層45(つまり第2接着層)とを相互的に作用させたことで、接着層4を接着空間20に隙間なく充填させることができる。   Since the manufacturing method of Example 3 is the same as the manufacturing method of Example 2 except for the composition of the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45, the adhesive layer 4 is also attached to the battery holding part 50 by the manufacturing method of Example 3. And the battery cell 1 are filled without any gaps in the bonding space 20 provided between them. That is, in Example 3, in the insertion process, the high-viscosity adhesive layer 41 (that is, the first adhesive layer) and the low-viscosity adhesive layer 45 (that is, the second adhesive layer) are caused to interact with each other. 4 can be filled in the bonding space 20 without a gap.

(実施例4)
実施例4は本発明の第3の電池モジュールの製造方法に関する。実施例4の製造方法は、接着層形成工程において接着層4を電池保持部50の内周面51に形成し加熱したこと以外は、実施例1の製造方法と概略同じである。よって、実施例4では接着層形成工程および挿入工程のみを説明する。
Example 4
Example 4 relates to a third battery module manufacturing method of the present invention. The manufacturing method of Example 4 is substantially the same as the manufacturing method of Example 1 except that the adhesive layer 4 is formed on the inner peripheral surface 51 of the battery holding unit 50 and heated in the adhesive layer forming step. Therefore, in Example 4, only the adhesive layer forming step and the inserting step will be described.

図6は実施例4の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。   6 is an explanatory view schematically showing an adhesive layer forming step and an inserting step in the manufacturing method of Example 4. FIG.

(接着層形成工程)
実施例4の製造方法における接着剤は、実施例1で説明した接着剤と同様に、加熱することで軟化可能な接着剤である。実施例4の製造方法では、接着層4を、電池保持部50の内周面51に塗布形成した。接着層4の厚さは接着空間20の厚さよりも大きい。なお、接着層4の形成方法はこれに限らず種々の方法を採用できる。例えば、電池保持部50の内径よりもやや大径の筒状の接着層4を予め型成形し、当該接着層4の外周面を加熱し軟化させて電池保持部50に圧入し、接着層4を冷却および固化して電池保持部50の内周面51に一体化させても良い。或いは、インサート成形により、電池保持部50の内周面51に筒状の接着層4を一体成形しても良い。
(Adhesive layer forming process)
The adhesive in the manufacturing method of Example 4 is an adhesive that can be softened by heating in the same manner as the adhesive described in Example 1. In the manufacturing method of Example 4, the adhesive layer 4 was applied and formed on the inner peripheral surface 51 of the battery holding unit 50. The thickness of the adhesive layer 4 is larger than the thickness of the adhesive space 20. In addition, the formation method of the contact bonding layer 4 is not restricted to this, A various method is employable. For example, the cylindrical adhesive layer 4 having a diameter slightly larger than the inner diameter of the battery holding unit 50 is molded in advance, the outer peripheral surface of the adhesive layer 4 is heated and softened, and press-fitted into the battery holding unit 50. May be cooled and solidified to be integrated with the inner peripheral surface 51 of the battery holding unit 50. Alternatively, the cylindrical adhesive layer 4 may be integrally formed on the inner peripheral surface 51 of the battery holding unit 50 by insert molding.

接着層4の形成後、図6中の左側部分に示すように、接着層4の内周面4b側をヒータ95によって加熱した。すると、接着層4が軟化し、接着層4の内周面4b側の部分は接着層4の外周面4a側の部分に比べて低粘度になった。この工程によって、図6中の左から二番目の部分に示すように、筒状の接着層4の内周側部分を構成する低粘度の層(低粘度接着層45)と、筒状の接着層4の外周側部分を構成する高粘度の層(高粘度接着層41)が形成された。   After the formation of the adhesive layer 4, the inner peripheral surface 4b side of the adhesive layer 4 was heated by the heater 95 as shown in the left part of FIG. Then, the adhesive layer 4 was softened, and the portion on the inner peripheral surface 4 b side of the adhesive layer 4 became lower in viscosity than the portion on the outer peripheral surface 4 a side of the adhesive layer 4. By this step, as shown in the second part from the left in FIG. 6, the low-viscosity layer (low-viscosity adhesive layer 45) constituting the inner peripheral part of the cylindrical adhesive layer 4 and the cylindrical adhesive A high-viscosity layer (high-viscosity adhesive layer 41) constituting the outer peripheral side portion of the layer 4 was formed.

なお、このとき、高粘度接着層41の少なくとも低粘度接着層45側の部分は、低粘度接着層45に比べて高粘度であるものの、可塑性のある状態であり、変形可能であった。また、接着層4の粘度は内周側部分から外周側部分に向けて徐変し、低粘度接着層45と高粘度接着層41との境界部分はあいまいであった。しかし少なくとも接着層4の内周面4bにおいて、低粘度接着層45は周方向全周にわたって連続的に形成された。また、当該低粘度接着層45よりも外周側において、高粘度接着層41は周方向全周にわたって連続的に形成された。以上の工程で、高粘度接着層41および低粘度接着層45を有する接着層4を、電池保持部50の内周面51に形成した。   At this time, at least a portion of the high-viscosity adhesive layer 41 on the low-viscosity adhesive layer 45 side was higher in viscosity than the low-viscosity adhesive layer 45, but was in a plastic state and could be deformed. Further, the viscosity of the adhesive layer 4 gradually changed from the inner peripheral side portion toward the outer peripheral side portion, and the boundary portion between the low viscosity adhesive layer 45 and the high viscosity adhesive layer 41 was ambiguous. However, at least on the inner peripheral surface 4b of the adhesive layer 4, the low-viscosity adhesive layer 45 was continuously formed over the entire circumference in the circumferential direction. Further, on the outer peripheral side of the low-viscosity adhesive layer 45, the high-viscosity adhesive layer 41 was continuously formed over the entire circumference in the circumferential direction. Through the above steps, the adhesive layer 4 having the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 was formed on the inner peripheral surface 51 of the battery holding unit 50.

なお、接着層4は必ずしも低粘度接着層45および高粘度接着層41のみで構成されなくても良い。つまり、接着層4における外周面4a側の部分には、上記した加熱時に軟化せず固化したままの接着剤が残存しても良い。つまり、このとき、少なくとも接着層の内周面が軟化すれば良い。   Note that the adhesive layer 4 does not necessarily need to be composed of only the low-viscosity adhesive layer 45 and the high-viscosity adhesive layer 41. That is, the adhesive that remains solidified without being softened during the heating may remain in the portion of the adhesive layer 4 on the outer peripheral surface 4a side. That is, at this time, at least the inner peripheral surface of the adhesive layer may be softened.

(挿入工程)
上記の接着層形成工程後に、電池セル1を電池保持部50に対して軸合わせして電池保持部50に挿入した。低粘度接着層45および高粘度接着層41を含む接着層4の厚さは、接着空間20の厚さよりも大きい。このため、実施例4の製造方法においても、電池セル1を電池保持部50に挿入する際には、高粘度接着層41と低粘度接着層45とが圧接する。さらに、変形し易く流動性の大きい低粘度接着層45が相手材である電池セル1に接触する。したがって、実施例4の製造方法においても接着層4は接着空間20に隙間なく充填される。つまり、実施例4の製造方法においては、挿入工程において、接着層4における高粘度接着層41(つまり外周面側部分)と低粘度接着層45(つまり内周面側部分)とを相互的に作用させたことで、接着層4を接着空間20に隙間なく充填することができる。
(Insertion process)
After the adhesive layer forming step, the battery cell 1 was axially aligned with the battery holding unit 50 and inserted into the battery holding unit 50. The thickness of the adhesive layer 4 including the low viscosity adhesive layer 45 and the high viscosity adhesive layer 41 is larger than the thickness of the adhesive space 20. For this reason, also in the manufacturing method of Example 4, when the battery cell 1 is inserted in the battery holding part 50, the high-viscosity adhesive layer 41 and the low-viscosity adhesive layer 45 are in pressure contact. Furthermore, the low-viscosity adhesive layer 45 that is easily deformed and has high fluidity comes into contact with the battery cell 1 that is the counterpart material. Therefore, also in the manufacturing method of Example 4, the adhesive layer 4 is filled in the adhesive space 20 without a gap. That is, in the manufacturing method of Example 4, in the insertion step, the high-viscosity adhesive layer 41 (that is, the outer peripheral surface side portion) and the low-viscosity adhesive layer 45 (that is, the inner peripheral surface side portion) in the adhesive layer 4 are mutually connected. By making it act, the adhesion layer 4 can be filled into the adhesion space 20 without a gap.

なお、実施例4の製造方法の接着層形成工程では、電池保持部50に接着層4を形成したが、電池セル1に接着層4を形成しても良い。この場合、電池セル1の外周面11に筒状の接着層4を形成し、当該接着層4を外周面側から加熱し軟化させれば、外周側に低粘度接着層45が形成され内周側に高粘度接着層41が形成された接着層4が得られる。そして、当該接着層4を有する電池セル1を電池保持部50に挿入すれば、相手材たる電池保持部50の内周面51に低粘度接着層45が接触するために、実施例4の製造方法と同様に、接着層4を接着空間20に隙間なく充填できる。   In the adhesive layer forming step of the manufacturing method of Example 4, the adhesive layer 4 is formed on the battery holding unit 50, but the adhesive layer 4 may be formed on the battery cell 1. In this case, if the cylindrical adhesive layer 4 is formed on the outer peripheral surface 11 of the battery cell 1 and the adhesive layer 4 is heated and softened from the outer peripheral surface side, the low-viscosity adhesive layer 45 is formed on the outer peripheral side, and the inner peripheral surface The adhesive layer 4 having the high-viscosity adhesive layer 41 formed on the side is obtained. Then, if the battery cell 1 having the adhesive layer 4 is inserted into the battery holding part 50, the low-viscosity adhesive layer 45 comes into contact with the inner peripheral surface 51 of the battery holding part 50 that is the counterpart material. Similar to the method, the adhesive layer 4 can be filled in the adhesive space 20 without a gap.

(実施例5)
実施例5は、本発明の第1の製造方法に関する。実施例5の製造方法においては、接着層形成工程で電池セル1の外周面11に形成した接着層(第1接着層46)と、電池保持部50の内周面51に形成した接着層(第2接着層47)と、が同粘度である。それ以外は、実施例5の製造方法は実施例1の製造方法と概略同じである。但し、第1接着層46と第2接着層47とが同粘度であるため、実施例5の製造方法の挿入工程における接着層4の挙動は実施例1の製造方法とは異なる。よって、実施例5でもまた接着層形成工程および挿入工程のみを説明する。図7は、実施例5の電池モジュールを図1中X−X位置と同位置で切断した様子を模式的に表す断面図である。図8は実施例5の製造方法における接着層形成工程および挿入工程を模式的に表す説明図である。
(Example 5)
Example 5 relates to the first manufacturing method of the present invention. In the manufacturing method of Example 5, the adhesive layer (first adhesive layer 46) formed on the outer peripheral surface 11 of the battery cell 1 in the adhesive layer forming step, and the adhesive layer (first adhesive layer 46) formed on the inner peripheral surface 51 of the battery holding unit 50. And the second adhesive layer 47) have the same viscosity. Otherwise, the manufacturing method of Example 5 is substantially the same as the manufacturing method of Example 1. However, since the first adhesive layer 46 and the second adhesive layer 47 have the same viscosity, the behavior of the adhesive layer 4 in the insertion step of the manufacturing method of Example 5 is different from that of the manufacturing method of Example 1. Therefore, in Example 5, only the adhesive layer forming step and the inserting step will be described. FIG. 7 is a cross-sectional view schematically showing a state where the battery module of Example 5 is cut at the same position as the XX position in FIG. 1. FIG. 8 is an explanatory view schematically showing an adhesive layer forming step and an inserting step in the manufacturing method of Example 5.

(接着層形成工程)
実施例5の製造方法における接着層形成工程では、電池セル1の外周面11および電池保持部50の内周面51に、それぞれ、同一組成かつ同一粘度の接着剤を塗布した。図8中の左側部分に示すように、この工程によって、電池セル1の外周面11に第1接着層46を形成し、電池保持部50の内周面51に第2接着層47を形成した。第1接着層46および第2接着層47は、同一組成かつ同一粘度である。また第1接着層46は電池セル1の外周面11における固着領域Zの全体に形成された。第2接着層47は電池保持部50の内周面51全体に形成された。第1接着層46および第2接着層47が同粘度である場合には、固着領域Zの軸方向Yの全長にわたって第1接着層46を形成するのが好ましい。そしてこのとき、第2接着層47の軸方向長さを第1接着層46の軸方向長さと同じにするのがより好ましい。後述するように、この場合には挿入工程において第1接着層46および第2接着層47に略同じ大きさの力が作用し、第1接着層46および第2接着層47が略同じ軸方長さだけになるように塗り広げられるためである。なお、実施例5の製造方法においても、第1接着層46の厚さと第2接着層47の厚さとの和は、接着空間20の厚さよりも大きかった。
(Adhesive layer forming process)
In the adhesive layer forming step in the manufacturing method of Example 5, adhesives having the same composition and the same viscosity were applied to the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 51 of the battery holding unit 50, respectively. As shown in the left part of FIG. 8, the first adhesive layer 46 is formed on the outer peripheral surface 11 of the battery cell 1 and the second adhesive layer 47 is formed on the inner peripheral surface 51 of the battery holding portion 50 by this process. . The first adhesive layer 46 and the second adhesive layer 47 have the same composition and the same viscosity. Further, the first adhesive layer 46 was formed on the entire fixing region Z on the outer peripheral surface 11 of the battery cell 1. The second adhesive layer 47 was formed on the entire inner peripheral surface 51 of the battery holding unit 50. When the first adhesive layer 46 and the second adhesive layer 47 have the same viscosity, the first adhesive layer 46 is preferably formed over the entire length in the axial direction Y of the fixing region Z. At this time, the axial length of the second adhesive layer 47 is more preferably the same as the axial length of the first adhesive layer 46. As will be described later, in this case, substantially the same force acts on the first adhesive layer 46 and the second adhesive layer 47 in the insertion step, and the first adhesive layer 46 and the second adhesive layer 47 have substantially the same axial direction. This is because it can be spread only to the length. Also in the manufacturing method of Example 5, the sum of the thickness of the first adhesive layer 46 and the thickness of the second adhesive layer 47 was larger than the thickness of the adhesive space 20.

(挿入工程)
次いで、第1接着層46を有する電池セル1を、第2接着層47を有する電池保持部50に挿入した。したがって、このとき、図8中の中央の部分に示すように、第1接着層46と第2接着層47とが圧接した。実施例5の製造方法においては、第1接着層46の粘度と第2接着層47の粘度とは略同じであった。つまり、第1接着層46と第2接着層47との変形し易さは同程度であった。したがって、このとき第2接着層47が第1接着層46に押圧されて変形するとともに、第1接着層46が第2接着層47に押圧されて変形し、第1接着層46と第2接着層47とは互いに塗り広げられつつ接着空間20に充填された。
(Insertion process)
Next, the battery cell 1 having the first adhesive layer 46 was inserted into the battery holding unit 50 having the second adhesive layer 47. Therefore, at this time, the first adhesive layer 46 and the second adhesive layer 47 were in pressure contact as shown in the center portion in FIG. In the manufacturing method of Example 5, the viscosity of the first adhesive layer 46 and the viscosity of the second adhesive layer 47 were substantially the same. That is, the ease of deformation of the first adhesive layer 46 and the second adhesive layer 47 was comparable. Therefore, at this time, the second adhesive layer 47 is pressed and deformed by the first adhesive layer 46, and the first adhesive layer 46 is pressed and deformed by the second adhesive layer 47, and the first adhesive layer 46 and the second adhesive layer are deformed. The bonding space 20 was filled while being spread on the layer 47.

より具体的には、第1接着層46の変形量は、挿入後端側から挿入先端側に向けて徐々に大きくなる。つまり、図7に示すように、第1接着層46は、挿入後端側から挿入先端側に向けて徐々に肉厚が薄くなる先細り形状をなし、第2接着層47は、第1接着層46に対して略相補的な形状、つまり、挿入先端側から挿入後端側に向けて徐々に肉厚が薄くなる先細り形状をなす。   More specifically, the deformation amount of the first adhesive layer 46 gradually increases from the insertion rear end side toward the insertion distal end side. That is, as shown in FIG. 7, the first adhesive layer 46 has a tapered shape in which the thickness gradually decreases from the insertion rear end side toward the insertion distal end side, and the second adhesive layer 47 is the first adhesive layer. 46 has a shape that is substantially complementary to 46, that is, a tapered shape in which the thickness gradually decreases from the insertion leading end side toward the insertion rear end side.

さらに換言すると、図8の右側の部分に示すように、電池セル1を電池保持部50に挿入する際には、第1接着層46と第2接着層47とが圧接し、境界面において互いに滑りつつ、同程度に変形する。このため第2接着層47は、電池保持部50の内周面51と第1接着層46の外周面46aとの間に充填される充填材として機能し、第1接着層46は第2接着層47を塗り広げるための押圧材として機能する。また、第1接着層46は、電池セル1の外周面11と第2接着層47の内周面47bとの間に充填される充填材としても機能し、第2接着層47は第1接着層46を塗り広げるための押圧材としても機能する。さらに第2接着層47は第1接着層46に対する潤滑剤としても機能し、かつ、第1接着層46は第2接着層47に対する潤滑剤としても機能する。   In other words, as shown in the right part of FIG. 8, when the battery cell 1 is inserted into the battery holding part 50, the first adhesive layer 46 and the second adhesive layer 47 are in pressure contact with each other at the boundary surface. While sliding, it deforms to the same extent. Therefore, the second adhesive layer 47 functions as a filler filled between the inner peripheral surface 51 of the battery holding unit 50 and the outer peripheral surface 46a of the first adhesive layer 46, and the first adhesive layer 46 is a second adhesive. It functions as a pressing material for spreading the layer 47. The first adhesive layer 46 also functions as a filler filled between the outer peripheral surface 11 of the battery cell 1 and the inner peripheral surface 47b of the second adhesive layer 47, and the second adhesive layer 47 is the first adhesive layer. It also functions as a pressing material for spreading the layer 46. Further, the second adhesive layer 47 also functions as a lubricant for the first adhesive layer 46, and the first adhesive layer 46 also functions as a lubricant for the second adhesive layer 47.

このため、実施例5の製造方法においても、第1接着層46と第2接着層47とからなる接着層4は、電池保持部50と電池セル1との間に設けられた接着空間20に隙間なく充填される。換言すると、実施例5の製造方法においては、挿入工程において第1接着層46と第2接着層47とを相互的に作用させたことで、接着層4を接着空間20に隙間なく充填することができる。   For this reason, also in the manufacturing method of Example 5, the adhesive layer 4 composed of the first adhesive layer 46 and the second adhesive layer 47 is in the adhesive space 20 provided between the battery holding part 50 and the battery cell 1. Fills without gaps. In other words, in the manufacturing method of Example 5, the first adhesive layer 46 and the second adhesive layer 47 interact with each other in the insertion step, so that the adhesive layer 4 is filled in the adhesive space 20 without any gap. Can do.

本発明の電池モジュールの用途は特に限定されず、様々な装置や備品等に配設できる。具体例としては、車両用に搭載する組電池を挙げることができる。   The use of the battery module of the present invention is not particularly limited, and can be arranged in various apparatuses and fixtures. As a specific example, an assembled battery mounted for a vehicle can be mentioned.

(その他)
本発明は、上記し且つ図面に示した実施形態にのみ限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。また、実施形態に示した各構成要素は、それぞれ任意に抽出し組み合わせて実施できる。
(Other)
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist. Moreover, each component shown in the embodiment can be arbitrarily extracted and combined.

1:電池セル 4:接着層 5:ホルダ
11:電池セルの外周面 46:第1接着層 47:第2接着層
50:電池保持部 51:電池保持部の内周面
1: battery cell 4: adhesive layer 5: holder 11: outer peripheral surface of battery cell 46: first adhesive layer 47: second adhesive layer 50: battery holding portion 51: inner peripheral surface of battery holding portion

Claims (5)

孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面および前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着層形成工程において、
前記電池セルの外周面に形成する第1接着層と、前記電池保持部の内周面に形成する第2接着層と、を同一組成かつ同一粘度、または、同一組成かつ異なる粘度の接着剤で構成し、
前記電池セルの外周面における軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記第1接着層を形成するとともに、
前記電池保持部の内周面における軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記第2接着層を形成することで、
前記挿入工程において、前記第1接着層と前記第2接着層とを圧接させ境界面にて変形させる、電池モジュールの製造方法。
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell and the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
In the adhesive layer forming step,
The first adhesive layer formed on the outer peripheral surface of the battery cell and the second adhesive layer formed on the inner peripheral surface of the battery holding portion are made of an adhesive having the same composition and the same viscosity, or the same composition and a different viscosity. Configure
In at least a partial region of the outer peripheral surface of the battery cell in the axial direction, the first adhesive layer is formed over the entire outer periphery of the battery cell;
By forming the second adhesive layer over the entire circumference of the inner peripheral surface of the battery holding part in at least a partial region in the axial direction on the inner peripheral surface of the battery holding part,
The battery module manufacturing method, wherein in the inserting step, the first adhesive layer and the second adhesive layer are pressed and deformed at a boundary surface .
孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面または前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着剤を、高粘度接着剤と、前記高粘度接着剤と同一組成であり且つ前記高粘度接着剤よりも粘度の低い低粘度接着剤と、で構成し、
前記接着層形成工程において、
先ず、前記電池セルの外周面の軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記高粘度接着剤からなる高粘度接着層を形成し、次いで、前記高粘度接着層の外周面の軸方向の少なくとも一部の領域において、前記高粘度接着層の外周面の全周にわたって前記低粘度接着剤からなる低粘度接着層を形成するか、
または、
先ず、前記電池保持部の内周面の軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記高粘度接着剤からなる高粘度接着層を形成し、次いで、前記高粘度接着層の周面の軸方向の少なくとも一部の領域において、前記高粘度接着層の全周にわたって前記低粘度接着剤からなる低粘度接着層を形成することで、
前記挿入工程において、少なくとも前記低粘度接着層を変形させる、電池モジュールの製造方法。
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
The adhesive comprises a high-viscosity adhesive, and a low-viscosity adhesive having the same composition as the high-viscosity adhesive and having a lower viscosity than the high-viscosity adhesive,
In the adhesive layer forming step,
First, a high-viscosity adhesive layer made of the high-viscosity adhesive is formed over the entire circumference of the outer peripheral surface of the battery cell in at least a partial region of the outer peripheral surface of the battery cell, and then the high-viscosity adhesive Forming a low-viscosity adhesive layer composed of the low-viscosity adhesive over the entire circumference of the outer peripheral surface of the high-viscosity adhesive layer in at least a partial region of the outer peripheral surface of the layer;
Or
First, in at least a partial region of the inner peripheral surface of the battery holding portion in the axial direction, a high viscosity adhesive layer made of the high viscosity adhesive is formed over the entire inner peripheral surface of the battery holding portion, and then In at least a part of the axial direction of the inner peripheral surface of the high-viscosity adhesive layer, by forming a low-viscosity adhesive layer made of the low-viscosity adhesive over the entire circumference of the high-viscosity adhesive layer,
The battery module manufacturing method, wherein at least the low-viscosity adhesive layer is deformed in the insertion step.
孔状をなす電池保持部を持つホルダと電池セルとを準備する準備工程と、接着剤からなる接着層を前記電池セルの外周面または前記電池保持部の内周面に形成する接着層形成工程と、前記ホルダの前記電池保持部に前記電池セルを挿入する挿入工程と、を有し、
前記接着層形成工程において、
先ず、前記電池セルの外周面の軸方向の少なくとも一部の領域において、前記電池セルの外周面の全周にわたって前記接着層を形成し、次いで、前記接着層を外周面側から加熱することで、前記接着層における外周面側部分を内周面側部分に比べて低粘度にするか、
または、
前記電池保持部の内周面の軸方向の少なくとも一部の領域において、前記電池保持部の内周面の全周にわたって前記接着層を形成し、次いで、前記接着層を内周面側から加熱することで、前記接着層における内周面側部分を外周面側部分に比べて低粘度にすることで、
前記挿入工程において、前記接着層における少なくとも前記低粘度の部分を変形させる、電池モジュールの製造方法。
A preparation step of preparing a holder and battery cell having a hole-shaped battery holding portion, and an adhesive layer forming step of forming an adhesive layer made of an adhesive on the outer peripheral surface of the battery cell or the inner peripheral surface of the battery holding portion And an insertion step of inserting the battery cell into the battery holding portion of the holder,
In the adhesive layer forming step,
First, in at least a partial region of the outer peripheral surface of the battery cell in the axial direction, the adhesive layer is formed over the entire outer periphery of the battery cell, and then the adhesive layer is heated from the outer peripheral surface side. , Or lower the viscosity of the outer peripheral surface side portion of the adhesive layer compared to the inner peripheral surface side portion,
Or
The adhesive layer is formed over the entire circumference of the inner peripheral surface of the battery holding portion in at least a partial region of the inner peripheral surface of the battery holding portion, and then the adhesive layer is heated from the inner peripheral surface side. By making the inner peripheral surface side portion in the adhesive layer lower in viscosity than the outer peripheral surface side portion,
The battery module manufacturing method, wherein, in the inserting step, at least the low-viscosity portion of the adhesive layer is deformed .
前記高粘度接着剤および前記低粘度接着剤は、同一組成の接着剤からなり、温度制御することで粘度調整されたものである請求項2に記載の電池モジュールの製造方法。 The battery module manufacturing method according to claim 2, wherein the high-viscosity adhesive and the low-viscosity adhesive are made of an adhesive having the same composition, and the viscosity is adjusted by temperature control. 前記高粘度接着剤および前記低粘度接着剤は、基材と硬化剤とを含む同一組成の接着剤からなり、前記基材と前記硬化剤との反応開始後の経過時間を制御することで粘度調整されたものである請求項2に記載の電池モジュールの製造方法。 The high-viscosity adhesive and the low-viscosity adhesive are composed of an adhesive having the same composition including a base material and a curing agent, and the viscosity is controlled by controlling the elapsed time after the start of the reaction between the base material and the curing agent. The method for producing a battery module according to claim 2, which is adjusted.
JP2014132328A 2014-06-27 2014-06-27 Battery module manufacturing method Active JP6213395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132328A JP6213395B2 (en) 2014-06-27 2014-06-27 Battery module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132328A JP6213395B2 (en) 2014-06-27 2014-06-27 Battery module manufacturing method

Publications (2)

Publication Number Publication Date
JP2016012416A JP2016012416A (en) 2016-01-21
JP6213395B2 true JP6213395B2 (en) 2017-10-18

Family

ID=55229025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132328A Active JP6213395B2 (en) 2014-06-27 2014-06-27 Battery module manufacturing method

Country Status (1)

Country Link
JP (1) JP6213395B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380270B2 (en) * 2015-07-21 2018-08-29 トヨタ自動車株式会社 Battery module and battery module manufacturing method
JP6315007B2 (en) 2016-02-23 2018-04-25 トヨタ自動車株式会社 Battery module
JP6750279B2 (en) 2016-03-31 2020-09-02 ブラザー工業株式会社 Liquid ejector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076744A (en) * 1993-03-30 1995-01-10 Shin Kobe Electric Mach Co Ltd Film pack battery and manufacture thereof
JP2004179090A (en) * 2002-11-28 2004-06-24 Kyocera Corp Layered battery
JP5652316B2 (en) * 2011-04-28 2015-01-14 トヨタ自動車株式会社 Power storage device
JP5755101B2 (en) * 2011-05-25 2015-07-29 小島プレス工業株式会社 Battery holding structure
JP5486623B2 (en) * 2012-03-09 2014-05-07 豊田合成株式会社 Battery holder
JP6187351B2 (en) * 2014-03-27 2017-08-30 豊田合成株式会社 Battery module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016012416A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6187351B2 (en) Battery module and manufacturing method thereof
JP6213395B2 (en) Battery module manufacturing method
JP6260830B2 (en) Battery adhesive fixing structure
CN102223772B (en) Composite shell and electronic device applying same
CN107709848B (en) The manufacturing method of gasket
CN106314353B (en) Device component with glued airbag device
JP6164257B2 (en) Electric wire with mold part and method of manufacturing electric wire with mold part
JP6611466B2 (en) Metal part-resin bonding method and metal part-resin integrated molding
CN103978682B (en) The rivet hot of the thermoplastic component of cementability connection is closed
JP2016173903A (en) Battery module and manufacturing method for the same
JP6372404B2 (en) Wire with mold
CN102439821B (en) Electric machine
JP2009261220A (en) Method of manufacturing stator
JP2017103073A (en) Wire with terminal and manufacturing method of wire with terminal
JP6217983B2 (en) Battery module and manufacturing method thereof
US9673491B2 (en) Vehicle battery system
CN110475659B (en) Hot riveting device
JP5206713B2 (en) Assembling method of semiconductor package
JP2016038961A (en) Method for manufacturing battery module
JP2007329994A (en) Commutator
CN105120596B (en) Ladder form drag glue laminated closes structure and ladder form drag glue laminated closes method
JP2019102322A (en) Terminal-equipped wire and manufacturing method thereof
WO2017141822A1 (en) Terminal block and method for manufacturing same
CN207474791U (en) A kind of water-proof connector
JP6328300B2 (en) Generator stator bar having deformed strip and process for producing generator stator bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6213395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150