JP6183699B2 - Fuel cell vehicle - Google Patents
Fuel cell vehicle Download PDFInfo
- Publication number
- JP6183699B2 JP6183699B2 JP2013164247A JP2013164247A JP6183699B2 JP 6183699 B2 JP6183699 B2 JP 6183699B2 JP 2013164247 A JP2013164247 A JP 2013164247A JP 2013164247 A JP2013164247 A JP 2013164247A JP 6183699 B2 JP6183699 B2 JP 6183699B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- storage battery
- converter
- inverter motor
- direct connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuels Substances 0.000 title claims description 205
- 230000001172 regenerating Effects 0.000 claims description 11
- 206010071172 Device battery issue Diseases 0.000 claims description 8
- 230000015556 catabolic process Effects 0.000 claims description 6
- 230000004059 degradation Effects 0.000 claims description 6
- 238000006731 degradation reactions Methods 0.000 claims description 6
- 230000002457 bidirectional Effects 0.000 claims description 4
- 230000008929 regeneration Effects 0.000 description 7
- 238000010586 diagrams Methods 0.000 description 6
- 238000000034 methods Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium Ion Chemical compound   [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effects Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003054 catalysts Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reactions Methods 0.000 description 2
- 230000000903 blocking Effects 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 230000000051 modifying Effects 0.000 description 1
- 239000005518 polymer electrolytes Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
- B60L50/72—Constructional details of fuel cells specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/0491—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/40—Combination of fuel cells with other energy production systems
- H01M2250/402—Combination of fuel cell with other electric generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Description
本発明は、燃料電池車両に関し、さらに詳しくは、燃料電池と蓄電池を備えた電動車両の制御システムに関するものである。 The present invention relates to a fuel cell vehicle, and more particularly to a control system for an electric vehicle including a fuel cell and a storage battery.
燃料電池車両は、電力の利用効率を高めるために燃料電池と共に蓄電池が搭載されることが有利である。例えば、燃料電池とインバータモータは直結され、燃料電池に過電圧が印加されるのを防止するためにダイオードが設けられる一方、蓄電池はDC−DCコンバータを介してインバータモータと接続される(特許文献1,2参照)。 It is advantageous for a fuel cell vehicle to be equipped with a storage battery together with a fuel cell in order to increase the power utilization efficiency. For example, the fuel cell and the inverter motor are directly connected, and a diode is provided to prevent an overvoltage from being applied to the fuel cell, while the storage battery is connected to the inverter motor via a DC-DC converter (Patent Document 1). , 2).
このような燃料電池車両では、高負荷時や負荷変動時には蓄電池からも電力供給を行うとともに、車両減速時にはモータからの回生電力を蓄電池に充電することが有利であるが、セル電圧が高いと触媒の酸化が進行して活性が低下し燃料電池の出力が低下する問題があり、また、セル電圧が変化すると触媒の酸化還元の反復により溶解が進行し燃料電池が劣化する問題がある。そのため、これらの問題を回避できかつ運転状況の変化に対応して高効率を維持できるような効率的な制御システムが検討されている。 In such a fuel cell vehicle, it is advantageous to supply electric power from the storage battery when the load is high or when the load fluctuates, and to charge the regenerative power from the motor to the storage battery when the vehicle decelerates. As the oxidation of the catalyst proceeds, the activity decreases and the output of the fuel cell decreases, and when the cell voltage changes, the dissolution progresses due to repeated oxidation and reduction of the catalyst and the fuel cell deteriorates. Therefore, an efficient control system that can avoid these problems and maintain high efficiency in response to changes in operating conditions has been studied.
本発明は従来技術の上記の点に鑑みてなされたものであり、その目的は、燃料電池の劣化や出力低下を回避しつつ運転状況の変化に対応して高効率を維持できる燃料電池車両を提供することにある。 The present invention has been made in view of the above-mentioned points of the prior art, and an object of the present invention is to provide a fuel cell vehicle capable of maintaining high efficiency in response to changes in driving conditions while avoiding deterioration and output reduction of the fuel cell. It is to provide.
上記課題を解決するために、本発明は、燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
運転状況に応じて、前記燃料電池と前記蓄電池の何れか一方を、前記各側直結回路を介して前記インバータモータと選択的に直結し、かつ、前記燃料電池と前記蓄電池の他方を、定電流制御で動作する前記DC−DCコンバータを介して接続するかまたは停止できるように構成されていることを特徴とする。
In order to solve the above problems, the present invention provides a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter.
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
Depending on the operating conditions, either the fuel cell or the storage battery is selectively directly connected to the inverter motor via the direct connection circuit on each side, and the other of the fuel cell and the storage battery is connected to a constant current. It is configured to be able to be connected or stopped via the DC-DC converter that operates under control.
すなわち、燃料電池側と蓄電池側のそれぞれにDC−DCコンバータと、それをバイパスする直結回路とを設け、それらを運転状況に応じて選択的に切り替えることで、燃料電池を高効率に維持することを特徴としており、この構成は以下のような燃料電池の特性を考慮したものである。 That is, the fuel cell side and the storage battery side are each provided with a DC-DC converter and a direct connection circuit that bypasses the DC-DC converter, and the fuel cell is maintained with high efficiency by selectively switching them according to the operating conditions. This configuration takes the following characteristics of the fuel cell into consideration.
図8(a)は燃料電池の電流−電圧曲線を示すグラフであり、電流が大きくなるに従って電圧が下がる特性となっている。図8(b)は燃料電池の電流と効率の関係を示しており、セル電圧が0.7V付近が最も効率が高く、0.64〜0.75Vの範囲であれば最大の効率が得られる。したがって、この範囲にセル電圧が維持されるような制御を行うことで高効率が得られると共に、燃料電池の劣化を防止することが可能となる。 FIG. 8A is a graph showing a current-voltage curve of the fuel cell, which has a characteristic that the voltage decreases as the current increases. FIG. 8B shows the relationship between the current of the fuel cell and the efficiency. The efficiency is highest when the cell voltage is in the vicinity of 0.7V, and the maximum efficiency is obtained when the cell voltage is in the range of 0.64 to 0.75V. . Therefore, by performing control such that the cell voltage is maintained within this range, high efficiency can be obtained and deterioration of the fuel cell can be prevented.
具体的には、燃料電池側においてセル電圧が高い領域(図8(a)の左上側)にある場合には、DC−DCコンバータを定電流制御でダウンコンバート動作させて、セル電圧を降下させる。逆に、セル電圧が低い領域(図8(a)の右下側)にある場合、燃料電池側は直結してDC−DCコンバータを通過することに伴う効率低下を回避するとともに、蓄電池から補助電力を供給してセル電圧を上昇させる。また、極低温状態となった場合や燃料電池が劣化した場合には、DC−DCコンバータを定電流制御でアップコンバート動作させて、セル電圧の上昇すなわち回復を行う。 Specifically, when the cell voltage is in a region where the cell voltage is high on the fuel cell side (upper left of FIG. 8A), the DC-DC converter is down-converted by constant current control to lower the cell voltage. . On the contrary, when the cell voltage is in the low region (lower right side of FIG. 8A), the fuel cell side is directly connected and avoids the efficiency decrease due to passing through the DC-DC converter, and is supplemented from the storage battery. Power is supplied to increase the cell voltage. Further, when the temperature becomes extremely low or the fuel cell is deteriorated, the DC-DC converter is up-converted by constant current control to increase or recover the cell voltage.
本発明に係る燃料電池車両は、上記構成により、以下のような効果を有する。 The fuel cell vehicle according to the present invention has the following effects by the above configuration.
第1に、燃料電池と蓄電池の何れか一方は常にインバータモータと直結され、DC−DCコンバータを介さずに電力供給または蓄電池への回生電力の充電が可能であるため、DC−DCコンバータによる効率低下を回避できる。 First, since either one of the fuel cell and the storage battery is always directly connected to the inverter motor, the power supply or the regenerative power can be charged to the storage battery without going through the DC-DC converter. Decrease can be avoided.
第2に、燃料電池と蓄電池の他方は、定電流制御で動作するDC−DCコンバータを介して接続することで、起動時や回生時における燃料電池の電圧上昇防止、高出力時における蓄電池の過充電防止および補助電力供給が可能となり、燃料電池の劣化や出力低下を回避しつつ運転状況の変化に対応して高効率を維持する上で有利である。また、通常走行時や蓄電池の故障時には蓄電池を遮断することもできる。 Secondly, the other of the fuel cell and the storage battery is connected via a DC-DC converter that operates under constant current control, thereby preventing a rise in the voltage of the fuel cell at the time of start-up and regeneration, and the excess of the storage battery at the time of high output. Charging prevention and auxiliary power supply are possible, which is advantageous in maintaining high efficiency in response to changes in operating conditions while avoiding fuel cell deterioration and output reduction. In addition, the storage battery can be shut off during normal travel or when the storage battery fails.
第3に、燃料電池と蓄電池の何れか一方は常にインバータモータと直結されるので、燃料電池側および蓄電池側での定電流制御を1つのDC−DCコンバータで実施可能となり、比較的大型の部品であるインダクタ(チョークコイル)を1つにすることができ、機器搭載スペースの制約が大きい電動二輪車や三輪車への実施に有利である。 Thirdly, since either one of the fuel cell and the storage battery is always directly connected to the inverter motor, the constant current control on the fuel cell side and the storage battery side can be performed by one DC-DC converter, and a relatively large component. This is advantageous for implementation in electric motorcycles and tricycles that have a large restriction on the device mounting space.
以上述べたような各運転状況に応じた動作モードを予め制御手段(制御手段に付設の記憶装置)に格納しておき、運転操作に応じたモード選択により、燃料電池、蓄電池、DC−DCコンバータ、および各側直結回路が切り替わるような構成が有利である。 The operation mode according to each operation situation as described above is stored in advance in the control means (storage device attached to the control means), and the fuel cell, storage battery, DC-DC converter is selected by mode selection according to the operation operation. And a configuration in which each side direct connection circuit is switched is advantageous.
すなわち、本発明は、燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
を含む各モードで選択的に動作可能に構成されている燃料電池車両にもある。
That is, the present invention provides a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter.
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
There is also a fuel cell vehicle configured to be selectively operable in each mode including:
上記構成によれば、起動モードでは、蓄電池から直結でインバータモータに電力供給することで、EVとして直ちに走行可能となる一方、燃料電池をDC−DCコンバータを介して接続することで、セル電圧の上昇を回避しながら通常走行に必要な出力になるまで電流値を上昇させることができる。 According to the above configuration, in the start-up mode, by supplying power directly from the storage battery to the inverter motor, it becomes possible to immediately run as an EV. On the other hand, by connecting the fuel cell via the DC-DC converter, While avoiding the increase, the current value can be increased until the output is necessary for normal driving.
また、通常走行モードでは、燃料電池から直結でインバータモータに電力供給することで、DC−DCコンバータによる効率低下を回避でき、さらに、制動操作時には、DC−DCコンバータによる効率低下を回避しながら蓄電池に回生電力を効率良く充電できるとともに、燃料電池はDC−DCコンバータを介して接続することで、セル電圧の上昇を回避し高効率状態を維持したまま通常走行に復帰できる。 In the normal travel mode, power can be directly connected from the fuel cell to the inverter motor to avoid a decrease in efficiency due to the DC-DC converter. Further, during a braking operation, the storage battery can be avoided while avoiding a decrease in efficiency due to the DC-DC converter. In addition, the regenerative electric power can be efficiently charged, and the fuel cell can be connected via the DC-DC converter, so that an increase in the cell voltage can be avoided and the normal operation can be resumed while maintaining the high efficiency state.
本発明のさらに好適な態様では、前記通常走行モードにおいて、前記蓄電池側で前記DC−DCコンバータを定電流制御で動作させ、前記蓄電池から、前記DC−DCコンバータを介して前記インバータモータに電力供給する高出力走行モードを含む。 In a further preferred aspect of the present invention, in the normal running mode, the DC-DC converter is operated with constant current control on the storage battery side, and power is supplied from the storage battery to the inverter motor via the DC-DC converter. Including high-power running mode.
上記構成によれば、高出力時に、蓄電池から過充電を防止しながら補助電力を供給可能となり、燃料電池の出力不足やセル電圧低下を回避しつつ高効率を維持できる。 According to the above configuration, it is possible to supply auxiliary power while preventing overcharging from the storage battery at high output, and it is possible to maintain high efficiency while avoiding shortage of fuel cell output and cell voltage drop.
本発明のさらに好適な態様では、
前記燃料電池の異常が検出された場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる燃料電池劣化モード、
前記燃料電池が故障した場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する燃料電池故障モード、
前記蓄電池が故障した場合に、前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する蓄電池故障モード、をさらに含む。
In a further preferred aspect of the present invention,
When an abnormality of the fuel cell is detected, the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the fuel cell side direct connection circuit is opened to define the DC-DC converter. Fuel cell degradation mode operated by current control,
When the fuel cell fails, a fuel cell failure mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the DC-DC converter is stopped.
The battery further includes a storage battery failure mode in which when the storage battery fails, the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, while the DC-DC converter is stopped.
上記構成によれば、燃料電池と蓄電池の何れか一方の故障が検出された場合には故障した電源を遮断するとともに、他方を直結にすることで効率良く走行を続けることが可能である。また、長期間の不使用等により燃料電池が劣化している場合には、燃料電池を定電流制御で動作するDC−DCコンバータを介して接続することで、蓄電池の電力で走行を続けながら、燃料電池を回復させることができる。 According to the above configuration, when a failure of either one of the fuel cell and the storage battery is detected, it is possible to continue traveling efficiently by shutting off the failed power supply and directly connecting the other. In addition, when the fuel cell has deteriorated due to long-term non-use, etc., the fuel cell is connected via a DC-DC converter that operates with constant current control, and while running with the power of the storage battery, The fuel cell can be recovered.
本発明のさらに好適な態様では、前記DC−DCコンバータが、前記燃料電池側と前記蓄電池側とで共用される1つのインダクタと、前記燃料電池側と前記蓄電池側とで選択的に動作する個別のスイッチング素子を含む1つの双方向DC−DCコンバータからなる。 In a further preferred aspect of the present invention, the DC-DC converter has one inductor shared between the fuel cell side and the storage battery side, and an individual that selectively operates on the fuel cell side and the storage battery side. It consists of one bidirectional DC-DC converter including these switching elements.
上記構成によれば、以上述べたような種々の利点を得ながらも、比較的大型の部品であるインダクタ(チョークコイル)を1つにすることでコスト削減および小型軽量化が図れ、機器搭載スペースの制約が大きい電動二輪車や三輪車への実施に有利であるうえ、電源回路および制御回路も簡素化される利点もある。 According to the above-mentioned configuration, while obtaining various advantages as described above, by using one inductor (choke coil) which is a relatively large component, it is possible to reduce the cost and reduce the size and weight, and the space for mounting the device. This is advantageous for implementation in electric motorcycles and tricycles with large restrictions, and there is also an advantage that the power supply circuit and the control circuit are simplified.
以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1において、本発明第1実施形態に係る燃料電池車10は、燃料電池1と蓄電池3がDC−DCコンバータ2,4を介してインバータ5およびモータ6に対して並列に接続され、かつ、各側のDC−DCコンバータ2,4をバイパスする直結回路12,14と、それらを遮断するスイッチング手段11,13とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, a fuel cell vehicle 10 according to the first embodiment of the present invention includes a fuel cell 1 and a storage battery 3 connected in parallel to an inverter 5 and a motor 6 via DC-DC converters 2 and 4, and Directly connected circuits 12 and 14 for bypassing the DC-DC converters 2 and 4 on each side, and switching means 11 and 13 for blocking them are provided.
燃料電池1は、例えば固体高分子形燃料電池(PEFC)が好適に用いられる。図中において、燃料電池1は単にFCと記載される場合がある。蓄電池3は、リチウムイオン二次電池(LiB)が好適に用いられる。モータ6は、発電機としての機能をも有するモータ・ジェネレータ(回転電機)である。 As the fuel cell 1, for example, a polymer electrolyte fuel cell (PEFC) is preferably used. In the figure, the fuel cell 1 may be simply referred to as FC. The storage battery 3 is preferably a lithium ion secondary battery (LiB). The motor 6 is a motor / generator (rotary electric machine) having a function as a generator.
DC−DCコンバータ2,4は、後述するように、インダクタ(チョークコイル)とその両側に接続されたスイッチング素子などから構成され、スイッチング素子のパルス幅変調(PWM)により定電流制御を行い、昇降圧コンバータとして動作させる。以下の説明において、単に定電流モードと記載する場合がある。蓄電池3側のDC−DCコンバータ4は、充放電に使用可能な双方向DC−DCコンバータとして構成される必要がある。DC−DCコンバータ2,4のスイッチング素子、および、直結回路12,14のスイッチング手段11,13としては、パワーMOSFETが好適に使用されるが、他のスイッチング素子を用いることもできる。 As will be described later, the DC-DC converters 2 and 4 are composed of an inductor (choke coil) and switching elements connected to both sides thereof, and perform constant current control by pulse width modulation (PWM) of the switching element to move up and down. Operate as a pressure converter. In the following description, it may be simply referred to as a constant current mode. The DC-DC converter 4 on the storage battery 3 side needs to be configured as a bidirectional DC-DC converter that can be used for charging and discharging. As the switching elements of the DC-DC converters 2 and 4 and the switching means 11 and 13 of the direct connection circuits 12 and 14, a power MOSFET is preferably used, but other switching elements can also be used.
本発明に係る燃料電池車10は、燃料電池1側(または蓄電池3側)のスイッチング手段11(13)を閉じて直結にするとともに、蓄電池3側(または燃料電池1側)のスイッチング手段13(11)は開いて、DC−DCコンバータ4(2)を定電流制御で動作させるかまたは停止することによる各モードを、図示しない制御手段(CPU)により、運転状況に応じて切り替えるものである。図2における左側の4つが本発明に係る燃料電池車1の基本的な運転モード40(41〜44)であり、右側の3つが非常モード50(51〜53)である。以下、各モードについて説明する。 The fuel cell vehicle 10 according to the present invention closes and directly connects the switching means 11 (13) on the fuel cell 1 side (or storage battery 3 side) and the switching means 13 on the storage battery 3 side (or fuel cell 1 side). 11) Open and switch each mode by operating or stopping DC-DC converter 4 (2) by constant current control by a control means (CPU) (not shown) according to an operation state. The left four in FIG. 2 are basic operation modes 40 (41 to 44) of the fuel cell vehicle 1 according to the present invention, and the right three are emergency modes 50 (51 to 53). Hereinafter, each mode will be described.
図4(a)は、起動モード41での基本動作を示し、図3は、起動モードを中心とした制御を示すフローチャートである。燃料電池車10のスイッチをONにすると、この起動モード41になる。起動時は、燃料電池1、蓄電池3、インバータ5共にOFFの状態からスタートし、その後、直ぐに起動可能な蓄電池3とインバータ5がONになり、EVモードで走行可能となる。その際、蓄電池3側のDC−DCコンバータ4はOFFのまま直結回路14のスイッチング手段13を閉じて直通モードで起動する。 FIG. 4A shows a basic operation in the start mode 41, and FIG. 3 is a flowchart showing control centering on the start mode. When the switch of the fuel cell vehicle 10 is turned on, the activation mode 41 is set. At the time of startup, the fuel cell 1, the storage battery 3, and the inverter 5 are all started from the OFF state. Thereafter, the storage battery 3 and the inverter 5 that can be started immediately are turned ON, and the vehicle can run in the EV mode. At that time, the DC-DC converter 4 on the side of the storage battery 3 is turned off and the switching means 13 of the direct connection circuit 14 is closed to start in the direct mode.
次に、燃料電池1をスタートさせる(蓄電池3と同時でも問題はない)。その際、燃料電池1側の直結回路12のスイッチング手段11は開いたまま、DC−DCコンバータ2を定電流モードで起動させる。この定電流の設定値は、燃料電池1の状態(各セルの発電電圧、セル温度、内部抵抗)をモニタしながら徐々に上昇させ、必要な出力になるまで電流値を上昇させる。 Next, the fuel cell 1 is started (there is no problem even with the storage battery 3). At that time, the DC-DC converter 2 is started in the constant current mode while the switching means 11 of the direct connection circuit 12 on the fuel cell 1 side is kept open. The set value of the constant current is gradually increased while monitoring the state of the fuel cell 1 (power generation voltage of each cell, cell temperature, internal resistance), and the current value is increased until a required output is obtained.
その過程で燃料電池1の状態に異常が検知された場合(低温時も含まれる)は、後述するFC劣化モード51や、FC故障モード53での運転に移行する。燃料電池1に問題がない場合には通常走行モード42に移行していく。また、通常走行モード42に移行後も、モータ6が停止した場合や、モータ6の出力が低下した場合には、起動モード41に戻る。 If an abnormality is detected in the state of the fuel cell 1 during this process (including when the temperature is low), the operation proceeds to an FC deterioration mode 51 or an FC failure mode 53 described later. When there is no problem in the fuel cell 1, the normal traveling mode 42 is entered. In addition, even after the shift to the normal travel mode 42, when the motor 6 stops or when the output of the motor 6 decreases, the operation mode 41 is restored.
図4(b)は、通常走行モード42を示している。通常走行モード42では、燃料電池1側のDC−DCコンバータ2はOFFのまま、直結回路12のスイッチング手段11を閉じて直結モードとし、基本的に燃料電池1からの出力のみで走行する。これにより、燃料電池1側ではDC−DCコンバータ2での電力ロスが回避され、電費が良好に維持される。 FIG. 4B shows the normal travel mode 42. In the normal travel mode 42, the DC-DC converter 2 on the fuel cell 1 side is OFF, the switching means 11 of the direct connection circuit 12 is closed to enter the direct connection mode, and the vehicle travels basically only with the output from the fuel cell 1. Thereby, on the fuel cell 1 side, the power loss in the DC-DC converter 2 is avoided, and the power consumption is maintained well.
この状態において、モータ6の出力が増大し、燃料電池1の出力電圧が低下した場合や、フラッディングの危険性が高まった場合には、後述する高出力モード44に移行する。また、通常走行モード42では、蓄電池3側のDC−DCコンバータ4は通常OFFの状態となっているが、蓄電池3の充電量が閾値以下に低下した場合、例えば30%以下になった場合には、DC−DCコンバータ4を起動し、蓄電池3の充電を行う。 In this state, when the output of the motor 6 increases and the output voltage of the fuel cell 1 decreases, or when the risk of flooding increases, the mode shifts to a high output mode 44 described later. Further, in the normal running mode 42, the DC-DC converter 4 on the side of the storage battery 3 is normally in an OFF state, but when the charge amount of the storage battery 3 falls below a threshold value, for example, when it becomes 30% or less. Activates the DC-DC converter 4 and charges the storage battery 3.
図4(c)は、回生モード43を示している。先述した起動モード41、通常走行モード42、あるいは後述する高出力モード44、FC劣化モード51での走行中に、エンジンブレーキが必要となった場合やブレーキペダルを操作した場合には、回生モード43となり、ブレーキカに応じてインバータ5が蓄電池3に充電動作をする。 FIG. 4C shows the regeneration mode 43. When the engine brake is required or the brake pedal is operated during the travel in the start mode 41, the normal travel mode 42, the high output mode 44, or the FC deterioration mode 51 described later, the regenerative mode 43 Thus, the inverter 5 charges the storage battery 3 according to the brake force.
その際、蓄電池3側のDC−DCコンバータ4はOFFの状態で直結回路14のスイッチング手段13を閉じて直通モードとなり、充電効率を高め、電力損失を最小限に抑えることができる。一方、燃料電池1は出力ゼロとすると劣化につながってしまうので、劣化にならない程度の電流を蓄電池3への充電電流として流す。その際、燃料電池1側のDC−DCコンバータ2は電流を制御する定電流モードで動作する。 At that time, the DC-DC converter 4 on the side of the storage battery 3 is in the OFF state, and the switching means 13 of the direct connection circuit 14 is closed to enter the direct mode, so that the charging efficiency can be increased and the power loss can be minimized. On the other hand, since the fuel cell 1 leads to deterioration when the output is zero, a current that does not cause deterioration flows as a charging current to the storage battery 3. At this time, the DC-DC converter 2 on the fuel cell 1 side operates in a constant current mode for controlling current.
図4(d)は、高出力走行モード44を示している。通常走行モード42において、モータ6が高出力の場合はこのモードに移行する。この高出力走行モード44では、通常走行モード42において、蓄電池3側のDC−DCコンバータ4を定電流モードで起動し、燃料電池1出力不足や電圧の異常低下を抑える動作を行う。また、燃料電池1中にフラッディングの発生が懸念される場合もこの高出力走行モード44に移行する。但し、先にも述べた通り、蓄電池3の充電量が閾値以下に低下した場合には、高出力走行モード44には移行しない。 FIG. 4 (d) shows the high output travel mode 44. In the normal running mode 42, when the motor 6 has a high output, the mode is shifted to this mode. In the high output travel mode 44, in the normal travel mode 42, the DC-DC converter 4 on the side of the storage battery 3 is activated in the constant current mode, and an operation for suppressing shortage of the output of the fuel cell 1 and abnormal voltage drop is performed. Further, when there is a concern about the occurrence of flooding in the fuel cell 1, the high power traveling mode 44 is also entered. However, as described above, when the charge amount of the storage battery 3 falls below the threshold value, the high-power running mode 44 is not shifted.
図5(a)は、FC劣化モード51(燃料電池劣化モード)を示している。先述した起動モード41において、内部抵抗の増大など、燃料電池1の異常が検知された場合にこのモード51を起動する。燃料電池1の異常は低温、抵抗Rの劣化、燃料電池1の故障などが考えられるが、燃料電池1の出力電圧が異常低下した場合は、燃料電池1の故障と判断し、運転者に異常を知らせ、EVモードでの走行に移行する。 FIG. 5A shows the FC deterioration mode 51 (fuel cell deterioration mode). In the activation mode 41 described above, this mode 51 is activated when an abnormality of the fuel cell 1 is detected, such as an increase in internal resistance. The abnormality of the fuel cell 1 may be a low temperature, deterioration of the resistance R, a failure of the fuel cell 1, etc., but if the output voltage of the fuel cell 1 is abnormally reduced, it is determined that the fuel cell 1 has failed and the driver is abnormal. And shift to driving in the EV mode.
燃料電池1の劣化時は、燃料電池1の内部抵抗は大きいが燃料電池1の温度が低温でない場合であり、走行は蓄電池3を直結にしてEVモード、燃料電池1側のDC−DCコンバータ2は定電流モードでの運転とし、燃料電池1の出力の回復を待つ。燃料電池1の内部抵抗が大きく、燃料電池1の温度が低温である場合は、低温による出力低下と判断し、燃料電池1を定電流で動作させながら温度上昇を待つ。燃料電池1の劣化時および燃料電池1の低温時は、燃料電池1の出力上昇が認められた場合には、起動モード41に復帰する。 When the fuel cell 1 is deteriorated, it is a case where the internal resistance of the fuel cell 1 is large but the temperature of the fuel cell 1 is not low. Traveling is performed by connecting the storage battery 3 directly to the EV mode, and the DC-DC converter 2 on the fuel cell 1 side. Is operated in the constant current mode and waits for the output of the fuel cell 1 to recover. When the internal resistance of the fuel cell 1 is large and the temperature of the fuel cell 1 is low, it is determined that the output has decreased due to the low temperature, and the temperature rise is awaited while operating the fuel cell 1 at a constant current. When the fuel cell 1 is deteriorated and the temperature of the fuel cell 1 is low, if the increase in the output of the fuel cell 1 is recognized, the operation mode 41 is restored.
図5(b)は、バッテリー故障モード52(蓄電池故障モード)を示している。蓄電池3(リチウムイオン電池)が故障した場合、エマージェンシーモード50としてこのモード52に移行する。その際、蓄電池3側のDC−DCコンバータ4はOFFにし、燃料電池1側のDC−DCコンバータ2はOFFのまま直結回路11のスイッチング手段12を閉じて直通モードとする。また、回生モード43においても、燃料電池1側のDC−DCコンバータ2をOFFにし、回生は受け付けない。あくまでもエマージェンシーモードとなっている。 FIG. 5B shows a battery failure mode 52 (storage battery failure mode). When the storage battery 3 (lithium ion battery) fails, the emergency mode 50 is entered into this mode 52. At that time, the DC-DC converter 4 on the storage battery 3 side is turned off, and the DC-DC converter 2 on the fuel cell 1 side is turned off, and the switching means 12 of the direct connection circuit 11 is closed to enter the direct mode. Also in the regeneration mode 43, the DC-DC converter 2 on the fuel cell 1 side is turned off and regeneration is not accepted. It is only in emergency mode.
図5(c)は、FC故障モード53(燃料電池故障モード)を示している。このモードもエマージェンシーモード50である。この場合は燃料電池1側のDC−DCコンバータ2はOFF、蓄電池3側のDC−DCコンバータ4はOFFにして直結回路14のスイッチング手段13を閉じて直通モードとし、EVモードでの走行に移行する。この場合、回生は可能であるが、蓄電池3の充電量がなくなれば走行不可能になるので、それまでの間に修理工場に行く要がある。 FIG. 5C shows an FC failure mode 53 (fuel cell failure mode). This mode is also the emergency mode 50. In this case, the DC-DC converter 2 on the fuel cell 1 side is turned off, the DC-DC converter 4 on the storage battery 3 side is turned off, the switching means 13 of the direct connection circuit 14 is closed to enter the direct mode, and the mode is shifted to the EV mode. To do. In this case, regeneration is possible, but if the storage battery 3 runs out of charge, it becomes impossible to travel, so it is necessary to go to a repair shop in the meantime.
次に、図6および図7は、本発明第2実施形態に係る燃料電池車20とその電源回路の主要部分を示している。第1実施形態の燃料電池車10との違いは、燃料電池車20では燃料電池1側と蓄電池3側とで1つのDC−DCコンバータ8を共用する構成にある。 Next, FIGS. 6 and 7 show a main part of the fuel cell vehicle 20 and its power supply circuit according to the second embodiment of the present invention. The difference from the fuel cell vehicle 10 of the first embodiment is that the fuel cell vehicle 20 shares one DC-DC converter 8 on the fuel cell 1 side and the storage battery 3 side.
図7において、インダクタL1(チョークコイル)と4つのスイッチング素子M1,M2,M3,M4(パワーMOSFET)が第1実施形態の蓄電池側DC−DCコンバータ4に相当し、インダクタL1(チョークコイル)と1つのスイッチング素子M1の代わりにM5を加えた4つのスイッチング素子M5,M2,M3,M4が第1実施形態の燃料電池側DC−DCコンバータ2に相当する。 In FIG. 7, an inductor L1 (choke coil) and four switching elements M1, M2, M3, and M4 (power MOSFET) correspond to the storage battery side DC-DC converter 4 of the first embodiment, and an inductor L1 (choke coil) and Four switching elements M5, M2, M3, and M4 obtained by adding M5 instead of one switching element M1 correspond to the fuel cell side DC-DC converter 2 of the first embodiment.
燃料電池1側と蓄電池3側のそれぞれにおいてDC−DCコンバータ8をバイパスする直結回路22,24は第1実施形態と同様であり、蓄電池3側の直結回路24には放電(電力供給)および充電(電力回生)の双方向に対応すべく2つのスイッチング素子M7,M8(パワーMOSFET)がスイッチング手段23として接続されている。 The direct connection circuits 22 and 24 that bypass the DC-DC converter 8 on each of the fuel cell 1 side and the storage battery 3 side are the same as in the first embodiment, and the direct connection circuit 24 on the storage battery 3 side is discharged (power supply) and charged. Two switching elements M7 and M8 (power MOSFET) are connected as the switching means 23 so as to correspond to both directions of (power regeneration).
この第2実施形態の燃料電池車20では、構成部品中では比較的大型で重量物のインダクタは1つ搭載すればよいので、軽量化および小型化に有利な構成となっており、機器搭載スペースの制約が大きい二輪車や三輪車に最適である。 In the fuel cell vehicle 20 according to the second embodiment, since only one relatively large and heavy inductor needs to be mounted among the components, the configuration is advantageous for weight reduction and downsizing. Ideal for motorcycles and tricycles with large restrictions.
以上、本発明の実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。例えば、第1実施形態または第3実施形態に係る重み付け処理と、第2実施形態に係る重み付け処理を併せて実施することもできる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. For example, the weighting process according to the first embodiment or the third embodiment and the weighting process according to the second embodiment can be performed together.
1 燃料電池
2,4,8 DC−DCコンバータ
3 蓄電池
5 インバータ
6 モータ
10,20 燃料電池車
11,13,21,23 スイッチング手段
12,14,22,24 直結回路
41 起動モード
42 通常走行モード
43 回生モード
44 高出力走行モード
51 FC劣化モード(燃料電池劣化モード)
52 バッテリー故障モード(蓄電池故障モード)
53 FC故障モード(燃料電池故障モード)
DESCRIPTION OF SYMBOLS 1 Fuel cell 2, 4, 8 DC-DC converter 3 Storage battery 5 Inverter 6 Motor 10, 20 Fuel cell vehicle 11, 13, 21, 23 Switching means 12, 14, 22, 24 Direct connection circuit 41 Starting mode 42 Normal driving mode 43 Regenerative mode 44 High-power running mode 51 FC degradation mode (fuel cell degradation mode)
52 Battery failure mode (battery failure mode)
53 FC failure mode (fuel cell failure mode)
Claims (9)
- 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
前記燃料電池の異常が検出された場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる燃料電池劣化モード、
を含む各モードで選択的に動作可能に構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
When an abnormality of the fuel cell is detected, the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the fuel cell side direct connection circuit is opened to define the DC-DC converter. Fuel cell degradation mode operated by current control,
A fuel cell vehicle configured to be selectively operable in each mode including - 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
前記燃料電池が故障した場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する燃料電池故障モード、
を含む各モードで選択的に動作可能に構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
When the fuel cell fails, a fuel cell failure mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the DC-DC converter is stopped.
A fuel cell vehicle configured to be selectively operable in each mode including - 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
前記蓄電池が故障した場合に、前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する蓄電池故障モード、
を含む各モードで選択的に動作可能に構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A storage battery failure mode in which, when the storage battery fails, the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, while the DC-DC converter is stopped.
A fuel cell vehicle configured to be selectively operable in each mode including - 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
前記燃料電池の異常が検出された場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる燃料電池劣化モード、
前記燃料電池が故障した場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する燃料電池故障モード、
前記蓄電池が故障した場合に、前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する蓄電池故障モード、
を含む各モードで選択的に動作可能に構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
When an abnormality of the fuel cell is detected, the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the fuel cell side direct connection circuit is opened to define the DC-DC converter. Fuel cell degradation mode operated by current control,
When the fuel cell fails, a fuel cell failure mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the DC-DC converter is stopped.
A storage battery failure mode in which, when the storage battery fails, the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, while the DC-DC converter is stopped.
A fuel cell vehicle configured to be selectively operable in each mode including - 前記通常走行モードにおいて、前記蓄電池側で前記DC−DCコンバータを定電流制御で動作させ、前記蓄電池から、前記DC−DCコンバータを介して前記インバータモータに電力供給する高出力走行モードをさらに含むことを特徴とする請求項1〜4の何れか一項記載の燃料電池車両。 The normal running mode further includes a high-power running mode in which the DC-DC converter is operated with constant current control on the storage battery side and power is supplied from the storage battery to the inverter motor via the DC-DC converter. The fuel cell vehicle according to any one of claims 1 to 4, wherein:
- 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記DC−DCコンバータは、前記燃料電池側と前記蓄電池側とで共用される1つのインダクタと、前記1つのインダクタと共働し、前記蓄電池と前記インバータモータとの間で双方向昇降圧コンバータを構成する4つのスイッチング素子と、これら4つのスイッチング素子のうち、前記蓄電池と前記インダクタとの間に介設される1つのスイッチング素子に対して並列に、前記燃料電池と前記インダクタとの間に介設され、かつ、前記蓄電池側の1つのスイッチング素子と選択的に動作する1つのスイッチング素子と、を含み、
運転状況に応じて、前記燃料電池と前記蓄電池の何れか一方を、前記各側直結回路を介して前記インバータモータと選択的に直結し、かつ、前記燃料電池と前記蓄電池の他方を、定電流制御で動作する前記DC−DCコンバータを介して接続するかまたは停止できるように構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
The DC-DC converter includes a single inductor shared by the fuel cell side and the storage battery side, and a bidirectional buck-boost converter between the storage battery and the inverter motor in cooperation with the one inductor. Four switching elements to be configured, and one of the four switching elements, one switching element interposed between the storage battery and the inductor, is interposed between the fuel cell and the inductor. And one switching element that selectively operates with one switching element on the storage battery side, and
Depending on the operating conditions, either the fuel cell or the storage battery is selectively directly connected to the inverter motor via the direct connection circuit on each side, and the other of the fuel cell and the storage battery is connected to a constant current. A fuel cell vehicle configured to be connected or stopped via the DC-DC converter that operates under control. - 燃料電池と蓄電池がDC−DCコンバータを介して走行用インバータモータに対して並列に接続された燃料電池車両において、
前記DC−DCコンバータをバイパスして前記燃料電池側と前記蓄電池側のそれぞれにおいて前記インバータモータと直結可能な燃料電池側および蓄電池側直結回路と、前記DC−DCコンバータおよび前記各側直結回路の開閉を制御する制御手段と、を備え、
前記DC−DCコンバータは、前記燃料電池側と前記蓄電池側とで共用される1つのインダクタと、前記1つのインダクタと共働し、前記蓄電池と前記インバータモータとの間で双方向昇降圧コンバータを構成する4つのスイッチング素子と、これら4つのスイッチング素子のうち、前記蓄電池と前記インダクタとの間に介設される1つのスイッチング素子に対して並列に、前記燃料電池と前記インダクタとの間に介設され、かつ、前記蓄電池側の1つのスイッチング素子と選択的に動作する1つのスイッチング素子と、を含み、
前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる起動モード、
前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給すると共に、前記蓄電池側直結回路を開く通常走行モード、
制動操作時に、前記蓄電池を前記インバータモータに直結して前記蓄電池に回生電力を充電すると共に、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる回生モード、
を含む各モードで選択的に動作可能に構成されていることを特徴とする燃料電池車両。 In a fuel cell vehicle in which a fuel cell and a storage battery are connected in parallel to a traveling inverter motor via a DC-DC converter,
Bypassing the DC-DC converter, the fuel cell side and the storage battery side direct connection circuit capable of being directly connected to the inverter motor on each of the fuel cell side and the storage battery side, and opening and closing of the DC-DC converter and each side direct connection circuit Control means for controlling
The DC-DC converter includes a single inductor shared by the fuel cell side and the storage battery side, and a bidirectional buck-boost converter between the storage battery and the inverter motor in cooperation with the one inductor. Four switching elements to be configured, and one of the four switching elements, one switching element interposed between the storage battery and the inductor, is interposed between the fuel cell and the inductor. And one switching element that selectively operates with one switching element on the storage battery side, and
A start mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A normal running mode in which the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, and the storage battery side direct connection circuit is opened.
During braking operation, the storage battery is directly connected to the inverter motor to charge the storage battery with regenerative power, and the fuel cell side direct connection circuit is opened to operate the DC-DC converter with constant current control,
A fuel cell vehicle configured to be selectively operable in each mode including - 前記通常走行モードにおいて、前記蓄電池側で前記DC−DCコンバータを定電流制御で動作させ、前記蓄電池から、前記DC−DCコンバータを介して前記インバータモータに電力供給する高出力走行モードをさらに含むことを特徴とする請求項7記載の燃料電池車両。 The normal running mode further includes a high-power running mode in which the DC-DC converter is operated with constant current control on the storage battery side and power is supplied from the storage battery to the inverter motor via the DC-DC converter. The fuel cell vehicle according to claim 7 .
- 前記燃料電池の異常が検出された場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記燃料電池側直結回路を開いて前記DC−DCコンバータを定電流制御で動作させる燃料電池劣化モード、
前記燃料電池が故障した場合に、前記蓄電池を前記インバータモータに直結して前記蓄電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する燃料電池故障モード、
前記蓄電池が故障した場合に、前記燃料電池を前記インバータモータと直結して前記燃料電池から前記インバータモータに電力供給する一方、前記DC−DCコンバータを停止する蓄電池故障モード、をさらに含むことを特徴とする請求項7または8記載の燃料電池車両。 When an abnormality of the fuel cell is detected, the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the fuel cell side direct connection circuit is opened to define the DC-DC converter. Fuel cell degradation mode operated by current control,
When the fuel cell fails, a fuel cell failure mode in which the storage battery is directly connected to the inverter motor and power is supplied from the storage battery to the inverter motor, while the DC-DC converter is stopped.
The battery further includes a storage battery failure mode in which when the storage battery fails, the fuel cell is directly connected to the inverter motor and power is supplied from the fuel cell to the inverter motor, while the DC-DC converter is stopped. The fuel cell vehicle according to claim 7 or 8 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013164247A JP6183699B2 (en) | 2013-08-07 | 2013-08-07 | Fuel cell vehicle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013164247A JP6183699B2 (en) | 2013-08-07 | 2013-08-07 | Fuel cell vehicle |
DE102014011768.5A DE102014011768A1 (en) | 2013-08-07 | 2014-08-06 | fuel cell vehicle |
CN201410387563.0A CN104340082B (en) | 2013-08-07 | 2014-08-07 | Fuel cell vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015035840A JP2015035840A (en) | 2015-02-19 |
JP6183699B2 true JP6183699B2 (en) | 2017-08-23 |
Family
ID=52388936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013164247A Active JP6183699B2 (en) | 2013-08-07 | 2013-08-07 | Fuel cell vehicle |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6183699B2 (en) |
CN (1) | CN104340082B (en) |
DE (1) | DE102014011768A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106143171A (en) * | 2015-03-31 | 2016-11-23 | 通用电气公司 | Multi-source energy storage system and energy management control method |
CA2986729C (en) | 2015-05-21 | 2019-11-19 | Nissan Motor Co., Ltd. | Power conditioning system and control method therefor |
US10340539B2 (en) | 2015-05-21 | 2019-07-02 | Nissan Motor Co., Ltd. | Power conditioning system and control method therefor |
JP6528846B2 (en) | 2015-08-11 | 2019-06-12 | 日産自動車株式会社 | Power adjustment system and control method thereof |
CN107921879B (en) * | 2015-08-11 | 2019-07-26 | 日产自动车株式会社 | Power regulation system and its control method |
KR101988095B1 (en) * | 2016-01-07 | 2019-06-13 | 현대자동차주식회사 | Power control system and method for hybrid vehicle |
FR3053851B1 (en) * | 2016-07-07 | 2020-06-26 | Symbiofcell | Control device for a power supply system for a vehicle with a fuel cell / battery coupling |
US10110103B1 (en) * | 2017-06-21 | 2018-10-23 | GM Global Technology Operations LLC | Electric drive system enhancement using a DC-DC converter |
CN107219470B (en) * | 2017-07-24 | 2020-05-01 | 深圳市泰昂能源科技股份有限公司 | On-line checking discharge device and method for storage battery pack |
DE102017214445A1 (en) * | 2017-08-18 | 2019-02-21 | Audi Ag | Method for operating a fuel cell assembly and corresponding fuel cell assembly |
DE102017214440A1 (en) * | 2017-08-18 | 2019-02-21 | Audi Ag | Method for operating a fuel cell assembly and corresponding fuel cell assembly |
DE102018218320A1 (en) * | 2018-10-26 | 2020-04-30 | Audi Ag | Electrical energy system with fuel cells |
CN109204066A (en) * | 2018-11-12 | 2019-01-15 | 清华大学 | A kind of fuel cell power system and its control method, entire car controller, automobile |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005160284A (en) * | 2003-05-13 | 2005-06-16 | Sumitomo Electric Ind Ltd | Power conversion apparatus and drive system of electric automobile |
WO2006090818A1 (en) * | 2005-02-25 | 2006-08-31 | Nec Corporation | Fuel cell system |
JP4783580B2 (en) | 2005-03-31 | 2011-09-28 | 本田技研工業株式会社 | Fuel cell electrical system, fuel cell vehicle and power supply method |
CN100404306C (en) * | 2006-03-24 | 2008-07-23 | 清华大学 | Mixed energy driving system of vehicle with fuel batteries |
JP4618814B2 (en) * | 2007-12-07 | 2011-01-26 | 本田技研工業株式会社 | Vehicle power supply |
JP4844556B2 (en) * | 2007-12-28 | 2011-12-28 | トヨタ自動車株式会社 | Power supply system |
WO2009084650A1 (en) * | 2007-12-28 | 2009-07-09 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP5143665B2 (en) * | 2008-08-11 | 2013-02-13 | 本田技研工業株式会社 | Electric power system and fuel cell vehicle |
JP2010172155A (en) * | 2009-01-26 | 2010-08-05 | Fujitsu Ten Ltd | Controller, control method, and current feeder |
JP2010259276A (en) | 2009-04-28 | 2010-11-11 | Fujitsu Ten Ltd | Fuel cell system, and device and method for controlling fuel cell |
JP5353441B2 (en) * | 2009-05-25 | 2013-11-27 | トヨタ自動車株式会社 | Fuel cell system |
JP5385728B2 (en) * | 2009-08-28 | 2014-01-08 | 公益財団法人鉄道総合技術研究所 | Control method and control apparatus |
JP5622693B2 (en) * | 2011-09-09 | 2014-11-12 | 本田技研工業株式会社 | Fuel cell vehicle |
CN102700427B (en) * | 2012-06-01 | 2014-05-21 | 武汉理工大学 | Vehicle-mounted fuel cell and storage cell directly paralleled power system with super capacitor |
-
2013
- 2013-08-07 JP JP2013164247A patent/JP6183699B2/en active Active
-
2014
- 2014-08-06 DE DE102014011768.5A patent/DE102014011768A1/en active Pending
- 2014-08-07 CN CN201410387563.0A patent/CN104340082B/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2015035840A (en) | 2015-02-19 |
DE102014011768A1 (en) | 2015-02-12 |
CN104340082B (en) | 2017-04-12 |
CN104340082A (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5014518B2 (en) | Electric vehicle propulsion control device and railway vehicle system | |
JP3972906B2 (en) | Vehicle power supply system | |
JP5619115B2 (en) | Wheel propulsion system | |
US7923866B2 (en) | Power supply system and vehicle including the same, and method of controlling the same | |
CA2576783C (en) | Control method for fuel cell vehicle, and fuel cell vehicle | |
US6861767B2 (en) | Power supply equipment for motor vehicle with battery and capacitor | |
US9793722B2 (en) | Power source apparatus for vehicle | |
US7568537B2 (en) | Vehicle propulsion system | |
JP4835690B2 (en) | Power supply | |
KR101141770B1 (en) | electric energy charging and discharging apparatus and method using super capactiors for regenerative braking system of electric motorcycles | |
KR100768354B1 (en) | Motor vehicle electric system | |
KR101273820B1 (en) | Power supply device | |
US8044534B2 (en) | Method of controlling DC/DC converter, method of controlling DC/DC converter apparatus, and method of controlling driving operation of electric vehicle | |
US9018894B2 (en) | Vehicular power supply system | |
JP5252540B2 (en) | Sequence control method for fuel cell hybrid vehicle | |
CA2710921C (en) | Power control system for a fuel cell | |
US7923858B2 (en) | Electric power source system and method for the same | |
JP3816436B2 (en) | Control device for fuel cell vehicle | |
JP4839783B2 (en) | Power system | |
US9150170B2 (en) | Circuit system for redistribution of electrical energy in a vehicle | |
JP5440400B2 (en) | Power supply | |
JP4862823B2 (en) | Power stabilization device and vehicle using the same | |
US8306692B2 (en) | Input/output control device for secondary battery and vehicle | |
JP4873260B2 (en) | Fuel cell system | |
US8924051B2 (en) | Drive device for railway vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170713 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6183699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |