JP6193778B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP6193778B2
JP6193778B2 JP2014027073A JP2014027073A JP6193778B2 JP 6193778 B2 JP6193778 B2 JP 6193778B2 JP 2014027073 A JP2014027073 A JP 2014027073A JP 2014027073 A JP2014027073 A JP 2014027073A JP 6193778 B2 JP6193778 B2 JP 6193778B2
Authority
JP
Japan
Prior art keywords
capacitor
vanadium
dielectric
mol
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014027073A
Other languages
Japanese (ja)
Other versions
JP2015153916A (en
Inventor
松原 聖
聖 松原
勇介 東
勇介 東
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014027073A priority Critical patent/JP6193778B2/en
Publication of JP2015153916A publication Critical patent/JP2015153916A/en
Application granted granted Critical
Publication of JP6193778B2 publication Critical patent/JP6193778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンデンサに関する。   The present invention relates to a capacitor.

従来より、セラミック製の誘電体層と内部電極層とを交互に積み重ねた後、一体的に焼成して作製された積層型のコンデンサが知られている(例えば、特許文献1を参照)。このようなコンデンサにおいて、誘電体層および内部電極層の積層数が例えば数百層にも及ぶものにおいては、内部電極層とともに誘電体層も同様に薄層化されていることから、無負荷状態で室温における静電容量は高いものの、コンデンサが高温状態となり、これに直流電圧が印加された際に、誘電体層が受ける電界強度が高くなると、静電容量が大きく低下するという問題がある。   2. Description of the Related Art Conventionally, a multilayer capacitor manufactured by alternately stacking ceramic dielectric layers and internal electrode layers and then firing them integrally is known (see, for example, Patent Document 1). In such a capacitor, when the number of laminated dielectric layers and internal electrode layers reaches several hundreds of layers, for example, the dielectric layers as well as the internal electrode layers are thinned. However, although the capacitance at room temperature is high, there is a problem that if the electric field strength received by the dielectric layer increases when a DC voltage is applied to the capacitor, the capacitance is greatly reduced.

特開2000−58377号公報JP 2000-58377 A

従って、本発明の目的は、高温において直流電圧が印加された際にも静電容量の低下の小さいコンデンサを提供することにある。   Accordingly, an object of the present invention is to provide a capacitor having a small decrease in capacitance even when a DC voltage is applied at a high temperature.

本発明のコンデンサは、誘電体層と内部電極層とが交互に積層されたコンデンサ本体を備えたコンデンサであって、前記誘電体層は、チタン酸バリウムを主成分とし、バナジウムを含有する結晶粒子を主結晶粒子とする誘電体磁器からなるとともに、前記結晶粒子の平均粒径が0.15〜0.4μmであり、前記誘電体層に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上であるとともに、前記結晶粒子の表面付近と中心部との間での前記バナジウムの濃度勾配が絶対値で0.03原子%/nm以下であることを特徴とする。   The capacitor of the present invention is a capacitor having a capacitor body in which dielectric layers and internal electrode layers are alternately laminated, and the dielectric layer is composed of barium titanate as a main component and crystal particles containing vanadium. A lattice when the lattice constant of barium titanate contained in the dielectric layer is determined, the average particle diameter of the crystal particles being 0.15 to 0.4 μm The constant ratio c / a is 1.0062 or more, and the vanadium concentration gradient between the vicinity of the surface of the crystal grain and the center is 0.03 atomic% / nm or less in absolute value. And

本発明によれば、高温において直流電圧が印加された際にも静電容量の低下の小さいコンデンサを得ることができる。   According to the present invention, it is possible to obtain a capacitor with a small decrease in capacitance even when a DC voltage is applied at a high temperature.

(a)は、本発明のコンデンサの一実施形態を示す断面模式図であり、(b)は、(a)のコンデンサを構成する誘電体層を部分的に拡大した断面模式図である。(A) is a cross-sectional schematic diagram which shows one Embodiment of the capacitor | condenser of this invention, (b) is a cross-sectional schematic diagram which expanded the dielectric material layer which comprises the capacitor | condenser of (a) partially. (a)は、結晶粒子の断面構造であり、(b)は結晶粒子に含まれる元素(バナジウム、希土類元素(RE))の濃度分布を示す模式図である。(A) is a cross-sectional structure of crystal grains, and (b) is a schematic diagram showing a concentration distribution of elements (vanadium, rare earth elements (RE)) contained in the crystal grains.

図1(a)は、本発明のコンデンサの一実施形態を示す断面模式図であり、(b)は、(a)のコンデンサを構成する誘電体層を部分的に拡大した断面模式図である。   FIG. 1A is a schematic cross-sectional view showing an embodiment of the capacitor of the present invention, and FIG. 1B is a schematic cross-sectional view in which a dielectric layer constituting the capacitor of FIG. .

本実施形態のコンデンサは、誘電体層1と内部電極層3とが交互に積層されたコンデンサ本体5によって構成されている。この場合、図1(a)に示すように、コンデンサ本体5の断面が長方形状(外形は直方体状)であるようなときには、コンデンサ本体5の対向
する端面7に内部電極層3に接続される外部電極9が設けられる。図1では、誘電体層1と内部電極層3との積層状態を単純化して示しているが、本実施形態のコンデンサは誘電体層1と内部電極層3とが数百層にも及ぶ積層体となっている。なお、直方体状というのは、コンデンサ本体5を構成する2つの平面あるいは3つの平面が交わる角度が直角というだけではなく、稜線や角部が丸くなっている構造も含むという意味である。
The capacitor of this embodiment is constituted by a capacitor body 5 in which dielectric layers 1 and internal electrode layers 3 are alternately stacked. In this case, as shown in FIG. 1A, when the cross section of the capacitor main body 5 is rectangular (the outer shape is a rectangular parallelepiped), the internal electrode layer 3 is connected to the opposing end surface 7 of the capacitor main body 5. An external electrode 9 is provided. In FIG. 1, the laminated state of the dielectric layer 1 and the internal electrode layer 3 is shown in a simplified manner. However, the capacitor according to this embodiment has a laminated layer in which the dielectric layer 1 and the internal electrode layer 3 are several hundred layers. It is a body. The rectangular parallelepiped shape means that not only the angle at which the two planes or the three planes constituting the capacitor body 5 intersect is a right angle, but also includes a structure in which ridge lines and corners are rounded.

本実施形態のコンデンサは、誘電体層1がチタン酸バリウムを主成分とし、バナジウムを含有する結晶粒子1aを主結晶粒子とする誘電体磁器からなり、その結晶粒子1aの平均粒径が0.15〜0.4μmである。また、誘電体層1に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上である。さらには、結晶粒子1aの表面1s付近と中心部1cとの間でのバナジウムの濃度勾配が絶対値で0.03原子%/nm以下である。ここで、結晶粒子1aの表面付近1sとは、図2に示すように、表面からわずかに入り込んだ領域(1s)までをいい、本実施形態では表面からの深さが10nm以内の範囲である。一方、結晶粒子1aの中心部1cとは、結晶粒子1aを断面視したときの直径を3等分したときの真ん中の領域(1c)のことである。   The capacitor of the present embodiment is made of a dielectric ceramic in which the dielectric layer 1 is composed mainly of barium titanate and crystal particles 1a containing vanadium as main crystal particles, and the average particle size of the crystal particles 1a is 0.00. 15 to 0.4 μm. Further, the lattice constant ratio c / a when the lattice constant of barium titanate contained in the dielectric layer 1 is obtained is 1.0062 or more. Furthermore, the concentration gradient of vanadium between the vicinity of the surface 1s of the crystal particle 1a and the central portion 1c is 0.03 atomic% / nm or less in absolute value. Here, the surface vicinity 1s of the crystal grain 1a refers to a region (1s) slightly entering from the surface as shown in FIG. 2, and in this embodiment, the depth from the surface is within 10 nm. . On the other hand, the central portion 1c of the crystal particle 1a is a middle region (1c) when the diameter when the crystal particle 1a is viewed in cross section is divided into three equal parts.

濃度勾配とは、図2(b)に示すように、結晶粒子1aの表面付近1sから中心部1cにかけてバナジウム(V)や希土類元素(RE)の含有量の変化した勾配のことをいう。この場合、結晶粒子1aの表面付近1sから中心部1cにかけて濃度が低くなるように変化している状態からの傾きから求められる。   As shown in FIG. 2B, the concentration gradient means a gradient in which the content of vanadium (V) or rare earth element (RE) is changed from the surface vicinity 1s of the crystal particle 1a to the central portion 1c. In this case, it is obtained from the inclination from the state where the concentration decreases from the surface vicinity 1s of the crystal particle 1a to the central portion 1c.

本実施形態のコンデンサでは、結晶粒子1a中に含まれるバナジウム(V)が結晶粒子1aの表面1s付近から内部にまで十分に拡散した状態であるため、結晶粒子1aの全体にわたってバナジウム(V)が拡散している状態となっている。このためチタン酸バリウムの原子の欠損等による格子欠陥が相当量補償される。これにより高温において移動しやすい酸素空孔などのキャリア数が少なくなり、高温でのDCバイアス特性を−40%以内にすることができる。   In the capacitor of the present embodiment, vanadium (V) contained in the crystal particle 1a is sufficiently diffused from the vicinity of the surface 1s to the inside of the crystal particle 1a, so that the vanadium (V) is contained over the entire crystal particle 1a. It is in a diffuse state. Therefore, a considerable amount of lattice defects due to atomic defects of barium titanate are compensated. As a result, the number of carriers such as oxygen vacancies that easily move at high temperatures is reduced, and the DC bias characteristics at high temperatures can be made within -40%.

ここで、高温でのDCバイアス特性というのは、室温(25℃)において直流電圧を印加していない条件で得られる静電容量をCとし、温度85℃、2Vの直流電圧を印加した条件で得られる静電容量をCHDとしたときに、変化率ΔCを、ΔC(%)=(CHD−C)×100/Cで表したときの値である。以下、高温DCバイアス特性という。 Here, the DC bias characteristic at high temperature is a condition in which the capacitance obtained under the condition that no DC voltage is applied at room temperature (25 ° C.) is C 0, and a DC voltage of 85 ° C. and 2 V is applied. the capacitance obtained when the C HD, the rate of change [Delta] C, a value when expressed in ΔC (%) = (C HD -C 0) × 100 / C 0. Hereinafter, it is referred to as a high temperature DC bias characteristic.

また、この結晶粒子1aは、バナジウム(V)を十分に固溶していても格子定数比c/aが1.0062以上に維持されているため、結晶粒子1aの平均粒径を0.15〜0.4μmとしたときには、室温(25℃)における比誘電率を4500以上にすることができる。   In addition, since the crystal particle 1a maintains the lattice constant ratio c / a at 1.0062 or more even when vanadium (V) is sufficiently dissolved, the average particle size of the crystal particle 1a is 0.15. When it is set to ˜0.4 μm, the relative dielectric constant at room temperature (25 ° C.) can be set to 4500 or more.

なお、格子定数比c/aとは、ペロブスカイト構造を有するチタン酸バリウムの格子定数a、bおよびcのうちのaおよびcの比を取ったときの値であり、正方晶性を示す指標となるものである。   The lattice constant ratio c / a is a value obtained by taking the ratio of a and c among the lattice constants a, b and c of barium titanate having a perovskite structure, and is an index indicating tetragonality. It will be.

これに対し、コンデンサを構成する誘電体層1の結晶粒子1aの平均粒径が0.15〜0.4μm、格子定数比c/aが1.0062よりも大きい、結晶粒子1aの表面付近1sと中心部1cとの間でのバナジウムの濃度勾配が絶対値で0.03原子%/nmよりも小さい、との条件のうちのいずれかを満たさない場合には、高温DCバイアス特性が−40%よりもマイナス側へ大きくなってしまうか、または誘電体層1の比誘電率が4500よりも低くなってしまう。   On the other hand, the crystal grains 1a of the dielectric layer 1 constituting the capacitor have an average grain size of 0.15 to 0.4 μm and a lattice constant ratio c / a larger than 1.0062. When the concentration gradient of vanadium between the center portion 1c and the central portion 1c does not satisfy any of the conditions that the absolute value is smaller than 0.03 atomic% / nm, the high-temperature DC bias characteristic is −40. %, Or the relative dielectric constant of the dielectric layer 1 becomes lower than 4500.

なお、バナジウム(V)以外の元素(例えば、希土類元素(RE)、マグネシウム(M
g)およびマンガン(Mn))によって同様の濃度勾配を持つようにした場合には、まず、比誘電率が4500より低くなり、また、高温DCバイアス特性が−40%よりもマイナス側へ大きくなってしまう。
Elements other than vanadium (V) (for example, rare earth elements (RE), magnesium (M
g) and manganese (Mn)) having a similar concentration gradient, first, the relative dielectric constant becomes lower than 4500, and the high-temperature DC bias characteristic becomes larger on the minus side than −40%. End up.

このように本実施形態のコンデンサは、誘電体層1を、上記のように、チタン酸バリウムを主成分としバナジウムを含有する結晶粒子1aを主結晶粒子とする誘電体磁器からなり、その結晶粒子1aの平均粒径が0.15〜0.4μm、誘電体層1に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上および結晶粒子1aの表面1s付近と中心部1cとの間でのバナジウムの濃度勾配が絶対値で0.03原子%/nm以下とすることによって高誘電率かつ高温DCバイアス特性を高めることができるものであるが、この誘電体層1を構成する誘電体磁器の組成を特定の範囲にしたときには、コンデンサとしてX5R特性を満足するものにできる。また、高温負荷寿命も高められる。この場合、希土類元素(RE)は結晶粒子1aの表面付近1sと中心部1cとの間での濃度勾配が絶対値で0.05原子%/nm以上であるのが良く、また、誘電体層1の組成としては、チタン酸バリウムを100モルとしたときの割合で、バナジウムの含有量がV換算で0.05〜0.2モル、希土類元素(RE)の含有量がRE換算で0.30〜0.65モル、マグネシウムの含有量がMgO換算で0.3〜1.0モル、マンガンの含有量がMnO換算で0.1〜0.3モルであるのが良い。ここでX5R特性とは、室温(25℃)を基準にしたときの静電容量の変化率が−55〜85℃の温度範囲において±15%以内を満足するものである。 As described above, the capacitor according to the present embodiment includes the dielectric layer 1 including the dielectric ceramic having the main crystal particles of the crystal particles 1a containing barium titanate as a main component and vanadium as described above. The average particle size of 1a is 0.15 to 0.4 μm, the lattice constant ratio c / a when the lattice constant of barium titanate contained in the dielectric layer 1 is obtained is 1.0062 or more, and the surface 1s of the crystal particle 1a Although the vanadium concentration gradient between the vicinity and the central portion 1c is 0.03 atomic% / nm or less in absolute value, the high dielectric constant and high temperature DC bias characteristics can be improved. When the composition of the dielectric ceramic constituting the body layer 1 is set within a specific range, the capacitor can satisfy the X5R characteristic. In addition, the high temperature load life is also increased. In this case, the rare earth element (RE) preferably has a concentration gradient between the surface vicinity 1s of the crystal particle 1a and the central portion 1c of 0.05 atomic% / nm or more in absolute value, and the dielectric layer. The composition of No. 1 is a ratio when the barium titanate is 100 mol, the vanadium content is 0.05 to 0.2 mol in terms of V 2 O 5 , and the rare earth element (RE) content is RE 2. It is 0.30 to 0.65 mol in terms of O 3 , the magnesium content is 0.3 to 1.0 mol in terms of MgO, and the manganese content is 0.1 to 0.3 mol in terms of MnO. good. Here, the X5R characteristic is that the rate of change in capacitance with respect to room temperature (25 ° C.) satisfies ± 15% or less in a temperature range of −55 to 85 ° C.

さらに、誘電体層1の組成を、チタン酸バリウムを100モルとしたときの割合で、バナジウムの含有量をV換算で0.05〜0.2モル、希土類元素(RE)の含有量をRE換算で0.30〜0.60モル、マグネシウムの含有量をMgO換算で0.3〜1.0モル、マンガンの含有量をMnO換算で0.1〜0.3モルとしたときには、誘電損失を6.5%以下にすることができる。 Furthermore, the composition of the dielectric layer 1 is a ratio when the barium titanate is 100 mol, the vanadium content is 0.05 to 0.2 mol in terms of V 2 O 5 , and the rare earth element (RE) content The amount is 0.30 to 0.60 mol in terms of RE 2 O 3 , the magnesium content is 0.3 to 1.0 mol in terms of MgO, and the manganese content is 0.1 to 0.3 mol in terms of MnO In this case, the dielectric loss can be reduced to 6.5% or less.

コンデンサを構成する誘電体層1の平均厚みとしては、0.5〜30μm、内部電極層7の平均厚みは0.5〜20μm、コンデンサ本体5における内部導体層7の積層数が100層以上であるような薄層、高積層のコンデンサに好適なものとなる。   The average thickness of dielectric layer 1 constituting the capacitor is 0.5 to 30 μm, the average thickness of internal electrode layer 7 is 0.5 to 20 μm, and the number of internal conductor layers 7 in capacitor body 5 is 100 or more. This is suitable for such a thin layer and highly laminated capacitor.

また、内部電極層7の材料としては、ニッケル、銅、パラジウムおよび銀から選ばれる1種もしくはこれらの合金を適用することが好ましい。   Moreover, as a material of the internal electrode layer 7, it is preferable to apply 1 type chosen from nickel, copper, palladium, and silver, or these alloys.

次に、本実施形態のコンデンサを製造する方法について説明する。コンデンサ本体5は、誘電体グリーンシートの表面にスクリーン印刷によって内部電極パターンを形成してシート状成形体とし、次いで、このシート状成形体を多層化することによって仮積層体を形成する。次に、この仮積層体を加圧して密着させた後、所定の条件にて焼成することによって得られる。   Next, a method for manufacturing the capacitor of this embodiment will be described. The capacitor body 5 forms an internal electrode pattern on the surface of the dielectric green sheet by screen printing to form a sheet-like molded body, and then forms a temporary laminate by multilayering the sheet-like molded body. Next, the temporary laminate is pressed and brought into close contact, and then fired under predetermined conditions.

この場合、誘電体グリーンシートに適用する誘電体粉末としては、予めバナジウム(V)を固溶させたチタン酸バリウム粉末とバナジウム(V)を固溶させていないチタン酸バリウム粉末を用いる。ここで、チタン酸バリウム粉末へのバナジウム(V)の固溶処理は、チタン酸バリウム粉末の表面にバナジウム成分を被覆し、500〜800℃の温度に加熱することにより行う。本実施形態のコンデンサは、誘電体粉末として用いるチタン酸バリウム粉末にバナジウム(V)を予め固溶させた粉末を用いているために、焼成後において、チタン酸バリウムを主成分とする結晶粒子の内部にバナジウム(V)が十分に拡散した状態となり、これにより結晶粒子の表面付近と中心部との間でのバナジウムの濃度勾配を絶対値で0.03原子%/nm以下にすることができる。この場合、チタン酸バリウムに固溶している元素がバナジウム(V)であるために、添加成分が固溶してもチタン酸バ
リウムの格子定数を求めたときの格子定数比c/aを1.0062以上に維持することができる。また、こうして得られた誘電体粉末に希土類元素(RE)、マグネシウム(Mg)およびマンガン(Mn)を含む化合物を添加してこれらの成分を固溶させても格子定数比c/aを1.0062以上に維持することができる。これは最初にバナジウム(V)が結晶粒子1a中に拡散しているために、後で添加される成分は拡散が抑制されるためであると考えられる。
In this case, as the dielectric powder applied to the dielectric green sheet, barium titanate powder in which vanadium (V) is previously dissolved and barium titanate powder in which vanadium (V) is not dissolved are used. Here, the solid solution treatment of vanadium (V) in the barium titanate powder is performed by coating the surface of the barium titanate powder with a vanadium component and heating to a temperature of 500 to 800 ° C. Since the capacitor of this embodiment uses a powder in which vanadium (V) is pre-dissolved in the barium titanate powder used as the dielectric powder, after firing, the crystal particles mainly composed of barium titanate are used. Vanadium (V) is in a sufficiently diffused state inside, so that the vanadium concentration gradient between the vicinity of the surface of the crystal grain and the central portion can be made 0.03 atomic% / nm or less in absolute value. . In this case, since the element dissolved in barium titanate is vanadium (V), the lattice constant ratio c / a when the lattice constant of barium titanate is obtained even if the additive component is dissolved is 1 .0062 or more can be maintained. Further, even when a compound containing rare earth element (RE), magnesium (Mg) and manganese (Mn) is added to the dielectric powder thus obtained and these components are dissolved, the lattice constant ratio c / a is 1. It can be maintained at 0062 or higher. This is presumably because vanadium (V) is initially diffused into the crystal particles 1a, so that components added later are prevented from diffusing.

次に、得られたコンデンサ本体5の対向する端面部に銅などの金属粉末を主成分とする外部電極3を形成する。この場合、必要に応じて外部電極3の表面に錫やはんだのメッキ膜を形成する。   Next, the external electrode 3 having a metal powder such as copper as a main component is formed on the opposing end face portions of the obtained capacitor body 5. In this case, a tin or solder plating film is formed on the surface of the external electrode 3 as necessary.

以下、具体的に積層型のコンデンサを作製して本発明の効果を確認した。まず、誘電体粉末の原料粉末として、バナジウム(V)を被覆したチタン酸バリウム粉末とバナジウム(V)を被覆していないチタン酸バリウム粉末を用意し、さらにMgO粉末、Y粉末およびMnCO粉末を準備した。用いた原料粉末を表1に示す割合になるように混合した。この場合、バナジウム(V)を被覆したチタン酸バリウム粉末およびバナジウム(V)を被覆していないチタン酸バリウム粉末の混合粉末100質量部に対して、ガラス粉末(SiO=55,BaO=20,CaO=15,LiO=10(モル%))を1質量部添加した。次いで、この誘電体粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとからなる混合溶媒を添加し湿式混合した。バナジウム(V)を被覆していないチタン酸バリウム粉末のc/aは1.0080であったのに対し、バナジウム(V)を被覆したチタン酸バリウム粉末のc/aは1.0099であった。 Hereinafter, a multilayer capacitor was specifically manufactured to confirm the effect of the present invention. First, barium titanate powder coated with vanadium (V) and barium titanate powder not coated with vanadium (V) are prepared as a raw material powder of dielectric powder, and further MgO powder, Y 2 O 3 powder and MnCO Three powders were prepared. The raw material powder used was mixed so as to have the ratio shown in Table 1. In this case, with respect to 100 parts by mass of the mixed powder of the barium titanate powder coated with vanadium (V) and the barium titanate powder not coated with vanadium (V), the glass powder (SiO 2 = 55, BaO = 20, 1 part by mass of CaO = 15, Li 2 O = 10 (mol%) was added. Next, this dielectric powder was wet mixed using a zirconia ball having a diameter of 5 mm and a mixed solvent composed of toluene and alcohol as a solvent. The c / a of the barium titanate powder not coated with vanadium (V) was 1.0080, whereas the c / a of the barium titanate powder coated with vanadium (V) was 1.0099. .

次に、湿式混合した粉末を、ポリビニルブチラール樹脂を溶解させたトルエンおよびアルコールの混合溶媒中に投入し、直径5mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により厚みが2μmの誘電体グリーンシートを作製した。   Next, the wet-mixed powder is put into a mixed solvent of toluene and alcohol in which polyvinyl butyral resin is dissolved, wet-mixed using a zirconia ball having a diameter of 5 mm, and a ceramic slurry is prepared. Produced a dielectric green sheet having a thickness of 2 μm.

次に、この誘電体グリーンシートの上面に矩形状の内部電極パターンを形成してパターン付きシートを形成した。内部電極パターンを形成するための導体ペーストは、Ni粉末45質量%に対して、共材としてチタン酸バリウム粉末を20重量%と、エチルセルロース5質量%およびオクチルアルコール95質量%からなる有機ビヒクル30質量%を3本ロールで混練したものを用いた。Ni粉末は粒度分布において累積%表示したときに10〜90%の範囲にある粒径が0.05〜0.2μmであるものを用いた。   Next, a rectangular internal electrode pattern was formed on the upper surface of the dielectric green sheet to form a patterned sheet. The conductor paste for forming the internal electrode pattern is 30% by mass of organic vehicle consisting of 20% by mass of barium titanate powder as a co-material, 5% by mass of ethyl cellulose and 95% by mass of octyl alcohol with respect to 45% by mass of Ni powder. % Was kneaded with three rolls. Ni powder having a particle size in the range of 10 to 90% in the range of 10 to 90% in terms of cumulative percentage in the particle size distribution was used.

次に、作製したパターン付きシートを複数層重ねてコア積層体を形成し、さらにこの上下面にそれぞれ内部電極パターンを形成していない誘電体グリーンシートを重ね、温度70℃、圧力100MPaの加圧加熱処理を行って積層体を複数個有する母体積層体を形成した。この後、この母体積層体を、所定の寸法に切断して積層体を形成した。積層体における内部電極層の積層数は350層とした。   Next, a plurality of the sheets with patterns are stacked to form a core laminate, and further, dielectric green sheets not formed with internal electrode patterns are stacked on the upper and lower surfaces, respectively, and a pressure of 70 ° C. and a pressure of 100 MPa is applied. Heat treatment was performed to form a base laminate having a plurality of laminates. Then, this base material laminated body was cut | disconnected to the predetermined dimension, and the laminated body was formed. The number of internal electrode layers in the multilayer body was 350.

次に、作製した積層体を大気中にて脱脂した後、水素−窒素の混合ガス雰囲気にて酸素分圧が10−8Paの条件にて1150℃で2時間の焼成を行い、コンデンサ本体を作製した。作製したコンデンサ本体のサイズは1608型に相当するものであった。また、誘電体層の平均厚みは1.2μm、コンデンサ本体(セラミック層または内部電極層)の中央部に位置する内部電極層の1層の平均厚みは1μmであった。作製したコンデンサ本体から得られる静電容量の設計値(誘電体層を挟んで内部電極が上下で重なっている有効面積の領域に空隙が無い状態で発現する静電容量)は10μFと見積もった。 Next, the prepared laminate is degreased in the air, and then fired at 1150 ° C. for 2 hours in a hydrogen-nitrogen mixed gas atmosphere at an oxygen partial pressure of 10 −8 Pa. Produced. The size of the manufactured capacitor body was equivalent to 1608 type. The average thickness of the dielectric layer was 1.2 μm, and the average thickness of one internal electrode layer located in the center of the capacitor body (ceramic layer or internal electrode layer) was 1 μm. The design value of the capacitance obtained from the manufactured capacitor body (capacitance that appears in the state of an effective area in which the internal electrodes overlap with each other with the dielectric layer sandwiched between them) is estimated to be 10 μF.

次に、作製したコンデンサ本体に対し、窒素雰囲気中(酸素分圧:10−6Pa)、900〜1000℃で5時間の熱処理を行った。 Next, the manufactured capacitor body was heat-treated at 900 to 1000 ° C. for 5 hours in a nitrogen atmosphere (oxygen partial pressure: 10 −6 Pa).

次に、作製した電子部品本体にバレル研磨処理を行い、コンデンサ本体の端面に内部電極層を十分に露出させた。   Next, barrel polishing treatment was performed on the manufactured electronic component main body to sufficiently expose the internal electrode layer on the end face of the capacitor main body.

次に、バレル研磨したコンデンサ本体の端部に銅ペーストを塗布し、約800℃、酸素分圧を1Pa、最高温度の保持時間を0.2時間とする条件で加熱して外部電極を形成した。   Next, a copper paste was applied to the end of the barrel-polished capacitor body and heated under conditions of about 800 ° C., oxygen partial pressure of 1 Pa, and maximum temperature holding time of 0.2 hours to form external electrodes. .

次に、この外部電極の表面に、順に、電解めっき法によりNiメッキ膜およびSnメッキ膜を形成して積層型のコンデンサを作製した。   Next, an Ni plating film and an Sn plating film were sequentially formed on the surface of the external electrode by electrolytic plating to produce a multilayer capacitor.

次に、作製した積層型のコンデンサについて以下の評価を行った。   Next, the following evaluation was performed on the manufactured multilayer capacitor.

ここで、比誘電率、誘電損失、静電容量の温度特性の評価はいずれも試料数10個とし、その平均値を求めた。   Here, the evaluation of the temperature characteristics of the relative permittivity, dielectric loss, and capacitance was all 10 samples, and the average value was obtained.

比誘電率は、静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、得られた静電容量から誘電体層の厚み、内部電極層の全面積および真空の誘電率をもとに換算して求めた。   The relative permittivity is measured by measuring the capacitance under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. From the obtained capacitance, the thickness of the dielectric layer, the total area of the internal electrode layer, and the vacuum Calculated based on the dielectric constant.

誘電損失は、静電容量と同条件で測定した。   The dielectric loss was measured under the same conditions as the capacitance.

静電容量の温度特性は、静電容量を温度85℃で、DC印加なしとDC2V印加した時とで測定して、25℃のときの静電容量に対する変化率を求めた。   The temperature characteristic of the capacitance was measured at a temperature of 85 ° C. with no DC applied and when DC 2 V was applied, and the rate of change with respect to the capacitance at 25 ° C. was determined.

高温負荷寿命は、温度140℃において、印加電圧9.45Vの条件で行った。高温負荷試験での試料数は各試料30個とし、故障確率が50%に達したときの時間である平均故障時間を調べた。   The high temperature load life was performed under the condition of an applied voltage of 9.45 V at a temperature of 140 ° C. The number of samples in the high-temperature load test was 30 samples, and the average failure time, which was the time when the failure probability reached 50%, was examined.

結晶粒子の平均粒径は、誘電体磁器の断面を透過電子顕微鏡にて観察可能となる状態まで研磨(イオンミリング)した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値として求めた。   The average grain size of the crystal grains is calculated by taking the image displayed on the transmission electron microscope on the polished surface obtained by polishing (ion milling) to a state where the cross section of the dielectric ceramic can be observed with the transmission electron microscope. , Draw a diagonal line on the screen, image the outline of the crystal grains present on the diagonal line, find the area of each grain, calculate the diameter when replaced with a circle with the same area, and calculate the calculated crystal grain It calculated | required as an average value of about 50 pieces.

結晶粒子中のバナジウム(V)および希土類元素(RE)の濃度勾配については、エネルギー分散型分析器(EDS)を付設した透過電子顕微鏡装置を用いて測定した。この場合、イオンシニングで加工した誘電体磁器の断面に映し出された結晶粒子に対して、EDSを用いて、結晶粒子の表面(粒界)から粒子内部にかけての組成分析を行うことによって求めたバナジウム(V)および希土類元素(RE)の濃度変化からを求めた。得られたコンデンサをICP分析したところ、表1に示す組成に一致した。   The concentration gradient of vanadium (V) and rare earth element (RE) in the crystal particles was measured using a transmission electron microscope apparatus equipped with an energy dispersive analyzer (EDS). In this case, it was obtained by performing composition analysis from the surface (grain boundary) of the crystal particle to the inside of the particle using EDS with respect to the crystal particle reflected on the cross section of the dielectric ceramic processed by ion thinning. It was determined from the concentration change of vanadium (V) and rare earth element (RE). When the obtained capacitor was analyzed by ICP, it was in agreement with the composition shown in Table 1.

表1の結果から明らかなように、結晶粒子の平均粒径が0.15〜0.4μm、誘電体層に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上および結晶粒子の表面付近と中心部との間でのバナジウムの濃度勾配が絶対値で0.03原子%/nm以下である試料No.1〜3、6、9、10、14、15、18〜20、23〜25および28〜31では、比誘電率が4500以上、高温DCバイアス特性が−40%以内であった。   As is apparent from the results in Table 1, the average particle diameter of crystal grains is 0.15 to 0.4 μm, and the lattice constant ratio c / a when the lattice constant of barium titanate contained in the dielectric layer is obtained is 1. No. 0062 or more, and the concentration gradient of vanadium between the vicinity of the surface of the crystal grain and the central portion is 0.03 atomic% / nm or less in absolute value. In 1-3, 6, 9, 10, 14, 15, 18-20, 23-25, and 28-31, the relative dielectric constant was 4500 or more, and the high-temperature DC bias characteristics were within -40%.

この中で、誘電体層の組成をチタン酸バリウムを100モルとしたときの割合で、バナ
ジウムの含有量をV換算で0.05〜0.2モル、希土類元素(RE)の含有量をRE換算で0.3〜0.65モル、マグネシウムの含有量をMgO換算で0.3〜1モル、マンガンの含有量をMnO換算で0.1〜0.3モルとした試料No.1〜3、6、9、10、14、15、18〜19、23〜25および28〜31では、比誘電率が4500以上、高温DCバイアス特性が−39%以内、25℃を基準にしたときの85℃における静電容量の変化率が−14%以内であり、いずれの試料もX5R特性を満足するものであった。また、これらの試料は誘電損失が6.9%以下、高温負荷寿命が15時間以上であった。これらの試料はいずれも希土類元素(RE)は結晶粒子の表面付近と中心部との間での濃度勾配が絶対値で0.05原子%/nm以上であった。
Among them, the composition of the dielectric layer is a ratio when the barium titanate is 100 mol, the vanadium content is 0.05 to 0.2 mol in terms of V 2 O 5 , and the rare earth element (RE) content The amount was 0.3 to 0.65 mol in terms of RE 2 O 3 , the magnesium content was 0.3 to 1 mol in terms of MgO, and the manganese content was 0.1 to 0.3 mol in terms of MnO. Sample No. 1 to 3, 6, 9, 10, 14, 15, 18 to 19, 23 to 25, and 28 to 31, the relative dielectric constant is 4500 or more, the high-temperature DC bias characteristic is within −39%, and 25 ° C. as a reference. The capacitance change rate at 85 ° C. was within −14%, and all the samples satisfied the X5R characteristics. These samples had a dielectric loss of 6.9% or less and a high temperature load life of 15 hours or more. In any of these samples, the concentration gradient of the rare earth element (RE) between the vicinity of the surface of the crystal grain and the central portion was 0.05 atomic% / nm or more in absolute value.

さらに、これらの試料の中で、希土類元素(RE)の含有量を希土類元素(RE)の含有量がRE換算で0.30〜0.60モルとした試料No.1〜3、6、9、10、14、15、18〜19、23〜25および28〜30では、誘電損失が6.5%以下であった。 Further, among these samples, the sample No. 2 in which the rare earth element (RE) content was 0.30 to 0.60 mol in terms of RE 2 O 3 in terms of the rare earth element (RE) content. In 1 to 3, 6, 9, 10, 14, 15, 18 to 19, 23 to 25, and 28 to 30, the dielectric loss was 6.5% or less.

これに対し、結晶粒子の平均粒径が0.15〜0.4μm、誘電体層に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上および結晶粒子の表面付近と中心部との間でのバナジウムの濃度勾配が絶対値で0.03原子%/nm以下であるとの要件のいずれかを満足していない試料(試料No.5,7、8、11〜13、16、17、21、22、26および27)は、比誘電率が4500以上、高温DCバイアス特性が−40%以内のいずれかを満足しないものであった。   On the other hand, the crystal grain has an average grain size of 0.15 to 0.4 μm, a lattice constant ratio c / a of 1.0062 or more when the lattice constant of barium titanate contained in the dielectric layer is obtained, and crystal grains Samples that do not satisfy any of the requirements that the concentration gradient of vanadium between the vicinity of the surface and the central portion is 0.03 atomic% / nm or less in absolute value (Sample Nos. 5, 7, and 8) 11 to 13, 16, 17, 21, 22, 26, and 27) did not satisfy any of the dielectric constant of 4500 or more and the high-temperature DC bias characteristics within −40%.

1・・・・・誘電体層
1a・・・・結晶粒子
1c・・・・結晶粒子の中心部
1s・・・・結晶粒子の表面
3・・・・・内部電極
5・・・・・コンデンサ本体
7・・・・・端面
9・・・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Dielectric layer 1a ... Crystal grain 1c ... Center part of crystal grain 1s ... Surface of crystal grain 3 ... Internal electrode 5 ... Capacitor Body 7 ... End face 9 ... External electrode

Claims (3)

  1. 誘電体層と内部電極層とが交互に積層されたコンデンサ本体を備えたコンデンサであって、前記誘電体層は、チタン酸バリウムを主成分とし、バナジウムを含有する結晶粒子を主結晶粒子とする誘電体磁器からなるとともに、前記結晶粒子の平均粒径が0.15〜0.4μmであり、前記誘電体層に含まれるチタン酸バリウムの格子定数を求めたときの格子定数比c/aが1.0062以上であるとともに、前記結晶粒子の表面付近と中心部との間での前記バナジウムの濃度勾配が絶対値で0.03原子%/nm以下であることを特徴とするコンデンサ。   A capacitor having a capacitor body in which dielectric layers and internal electrode layers are alternately laminated, wherein the dielectric layer has barium titanate as a main component and vanadium-containing crystal particles as main crystal particles It is composed of a dielectric ceramic, the average grain size of the crystal particles is 0.15 to 0.4 μm, and the lattice constant ratio c / a when the lattice constant of barium titanate contained in the dielectric layer is obtained is 1. A capacitor characterized by being not less than 1.0062 and having a concentration gradient of vanadium between the vicinity of the surface of the crystal grain and the central portion of 0.03 atomic% / nm or less in absolute value.
  2. 前記誘電体層が、さらに、希土類元素(RE)、マグネシウムおよびマンガンを含有するとともに、前記チタン酸バリウムを100モルとしたときの割合で、前記バナジウムの含有量がV換算で0.05〜0.20モル、前記希土類元素(RE)の含有量がRE換算で0.30〜0.65モル、前記マグネシウムの含有量がMgO換算で0.3〜1.0モル、前記マンガンの含有量がMnO換算で0.1〜0.3モルであることを特徴とする請求項1に記載のコンデンサ。 The dielectric layer further contains a rare earth element (RE), magnesium, and manganese, and the vanadium content is 0.000 in terms of V 2 O 5 at a ratio of 100 moles of the barium titanate. 05 to 0.20 mol, the rare earth element (RE) content is 0.30 to 0.65 mol in terms of RE 2 O 3 , and the magnesium content is 0.3 to 1.0 mol in terms of MgO, The capacitor according to claim 1, wherein the manganese content is 0.1 to 0.3 mol in terms of MnO.
  3. 前記希土類元素(RE)の含有量がRE換算で0.30〜0.60モルであることを特徴とする請求項2に記載のコンデンサ。 The capacitor according to claim 2, wherein a content of the rare earth element (RE) is 0.30 to 0.60 mol in terms of RE 2 O 3 .
JP2014027073A 2014-02-15 2014-02-15 Capacitor Active JP6193778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027073A JP6193778B2 (en) 2014-02-15 2014-02-15 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027073A JP6193778B2 (en) 2014-02-15 2014-02-15 Capacitor

Publications (2)

Publication Number Publication Date
JP2015153916A JP2015153916A (en) 2015-08-24
JP6193778B2 true JP6193778B2 (en) 2017-09-06

Family

ID=53895872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027073A Active JP6193778B2 (en) 2014-02-15 2014-02-15 Capacitor

Country Status (1)

Country Link
JP (1) JP6193778B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568030B2 (en) * 1999-02-26 2004-09-22 Tdk株式会社 Method for producing dielectric ceramic composition and method for producing electronic component containing dielectric layer
KR100466073B1 (en) * 2002-05-24 2005-01-13 삼성전기주식회사 Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same
JP2007063040A (en) * 2005-08-29 2007-03-15 Tdk Corp Method for producing dielectric porcelain composition, and electronic component
JP5046700B2 (en) * 2007-03-27 2012-10-10 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
JP5094283B2 (en) * 2007-08-29 2012-12-12 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
JP5035016B2 (en) * 2008-02-26 2012-09-26 Tdk株式会社 Dielectric porcelain composition and electronic component
JP5035028B2 (en) * 2008-03-03 2012-09-26 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors

Also Published As

Publication number Publication date
JP2015153916A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP2018164101A (en) Multilayer ceramic capacitor
US9666370B2 (en) Multilayer ceramic capacitor and method for producing the same
JP5838927B2 (en) Multilayer ceramic electronic components
TWI407465B (en) Dielectric ceramics and laminated ceramic capacitors
KR100673879B1 (en) Electronic device, dielectric ceramic composition and the production method
US8582277B2 (en) Laminated type ceramic electronic parts
KR100800220B1 (en) Production method of multilayer ceramic electronic device
JP4814342B2 (en) Multilayer ceramic capacitor
KR101729284B1 (en) Multilayer ceramic capacitor and method for producing multilayer ceramic capacitor
KR100731867B1 (en) Dielectric ceramic composition and electronic device
KR101343091B1 (en) Process for producing multilayered ceramic capacitor, and multilayered ceramic capacitor
JP2006013206A (en) Laminated type ceramic capacitor
JP2005129802A (en) Laminated ceramic capacitor
JP5146852B2 (en) Multilayer ceramic capacitor
JP2005217305A (en) Laminated ceramic capacitor
KR101362602B1 (en) Dielectric ceramic composition and electronic device
KR101274331B1 (en) Electronic part and process for producing the same
JP4809152B2 (en) Multilayer ceramic capacitor
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
KR101730813B1 (en) Multilayer ceramic capacitor
JP2012199597A (en) Multilayer ceramic capacitor
JP4073416B2 (en) Multilayer ceramic capacitor
KR100889900B1 (en) Electronic component, dielectric magnetic composite and method of manufacturing the same
US8853115B2 (en) Dielectric ceramic composition and electronic device
CN103124706B (en) Laminated ceramic capacitor, and process for manufacture of laminated ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6193778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150