JP6173873B2 - Steel plate heating method - Google Patents

Steel plate heating method Download PDF

Info

Publication number
JP6173873B2
JP6173873B2 JP2013218208A JP2013218208A JP6173873B2 JP 6173873 B2 JP6173873 B2 JP 6173873B2 JP 2013218208 A JP2013218208 A JP 2013218208A JP 2013218208 A JP2013218208 A JP 2013218208A JP 6173873 B2 JP6173873 B2 JP 6173873B2
Authority
JP
Japan
Prior art keywords
heating
steel sheet
temperature
cooling
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013218208A
Other languages
Japanese (ja)
Other versions
JP2015080786A (en
Inventor
下津 晃治
晃治 下津
勝志 大住
勝志 大住
三宅 康弘
康弘 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asteer Co Ltd
Original Assignee
Asteer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asteer Co Ltd filed Critical Asteer Co Ltd
Priority to JP2013218208A priority Critical patent/JP6173873B2/en
Publication of JP2015080786A publication Critical patent/JP2015080786A/en
Application granted granted Critical
Publication of JP6173873B2 publication Critical patent/JP6173873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、通電方向に直交する断面積が一様でない鋼板を直接通電加熱により加熱する鋼板の加熱方法に関する。   The present invention relates to a method for heating a steel sheet in which a steel sheet having a non-uniform cross-sectional area perpendicular to the energizing direction is heated by direct current heating.

加熱された鋼板を急冷により組織変態させると共に特定形状に成形するホットプレス加工等は、鋼板をオーステナイト完了温度(Ac3)以上に加熱する必要がある。こうした場合の鋼板の加熱手段である直接通電加熱は、加熱時間が短くて済むことから、生産性を向上させやすい利点を有するものの、通電方向に直交する断面積が一様でない鋼板を一様に加熱できないことから、利用対象が制限される欠点を有する。これから、直接通電加熱により通電方向に直交する断面積が一様でない鋼板を均一に加熱するため、様々な鋼板の加熱方法が提案されている(特許文献1及び特許文献2)。   Hot pressing or the like that transforms the structure of a heated steel sheet by rapid cooling and forms it into a specific shape requires heating the steel sheet to austenite completion temperature (Ac3) or higher. Direct current heating, which is a heating means for the steel plate in such a case, has the advantage of easily improving the productivity because the heating time is short, but the steel plate with a non-uniform cross-sectional area perpendicular to the current supply direction is uniform. Since it cannot heat, it has the fault that a utilization object is restrict | limited. From this, various steel plate heating methods have been proposed in order to uniformly heat a steel plate having a non-uniform cross-sectional area perpendicular to the energization direction by direct current heating (Patent Document 1 and Patent Document 2).

特許文献1は、通電方向に直交する断面積が一様でない鋼板(ブランク)に取り付けた電極に供給する電力を前記電極毎に調整することにより、前記鋼板の温度分布を調整する鋼板の加熱方法を開示する(特許文献1・[請求項1])。電極に供給する電力は、電源と電極間に抵抗を付加して前記電極に供給する電流の強さを制御したり(特許文献1・[請求項2])、電極に供給する電流の通電時間を制御したり(特許文献1・[請求項3])して、調整する。電極を当接させた部位周辺を局部的に加熱するため、電極は先端を半径20mm以下の球面状としている(特許文献1・[請求項4])。   Patent Document 1 discloses a method for heating a steel sheet in which the temperature distribution of the steel sheet is adjusted by adjusting the power supplied to the electrode attached to the steel sheet (blank) having a non-uniform cross-sectional area perpendicular to the energization direction. Is disclosed (Patent Document 1 [Claim 1]). The electric power supplied to the electrode controls the strength of the electric current supplied to the electrode by adding a resistance between the power source and the electrode (Patent Document 1 [Claim 2]), or the energization time of the electric current supplied to the electrode (Patent Literature 1 [Claim 3]) to adjust. In order to locally heat the periphery of the part where the electrode is in contact, the tip of the electrode has a spherical shape with a radius of 20 mm or less (Patent Document 1 [Claim 4]).

特許文献2は、通電方向に直交する断面積が一様でない鋼板(ブランク)の対向する両端部に配置する対のバー電極の幅を同一にすると共に、前記対のバー電極に挟まれる前記鋼板の領域を矩形に形成する鋼板の加熱方法(通電加熱方法)を開示する(特許文献1・[請求項1])。通電方向に直交する断面積が一様でない鋼板は、端部から外方へ張り出す補助部を設け、前記補助部を挟む電極により前記鋼板を複数の矩形に分ける(特許文献1・[請求項2])。複数の各矩形に割り当てられた対のバー電極は、電極間距離が最大となる対のバー電極の一側をアース電極とし、各電極に付与する電位をアース電極からの距離に対して線形に制御する(特許文献1・[請求項3])。   Patent Document 2 discloses that the steel plates sandwiched between the pair of bar electrodes and the widths of the pair of bar electrodes arranged at opposite ends of a steel plate (blank) having a non-uniform cross-sectional area perpendicular to the energizing direction are made the same. Disclosed is a heating method (electric heating method) of a steel sheet in which the region is formed into a rectangle (Patent Document 1 [Claim 1]). A steel plate having a non-uniform cross-sectional area perpendicular to the energizing direction is provided with an auxiliary portion that protrudes outward from an end portion, and the steel plate is divided into a plurality of rectangles by electrodes sandwiching the auxiliary portion (Patent Literature 1 and [Claims]. 2]). In the pair of bar electrodes assigned to each rectangle, one side of the pair of bar electrodes having the maximum inter-electrode distance is used as a ground electrode, and the potential applied to each electrode is linear with respect to the distance from the ground electrode. (Patent Document 1 [Claim 3]).

特開2002-248525公報Japanese Patent Laid-Open No. 2002-248525 特開2011-183418公報JP 2011-183418

特許文献1及び特許文献2が開示する鋼板の加熱方法は、通電方向に直交する断面積が一様でない鋼板に複数の電極を割り当て、各電極間に流れる電流の大きさや通電時間を制御して前記鋼板全体を加熱する点で類似する。しかし、鋼板を加熱するジュール熱は電流の二乗に比例するから、電流の強さや通電時間を微妙に増減しても発生するジュール熱の変化が大きくなり、通電方向に直交する断面積が一様でない鋼板全体を均一に加熱することが難しく、どうしても加熱ムラが発生すると考えられる。これは、電極の数が増えれば増えるほど無視できなくなる問題である。   The heating method of the steel sheet disclosed in Patent Document 1 and Patent Document 2 is to assign a plurality of electrodes to a steel sheet having a non-uniform cross-sectional area orthogonal to the energizing direction, and to control the magnitude of current flowing between the electrodes and the energizing time. Similar in that the entire steel sheet is heated. However, since the Joule heat that heats the steel plate is proportional to the square of the current, the change in the Joule heat that occurs even if the current intensity or energization time is slightly increased or decreased increases, and the cross-sectional area perpendicular to the energization direction is uniform. It is difficult to uniformly heat the entire steel sheet, which is considered to cause uneven heating. This is a problem that cannot be ignored as the number of electrodes increases.

また、通電方向に直交する断面積が一様でない鋼板に対する各電極の配置位置が微少に変化するだけで、電流の強さや通電時間を再調整しなければならない。上述したように、鋼板を加熱するジュール熱は電流の二乗に比例することから、再調整は難しく、通電方向に直交する断面積が一様でない鋼板を加熱するまでの待機時間が長くなる虞がある。これでは、実際の生産現場での利用において、短時間で加熱できる直接通電加熱の利点を損なう虞のあることを意味し、ひいては生産性を低下させる問題を引き起こす。   In addition, the current intensity and energization time must be readjusted only by slightly changing the arrangement position of each electrode with respect to the steel sheet having a non-uniform cross-sectional area perpendicular to the energization direction. As described above, since the Joule heat for heating the steel plate is proportional to the square of the current, readjustment is difficult, and there is a possibility that the waiting time until heating the steel plate having a non-uniform cross-sectional area perpendicular to the energizing direction may be increased. is there. This means that there is a possibility of losing the advantage of direct current heating that can be heated in a short time in actual production site use, and thus causes a problem of lowering productivity.

このほか、多数の電極を配置する加熱装置は、構造が複雑で、制御システムを含めた製造コストが高くなったり、故障する箇所が多くなるために平均故障間隔が短くなったり、運用コストが高くついたりする問題も出てくる。このように、複数の電極を用いる特許文献1又は特許文献2が開示する鋼板の加熱方法は、加熱ムラが発生する問題、生産性を高める利点を損なわせる問題、そして加熱装置の製造コスト及び運用コストが高くなる問題を有していた。そこで、こうした問題を解決して、通電方向に直交する断面積が一様でない鋼板を直接通電加熱により加熱する鋼板の加熱方法を開発すべく、検討した。   In addition, a heating device with a large number of electrodes has a complicated structure, which increases the manufacturing cost including the control system, shortens the mean time between failures due to the increased number of failure points, and increases the operating cost. There are also problems that follow. Thus, the heating method of the steel sheet disclosed in Patent Document 1 or Patent Document 2 using a plurality of electrodes is a problem in which unevenness in heating occurs, a problem that impairs the advantage of increasing productivity, and the manufacturing cost and operation of the heating device. There was a problem of high costs. Therefore, in order to solve such problems, a study was made to develop a method for heating a steel sheet in which a steel sheet having a non-uniform cross-sectional area perpendicular to the direction of current conduction is heated directly by current heating.

検討の結果開発したものが、通電方向に直交する断面積が一様でない鋼板を直接通電加熱により加熱する鋼板の加熱方法であって、鋼板を挟む一対の電極を結ぶ通電方向に前記鋼板を分割して複数の冷却領域を設定し、第1工程は、鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱し、第2工程は、冷却領域それぞれの通電方向に直交する断面積に反比例する降温幅で冷却して、前記断面積の大きなところから小さなところに向けて下る温度勾配を形成し、第3工程は、前記通電方向で鋼板全体に通電してオーステナイト変態完了温度(Ac3)以上に鋼板全体を均一に加熱する鋼板の加熱方法である。   What has been developed as a result of the study is a method of heating a steel sheet that directly heats a steel sheet having a non-uniform cross-sectional area perpendicular to the energizing direction by dividing the steel sheet in the energizing direction connecting a pair of electrodes sandwiching the steel sheet. In the first step, the entire steel sheet is heated below the austenite transformation start temperature (Ac1), and in the second step, the temperature drop is inversely proportional to the cross-sectional area perpendicular to the energizing direction of each cooling region. Cooling with a width forms a temperature gradient that descends from the largest to the smallest of the cross-sectional area. In the third step, the entire steel sheet is energized in the direction of energization to bring the steel sheet above the austenite transformation completion temperature (Ac3). It is a heating method of a steel plate that uniformly heats the whole.

「鋼板を挟む一対の電極を結ぶ通電方向に前記鋼板を分割して」設定される冷却領域は、前記通電方向に直交する仮想境界線で分割された冷却単位で、それぞれに個別の冷却手段や複数又は全部に対応する冷却手段を割り当て、異なる降温幅で冷却される一定の範囲を意味する。各冷却領域の通電方向の長さは、割り当てられた冷却手段によって、隣り合う冷却領域と連続する温度勾配が形成されるように決定する。「鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱」するとは、オーステナイト変態開始温度(Ac1)を超えない目標温度であればよいが、好ましくは前記オーステナイト変態開始温度(Ac1)を超えない限度のできる限り高温に設定された予備加熱温度(PT)まで加熱する。   The cooling region set by “dividing the steel plate in the energizing direction connecting a pair of electrodes sandwiching the steel plate” is a cooling unit divided by a virtual boundary line orthogonal to the energizing direction, and each cooling unit or A cooling means corresponding to a plurality or all of them is assigned, and it means a certain range that is cooled with different temperature drop widths. The length of each cooling region in the energization direction is determined by the assigned cooling means so that a temperature gradient continuous with the adjacent cooling region is formed. “Heating the entire steel sheet below the austenite transformation start temperature (Ac1)” may be a target temperature that does not exceed the austenite transformation start temperature (Ac1), but preferably the limit not exceeding the austenite transformation start temperature (Ac1). Heat to the preheating temperature (PT) set as high as possible.

「冷却領域それぞれの通電方向に直交する断面積」は、設定された冷却領域を鋼板から切り出した場合、前記冷却領域の通電方向に直交する両端面いずれか一方又は前記両端面の平均値とする。冷却領域の両端面の大きさがほとんど変わらない場合、全冷却領域について同じ側の端面を、各冷却領域を代表する断面積として比較する。しかし、冷却領域の両端面の大きさの差が無視できない場合、各冷却領域は両端面の平均値を各冷却領域を代表する断面積として比較する。各冷却領域は、通電方向の長さを自由に設定できるため、前記長さを短くして両端面の大きさをほとんど同じにしたり、前記長さを長くして両端面の大きさに差を設け、両者の平均値を各冷却領域の断面積としてもよい。   “Cross-sectional area orthogonal to the energizing direction of each cooling region” is the average value of either one of both end surfaces orthogonal to the energizing direction of the cooling region or the average value of the both end surfaces when the set cooling region is cut out from the steel sheet. . When the size of the both end surfaces of the cooling region is hardly changed, the end surfaces on the same side in all the cooling regions are compared as cross-sectional areas representing the respective cooling regions. However, when the difference in the size of both end faces of the cooling region cannot be ignored, each cooling region compares the average value of the both end surfaces as a cross-sectional area representing each cooling region. Each cooling region can be freely set in the length in the energization direction, so that the length is shortened to make the end faces almost the same size, or the length is increased to make a difference in the end face sizes. It is good also considering the average value of both as a cross-sectional area of each cooling area | region.

「(通電方向に直交する)断面積に反比例する降温幅で冷却」するとは、通電方向に直交する断面積が大きければ第1工程で加熱された温度からの降温幅が小さく、また通電方向に直交する断面積が小さければ前記温度からの降温幅が大きいことを意味する。降温幅は、冷却領域の数だけあり、例えば冷却領域が4つあれば、4つの異なる降温幅が設定される。この場合、隣り合う冷却領域それぞれに設定された降温幅の差は、同じでも、異なっていてもよい。「断面積の大きなところから小さなところに向けて下る温度勾配」とは、断面積の大きなところが高温で、断面積の小さなところに向けて降温され、相対的に温度が低くなっている状態を意味する。   “Cooling with the temperature drop width inversely proportional to the cross-sectional area (perpendicular to the energization direction)” means that if the cross-sectional area orthogonal to the energization direction is large, the temperature drop width from the temperature heated in the first step is small, and If the cross-sectional area orthogonal is small, it means that the temperature drop from the temperature is large. There are as many temperature drop widths as there are cooling areas. For example, if there are four cooling areas, four different temperature drop widths are set. In this case, the difference in the temperature drop width set in each adjacent cooling region may be the same or different. `` Temperature gradient descending from a large cross-sectional area to a small area '' means that the temperature at the large cross-sectional area is high and the temperature is lowered toward the small cross-sectional area and the temperature is relatively low To do.

本発明の鋼板の加熱方法は、加熱された鋼板がオーステナイト変態を開始する前に、直接通電加熱により加熱されやすいところ=通電方向に直交する断面積の小さな冷却領域を大きな降温幅で冷却し、また直接通電加熱により加熱されにくいところ=通電方向に直交する断面積の大きな冷却領域を小さな降温幅で冷却する又は冷却しない(この場合、降温幅が「0」)ことにより、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を鋼板全体に形成する。これにより、再び通電して加熱した際、鋼板全体を、一様にオーステナイト変態完了温度(Ac3)以上、例えば前記オーステナイト変態完了温度以上に設定された焼き入れ温度(QT)にまで昇温させる。   The method for heating a steel sheet of the present invention is a place where the heated steel sheet is easily heated by direct current heating before starting the austenite transformation = cooling a cooling region having a small cross-sectional area perpendicular to the current-carrying direction with a large temperature drop width, In addition, it is difficult to be heated by direct current heating = a cooling region having a large cross-sectional area orthogonal to the current supply direction is cooled or not cooled with a small temperature drop width (in this case, the temperature drop width is “0”), thereby orthogonal to the current supply direction. A temperature gradient descending from a large cross-sectional area toward a small area is formed on the entire steel sheet. As a result, when energized again and heated, the entire steel sheet is uniformly heated to the austenite transformation completion temperature (Ac3) or higher, for example, the quenching temperature (QT) set to the austenite transformation completion temperature or higher.

第1工程は、鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱する。鋼板全体で加熱温度が不均一の場合、最高温度がオーステナイト変態開始温度(Ac1)であればよい。これから、第1工程は、直接通電加熱、炉加熱、赤外線加熱又は誘導加熱により、鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱できる。直接通電加熱は、鋼板を挟む一対の電極に通電して発生させるジュール熱により鋼板を加熱する。炉加熱は、電気炉等に収納して鋼板を加熱する。赤外線加熱は、高エネルギーの赤外線を照射して鋼板を加熱する。誘導加熱は、鋼板に照射する電磁誘導が発生させるジュール熱により鋼板を加熱する。製造コストを低減する観点から、第3工程に用いる直接通電加熱を第1工程にも用いることが好ましい。   In the first step, the entire steel sheet is heated to a temperature lower than the austenite transformation start temperature (Ac1). When the heating temperature is not uniform throughout the steel sheet, the maximum temperature may be the austenite transformation start temperature (Ac1). From this, the 1st process can heat the whole steel plate below austenite transformation start temperature (Ac1) by direct current heating, furnace heating, infrared heating, or induction heating. In direct current heating, a steel sheet is heated by Joule heat generated by energizing a pair of electrodes sandwiching the steel sheet. In the furnace heating, the steel sheet is heated in an electric furnace or the like. Infrared heating heats a steel plate by irradiating high-energy infrared rays. In the induction heating, the steel sheet is heated by Joule heat generated by electromagnetic induction applied to the steel sheet. From the viewpoint of reducing the manufacturing cost, it is preferable to use direct current heating used in the third step also in the first step.

第2工程は、冷却領域毎に降温幅を異ならせて冷却できれば、冷却手段を問わない。例えば第2工程は、冷却領域それぞれに吹き付ける冷却気体の温度を異ならせたり、冷却領域それぞれに吹き付ける冷却気体の風量を異ならせたりして、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成する。冷却気体は、オーステナイト変態開始温度(Ac1)未満に加熱された鋼板より相対的に温度の低い気体であればよい。こうした冷却気体は、吹き付けた点から周囲に拡散するため、通電方向に直交する断面積の大きなところから小さなところに向けて連続的に降温幅が異なり、連続した温度勾配の形成ができる。冷却気体の温度又は風量が異なると、降温幅を左右する冷却気体の熱容量が増減される。   In the second step, the cooling means is not limited as long as the cooling range can be varied for each cooling region. For example, in the second step, the temperature of the cooling gas blown to each cooling region is made different, or the amount of the cooling gas blown to each cooling region is made different so that the cross-sectional area perpendicular to the energizing direction is changed from a large part to a small part. Create a temperature gradient down. The cooling gas may be a gas having a temperature relatively lower than that of the steel plate heated to a temperature lower than the austenite transformation start temperature (Ac1). Since such cooling gas diffuses from the sprayed point to the surroundings, the temperature drop width continuously varies from a large cross-sectional area perpendicular to the energizing direction to a small one, and a continuous temperature gradient can be formed. When the temperature or the air volume of the cooling gas is different, the heat capacity of the cooling gas that affects the temperature drop width is increased or decreased.

また、第2工程は、冷却領域それぞれに押し当てる冷却ブロックの温度を異ならせたり、冷却領域それぞれに押し当てる冷却ブロックの接触時間を異ならせたりして、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成してもよい。冷却ブロックは、金属製又は熱伝導率が高いセラミックス製で、オーステナイト変態開始温度(Ac1)未満に加熱された鋼板より相対的に温度の低い塊状物であればよい。こうした冷却ブロックは、冷却気体に比べて比熱が大きいために降温時間を短くできる。冷却ブロックの温度が異なると、降温の温度勾配に差が生じ、同じ時間での降温幅に差ができる。また、冷却ブロックの接触時間が異なると、熱交換される熱量に差が生じ、同じ時間での降温幅に差ができる。   In the second step, the temperature of the cooling block pressed against each cooling region is varied, or the contact time of the cooling block pressed against each cooling region is varied so that the cross-sectional area perpendicular to the energization direction is large. A temperature gradient that descends from a small point toward a small point may be formed. The cooling block may be made of a metal or a ceramic having a high thermal conductivity, and may be a mass having a temperature relatively lower than that of a steel plate heated to a temperature lower than the austenite transformation start temperature (Ac1). Since such a cooling block has a larger specific heat than the cooling gas, the temperature drop time can be shortened. If the temperature of the cooling block is different, a difference in the temperature gradient of the temperature drop occurs, and the temperature drop width at the same time can be different. In addition, when the contact time of the cooling block is different, a difference occurs in the amount of heat exchanged, and a difference in temperature drop during the same time can be made.

第3工程は、鋼板全体を一様に急冷できれば、冷却手段を問わない。これから、第3工程は、鋼板全体に押し付けた成形型により鋼板全体を製品形状に成形すると共に、成形型への熱伝導により鋼板全体を急冷すれば、本発明をホットプレス加工に利用できる。成形型に、冷却気体の噴出口及び回収口を設けておけば、前記成形型は、鋼板を成形しない限り、冷却気体を用いる第2工程にも利用しうる。また、成形型が分割して鋼板に押し付けることにより鋼板を成形しない構成であれば、前記成形型は、冷却ブロックを用いる第2工程にも利用しうる。   In the third step, the cooling means is not limited as long as the entire steel sheet can be rapidly cooled. Thus, in the third step, the present invention can be used for hot pressing if the entire steel sheet is formed into a product shape by a forming die pressed against the entire steel sheet and the entire steel sheet is rapidly cooled by heat conduction to the forming mold. If the forming die is provided with a cooling gas outlet and a recovery port, the forming die can also be used in the second step using cooling gas as long as a steel plate is not formed. Further, if the forming die is divided and pressed against the steel plate, the forming die can be used for the second step using the cooling block.

本発明は、通電方向に直交する断面積が一様でない鋼板を直接通電加熱により加熱する鋼板の加熱方法を提供する。これは、従来直接通電加熱を利用して加熱することが難しかった自動車用部材、例えば徐変に断面積が大きくなるピラー等も、直接通電加熱を利用して加熱ムラなく、短時間にオーステナイト変態完了温度(Ac3)まで加熱できることを意味する。これにより、直接通電加熱を利用したホットプレス加工の利用範囲が拡大し、焼き入れされる鋼板製の自動車用部材の生産性を向上させることができる。   The present invention provides a method for heating a steel sheet in which a steel sheet having a non-uniform cross-sectional area perpendicular to the energizing direction is heated by direct current heating. This is because conventional automotive parts that have been difficult to heat using direct current heating, such as pillars that gradually increase in cross-sectional area, also use direct current heating to produce austenite transformation in a short time without uneven heating. It means that it can be heated to the completion temperature (Ac3). Thereby, the utilization range of the hot press processing using direct electric heating can be expanded, and the productivity of the automotive member made of steel plate to be quenched can be improved.

本発明の鋼板の加熱方法は、第2工程において、冷却領域それぞれの通電方向に直交する断面積に反比例する降温幅で冷却され、断面積の大きなところから小さなところに向けて下る温度勾配を形成する点に特徴を有する。このとき、冷却領域が通電方向に断続的に冷やされ、前記温度勾配ががたついても、予めオーステナイト変態開始温度(Ac1)未満に加熱された鋼板における局部的な熱平衡により前記温度勾配のガタツキが均されるほか、すぐに鋼板全体をオーステナイト変態完了温度(Ac3)以上に加熱するので、加熱ムラが問題になることはない。   In the heating method of the steel sheet of the present invention, in the second step, the steel sheet is cooled with a temperature drop width that is inversely proportional to the cross-sectional area orthogonal to the energizing direction of each cooling region, and a temperature gradient that decreases from a large cross-sectional area to a small area is formed. It is characterized in that At this time, even if the cooling region is intermittently cooled in the energization direction and the temperature gradient is given, the temperature gradient is not stable due to local thermal equilibrium in the steel plate heated to a temperature lower than the austenite transformation start temperature (Ac1) in advance. In addition to equalization, the entire steel sheet is immediately heated to the austenite transformation completion temperature (Ac3) or higher, so heating unevenness does not become a problem.

また、本発明の鋼板の加熱方法は、第2工程において、一旦鋼板を一部冷却する時間が追加されているが、前記冷却に先んじた鋼板の加熱はオーステナイト変態開始温度(Ac1)未満であるため、前記加熱と冷却とを合わせても大した時間を要するわけではないため、単純にオーステナイト変態完了温度(Ac3)以上まで加熱する従来の直接通電加熱に比べて、処理時間はほとんど変わりがない。このため、本発明を利用することで直接通電加熱の生産性を損ねることはなく、むしろ直接通電加熱を利用することで生産性を向上させる適用対象を拡大する効果が得られる。   Further, in the method for heating a steel plate of the present invention, in the second step, a time for once cooling the steel plate is added, but the heating of the steel plate prior to the cooling is less than the austenite transformation start temperature (Ac1). Therefore, even if the heating and cooling are combined, it does not take much time, so the processing time is almost the same as that of conventional direct current heating that simply heats to the austenite transformation completion temperature (Ac3) or higher. . For this reason, the productivity of direct current heating is not impaired by using the present invention, but rather the effect of expanding the application target for improving the productivity by using direct current heating is obtained.

そして、本発明の鋼板の加熱方法は、第2工程において、一部を冷却するための冷却手段を追加するだけで、直接通電加熱に用いる電極の数が従来と同じであり、冷却手段や電極等の制御も単純で、例えば通電及び遮断の切り換えだけで済むため、加熱装置の製造コストをそれほど押し上げない。また、電極の数が従来と同じで、冷却手段や電極等の制御も単純であるから、加熱装置の運用コストも十分に抑えることができる。このように、本発明は、製造コスト及び運用コストを抑制しつつ、直接通電加熱の利用範囲、ひいては直接通電加熱を利用したホットプレス加工の適用対象を拡大する効果を有する。   And the heating method of the steel plate of this invention is the same as the number of the electrodes used for direct current heating only by adding the cooling means for cooling a part in a 2nd process. Such control is also simple, for example, it is only necessary to switch between energization and cutoff, so that the manufacturing cost of the heating device is not increased so much. In addition, since the number of electrodes is the same as the conventional one and the control of the cooling means and the electrodes is simple, the operating cost of the heating device can be sufficiently suppressed. As described above, the present invention has an effect of expanding the application range of the direct current heating, that is, the hot press processing using the direct current heating, while suppressing the manufacturing cost and the operation cost.

本発明の特徴は、鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱した後に通電方向の温度勾配を形成する第2工程にあるため、前記オーステナイト変態開始温度(Ac1)未満の加熱は加熱手段を問わない。このため、第3工程に合わせて直接通電加熱を用いるほか、運用コストが廉価でバッチ処理が可能な炉加熱を用いたり、他の生産設備と兼用して赤外線加熱又は誘導加熱を利用したりできる。こうした第1工程の加熱手段が多用であることは、本発明の適用に際する生産設備の構築を柔軟にする利点をもたらす。   The feature of the present invention lies in the second step of forming a temperature gradient in the energizing direction after heating the entire steel sheet to less than the austenite transformation start temperature (Ac1), and thus heating below the austenite transformation start temperature (Ac1) is a heating means. It doesn't matter. For this reason, in addition to using direct current heating in accordance with the third step, it is possible to use furnace heating capable of batch processing at low operating costs, or use infrared heating or induction heating in combination with other production facilities. . Such extensive use of the heating means in the first step provides the advantage of making the construction of production equipment flexible when applying the present invention.

第2工程の冷却手段である冷却気体は、比熱が小さいため、冷却ブロックに比べて降温差を設けることが難しいが、吹き付けた点から周囲に拡散するため、冷却気体の噴射ノズルを1つずつ割り当てる冷却領域が通電方向に長い大きな分割単位で並んでいても、通電方向に滑らかに連続した温度勾配を形成そやすい。これに対し、第2工程の冷却手段である冷却ブロックは、比熱が大きく、接触範囲を一律に冷却するため、温度勾配を滑らかに連続させることが難しいが、第3工程での再加熱により前記温度勾配のガタツキは吸収されるので問題にならず、むしろ隣り合う冷却領域の降温差を大きくして短時間で温度勾配を形成できる。冷却気体及び冷却ブロックは、それぞれ単独で使用されるほか、両者の長短を補って併用してもよい。   Since the cooling gas that is the cooling means in the second step has a small specific heat, it is difficult to provide a temperature difference compared to the cooling block. However, since it diffuses to the surroundings from the sprayed point, one cooling gas injection nozzle is provided at a time. Even if the cooling regions to be allocated are arranged in large divided units that are long in the energizing direction, it is easy to form a smoothly continuous temperature gradient in the energizing direction. On the other hand, the cooling block which is the cooling means of the second step has a large specific heat and uniformly cools the contact range, so it is difficult to make the temperature gradient smoothly continuous. Since the fluctuation of the temperature gradient is absorbed, there is no problem. Rather, the temperature gradient can be formed in a short time by increasing the temperature drop difference between adjacent cooling regions. The cooling gas and the cooling block may be used alone, or may be used in combination with the short and long of both.

本発明の鋼板の加熱方法は、第3工程後の冷却手段として成形型を用いることにより、ホットプレス加工に利用できる。本発明を利用したホットプレス加工は、通電方向に直交する断面積が一様でない鋼板であっても、全体を一様にオーステナイト変態完了温度(Ac3)まで加熱できることから、前記鋼板全体を均質に熱処理(パーライト変態、ベイナイト変態又はマルテンサイト変態)できる。このように、本発明の鋼板の加熱方法は、加熱ムラを発生させず、生産性を損ねず、そして加熱装置の製造コスト及び運用コストを抑制した鋼板の熱処理を実現する。   The method for heating a steel sheet of the present invention can be used for hot pressing by using a forming die as a cooling means after the third step. Hot pressing using the present invention can uniformly heat the entire steel sheet to the austenite transformation completion temperature (Ac3) even if the steel sheet has a non-uniform cross-sectional area perpendicular to the energizing direction. Heat treatment (perlite transformation, bainite transformation or martensitic transformation) can be performed. Thus, the method for heating a steel sheet according to the present invention realizes heat treatment of the steel sheet without causing uneven heating, without impairing productivity, and suppressing the manufacturing cost and operating cost of the heating device.

本発明に基づく熱処理パターンの一例を表すグラフである。It is a graph showing an example of the heat processing pattern based on this invention. 本発明に基づく熱処理パターンの別例を表すグラフである。It is a graph showing another example of the heat processing pattern based on this invention. 直接通電加熱装置による熱処理の準備段階を表す平面図である。It is a top view showing the preparatory stage of the heat processing by a direct current heating apparatus. 直接通電加熱装置による第1工程の加熱段階を表す平面図である。It is a top view showing the heating step of the 1st process by a direct energization heating device. 誘導加熱装置による第1工程の加熱段階を表す平面図である。It is a top view showing the heating step of the 1st process by an induction heating device. 炉加熱装置による第1工程の加熱段階を表す平面図である。It is a top view showing the heating step of the 1st process by a furnace heating device. 赤外線熱装置による第1工程の加熱段階を表す平面図である。It is a top view showing the heating step of the 1st process by an infrared thermal device. 冷却装置の空冷による第2工程の降温段階を表す平面図である。It is a top view showing the temperature fall stage of the 2nd process by the air cooling of a cooling device. 空冷の冷却装置による第2工程の降温段階を表す側面図である。It is a side view showing the temperature-falling stage of the 2nd process by an air-cooling cooling device. 熱伝導の冷却装置による第2工程の降温段階を表す側面図である。It is a side view showing the temperature-falling stage of the 2nd process by the cooling device of heat conduction. 直接通電加熱装置による第3工程の加熱段階を表す側面図である。It is a side view showing the heating step of the 3rd process by a direct energization heating device. 成形型によるホットプレス工程の降温段階を表す側面図である。It is a side view showing the temperature-falling stage of the hot press process by a shaping | molding die. 実施例の鋼板形状を表す斜視図である。It is a perspective view showing the steel plate shape of an Example. 実施例の鋼板の長さ方向のビッカース硬度の分布を表すグラフである。It is a graph showing distribution of the Vickers hardness of the length direction of the steel plate of an Example.

以下、本発明を実施するための形態について図を参照しながら説明する。以下の説明における「通電方向」は、第1工程又は第3工程に用いる直接通電加熱において、電源22が交流であるために電流の流れる向きが入れ替わることを無視し、鋼板1に流れる電流の軸線として、直接通電加熱を表す各図中、紙面向かって左側の電極21の右縁を基準に同右側の電極21の左縁に向かう方向と定義し、第1工程に用いる直接通電加熱以外の加熱手段の説明にも利用している。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The “energization direction” in the following description means that the direct current heating used in the first step or the third step ignores the fact that the direction of current flow is reversed because the power source 22 is alternating current, and the axis of the current flowing in the steel plate 1 In each figure showing direct current heating, it is defined as the direction toward the left edge of the right electrode 21 with reference to the right edge of the left electrode 21 as viewed in the drawing, and heating other than direct current heating used in the first step It is also used to explain the means.

本発明に基づく加熱方法は、図1又は図2に見られるように、通電方向に直交する断面積が一様でない鋼板1(図3以下参照)を直接通電加熱により焼き入れする前半の熱処理に適用される。本例は、第3工程の直接通電加熱の通電方向に直交する断面積が一様でない鋼板1を一様に焼き入れし、成形型5によりホットプレス加工する例(後掲図12参照)である。説明を簡単にするため、本例の鋼板1は、厚みが一定で、前記通電方向に延びる軸線を挟んで線対称な平面視台形状としている。このため、断面積は板幅に比例する。   As shown in FIG. 1 or FIG. 2, the heating method according to the present invention is a heat treatment in the first half in which a steel sheet 1 (see FIG. 3 and the following) whose cross-sectional area perpendicular to the energizing direction is not uniform is quenched by direct energization heating. Applied. This example is an example in which the steel sheet 1 having a non-uniform cross-sectional area perpendicular to the energizing direction of the direct current heating in the third step is uniformly quenched and hot pressed by the forming die 5 (see FIG. 12 below). is there. In order to simplify the description, the steel plate 1 of the present example has a constant thickness and a plane-view trapezoidal shape that is symmetrical with respect to an axis extending in the energizing direction. For this reason, the cross-sectional area is proportional to the plate width.

第1工程が直接通電加熱の場合、通電方向に直交する断面積が一様でない鋼板1は、断面積が小さなところ(板幅の狭いところ)の電気抵抗が高くなるため、前記断面積が小さなところほど昇温し、断面積の大きなところから小さなところに向けて上る温度勾配TG1(後掲図4参照)を形成する。例えば通電方向の上流にあるA点、中間のB点、そして下流にあるC点(図3以下参照)は、それぞれ昇温し(図1中、昇温曲線が分離している)、断面積の最も小さいA点がオーステナイト変態開始温度(Ac1)未満に設定した予備加熱温度(PT)に達したときに通電を止めて、第2工程に移る。   In the case where the first step is direct current heating, the steel plate 1 having a non-uniform cross-sectional area perpendicular to the energizing direction has a small cross-sectional area because the electric resistance is high when the cross-sectional area is small (where the plate width is narrow). The temperature rises so as to form a temperature gradient TG1 (see FIG. 4 below) that rises from a large cross-sectional area toward a small one. For example, the point A upstream in the energizing direction, the point B in the middle, and the point C downstream (see FIG. 3 and subsequent figures) are heated (the temperature rising curve is separated in FIG. 1), and the cross-sectional area When the smallest point A reaches the preheating temperature (PT) set below the austenite transformation start temperature (Ac1), the energization is stopped and the process proceeds to the second step.

また、第1工程が誘導加熱で、鋼板1の通電方向に磁力線を形成する場合、前記直接通電と同様に、断面積の大きなところから小さなところに向けて上る温度勾配TG1(後掲図5参照)を形成する。しかし、第1工程が誘導加熱で、鋼板1の表面に直交する磁力線を形成する場合、鋼板1の部分的な昇温差が発生しないので、通電方向の温度勾配TG1を一定にすることもできる。この場合、誘導加熱装置の構成にもよるが、鋼板1全体を一度に加熱できないことが多いため、例えば誘導加熱装置を移動させながら、鋼板1を数個の区分に分けて逐次加熱する。   Further, when the first step is induction heating and magnetic lines of force are formed in the energizing direction of the steel plate 1, a temperature gradient TG1 rising from a large cross-sectional area to a small one as in the case of the direct energization (see FIG. 5 described later). ). However, when the first step is induction heating and magnetic lines of force perpendicular to the surface of the steel plate 1 are formed, a partial temperature increase difference of the steel plate 1 does not occur, so that the temperature gradient TG1 in the energization direction can be made constant. In this case, although depending on the configuration of the induction heating device, the entire steel plate 1 cannot often be heated at one time. For example, the steel plate 1 is sequentially heated in several sections while moving the induction heating device.

これに対し、第1工程が炉加熱又は赤外線加熱の場合、通電方向に直交する断面積が一様でない鋼板であっても、鋼板1の部分的な昇温差が発生しないので、通電方向に一様の温度勾配TG1を形成する(後掲図6又は図7参照)。例えば、通電方向に離れたA点、B点及びC点(図3以下参照)は、それぞれに一様に温度上昇し(図1、温度曲線が一致している)、前記A点、B点及びC点がすべて予備加熱温度(PT)に達したときに加熱を止めて、第2工程に移る。   On the other hand, when the first step is furnace heating or infrared heating, even if the steel plate 1 has a non-uniform cross-sectional area perpendicular to the energizing direction, a partial temperature increase difference of the steel plate 1 does not occur. A similar temperature gradient TG1 is formed (see FIG. 6 or FIG. 7 below). For example, the points A, B, and C (see FIG. 3 and subsequent figures) that are separated in the energization direction rise uniformly in temperature (FIG. 1, the temperature curves match), and the points A and B When all the points C reach the preheating temperature (PT), the heating is stopped, and the process proceeds to the second step.

第1工程が直接通電加熱の場合、図3に見られるように、長尺な鋼板1の両端を直接通電加熱装置2の電極21,21で挟む。電極21,21は、電源(交流電源)22で結ばれており、前記電極21,21を介して鋼板1へ直接電流を流す。これにより、鋼板1は、図4に見られるように、自身を抵抗体とするジュール熱を発生させ、電極21,21で挟まれた範囲が加熱される。電極21,21で挟まれた部分は、非熱処理領域(非焼き入れ部)として残る。本例が対象とする鋼板1は、前記電流を流す方向=通電方向に直交する断面積が一様でないため、発生するジュール熱が断面積に反比例して多くなる。   When the first step is direct current heating, both ends of the long steel plate 1 are sandwiched between the electrodes 21 and 21 of the direct current heating device 2 as shown in FIG. The electrodes 21 and 21 are connected by a power source (AC power source) 22, and a current flows directly to the steel plate 1 through the electrodes 21 and 21. Thereby, as shown in FIG. 4, the steel sheet 1 generates Joule heat having itself as a resistor, and the range sandwiched between the electrodes 21 and 21 is heated. The portion sandwiched between the electrodes 21 and 21 remains as a non-heat treated region (non-quenched portion). In the steel sheet 1 targeted in this example, the direction in which the current flows = the cross-sectional area orthogonal to the energizing direction is not uniform, so the generated Joule heat increases in inverse proportion to the cross-sectional area.

このため、第1工程が直接通電加熱の場合、断面積の小さな部分のA点が、断面積の小さな部分のC点に比べて高温となり、両者の中間であるB点が中間の温度まで加熱され、断面積の大きなところから小さなところに向けて上る温度勾配TG1が形成される(図4中、温度分布のグラフ参照)。本例は、板幅のみに比例して異なる断面積を有する平面視台形状の鋼板1を加熱することから、温度勾配TG1は直線になるが、仮に断面積が通電方向に増減する不規則な鋼板であれば、温度勾配TG1も増減する曲線となる。   For this reason, when the first step is direct current heating, the point A of the small cross-sectional area is higher than the point C of the small cross-sectional area, and the point B in between is heated to an intermediate temperature. As a result, a temperature gradient TG1 that rises from a large cross-sectional area to a small one is formed (see the temperature distribution graph in FIG. 4). In this example, since the trapezoidal steel plate 1 having a different cross-sectional area in proportion to the plate width is heated, the temperature gradient TG1 is a straight line, but the cross-sectional area is irregularly increased or decreased in the energizing direction. In the case of a steel plate, the temperature gradient TG1 is also a curve that increases and decreases.

第1工程が誘導加熱の場合、図5に見られるように、誘導コイル61を内蔵した誘導加熱装置6へ、搬送ライン63により鋼板1を搬入し、電源62から供給される電流により誘導コイル61が形成する磁界が、鋼板1に通電方向に誘導電流を発生させる。これにより、鋼板1は、自身を抵抗体とするジュール熱を発生させる。本例が対象とする鋼板1は、前記電流を流す方向=通電方向に直交する断面積が一様でないため、直接通電加熱と同様、発生するジュール熱が断面積に反比例して多くなる。   When the first process is induction heating, as shown in FIG. 5, the steel sheet 1 is carried into the induction heating device 6 incorporating the induction coil 61 by the conveyance line 63, and the induction coil 61 is supplied by the current supplied from the power source 62. The magnetic field formed by the magnetic field generates an induced current in the direction of energization of the steel plate 1. Thereby, the steel plate 1 generates Joule heat using itself as a resistor. The steel plate 1 targeted in this example has a non-uniform cross-sectional area perpendicular to the direction in which the current flows = the direction of energization. Therefore, as with direct energization heating, the generated Joule heat increases in inverse proportion to the cross-sectional area.

このため、第1工程が誘導加熱の場合も、断面積の小さな部分のA点が、断面積の小さな部分のC点に比べて高温となり、両者の中間であるB点が中間の温度まで加熱され、断面積の大きなところから小さなところに向けて上る温度勾配TG1が形成される(図5中、温度分布のグラフ参照)。本例は、板幅のみに比例して異なる断面積を有する平面視台形状の鋼板1を加熱することから、温度勾配TG1は直線になるが、仮に断面積が通電方向に増減する不規則な鋼板であれば、温度勾配TG1も増減する曲線となる。   For this reason, even when the first step is induction heating, the point A having a small cross-sectional area is higher than the point C having a small cross-sectional area, and the point B, which is between the two, is heated to an intermediate temperature. Thus, a temperature gradient TG1 that rises from a large cross-sectional area toward a small area is formed (see the temperature distribution graph in FIG. 5). In this example, since the trapezoidal steel plate 1 having a different cross-sectional area in proportion to the plate width is heated, the temperature gradient TG1 is a straight line, but the cross-sectional area is irregularly increased or decreased in the energizing direction. In the case of a steel plate, the temperature gradient TG1 is also a curve that increases and decreases.

第1工程が炉加熱の場合、図6に見られるように、例えば電源31から供給される電流により加熱される電熱ヒータ(図示略)を内蔵した炉加熱装置3に収納した鋼板1を加熱する。加熱源は、ガスヒータであってもよい。炉加熱は、鋼板1を加熱する時間が直接通電加熱や誘導加熱に比べて時間が掛かるが、一度に複数の鋼板1を加熱できる点で優れている(図6中、2枚の鋼板1を加熱)。また、複数の鋼板1は、いずれも全体が一様に加熱されることから、断面積に関係なく、A点、B点及びC点が同じ予備加熱温度(PT)まで加熱される一定の温度勾配TG1が形成される(図6中、温度分布のグラフ参照)。これは、断面積が通電方向に増減する不規則な鋼板でも同じである。   When the first step is furnace heating, as shown in FIG. 6, for example, the steel plate 1 housed in the furnace heating device 3 incorporating an electric heater (not shown) heated by a current supplied from the power source 31 is heated. . The heating source may be a gas heater. Although furnace heating takes time compared with direct current heating or induction heating, the furnace heating is excellent in that a plurality of steel plates 1 can be heated at one time (in FIG. 6, two steel plates 1 are used). heating). Moreover, since all the steel plates 1 are all heated uniformly, a constant temperature at which the points A, B and C are heated to the same preheating temperature (PT) regardless of the cross-sectional area. A gradient TG1 is formed (see the temperature distribution graph in FIG. 6). The same applies to irregular steel sheets whose cross-sectional area increases or decreases in the energizing direction.

第1工程が赤外線加熱の場合、図7に見られるように、電源72が接続された赤外線照射部71を内蔵した赤外線加熱装置7へ、搬送ライン73により鋼板1を搬入し、前記赤外線照射界から鋼板1に向けて赤外線を照射することにより、前記鋼板1を加熱する。赤外線加熱は、鋼板1を加熱する時間が直接通電加熱や誘導加熱に比べて時間が掛かるものの、炉加熱より前記時間が掛からず、鋼板1全体を一様に加熱できる。具体的には、断面積に関係なく、A点、B点及びC点が同じ予備加熱温度(PT)まで加熱される一定の温度勾配TG1が形成される(図7中、温度分布のグラフ参照)。これは、断面積が通電方向に増減する不規則な鋼板でも同じである。   When the first process is infrared heating, as shown in FIG. 7, the steel plate 1 is carried by the transfer line 73 to the infrared heating device 7 including the infrared irradiation unit 71 connected to the power source 72, and the infrared irradiation field The steel plate 1 is heated by irradiating the steel plate 1 with infrared rays. Infrared heating, although the time for heating the steel sheet 1 takes longer than that for direct current heating or induction heating, does not take the time required for furnace heating, and the entire steel sheet 1 can be heated uniformly. Specifically, regardless of the cross-sectional area, a constant temperature gradient TG1 is formed in which the points A, B and C are heated to the same preheating temperature (PT) (see the graph of temperature distribution in FIG. 7). ). The same applies to irregular steel sheets whose cross-sectional area increases or decreases in the energizing direction.

直接通電加熱により第1工程で最高温度が予備加熱温度(PT)まで加熱された鋼板1は、図8に見られるように、設定された第1冷却領域11、第2冷却領域12及び第3冷却領域13それぞれの降温幅を変えて冷却し、第1工程で形成された傾斜する温度勾配TG1が反転する温度勾配TG2を形成する。直接通電加熱(図4)や誘導加熱(図5)により温度勾配TG1が傾斜していると、加熱により生ずる温度差が通電方向で入れ替わるように、前記温度差で逆の傾斜の温度勾配TG2を形成する。これに対し、炉加熱(図6)や赤外線加熱(図7)により温度勾配TG1が一定であると、予め加熱により生ずる温度差を測定しておき、前記温度差で逆の傾斜の温度勾配TG2を形成する。   As shown in FIG. 8, the steel plate 1 heated to the preheating temperature (PT) in the first step by direct current heating has the set first cooling region 11, second cooling region 12, and third temperature. Cooling is performed by changing the temperature drop width of each cooling region 13 to form a temperature gradient TG2 in which the inclined temperature gradient TG1 formed in the first step is reversed. If the temperature gradient TG1 is tilted by direct current heating (Fig. 4) or induction heating (Fig. 5), the temperature gradient TG2 having the opposite gradient with the above temperature difference is changed so that the temperature difference caused by heating changes in the direction of current flow. Form. On the other hand, if the temperature gradient TG1 is constant by furnace heating (FIG. 6) or infrared heating (FIG. 7), the temperature difference caused by the heating is measured in advance, and the temperature gradient TG2 having a reverse slope with the temperature difference is measured. Form.

本例は、図9に見られるように、鋼板1を挟んで対向する第1送風ブロック41,41、第2送風ブロック42,42及び第3送風ブロック43,43から構成される冷却装置4を用いて、第1冷却領域11、第2冷却領域12及び第3冷却領域13それぞれを空冷する。第1送風ブロック41、第2送風ブロック42及び第3送風ブロック43は、それぞれ同量の空気(冷却気体)45を吹き出す送風ノズル44の数を異ならせて、前記空気45を鋼板1に吹き付けたときの降温幅を異なるようにしている。第1送風ブロック41、第2送風ブロック42及び第3送風ブロック43の各送風ノズル44から吹き出す空気45の温度を異ならせて、降温幅に差を設けてもよい。   In this example, as shown in FIG. 9, the cooling device 4 including the first air blowing blocks 41, 41, the second air blowing blocks 42, 42, and the third air blowing blocks 43, 43 facing each other with the steel plate 1 interposed therebetween. The first cooling region 11, the second cooling region 12, and the third cooling region 13 are each air-cooled. The first air blowing block 41, the second air blowing block 42, and the third air blowing block 43 are different in the number of air blowing nozzles 44 for blowing the same amount of air (cooling gas) 45, and the air 45 is blown onto the steel plate 1. The temperature drop width is different. The temperature of the air 45 blown out from each blower nozzle 44 of the first blower block 41, the second blower block 42, and the third blower block 43 may be varied to provide a difference in the temperature drop width.

空気45により鋼板1を空冷すると、前記空気45が周囲に拡散し、第1冷却領域11、第2冷却領域12及び第3冷却領域13を超えて鋼板1を冷却する。また、空気45の比熱が小さいため、空気45が衝突した部分のみが急激に冷却されず、むしろ鋼板1の高い熱伝導率により冷却ムラが緩和される。このため、本例の冷却装置4は、特に降温幅が大きくなる鋼板1が細くなる左半分(図8及び図6中左半分)に設定された第1冷却領域11、第2冷却領域12及び第3冷却領域13のみを集中して空冷しながら、空気45の拡散と鋼板1の熱伝導とを利用して、通電方向に滑らかに傾斜する温度勾配TG2を形成する。   When the steel plate 1 is air-cooled by the air 45, the air 45 diffuses to the surroundings, and the steel plate 1 is cooled beyond the first cooling region 11, the second cooling region 12, and the third cooling region 13. Further, since the specific heat of the air 45 is small, only the portion where the air 45 collides is not rapidly cooled, but rather the cooling unevenness is mitigated by the high thermal conductivity of the steel plate 1. For this reason, the cooling device 4 of the present example has the first cooling region 11, the second cooling region 12 and the left cooling region (left half in FIGS. 8 and 6) in which the steel plate 1 having a particularly large temperature drop width is thinned. While only the third cooling region 13 is concentrated and air-cooled, a temperature gradient TG2 that smoothly inclines in the energization direction is formed using the diffusion of the air 45 and the heat conduction of the steel plate 1.

第2工程において、冷却時間を短縮したい場合、例えば図10に見られるように、鋼板1を挟んで対向する金属製又はセラミックス製の第1冷却ブロック46,46、第2冷却ブロック47,47及び第3冷却ブロック48,48から構成される冷却装置4を用いる。第1冷却ブロック46、第2冷却ブロック47及び第3冷却ブロック48は、それぞれを第1冷却領域11、第2冷却領域12及び第3冷却領域13に押し当て、吸熱することにより鋼板1を急冷する。この場合、第1冷却ブロック46、第2冷却ブロック47及び第3冷却ブロック48が押し当てられた部分から吸熱され、周囲との温度差を緩和する手段が鋼板1の熱伝導しかないため、通電方向に傾斜する温度勾配TG2はがたつくが、続く第3工程の加熱により前記がたつきは吸収され、熱処理に影響を与えない。   In the second step, when it is desired to shorten the cooling time, for example, as shown in FIG. 10, the first cooling blocks 46 and 46 made of metal or ceramics facing each other with the steel plate 1 interposed therebetween, the second cooling blocks 47 and 47, and A cooling device 4 composed of third cooling blocks 48 and 48 is used. The first cooling block 46, the second cooling block 47 and the third cooling block 48 are pressed against the first cooling region 11, the second cooling region 12 and the third cooling region 13, respectively, and absorb the heat to rapidly cool the steel plate 1. To do. In this case, the first cooling block 46, the second cooling block 47, and the third cooling block 48 absorb heat from the pressed portion, and the only means for relaxing the temperature difference from the surroundings is the heat conduction of the steel plate 1. Although the temperature gradient TG2 inclined in the direction fluctuates, the rattling is absorbed by the subsequent heating in the third step and does not affect the heat treatment.

こうして温度勾配TG2(図8参照)が形成された鋼板1は、第3工程において、上記第1工程が直接通電加熱の場合と同様、図11に見られるように、鋼板1の両端を挟む直接通電加熱装置2の電極21,21を介して電源22より鋼板1へ直接電流を流し、電極21,21で挟まれた範囲を、オーステナイト変態完了温度(Ac3)より高い焼き入れ温度(QT)まで加熱する。このとき、断面積の小さいA点は、断面積の大きいB点及びC点より温度上昇が早いが、加熱開始時の温度を前記B点及びC点より低くしているため、A点〜C点はほとんど同じ経過時間で等しく焼き入れ温度(QT)に達する。   In the third step, the steel plate 1 on which the temperature gradient TG2 (see FIG. 8) is formed is directly sandwiched between both ends of the steel plate 1 as shown in FIG. 11, as in the case where the first step is direct current heating. A current is passed directly from the power source 22 to the steel plate 1 via the electrodes 21 and 21 of the electric heating device 2, and the range sandwiched between the electrodes 21 and 21 reaches a quenching temperature (QT) higher than the austenite transformation completion temperature (Ac3). Heat. At this time, the point A having a small cross-sectional area has a higher temperature rise than the points B and C having a large cross-sectional area, but the temperature at the start of heating is lower than the points B and C. The points reach the quenching temperature (QT) equally at almost the same elapsed time.

全体が均一の焼き入れ温度(QT)に達した鋼板1は、設定された所定の焼き入れ時間(tq)だけ前記焼き入れ温度(QT)を保持した後、図12に見られるように、金属製の成形型5が押し付けられることによりプレス成形品14となる(ホットプレス加工)。成形型5は、型形状に合わせて鋼板1を塑性変形させて成形すると同時に、熱伝導により鋼板1から急激に吸熱し、少なくともマルテンサイト変態開始温度(Ms)、好ましくはマルテンサイト変態完了温度(MF)まで降温させることにより、鋼板1を焼き入れする。   The steel plate 1 that has reached a uniform quenching temperature (QT) as a whole, after holding the quenching temperature (QT) for a predetermined quenching time (tq), as shown in FIG. When the formed mold 5 is pressed, a press-formed product 14 is obtained (hot press processing). The forming die 5 is formed by plastically deforming the steel plate 1 in accordance with the shape of the die, and at the same time absorbs abruptly heat from the steel plate 1 by heat conduction, and at least martensite transformation start temperature (Ms), preferably martensite transformation completion temperature ( The steel sheet 1 is quenched by lowering the temperature to MF).

本発明が対象とする鋼板1は、通電方向に直交する断面積が一様でないため、そのまま直接通電加熱して一様の焼き入れが難しい。本発明は、第2工程において温度上昇の差を加味した温度勾配TG2を形成することにより、通電方向に直交する断面積が一様でない鋼板1を一様に焼き入れ温度(QT)にし、硬度にムラの生じない焼き入れを実現する。こうして、本発明を利用すれば、これまで利用が難しかった鋼板1にも直接通電加熱を用いて加熱できるようになるため、直接通電加熱の利点(例えば生産性の向上)を享受できるようになる。   The steel sheet 1 to which the present invention is directed has a non-uniform cross-sectional area perpendicular to the energization direction, so that it is difficult to perform uniform quenching by direct energization heating. In the present invention, by forming a temperature gradient TG2 that takes into account the difference in temperature rise in the second step, the steel sheet 1 having a non-uniform cross-sectional area perpendicular to the energizing direction is uniformly set to the quenching temperature (QT), and the hardness To achieve quenching without unevenness. Thus, if the present invention is used, the steel plate 1 that has been difficult to use can be heated using direct current heating, so that the advantages of direct current heating (for example, improvement in productivity) can be enjoyed. .

本発明の熱処理方法により、通電方向に直交する断面積が一様でない鋼板が一様に焼き入れできるかを確認した。実施例に使用した鋼板は、図13に見られるように、焼き入れに適する(オーステナイト完了温度Ac3=900℃)とされるマンガンボロン鋼(22MnB5)の板材で、長さ280m×幅148mm(短辺)〜幅198mm(長辺)×厚さ1.4mmである。実施例は、炉加熱により全体を一様にオーステナイト変態開始温度(Ac1)未満に加熱した後、空冷により短辺側半分を200℃付近まで冷却し、その後通電装置により交流電流を前記鋼板の長さ方向に通電し、オーステナイト変態完了温度(Ac3)以上に加熱した後、ホットプレス加工のプレス装置を利用して金属ブロックで挟み、全体を一様にマルテンサイト変態完了温度(MF)まで冷却した。   It was confirmed by the heat treatment method of the present invention whether or not a steel sheet having a non-uniform cross-sectional area perpendicular to the energizing direction could be uniformly quenched. As shown in FIG. 13, the steel plate used in the examples is a manganese boron steel (22MnB5) plate material suitable for quenching (austenite completion temperature Ac3 = 900 ° C.), length 280 m × width 148 mm (short). Side) to width 198 mm (long side) × thickness 1.4 mm. In the examples, the whole was uniformly heated to less than the austenite transformation start temperature (Ac1) by furnace heating, then the short side half was cooled to around 200 ° C. by air cooling, and then the alternating current was supplied to the length of the steel sheet by an energizing device. Energized in the vertical direction and heated above the austenite transformation completion temperature (Ac3), then sandwiched between metal blocks using a hot press machine, and the whole was uniformly cooled to the martensite transformation completion temperature (MF) .

具体的には、鋼板を挟む一対の電極を結ぶ通電方向に前記鋼板を二分割して左半分(図13中左下半分)の冷却領域を設定してから、第1工程として、マッフル炉(間接炎式炉)を用いて鋼板全体を一様に600℃まで加熱し、次に第2工程として、工場設置のブローガン(エアガン)から常温(23℃付近)の空気を前記鋼板の冷却領域(左半分)表面にまんべんなく吹き付けて200℃まで冷却し、第3工程として、鋼板の長手方向両端からそれぞれ40mmを電極で挟んだ通電装置により、鋼板に周波数60Hz、950Aの交流電流を直接通電し、7.2秒掛けて全体を930℃まで加熱し、最後にプレス装置を利用して金属ブロックで挟み、600tonのプレス圧力を加えながら鋼板全体を一様に200℃以下に冷却し、全体を焼き入れ(マルテンサイト変態)した。   Specifically, the steel plate is divided into two in the energizing direction connecting a pair of electrodes sandwiching the steel plate, and a left half (lower left half in FIG. 13) cooling region is set. Then, as a first step, a muffle furnace (indirect The entire steel plate is uniformly heated to 600 ° C using a flame furnace, and then, as a second step, air at room temperature (around 23 ° C) is blown from the factory-installed blow gun (air gun) to the cooling area of the steel plate (left Half) Spray the surface evenly to cool it to 200 ° C, and in the third step, an alternating current with a frequency of 60 Hz and 950 A was directly applied to the steel sheet by means of a current-carrying device that sandwiched 40 mm from both ends in the longitudinal direction of the steel sheet. The whole is heated to 930 ° C over a period of time, and finally is sandwiched between metal blocks using a press machine. The entire steel plate is uniformly cooled to 200 ° C or less while applying a pressing pressure of 600 tons, and the whole is quenched. Site transformation).

電極が接面した範囲の長さ方向及び幅方向の中間点(図13中a点及びh点)を結ぶ軸線上の8点(a点〜h点)についてビッカース硬度を測定した結果を、図14に示す。電極が接面した範囲にあるa点及びh点は、熱処理しない鋼板そのもので硬度が175HV(ビッカース硬度)であったのに対し、焼き入れされたb点〜g点は、最低硬度が426HV(b点)、最高硬度が451HV(c点及びd点)と硬度差30HV以内に収まっており、ほぼ一様に焼き入れされていることが分かる。これから、本発明を鋼板の熱処理に利用することにより、通電方向に直交する断面積が一様でない鋼板でも、全体を一様に焼き入れできることが確認できた。   The results of measuring Vickers hardness at eight points (points a to h) on the axis connecting the intermediate points in the length direction and width direction (points a and h in FIG. 13) of the range in which the electrodes are in contact with each other. Shown in 14. The points a and h in the range where the electrodes are in contact with each other were not heat-treated and the hardness was 175 HV (Vickers hardness), whereas the quenched points b to g had a minimum hardness of 426 HV ( b point), the maximum hardness is within 451 HV (c point and d point) and the hardness difference is within 30 HV, and it can be seen that the hardness is almost uniform. From this, it has been confirmed that by utilizing the present invention for the heat treatment of a steel sheet, even the steel sheet having a non-uniform cross-sectional area perpendicular to the energizing direction can be uniformly quenched.

1 鋼板
11 第1冷却領域
12 第2冷却領域
13 第3冷却領域
2 直接通電加熱装置
3 炉加熱装置
4 冷却装置
41 第1送風ブロック
42 第2送風ブロック
43 第3送風ブロック
44 送風ノズル
45 空気
46 第1冷却ブロック
47 第2冷却ブロック
48 第3冷却ブロック
5 成形型
6 誘導加熱装置
7 赤外線加熱装置
Ac1 オーステナイト変態開始温度
PT 予備加熱温度
Ac3 オーステナイト変態完了温度
QT 焼き入れ温度
tq 焼き入れ時間
Ms マルテンサイト変態開始温度
Mf マルテンサイト変態完了温度
TG1 第1工程の温度勾配
TG2 第2工程の温度勾配
1 Steel plate
11 First cooling zone
12 Second cooling zone
13 Third cooling region 2 Direct current heating device 3 Furnace heating device 4 Cooling device
41 First blower block
42 2nd ventilation block
43 3rd ventilation block
44 Blower nozzle
45 Air
46 1st cooling block
47 Second cooling block
48 3rd cooling block 5 Mold 6 Induction heating device 7 Infrared heating device
Ac1 Austenite transformation start temperature
PT preheating temperature
Ac3 Austenite transformation completion temperature
QT quenching temperature
tq Quenching time
Ms Martensite transformation start temperature
Mf Martensite transformation completion temperature
TG1 First step temperature gradient
TG2 Temperature gradient of the second process

Claims (10)

通電方向に直交する断面積が一様でない鋼板を直接通電加熱により加熱する鋼板の加熱方法であって、
鋼板を挟む一対の電極を結ぶ通電方向に前記鋼板を分割して複数の冷却領域を設定し、
第1工程は、鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱し、
第2工程は、冷却領域それぞれの通電方向に直交する断面積に反比例する降温幅で冷却して、前記断面積の大きなところから小さなところに向けて下る温度勾配を形成し、
第3工程は、前記通電方向で鋼板全体に通電してオーステナイト変態完了温度(Ac3)以上に鋼板全体を均一に加熱する鋼板の加熱方法。
A heating method for a steel sheet in which a steel sheet having a non-uniform cross-sectional area perpendicular to the energization direction is directly heated by energization heating,
Dividing the steel plate in the energizing direction connecting a pair of electrodes sandwiching the steel plate, and setting a plurality of cooling regions,
In the first step, the entire steel sheet is heated below the austenite transformation start temperature (Ac1)
In the second step, cooling is performed with a temperature drop width that is inversely proportional to the cross-sectional area orthogonal to the energization direction of each cooling region to form a temperature gradient that decreases from a large area of the cross-sectional area toward a small area,
The third step is a method for heating a steel sheet in which the entire steel sheet is energized in the direction of energization to uniformly heat the entire steel sheet to an austenite transformation completion temperature (Ac3) or higher.
第1工程は、直接通電加熱により鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱する請求項1記載の鋼板の加熱方法。 The method for heating a steel sheet according to claim 1, wherein the first step heats the entire steel sheet to less than the austenite transformation start temperature (Ac1) by direct current heating. 第1工程は、炉加熱により鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱する請求項1記載の鋼板の加熱方法。 The method for heating a steel sheet according to claim 1, wherein the first step heats the entire steel sheet to less than the austenite transformation start temperature (Ac1) by furnace heating. 第1工程は、赤外線加熱により鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱する請求項1記載の鋼板の加熱方法。 The method of heating a steel sheet according to claim 1, wherein the first step heats the entire steel sheet to less than the austenite transformation start temperature (Ac1) by infrared heating. 第1工程は、誘導加熱により鋼板全体をオーステナイト変態開始温度(Ac1)未満に加熱する請求項1記載の鋼板の加熱方法。 The method for heating a steel sheet according to claim 1, wherein the first step heats the entire steel sheet to less than the austenite transformation start temperature (Ac1) by induction heating. 第2工程は、冷却領域それぞれに吹き付ける冷却気体の温度を異ならせて、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成する請求項1〜5いずれか記載の鋼板の加熱方法。 The second step forms a temperature gradient that decreases from a large cross-sectional area perpendicular to the energizing direction to a small one by varying the temperature of the cooling gas blown to each cooling region. Heating method for steel sheet. 第2工程は、冷却領域それぞれに吹き付ける冷却気体の風量を異ならせて、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成する請求項1〜5いずれか記載の鋼板の加熱方法。 6. The second step according to any one of claims 1 to 5, wherein the second step forms a temperature gradient that decreases from a large cross-sectional area perpendicular to the energizing direction to a small one by varying the amount of cooling gas blown to each cooling region. Heating method for steel sheet. 第2工程は、冷却領域それぞれに押し当てる冷却ブロックの温度を異ならせて、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成する請求項1〜5いずれか記載の鋼板の加熱方法。 6. The second step forms a temperature gradient that decreases from a large cross-sectional area perpendicular to the energizing direction to a small one by varying the temperature of the cooling block pressed against each cooling region. Method of heating steel sheet. 第2工程は、冷却領域それぞれに押し当てる冷却ブロックの接触時間を異ならせて、通電方向に直交する断面積の大きなところから小さなところに向けて下る温度勾配を形成する請求項1〜5いずれか記載の鋼板の加熱方法。 The second step forms a temperature gradient that decreases from a large cross-sectional area perpendicular to the energizing direction to a small one by changing the contact time of the cooling block pressed against each cooling region. The heating method of the steel plate as described. 第3工程は、鋼板全体に押し付けた成形型により鋼板全体を製品形状に成形すると共に、成形型への熱伝導により鋼板全体を急冷する請求項1〜9いずれか記載の鋼板の加熱方法。 The third step is a method for heating a steel plate according to any one of claims 1 to 9, wherein the whole steel plate is formed into a product shape by a forming die pressed against the whole steel plate, and the whole steel plate is rapidly cooled by heat conduction to the forming die.
JP2013218208A 2013-10-21 2013-10-21 Steel plate heating method Active JP6173873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218208A JP6173873B2 (en) 2013-10-21 2013-10-21 Steel plate heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218208A JP6173873B2 (en) 2013-10-21 2013-10-21 Steel plate heating method

Publications (2)

Publication Number Publication Date
JP2015080786A JP2015080786A (en) 2015-04-27
JP6173873B2 true JP6173873B2 (en) 2017-08-02

Family

ID=53011686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218208A Active JP6173873B2 (en) 2013-10-21 2013-10-21 Steel plate heating method

Country Status (1)

Country Link
JP (1) JP6173873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142783A1 (en) * 2018-01-16 2019-07-25 Neturen Co., Ltd. Method for heating steel plate and method for manufacturing hot-pressed product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121699A1 (en) 2016-11-11 2018-05-17 Schwartz Gmbh Temperature control station for the partial heat treatment of a metallic component
CN111638238B (en) * 2020-05-15 2022-11-18 南京钢铁股份有限公司 Method for measuring reverse transformation austenite by adopting expansion method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443153B2 (en) * 2009-12-25 2014-03-19 トヨタ自動車株式会社 Heating apparatus and heating method
JP5405325B2 (en) * 2010-01-04 2014-02-05 新日鐵住金株式会社 Differential gear and manufacturing method thereof
JP5794124B2 (en) * 2011-11-24 2015-10-14 トヨタ自動車株式会社 Electric heating method and electric heating device
JP5838823B2 (en) * 2012-01-16 2016-01-06 マツダ株式会社 Electric heating method, electric heating device and hot press molding method
WO2013137308A1 (en) * 2012-03-13 2013-09-19 株式会社アステア Method for strengthening steel plate member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142783A1 (en) * 2018-01-16 2019-07-25 Neturen Co., Ltd. Method for heating steel plate and method for manufacturing hot-pressed product
CN111601671A (en) * 2018-01-16 2020-08-28 高周波热錬株式会社 Method for heating steel sheet and method for producing hot-pressed product

Also Published As

Publication number Publication date
JP2015080786A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP7141828B2 (en) Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
US20190030584A1 (en) Heating method, heating apparatus, and hot press molding method for plate workpiece
JP6450608B2 (en) Heating method, heating apparatus, and method for producing press-molded product
JP6463911B2 (en) Heating method, heating apparatus, and method for producing press-molded product
KR20140029438A (en) Method for heating a shaped component for a subsequent press hardening operation and continuous furnace for regionally heating a shaped component preheated to a predetermined temperature to a higher temperature
JP2002248525A (en) Method for hot pressing metal plate and apparatus therefor
JP6173873B2 (en) Steel plate heating method
EP1359230B1 (en) Production method for steel plate and equipment therefor
US20160047010A1 (en) Hot-forming apparatus and method for producing press-hardened shaped components from steel sheet
JP2019050137A (en) Resistive heating device and resistive heating method, heating device and heating method, and hot press forming method
JP2016097424A (en) Heating method, heating device, and manufacturing method of press formed article
JP6229223B2 (en) Method for manufacturing thin three-dimensional body
US20150053670A1 (en) Temperature-control station with heating by induction
JP2021038462A (en) Production method of whole-steel card clothing
KR20110040021A (en) Local heat treatment system of the automatic borrowing body parts which uses diode laser and the heat treatment method
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP4066603B2 (en) Heat treatment method for steel
JP3820974B2 (en) Heat treatment method and heat treatment apparatus for steel
KR20160076365A (en) Hot Press Formed Part Having Strength-gradient and Manufacturing Method Thereof
JP2015094023A (en) Heating device
JP6692431B2 (en) Steel plate heat treatment apparatus and method
JP2019122983A (en) Heating method of hot press steel plate and production method of hot press product
JP2019122984A (en) Heating method of hot press steel plate and production method of hot press product
JPH01166815A (en) Control cooling method for rolled stock
KR20100087473A (en) Method and equipment of manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6173873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250