JP6202515B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP6202515B2
JP6202515B2 JP2013004017A JP2013004017A JP6202515B2 JP 6202515 B2 JP6202515 B2 JP 6202515B2 JP 2013004017 A JP2013004017 A JP 2013004017A JP 2013004017 A JP2013004017 A JP 2013004017A JP 6202515 B2 JP6202515 B2 JP 6202515B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
layer
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013004017A
Other languages
Japanese (ja)
Other versions
JP2014135454A (en
Inventor
大樹 葛西
大樹 葛西
沖原 将生
将生 沖原
康夫 新井
康夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Inter University Research Institute Corp High Energy Accelerator Research Organization
Original Assignee
Lapis Semiconductor Co Ltd
Inter University Research Institute Corp High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd, Inter University Research Institute Corp High Energy Accelerator Research Organization filed Critical Lapis Semiconductor Co Ltd
Priority to JP2013004017A priority Critical patent/JP6202515B2/en
Publication of JP2014135454A publication Critical patent/JP2014135454A/en
Application granted granted Critical
Publication of JP6202515B2 publication Critical patent/JP6202515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置の製造方法に関し、特に、同一のSOI(Sllicon On InsuIator)基板上に、X線検出用のフォトダイオードとトランジスタを混在させたX線センサの製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor equipment, in particular, the same SOI (Sllicon On InsuIator) substrate, relates to a photodiode and a manufacturing method of the X-ray sensor in which a mix of transistor for X-ray detection.

同一の半導体基板に、センサと周辺回路とが絶縁膜を介して形成されている構造の半導体装置が特許文献1、2に開示されている。   Patent Documents 1 and 2 disclose a semiconductor device having a structure in which a sensor and a peripheral circuit are formed on the same semiconductor substrate via an insulating film.

特開2009−170615号公報JP 2009-170615 A 特開2008−130795号公報JP 2008-130795 A

同一の半導体基板に、センサと周辺回路とが形成されている構造の半導体装置の中で、X線検出用のフォトダイオードとトランジスタとが同一の半導体基板に形成されている構造のX線センサにおいては、放射線入射時の検出感度を高くするため、X線検出用のフォトダイオードが形成されている半導体基板に低濃度高抵抗の半導体基板を使用したり、半導体基板裏面に数百Vのバイアスを印加する等の方法により、半導体基板全体を空乏化することがある。   In a semiconductor device having a structure in which a sensor and a peripheral circuit are formed on the same semiconductor substrate, an X-ray sensor having a structure in which a photodiode for X-ray detection and a transistor are formed on the same semiconductor substrate Uses a low-concentration, high-resistance semiconductor substrate on the semiconductor substrate on which an X-ray detection photodiode is formed, or a bias of several hundred volts is applied to the back surface of the semiconductor substrate in order to increase the detection sensitivity upon radiation incidence. The whole semiconductor substrate may be depleted by a method such as application.

この際、SOI(Sllicon On InsuIator)基板を用いることにより、図10のように、埋め込み酸化膜4の上側の第1の半導体層11を回路動作用のMOSトランジスタ1等の素子形成用の高濃度低抵抗基板、埋め込み酸化膜4の下側の第2の半導体層15をフォトダイオード2形成用の低濃度高抵抗基板とすることで、1枚のウエハ10上で周辺回路を含めたX線センサを構成することができる。   At this time, by using an SOI (Silicon On Insulator) substrate, as shown in FIG. 10, the first semiconductor layer 11 above the buried oxide film 4 has a high concentration for forming an element such as a MOS transistor 1 for circuit operation. An X-ray sensor including peripheral circuits on a single wafer 10 by using a low-resistance substrate and the second semiconductor layer 15 below the buried oxide film 4 as a low-concentration high-resistance substrate for forming the photodiode 2. Can be configured.

しかしながら、第2の半導体層15を空乏化するために第2の半導体層15の裏面に印加した電圧3が、埋め込み酸化膜4を介して埋め込み酸化膜4上に形成した第1の半導体層11にも伝わり、第1の半導体層11に形成したMOSトランジスタ1において、本来、ポリシリコン膜で形成されたゲート電極5によってコントロールされる電流経路6とは別に、第2の半導体層15から伝達した電圧によって埋め込み酸化膜4側のチャネル領域が電流経路7として動作してしまう問題点と、X線の照射によって埋め込み酸化膜4が正に帯電することで埋め込み酸化膜4側のチャネル領域が電流経路7として動作してしまう問題点があった。   However, the voltage 3 applied to the back surface of the second semiconductor layer 15 to deplete the second semiconductor layer 15 is formed on the buried oxide film 4 via the buried oxide film 4. In the MOS transistor 1 formed in the first semiconductor layer 11, the current is transmitted from the second semiconductor layer 15 separately from the current path 6 controlled by the gate electrode 5 originally formed of a polysilicon film. The problem is that the channel region on the buried oxide film 4 side operates as a current path 7 due to voltage, and the channel region on the buried oxide film 4 side becomes a current path because the buried oxide film 4 is positively charged by X-ray irradiation. There was a problem that it operated as 7.

これらの問題を解決するために、図11に示すように、MOSトランジスタ1の直下の第2の半導体層15の表面に、第2の半導体層15にドーピングされている不純物とは逆の導電型を持ち、センサピクセルとして動作する拡散層8を形成し、更にその内側に拡散層8と逆の導電型を持つ拡散層9を形成し、これらの電位をGNDに接地することで、第2の半導体層15を空乏化するために第2の半導体層15の裏面に印加した電圧3が第1の半導体層11に伝わることを抑制し、さらに放射線耐性を高めることが考えられる。   In order to solve these problems, as shown in FIG. 11, the conductivity type opposite to the impurity doped in the second semiconductor layer 15 is formed on the surface of the second semiconductor layer 15 immediately below the MOS transistor 1. And a diffusion layer 8 having a conductivity type opposite to that of the diffusion layer 8 is formed on the inner side thereof, and these potentials are grounded to the GND, thereby forming the second layer. In order to deplete the semiconductor layer 15, it is conceivable that the voltage 3 applied to the back surface of the second semiconductor layer 15 is prevented from being transmitted to the first semiconductor layer 11 and the radiation resistance is further increased.

しかしながら、この構造においては、図11に示すように、第1の半導体層11と拡散層8との間に寄生容量101を持ってしまい、また、第2の半導体層15中に形成したセンサピクセルとしてのダイオードにおいて、拡散層8と拡散層9との間に寄生容量102を持ってしまい、センサに対するノイズ増加や、速度低下の原因となってしまう。   However, in this structure, as shown in FIG. 11, there is a parasitic capacitance 101 between the first semiconductor layer 11 and the diffusion layer 8, and the sensor pixel formed in the second semiconductor layer 15. In the diode, the parasitic capacitance 102 is provided between the diffusion layer 8 and the diffusion layer 9, which causes an increase in noise and a decrease in speed for the sensor.

本発明の主な目的は、フォトダイオードとトランジスタとが絶縁膜を介して同一の半導体基板に形成され、寄生容量の小さい半導体装置の製造方法を提供することにある。 The main purpose of the present invention, a photodiode and a transistor are formed on the same semiconductor substrate through an insulating film, it is to provide a method of manufacturing a small semiconductor equipment parasitic capacitance.

発明によれば、
一導電型の第2の半導体層と、前記第2の半導体層上の第2の絶縁層と、前記第2の絶縁層上の第3の半導体層と、前記第3の半導体層上の第1の絶縁層と、前記第1の絶縁層上に選択的に設けられた第1の半導体層を備えるアクティブ領域と、を備える積層体を準備する工程と、
前記アクティブ領域にトランジスタ素子を形成する工程と、
前記第1の絶縁層、前記第3の半導体層および前記第2の絶縁層に、前記第2の半導体層を露出する開口を形成すると同時に、前記第3の半導体層を分離する第3の半導体層分離領域を形成する工程と、
前記開口を介して、前記第2の半導体層に、前記一導電型とは反対の導電型である反対導電型の不純物を導入する工程と、
を備える半導体装置の製造方法が提供される。
According to the present invention,
A second semiconductor layer of one conductivity type; a second insulating layer on the second semiconductor layer; a third semiconductor layer on the second insulating layer; and a second semiconductor layer on the third semiconductor layer. Preparing a laminate comprising: 1 insulating layer; and an active region including a first semiconductor layer selectively provided on the first insulating layer;
Forming a transistor element in the active region;
An opening exposing the second semiconductor layer is formed in the first insulating layer, the third semiconductor layer, and the second insulating layer, and at the same time, a third semiconductor that separates the third semiconductor layer Forming a layer separation region;
Introducing an impurity of an opposite conductivity type, which is an opposite conductivity type to the one conductivity type, into the second semiconductor layer through the opening;
A method for manufacturing a semiconductor device is provided.

本発明によれば、フォトダイオードとトランジスタとが絶縁膜を介して同一の半導体基板に形成され、寄生容量の小さい半導体装置の製造方法が提供される。 According to the present invention, a photodiode and a transistor are formed on the same semiconductor substrate through an insulating film, a manufacturing method of a small semiconductor equipment parasitic capacitance is provided.

図1は、本発明の好ましい実施の形態で製造される半導体装置を説明するための概略縦断面図である。FIG. 1 is a schematic longitudinal sectional view for explaining a semiconductor device manufactured in a preferred embodiment of the present invention. 図2は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図3は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 3 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図4は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 4 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図5は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 5 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図6は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 6 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図7は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 7 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図8は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 8 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図9は、本発明の好ましい実施の形態の半導体装置の製造方法を説明するための概略縦断面図である。FIG. 9 is a schematic longitudinal sectional view for explaining a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. 図10は、従来の半導体装置を説明するための概略縦断面図である。FIG. 10 is a schematic longitudinal sectional view for explaining a conventional semiconductor device. 図11は、関連する半導体装置を説明するための概略縦断面図である。FIG. 11 is a schematic longitudinal sectional view for explaining a related semiconductor device.

以下、本発明の好ましい実施の形態について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1を参照すれば、本発明の好ましい実施の形態で製造される半導体装置100は、周辺回路用のMOSトランジスタ40が形成された第1の半導体層11と、センサピクセルとして機能し、第2の半導体層15と半導体領域231とを備えるフォトダイオード30と、第1の半導体層11と第2の半導体層15との間に設けられた第3の半導体層13と、第1の半導体層11と第3の半導体層13との間に設けられた埋め込み酸化膜12と、第2の半導体層11と第3の半導体層13との間に設けられた埋め込み酸化膜14とを備えている。 Referring to FIG. 1, a semiconductor device 100 manufactured according to a preferred embodiment of the present invention functions as a first semiconductor layer 11 in which a peripheral circuit MOS transistor 40 is formed, a sensor pixel, and a second pixel. A photodiode 30 having the semiconductor layer 15 and the semiconductor region 231, a third semiconductor layer 13 provided between the first semiconductor layer 11 and the second semiconductor layer 15, and the first semiconductor layer 11. Embedded oxide film 12 provided between the second semiconductor layer 11 and the third semiconductor layer 13, and a buried oxide film 14 provided between the second semiconductor layer 11 and the third semiconductor layer 13.

第1の半導体層11、第3の半導体層13はP型半導体基板、第2の半導体層15はN型半導体基板で形成している。第2の半導体層15の主面151の領域51には、P型の半導体領域231が設けられている。P型の半導体領域231とN型の第2の半導体層15で、センサピクセルとして機能する、X線用のフォトダイオード30が形成されている。なお、第2の半導体層15の主面151の領域51には、高濃度のN型の取り出し領域232が設けられている。第2の半導体層15の主面151と反対側の主面152には、電極280が設けられている。MOSトランジスタ40が形成された第1の半導体層11のアクティブ領域111は、第2半導体層15の主面151の領域51とは異なる領域52上に設けられている。第1の半導体層11のアクティブ領域111と第2の半導体層15との間に設けられた第3の半導体層13には、高濃度のP型の取り出し領域24が設けられている。   The first semiconductor layer 11 and the third semiconductor layer 13 are formed of a P-type semiconductor substrate, and the second semiconductor layer 15 is formed of an N-type semiconductor substrate. A P-type semiconductor region 231 is provided in the region 51 of the main surface 151 of the second semiconductor layer 15. The P-type semiconductor region 231 and the N-type second semiconductor layer 15 form an X-ray photodiode 30 that functions as a sensor pixel. Note that a high-concentration N-type extraction region 232 is provided in the region 51 of the main surface 151 of the second semiconductor layer 15. An electrode 280 is provided on the main surface 152 opposite to the main surface 151 of the second semiconductor layer 15. The active region 111 of the first semiconductor layer 11 in which the MOS transistor 40 is formed is provided on a region 52 different from the region 51 of the main surface 151 of the second semiconductor layer 15. The third semiconductor layer 13 provided between the active region 111 of the first semiconductor layer 11 and the second semiconductor layer 15 is provided with a high-concentration P-type extraction region 24.

N型の第2の半導体層15は、第2の半導体層15の主面152に設けられた電極280および第2の半導体層15の主面151に設けられた高濃度のN型の取り出し領域232に接続された取り出し電極275を介して電源28の正極側に接続されている。第2の半導体層15の主面151に設けられたP型の半導体領域231は、取り出し電極274を介して電源28の負極側およびGND90に接続されている。P型の第3の半導体層13は、高濃度のP型の取り出し領域24に接続された取り出し電極271を介してGND90に接続されている。   The N-type second semiconductor layer 15 includes an electrode 280 provided on the main surface 152 of the second semiconductor layer 15 and a high-concentration N-type extraction region provided on the main surface 151 of the second semiconductor layer 15. It is connected to the positive electrode side of the power supply 28 via the extraction electrode 275 connected to H.232. The P-type semiconductor region 231 provided on the main surface 151 of the second semiconductor layer 15 is connected to the negative electrode side of the power supply 28 and the GND 90 via the extraction electrode 274. The P-type third semiconductor layer 13 is connected to the GND 90 via an extraction electrode 271 connected to the high-concentration P-type extraction region 24.

X線用のフォトダイオード30を構成するN型の第2の半導体層15を空乏化するために、第2半導体層15の裏面(主面152)と高濃度のN型の取り出し領域232(カソード電極)に電源28より正の高電圧を印加する。この時、第3の半導体層13とダイオードのアノード電極となるP型の半導体領域231はGND90に接地する。   In order to deplete the N-type second semiconductor layer 15 constituting the X-ray photodiode 30, the back surface (main surface 152) of the second semiconductor layer 15 and the high-concentration N-type extraction region 232 (cathode) A positive high voltage is applied to the electrode) from the power source 28. At this time, the third semiconductor layer 13 and the P-type semiconductor region 231 serving as the anode electrode of the diode are grounded to the GND 90.

P型基板で形成された第3の半導体層13をGND電位に固定することにより、第2の半導体層15を空乏化するために第2の半導体層15の裏面(主面152)に高電圧を印加した場合でも、第1の半導体層11のアクティブ領域111の埋め込み酸化膜12側の界面には第2の半導体層15の裏面に印加した高電圧28は伝達しない。   A high voltage is applied to the back surface (main surface 152) of the second semiconductor layer 15 in order to deplete the second semiconductor layer 15 by fixing the third semiconductor layer 13 formed of the P-type substrate to the GND potential. Even when is applied, the high voltage 28 applied to the back surface of the second semiconductor layer 15 is not transmitted to the interface of the active region 111 of the first semiconductor layer 11 on the buried oxide film 12 side.

このように、第1の半導体層11のアクティブ領域111に形成したMOSトランジスタ40と第2の半導体層15に形成したセンサピクセルとしてのダイオード30の間にはGNDに固定された第3の半導体層13があるために、センサピクセルヘの寄生容量は非常に小さくなる。また、センサピクセルヘ信号が入力された際に第1の半導体層11のMOSトランジスタ40へ影響を及ぼすクロストークも、ほぼ無視できる程度となる。   As described above, the third semiconductor layer fixed to GND is provided between the MOS transistor 40 formed in the active region 111 of the first semiconductor layer 11 and the diode 30 as the sensor pixel formed in the second semiconductor layer 15. 13, the parasitic capacitance to the sensor pixel is very small. In addition, crosstalk that affects the MOS transistor 40 of the first semiconductor layer 11 when a signal is input to the sensor pixel is almost negligible.

次に、本発明の好ましい実施の形態の半導体装置100の製造方法について説明する。   Next, a method for manufacturing the semiconductor device 100 according to a preferred embodiment of the present invention will be described.

まず、図2に示すように100〜200nm程度の厚さの埋め込み酸化膜10、14を挟んで上側に100nmの厚さの第1の半導体層11と、下側に700μm程度の厚さの第2の半導体層15、中央に100nmの厚さの第3の半導体層13を有するDouble−SOI(Double−Silicon On Insulator)基板を用いる。この時、例えば第1の半導体層11、第3の半導体層13は比抵抗10Ω・cmのP型半導体基板、第2の半導体層15は比抵抗10kΩ・cmのN型半導体基板で形成する。   First, as shown in FIG. 2, a first semiconductor layer 11 having a thickness of about 100 nm is sandwiched between the buried oxide films 10 and 14 having a thickness of about 100 to 200 nm, and a first semiconductor layer 11 having a thickness of about 700 μm is disposed on the lower side. A double-SOI (Double-Silicon On Insulator) substrate having two semiconductor layers 15 and a third semiconductor layer 13 having a thickness of 100 nm in the center is used. At this time, for example, the first semiconductor layer 11 and the third semiconductor layer 13 are formed of a P-type semiconductor substrate having a specific resistance of 10 Ω · cm, and the second semiconductor layer 15 is formed of an N-type semiconductor substrate having a specific resistance of 10 kΩ · cm.

第1の半導体層11の表面に、パッド酸化膜(図示せず)と窒化膜(図示せず)を形成し、LOCOS形成法によりフィールド酸化膜を形成した後に、図3に示すように、全ての窒化膜と、パッド酸化膜を除去する。これにより、第1の半導体層11にアクティブ領域111が形成される。   After forming a pad oxide film (not shown) and a nitride film (not shown) on the surface of the first semiconductor layer 11 and forming a field oxide film by the LOCOS formation method, as shown in FIG. The nitride film and the pad oxide film are removed. As a result, an active region 111 is formed in the first semiconductor layer 11.

さらに、図4に示すように、第1の半導体層11のアクティブ領域111の表面にゲート酸化膜16を形成し、ポリシリコン膜を堆積、フォトレジスト(図示せず)でパターニングを行なったポリシリコン膜のドライエッチングを行い、ゲート電極18を形成する。   Further, as shown in FIG. 4, a gate oxide film 16 is formed on the surface of the active region 111 of the first semiconductor layer 11, a polysilicon film is deposited, and polysilicon is patterned with a photoresist (not shown). The film is dry-etched to form the gate electrode 18.

その後、図5に示すように、フォトレジスト(図示せず)を除去した後に、第1の半導体層11のアクティブ領域111にLDD(図示せず)のイオン注入を行い、サイドウォールスペーサ20を形成したのちに、高濃度ソース・ドレイン19のイオン注入工程を行い、MOSトランジスタ40を形成する。   Thereafter, as shown in FIG. 5, after removing the photoresist (not shown), LDD (not shown) is ion-implanted into the active region 111 of the first semiconductor layer 11 to form the sidewall spacer 20. After that, an ion implantation process of the high concentration source / drain 19 is performed to form the MOS transistor 40.

その後、図6に示すように、第2の半導体層15に形成するべきP型の半導体領域231、N型の取り出し領域232、第3半導体層13の分離領域131以外の場所をフォトレジスト(図示せず)にて覆い、埋め込み酸化膜12、14、第3の半導体層13をエッチングして、開口211、212、分離領域用溝213をそれぞれ形成した後に、フォトレジストを除去する。また、第3の半導体層13に形成するべきP型の取り出し電極領域24以外の場所をフォトレジスト(図示せず)にて覆い、埋め込み酸化膜12をエッチングして、開口22を形成した後にフォトレジストを除去する。   After that, as shown in FIG. 6, a photoresist (see FIG. 6) is provided except for the P-type semiconductor region 231, the N-type extraction region 232, and the third semiconductor layer 13 separation region 131 to be formed in the second semiconductor layer 15. The buried oxide films 12 and 14 and the third semiconductor layer 13 are etched to form the openings 211 and 212 and the isolation region trench 213, respectively, and then the photoresist is removed. Further, a portion other than the P-type extraction electrode region 24 to be formed in the third semiconductor layer 13 is covered with a photoresist (not shown), the buried oxide film 12 is etched, and the opening 22 is formed. Remove the resist.

ダイオードのカソードを兼ねたN型の取り出し領域232には、開口212を介して、例えば注入エネルギー60kev、ドーズ量5.0×1015cm−2程度の不純物31Pを注入し、ダイオードのアノードを兼ねたP型の半導体領域231には、開口211を介して、例えば注入エネルギー40keV、ドーズ量5.0×1015cm−2程度の不純物11Bを注入する。また、第3の半導体層13のP型の取り出し領域24には、開口22を介して、例えば注入エネルギー15kev、ドーズ量5.0×1015cm−2程度の不純物49BF を注入する。 For example, an impurity 31P + having an implantation energy of 60 kev and a dose of about 5.0 × 10 15 cm −2 is implanted through the opening 212 into the N-type extraction region 232 that also serves as the diode cathode. For example, an impurity 11B + having an implantation energy of 40 keV and a dose of about 5.0 × 10 15 cm −2 is implanted into the P-type semiconductor region 231 that also serves as the P-type semiconductor region 231. Further, an impurity 49BF 2 + having an implantation energy of 15 kev and a dose of about 5.0 × 10 15 cm −2 is implanted into the P-type extraction region 24 of the third semiconductor layer 13 through the opening 22.

この後、図7に示すように、CVD膜25の堆積によって層間膜を形成する。その後、第1の半導体層11のアクティブ領域111と第2の半導体層15、第3の半導体層13の取り出し電極を形成する場所をエッチングすることによって、図8に示すように、コンタクトホール261、262、263、264、265を形成する。最後にスパッタによって形成したメタル層を、電極形成領域以外の部分をエッチングすることによって、図9に示すように、取り出し電極271、272、273、274、275を形成する。また、第2半導体層15の裏面にも、電極280を形成する。   Thereafter, as shown in FIG. 7, an interlayer film is formed by depositing a CVD film 25. Thereafter, by etching the active region 111 of the first semiconductor layer 11, the second semiconductor layer 15, and the place where the extraction electrode of the third semiconductor layer 13 is formed, as shown in FIG. 262, 263, 264, and 265 are formed. Finally, the metal layer formed by sputtering is etched at portions other than the electrode formation region, thereby forming extraction electrodes 271, 272, 273, 274, 275 as shown in FIG. An electrode 280 is also formed on the back surface of the second semiconductor layer 15.

第3の半導体層13に分離領域を形成する手法として、図7に示すように第2の半導体層15の主面151にP型の半導体領231およびN型の取り出し領域を形成する際に、同時に第3の半導体層13の分離領域131を形成する部分のエッチングを行うことで、特別な工程を行ったり、マスクなどを準備することなく、第3半導体層13の分離領域131の形成を行うことが可能となり、第3の半導体層13同士を電気的に分離することが可能となる。   As a method of forming the isolation region in the third semiconductor layer 13, when forming the P-type semiconductor region 231 and the N-type extraction region on the main surface 151 of the second semiconductor layer 15 as shown in FIG. At the same time, the portion of the third semiconductor layer 13 where the isolation region 131 is formed is etched, so that the isolation region 131 of the third semiconductor layer 13 is formed without performing a special process or preparing a mask or the like. Accordingly, the third semiconductor layers 13 can be electrically separated from each other.

なお、上記の実施の形態では、第2の半導体層15がN型基板である場合について説明しているが、第2の半導体層15がP型の半導体装置にも適用可能であり、その場合には、他の領域についても、P型とあったのをN型とし、N型とあったのをP型とする。   In the above embodiment, the case where the second semiconductor layer 15 is an N-type substrate is described. However, the second semiconductor layer 15 can also be applied to a P-type semiconductor device. In other regions, the P type is defined as the N type, and the P type is defined as the N type.

以上、本発明の種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。従って、本発明の範囲は、次の特許請求の範囲によってのみ限定されるものである。   While various typical embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Accordingly, the scope of the invention is limited only by the following claims.

11 第1の半導体層
12 埋め込み酸化膜
13 第3の半導体層
14 埋め込み酸化膜
15 第2の半導体層
16 ゲート酸化膜
18 ゲート電極
19 ソース・ドレイン
22 開口
24 P型の取り出し領域
28 電源
30 フォトダイオード
40 MOSトランジスタ
51 領域
90 GND
100 半導体装置
111 アクティブ領域
131 分離領域
151 主面
152 主面
211、212 開口
213 分離領域用溝
231 P型の半導体領域
232 N型の取り出し領域
261、262、263、264、265 コンタクトホール
271、272、273、274、275 取り出し電極
280 電極
11 First semiconductor layer 12 Buried oxide film 13 Third semiconductor layer 14 Buried oxide film 15 Second semiconductor layer 16 Gate oxide film 18 Gate electrode 19 Source / drain 22 Opening 24 P-type extraction region 28 Power supply 30 Photodiode 40 MOS transistor 51 area 90 GND
100 Semiconductor device 111 Active region 131 Isolation region 151 Main surface 152 Main surface 211, 212 Opening 213 Separation region groove 231 P-type semiconductor region 232 N-type extraction region 261, 262, 263, 264, 265 Contact holes 271, 272 273, 274, 275 Extraction electrode 280 Electrode

Claims (2)

一導電型の第2の半導体層と、前記第2の半導体層上の第2の絶縁層と、前記第2の絶縁層上の第3の半導体層と、前記第3の半導体層上の第1の絶縁層と、前記第1の絶縁層上に選択的に設けられた第1の半導体層を備えるアクティブ領域と、を備える積層体を準備する工程と、
前記アクティブ領域にトランジスタ素子を形成する工程と、
前記第1の絶縁層、前記第3の半導体層および前記第2の絶縁層に、前記第2の半導体層を露出する開口を形成すると同時に、前記第3の半導体層を分離する第3の半導体層分離領域を形成する工程と、
前記開口を介して、前記第2の半導体層に、前記一導電型とは反対の導電型である反対導電型の不純物を導入する工程と、
を備える半導体装置の製造方法。
A second semiconductor layer of one conductivity type; a second insulating layer on the second semiconductor layer; a third semiconductor layer on the second insulating layer; and a second semiconductor layer on the third semiconductor layer. Preparing a laminate comprising: 1 insulating layer; and an active region including a first semiconductor layer selectively provided on the first insulating layer;
Forming a transistor element in the active region;
An opening exposing the second semiconductor layer is formed in the first insulating layer, the third semiconductor layer, and the second insulating layer, and at the same time, a third semiconductor that separates the third semiconductor layer Forming a layer separation region;
Introducing an impurity of an opposite conductivity type, which is an opposite conductivity type to the one conductivity type, into the second semiconductor layer through the opening;
A method for manufacturing a semiconductor device comprising:
第1の絶縁層を介して前記第3の半導体層に接続された第1の取り出し電極を設け、前記第1の絶縁層および前記第2の絶縁層を介して、前記第2の半導体層の前記反対導電型の不純物が導入された領域に接続された第2の取り出し電極を設ける工程をさらに備える請求項1記載の半導体装置の製造方法。   A first extraction electrode connected to the third semiconductor layer through a first insulating layer is provided, and the second semiconductor layer is formed through the first insulating layer and the second insulating layer. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of providing a second extraction electrode connected to the region where the impurity of the opposite conductivity type is introduced.
JP2013004017A 2013-01-11 2013-01-11 Manufacturing method of semiconductor device Active JP6202515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004017A JP6202515B2 (en) 2013-01-11 2013-01-11 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004017A JP6202515B2 (en) 2013-01-11 2013-01-11 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017101258A Division JP6463407B2 (en) 2017-05-22 2017-05-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014135454A JP2014135454A (en) 2014-07-24
JP6202515B2 true JP6202515B2 (en) 2017-09-27

Family

ID=51413514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004017A Active JP6202515B2 (en) 2013-01-11 2013-01-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6202515B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545592B1 (en) * 2014-09-02 2023-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
JP6585978B2 (en) 2015-09-24 2019-10-02 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6572075B2 (en) * 2015-09-24 2019-09-04 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6873336B1 (en) * 2020-04-10 2021-05-19 株式会社オプトハブ Semiconductor image sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345064A (en) * 1991-05-22 1992-12-01 Hitachi Ltd Semiconductor integrated circuit device and its manufacture
JP3437132B2 (en) * 1999-09-14 2003-08-18 シャープ株式会社 Semiconductor device
JP4282388B2 (en) * 2003-06-30 2009-06-17 株式会社東芝 Semiconductor memory device
CN102792444B (en) * 2010-03-09 2015-10-14 大学共同利用机关法人高能加速器研究机构 The manufacture method of semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP2014135454A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US10622263B2 (en) Semiconductor device having SOI substrate and first and second diffusion layer
US7818702B2 (en) Structure incorporating latch-up resistant semiconductor device structures on hybrid substrates
US7754513B2 (en) Latch-up resistant semiconductor structures on hybrid substrates and methods for forming such semiconductor structures
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JP6202515B2 (en) Manufacturing method of semiconductor device
JP5818238B2 (en) Semiconductor device
US9704912B2 (en) Semiconductor device and semiconductor device manufacturing method
JP6142984B2 (en) Double well structure SOI radiation sensor and manufacturing method thereof
JP6572075B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7642617B2 (en) Integrated circuit with depletion mode JFET
US8383445B2 (en) Method and device for CMOS image sensing with multiple gate oxide thicknesses
JP6463407B2 (en) Semiconductor device
US7335546B2 (en) Method and device for CMOS image sensing with separate source formation
JP6108451B2 (en) Semiconductor device and manufacturing method thereof
JP5839917B2 (en) Semiconductor device and manufacturing method thereof
JP2017157788A (en) Semiconductor device manufacturing method
JP6161454B2 (en) Photoelectric conversion device, manufacturing method thereof, and camera
JP2000252471A (en) Field effect transistor and manufacture thereof
JPH08195443A (en) Semiconductor device and its manufacture
JP2005019636A (en) Thin film diode and thin film transistor
WO2023233833A1 (en) Semiconductor image sensor device
JP6243748B2 (en) Semiconductor device and manufacturing method thereof
US9627433B2 (en) Method of manufacturing junction field effect transistor
JP2007042760A (en) Semiconductor device
JP2003234479A (en) Field effect transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6202515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250