JP6167985B2 - Spectroscopic sensor - Google Patents

Spectroscopic sensor Download PDF

Info

Publication number
JP6167985B2
JP6167985B2 JP2014097278A JP2014097278A JP6167985B2 JP 6167985 B2 JP6167985 B2 JP 6167985B2 JP 2014097278 A JP2014097278 A JP 2014097278A JP 2014097278 A JP2014097278 A JP 2014097278A JP 6167985 B2 JP6167985 B2 JP 6167985B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
shape
photodiode array
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014097278A
Other languages
Japanese (ja)
Other versions
JP2015215196A (en
Inventor
正章 北脇
正章 北脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014097278A priority Critical patent/JP6167985B2/en
Publication of JP2015215196A publication Critical patent/JP2015215196A/en
Application granted granted Critical
Publication of JP6167985B2 publication Critical patent/JP6167985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、測定対象光を光ファイバにより筐体内に導き、その筐体内に配置した回折格子とフォトダイオードアレイによって測定対象光の波長スペクトルを測定するための分光センサに関する。   The present invention relates to a spectroscopic sensor for guiding light to be measured into a housing by an optical fiber and measuring a wavelength spectrum of the light to be measured by a diffraction grating and a photodiode array arranged in the housing.

分光法に基づく各種分析装置や、カラーセンサ、果実糖度計等においては、一般に、試料に測定光を照射し、その透過光もしくは反射光を分光して波長ごとの光強度を計測することにより、試料による光のスペクトル情報を得て、試料に含まれる成分や色情報の特定等を行っている。   In various analyzers based on spectroscopic methods, color sensors, fruit saccharimeters, etc., in general, by irradiating a sample with measurement light, and spectroscopically measuring the transmitted light or reflected light, and measuring the light intensity for each wavelength, Spectral information of light from the sample is obtained, and components and color information included in the sample are specified.

このような分光法を用いた各種装置における測定光学系と光導入用光学系とをユニット化し、汎用的に用いることのできる製品として、分光センサ、あるいはポリクロメータ等と称されるものが知られている(例えば非特許文献1、特許文献1参照)。   As a product that can be used universally by unitizing the measurement optical system and the light introduction optical system in various apparatuses using such a spectroscopic method, what is called a spectroscopic sensor or a polychromator is known. (For example, see Non-Patent Document 1 and Patent Document 1).

分光センサの基本的な構造は、回折格子とフォトダイオードアレイとを筐体内に配置するとともに、測定対象となる光を光ファイバによってその筐体内に導き、入口スリットを介して回折格子に照射することによって分光し、分光後の光をフォトダイオードアレイで受光して電気信号に変換するものであり、これにより測定対象光の波長(エネルギ)スペクトルを表す信号が得られる。   The basic structure of a spectroscopic sensor is that a diffraction grating and a photodiode array are arranged in a casing, and light to be measured is guided into the casing by an optical fiber and irradiated to the diffraction grating through an entrance slit. The light after the spectrum is received by the photodiode array and converted into an electrical signal, whereby a signal representing the wavelength (energy) spectrum of the light to be measured is obtained.

測定対象光を筐体に導く光ファイバの先端は、SMAやFCコネクタで筐体に固定する構造が多用されており、その光ファイバのコネクタ前面の直近に、入口スリットとして長方形スリットを配置し、そのスリットを通過した光のみが回折格子に照射されるようになっている。なお、入口スリットのスリット形状は、上記した長方形の他、正方形、円形、菱形などが一般的に用いられ、光ファイバのNA(開口数)や回折格子の形状により適宜に使い分けされている。   A structure in which the tip of the optical fiber that guides the light to be measured to the housing is fixed to the housing with an SMA or FC connector, and a rectangular slit is arranged as an entrance slit immediately in front of the optical fiber connector, Only light that has passed through the slit is applied to the diffraction grating. The slit shape of the entrance slit is generally a square, a circle, a rhombus, or the like in addition to the above-described rectangle, and is appropriately used depending on the NA (numerical aperture) of the optical fiber and the shape of the diffraction grating.

特開2003−139611号公報JP 2003-139611 A

島津製作所ホームページ>製品情報>光学デバイス/レーザ機器>分光センサ[online]平成25年2月15日検索 インターネット<URL;http://www.shimadzu.co.jp/opt/products/optsens/index.html>Shimadzu Home Page> Product Information> Optical Devices / Laser Equipment> Spectroscopic Sensors [online] Search February 15, 2013 Internet <URL; http://www.shimadzu.co.jp/opt/products/optsens/index. html>

ところで、上記したような分光センサでは、通常、外形が矩形の回折格子を有するものにあっては、矩形のスリット構造を持たせるものが多い。しかしながら、回折格子の表面の形状精度は一様ではなく、特に凹面回折格子では四隅付近の形状精度は中央に比して低く、この近辺に光が照射されると、光学的分解能を悪化させたり、迷光と呼ばれるノイズレベルを上げる原因となる。   By the way, most of the above-described spectroscopic sensors generally have a rectangular slit structure if the outer shape has a rectangular diffraction grating. However, the shape accuracy of the surface of the diffraction grating is not uniform, especially in the case of a concave diffraction grating, the shape accuracy near the four corners is lower than the center. Causes a noise level called stray light.

また、光ファイバの先端を筐体に固定するために用いられるSMAやFCコネクタは、メス側のコネクタが筐体に取り付けられ、そのメス側のコネクタに対し、光ファイバ端に取り付けられたオス側のコネクタを接続するのであるが、SMAコネクタの芯ズレにより回折格子の中心に光が当たらず、このことも分解能の低下やノイズレベルの上昇の原因となっている。   In addition, the SMA and FC connector used to fix the tip of the optical fiber to the housing has a female connector attached to the housing, and the male side attached to the optical fiber end with respect to the female connector. However, due to the misalignment of the SMA connector, light does not strike the center of the diffraction grating, which also causes a decrease in resolution and an increase in noise level.

本発明はこのような実情に鑑みてなされたもので、測定対象光を光ファイバで筐体内の回折格子およびフォトダイオードアレイに導く分光センサにおける上記した問題を一挙に解消し、従来の光センサに比して光学的分解能を向上させ、かつ、ノイズレベルを低減させることのできる分光センサの提供をその課題としている。   The present invention has been made in view of such a situation, and solves the above-described problems in a spectroscopic sensor that guides light to be measured to a diffraction grating and a photodiode array in a housing by using an optical fiber. Compared to this, it is an object of the present invention to provide a spectroscopic sensor capable of improving the optical resolution and reducing the noise level.

上記の課題を解決するため、本発明の分光センサは、測定対象光を光ファイバを通じて筐体内の回折格子に導き、その回折格子により回折した光をフォトダイオードアレイで受光することによって、測定対象光の波長スペクトル情報を得るとともに、上記回折格子として、凹面回折格子を搭載した分光センサにおいて、上記光ファイバがバンドルファイバであり、かつ、そのバンドルファイバの出射側の端面形状が菱形であり、その一方の対角線が上記回折格子の溝の伸びる方向と一致するように当該出射側の端部が上記筐体に固定されていることによって特徴づけられる(請求項1)。   In order to solve the above-described problems, the spectroscopic sensor of the present invention guides the measurement target light to the diffraction grating in the housing through the optical fiber, and receives the light diffracted by the diffraction grating by the photodiode array. In the spectroscopic sensor having a concave diffraction grating as the diffraction grating, the optical fiber is a bundle fiber, and the end face shape on the emission side of the bundle fiber is a rhombus, Is characterized in that the end on the emission side is fixed to the casing so that the diagonal line of the line coincides with the direction in which the groove of the diffraction grating extends.

ここで、本発明においては、上記回折格子の外形形状が矩形であるものを用いること(請求項2)ができる。   Here, in the present invention, the diffraction grating having a rectangular outer shape can be used (claim 2).

また、本発明においては、上記フォトダイオードアレイとして、その各素子の受光面が、素子の配列方向への寸法よりもそれに直交する方向への寸法が長いものを用いるとともに、上記バンドルファイバの出射側の端面形状の菱形を、上記回折格子の溝の伸びる方向に沿った一方の対角線の長さが他方の対角線の長さよりも長い形状とすること(請求項3)が望ましい。   Further, in the present invention, as the photodiode array, the light receiving surface of each element has a longer dimension in a direction perpendicular to the dimension in the arrangement direction of the elements, and the emission side of the bundle fiber It is desirable that the end face shape rhombus is shaped so that the length of one diagonal along the direction in which the groove of the diffraction grating extends is longer than the length of the other diagonal.

本発明は、測定対象光を筐体内の回折格子へと導く光ファイバをバンドルファイバとし、そのバンドル端面の形状によってスリットとしての機能を持たせ、そのスリット形状を菱形とすることで、前記した従来の問題点を解消しようとするものである。   In the present invention, the optical fiber that guides the measurement target light to the diffraction grating in the housing is a bundle fiber, the shape of the end face of the bundle has a function as a slit, and the slit shape is a rhombus. It is intended to solve the problem.

すなわち、凹面回折格子は、平面回折格子に比して他に凹面鏡などの光学素子を必要とせず、分光センサのコンパクト化と構造の簡素化に有用である反面、前記したように四隅付近の形状精度が低くなる傾向にあるが、その凹面回折格子への測定対象光の照射領域を、バンドルファイバの端面形状によって菱形に制限する。これにより、凹面回折格子において比較的形状精度の低い四隅付近への光の照射が抑制される。また、凹面回折格子への光の照射領域の制限をバンドルファイバの端面形状により行い、実質的に光ファイバとスリットとを一体化しているので、光ファイバの偏心に伴うスリットとの位置ズレも生じることがない。以上の結果、光学的分解能の向上とノイズレベルの低減を実現できる。   In other words, the concave diffraction grating does not require any other optical element such as a concave mirror as compared with the planar diffraction grating, and is useful for making the spectroscopic sensor compact and simplifying the structure, but as described above, the shape near the four corners. Although the accuracy tends to be low, the irradiation region of the measurement target light on the concave diffraction grating is limited to a rhombus according to the end face shape of the bundle fiber. Thereby, irradiation of light near the four corners having relatively low shape accuracy in the concave diffraction grating is suppressed. In addition, the light irradiation area to the concave diffraction grating is limited by the shape of the end face of the bundle fiber, and the optical fiber and the slit are substantially integrated. There is nothing. As a result, the optical resolution can be improved and the noise level can be reduced.

ここで、本発明においては、凹面回折格子の外形形状については特に限定されるものではないが、矩形を基本とする外形形状の回折格子を用いることにより、筐体への組み付け時に、光の分散方向を決定づける溝の配列方向と、フォトダイオードアレイの素子の配列方向とを一致させることが容易となるという利点がある。請求項2に係る発明は、このような組み付けに際しての利点を奏しながら、その四隅付近への光の照射を抑制して光学的分解能の向上とノイズの低減を実現することができる。   Here, in the present invention, the outer shape of the concave diffraction grating is not particularly limited. However, by using a diffraction grating having an outer shape based on a rectangle, it is possible to disperse light during assembly to the housing. There is an advantage that it is easy to match the arrangement direction of the grooves that determine the direction with the arrangement direction of the elements of the photodiode array. The invention according to claim 2 can realize the improvement in optical resolution and the reduction of noise by suppressing the light irradiation to the vicinity of the four corners while exhibiting the advantages in the assembling.

また、フォトダイオードアレイの各素子の受光面形状は、光の分散方向に直交する方向に長くすることによって、入射光量の増大を可能とするように考慮され、回折格子により分散される光は、その素子の長手方向全域を照射するような広がり(厚み)を有することが望ましい。請求項3に係る発明はこの点を考慮したものであり、バンドルファイバの端面により形成される菱形は、回折格子の溝の伸びる方向、つまり光の分散方向に直交する方向の対角線を他方の対角線よりも長くして、これにより、フォトダイオードアレイの素子の長手方向全域に分散後の光が照射され、フォトダイオードアレイの各素子の受光面形状と相俟って各素子の受光量を十分に大きくすることができる。   In addition, the light receiving surface shape of each element of the photodiode array is considered so as to increase the amount of incident light by lengthening in the direction orthogonal to the light dispersion direction, and the light dispersed by the diffraction grating is It is desirable to have a spread (thickness) that irradiates the entire longitudinal direction of the element. The invention according to claim 3 takes this point into consideration, and the rhombus formed by the end face of the bundle fiber has a diagonal line extending in the direction of the grooves of the diffraction grating, that is, a direction perpendicular to the light dispersion direction, as the other diagonal line. Thus, the dispersed light is irradiated to the entire longitudinal direction of the elements of the photodiode array, and the amount of light received by each element is sufficiently combined with the shape of the light receiving surface of each element of the photodiode array. Can be bigger.

本発明によれば、光学系をコンパクトで簡素なものとすることのできる凹面回折格子を用いて、その凹面回折格子に対して測定対象光をバンドルファイバで導くとともに、そのバンドルファイバの端面形状を、一方の対角線が回折格子の溝の伸びる方向に沿った菱形とし、バンドルファイバとスリットとを実質的に一体化した構造としているので、光ファイバの芯ズレによる組み付け精度の悪化の虞がなく、凹面回折格子の四隅部分を除く領域に確実に測定対象光が照射される結果、高い分解能で低いノイズレベルのもとに測定対象光の波長(エネルギ)スペクトルを得ることができる。   According to the present invention, using a concave diffraction grating that can make the optical system compact and simple, the measurement target light is guided to the concave diffraction grating by the bundle fiber, and the end face shape of the bundle fiber is changed. The one diagonal is a rhombus along the direction in which the grooves of the diffraction grating extend, and the bundle fiber and slit are substantially integrated, so there is no risk of deterioration in assembly accuracy due to misalignment of the optical fiber, As a result of reliably irradiating the measurement target light to the region excluding the four corners of the concave diffraction grating, a wavelength (energy) spectrum of the measurement target light can be obtained with high resolution and low noise level.

本発明の実施形態の説明図であって、(a)は模式的構成図、(b)はバンドルファイバ出射側の端面形状を示すB矢視拡大図を示す。It is explanatory drawing of embodiment of this invention, Comprising: (a) is a typical block diagram, (b) shows the B arrow enlarged view which shows the end surface shape by the side of bundle fiber. 本発明の実施形態と、比較例としてスリット形状が矩形時の、特定波長の回折光のフォトダイオードアレイ上での光量分布のシミュレーション結果を示すグラフであって、(a)は比較例の結果、(b)は本発明の実施形態での結果を示す。The embodiment of the present invention and a graph showing a simulation result of the light amount distribution on the photodiode array of diffracted light of a specific wavelength when the slit shape is rectangular as a comparative example, (a) is the result of the comparative example, (B) shows the result in the embodiment of the present invention. 本発明の実施形態と、比較例としてスリット形状が矩形時の、フォトダイオードアレイ上での特定の波長の光の理論上の微小領域に入射した光の波長分布のシミュレーション結果を示すグラフであって、(a)は比較例の結果、(b)は本発明の実施形態での結果を示す。It is a graph which shows the simulation result of the wavelength distribution of the light which injected into the theoretical micro area | region of the light of the specific wavelength on the photodiode array, when the slit shape is a rectangle as an embodiment of the present invention, and a comparative example. (A) is a result of a comparative example, (b) shows a result in an embodiment of the present invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。
まず、図1(a)に実施形態の模式的構成図を示し、同図(b)にはそのバンドルファイバの出射側の端面形状をB矢視拡大図で示す。図1(a)に示す通り、筐体1内には回折格子2とフォトダイオードアレイ3が配置されており、その筐体1内にバンドルファイバ4を通じて測定対象光が導かれ、回折格子2に照射される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1A shows a schematic configuration diagram of the embodiment, and FIG. 1B shows an end face shape on the emission side of the bundle fiber in an enlarged view as viewed from the arrow B. As shown in FIG. 1 (a), a diffraction grating 2 and a photodiode array 3 are arranged in the housing 1, and the measurement target light is guided into the housing 1 through the bundle fiber 4. Irradiated.

回折格子2は、球状の凹面に互いに平行な多数の溝を形成した凹面回折格子であり、各溝は図1(a)において紙面に直交する方向に形成されており、したがってこの回折格子2に光が照射されることにより、その光は紙面に平行な方向に波長分散された回折光となる。この例においては、回折格子2の外形形状は矩形である。   The diffraction grating 2 is a concave diffraction grating in which a large number of grooves parallel to each other are formed on a spherical concave surface, and each groove is formed in a direction perpendicular to the paper surface in FIG. When light is irradiated, the light becomes diffracted light wavelength-dispersed in a direction parallel to the paper surface. In this example, the outer shape of the diffraction grating 2 is a rectangle.

フォトダイオードアレイ3の各素子の配列方向は回折格子2による波長の分散方向と同方向であり、その各素子の受光面は、素子の配列方向に直交する方向の寸法が素子の配列方向の寸法よりも長い長方形である。   The arrangement direction of each element of the photodiode array 3 is the same as the wavelength dispersion direction by the diffraction grating 2, and the light receiving surface of each element has a dimension in a direction perpendicular to the arrangement direction of the elements. Is a longer rectangle.

バンドルファイバ4の出射側のバンドル端面4aは端末金具5によって束ねられており、この端末金具5は例えばその外周に形成されたフランジ5aにおいて筐体1にねじ(図示略)によって固定されている。このバンドル端面4aの形状は図1(b)に示すように菱形とされている。この菱形は、回折格子2の溝の伸びる方向に一方の対角線が沿う姿勢となるように、端末金具5が筐体1に対して固定される。このバンドル端面4aは直接的に回折格子2に所要の角度で対向し、伝送される測定対象光の回折格子2への照射領域を制限するスリットとしての機能を有し、実質的に光ファイバとスリットとを一体化したものと言える。そして、この菱形は、回折格子2の溝の伸びる方向に沿った上記の対角線が、他方の対角線よりも長く形成されている。   The bundle end surface 4a on the emission side of the bundle fiber 4 is bundled by a terminal fitting 5, and this terminal fitting 5 is fixed to the housing 1 by a screw (not shown) at a flange 5a formed on the outer periphery thereof, for example. The shape of the bundle end face 4a is a rhombus as shown in FIG. In the rhombus, the terminal fitting 5 is fixed to the housing 1 so that one diagonal line is along the direction in which the groove of the diffraction grating 2 extends. The bundle end face 4a directly faces the diffraction grating 2 at a required angle, and has a function as a slit that restricts an irradiation area of the transmitted measurement target light to the diffraction grating 2, and substantially includes an optical fiber. It can be said that the slit is integrated. The rhombus is formed so that the diagonal line along the direction in which the groove of the diffraction grating 2 extends is longer than the other diagonal line.

以上の実施の形態において、測定対象光は、例えば光源からの光を試料に照射して得られる透過光であって、その透過光は、集光レンズ等でバンドルファイバ4の入射側端面4bに集光されることによりバンドルファイバ4内に取り込まれる。   In the above embodiment, the measurement target light is transmitted light obtained by irradiating the sample with light from a light source, for example, and the transmitted light is applied to the incident side end surface 4b of the bundle fiber 4 by a condenser lens or the like. The light is collected and taken into the bundle fiber 4.

バンドルファイバ4により筐体1内に導かれた測定対象光は、矩形の回折格子2の表面のうち、出射側のバンドル端面4aの形状に応じた菱形領域に照射され、波長ごとに分散されてフォトダイオードアレイ3の各素子に受光されて、波長スペクトルを表す信号に変換される。この測定動作において、矩形の回折格子2への測定対象光の照射領域は、菱形、つまり比較的形状精度の低い四隅付近を除いた領域であるため、得られる回折光中での波長の空間分解能が高く、かつ、ノイズレベルも低くなる。また、バンドル端面4aの形状を回折格子2の溝の伸びる方向と同方向に長い菱形とし、フォトダイオードアレイ3の各素子の受光面を同方向に長い形状としているため、各素子には十分な光量の光が入射し、高分解能かつ低ノイズでありながら感度を低下させることもない。   The measurement target light guided into the housing 1 by the bundle fiber 4 is irradiated to a rhombus region corresponding to the shape of the bundle end surface 4a on the emission side in the surface of the rectangular diffraction grating 2, and is dispersed for each wavelength. The light is received by each element of the photodiode array 3 and converted into a signal representing a wavelength spectrum. In this measurement operation, the irradiation area of the measurement target light onto the rectangular diffraction grating 2 is an area excluding the rhombus, that is, the area near the four corners with relatively low shape accuracy, and thus the spatial resolution of the wavelength in the obtained diffracted light Is high and the noise level is low. Further, since the shape of the bundle end face 4a is a rhombus that is long in the same direction as the groove extending in the diffraction grating 2, and the light receiving surface of each element of the photodiode array 3 is long in the same direction, it is sufficient for each element. A quantity of light is incident, and the sensitivity is not lowered while being high resolution and low noise.

図2、図3に本発明の菱形のバンドル端面を用いた場合と、比較例として、バンドルファイバを用いるがそのバンドル端面を回折格子の溝方向に沿った細長い矩形とした場合のシミュレーション結果を示す。これらの各図において(a)は比較例、(b)に本発明の実施の形態の結果を示している。   FIGS. 2 and 3 show simulation results when the rhombus bundle end surface of the present invention is used and when a bundle fiber is used as a comparative example, but the bundle end surface is an elongated rectangle along the groove direction of the diffraction grating. . In each of these drawings, (a) shows a comparative example, and (b) shows the result of the embodiment of the present invention.

図2は、回折格子2による回折光のうち、波長400nmの光のフォトダイオードアレイ3の受光面上での空間濃度(光量)分布のシミュレーション結果を表すグラフであり、図3は、回折格子2による回折光のうち、400nmの波長の光が入射すべきフォトダイオードアレイ3の受光面上での理論上の微小領域に入射した光の波長分布を表すグラフである。   FIG. 2 is a graph showing a simulation result of a spatial concentration (light quantity) distribution on the light receiving surface of the photodiode array 3 of light having a wavelength of 400 nm out of diffracted light by the diffraction grating 2, and FIG. 6 is a graph showing the wavelength distribution of light incident on a theoretical minute region on the light receiving surface of the photodiode array 3 where light having a wavelength of 400 nm is to be incident.

これらの図から明らかなように、バンドル端面の形状を菱形にすることによって、矩形の場合に比して回折格子2による回折光の波長ごとの分解能が向上することが確かめられた。これは、回折格子2上で比較的形状精度の低い四隅部分への測定対象光の入射を確実に抑制することができる結果であると推定できる。   As is clear from these figures, it was confirmed that by making the shape of the end face of the bundle a rhombus, the resolution for each wavelength of the diffracted light by the diffraction grating 2 is improved as compared with the rectangular shape. It can be estimated that this is a result that can reliably suppress the incidence of the measurement target light on the four corner portions having relatively low shape accuracy on the diffraction grating 2.

ここで、以上の実施の形態においては、回折格子2として外形形状が矩形のものを用いた例を示したが、このような矩形の回折格子2を使用すれば、溝の配列方向を正しく組み付けるための作業が容易化されて好ましい。しかしながら本発明は、この回折格子の外形形状については特に限定されるものではなく、例えば矩形を基本としてその四隅部分を切欠いた概略八角形のものなどを等しく用いることができる。さらに、回折格子2として球状の凹面に互いに平行な多数の溝を形成した凹面回折格子を用いた例を示したが、本発明においては、溝が形成される凹面は球面に限定されるものではなく、非球面であってもよい。   Here, in the above embodiment, an example in which the rectangular outer shape is used as the diffraction grating 2 has been shown. However, if such a rectangular diffraction grating 2 is used, the arrangement direction of the grooves is correctly assembled. This is preferable because the operation for this is facilitated. However, in the present invention, the outer shape of the diffraction grating is not particularly limited, and for example, a substantially octagonal shape having a rectangular shape with four corners cut out can be equally used. Furthermore, although the example using the concave diffraction grating which formed many groove | channels mutually parallel on the spherical concave surface as the diffraction grating 2 was shown, in this invention, the concave surface where a groove | channel is formed is not limited to a spherical surface. It may be an aspherical surface.

1 筐体
2 回折格子
3 フォトダイオードアレイ
4 バンドルファイバ
4a 出射側のバンドル端面
4b 入射側のバンドル端面
5 端末金具
5a フランジ
DESCRIPTION OF SYMBOLS 1 Case 2 Diffraction grating 3 Photodiode array 4 Bundle fiber 4a Outgoing bundle end face 4b Incident side bundle end face 5 End fitting 5a Flange

Claims (3)

測定対象光を光ファイバを通じて筐体内の回折格子に導き、その回折格子により回折した光をフォトダイオードアレイで受光することによって、測定対象光の波長スペクトル情報を得るとともに、上記回折格子として、凹面回折格子を搭載した分光センサにおいて、
上記光ファイバがバンドルファイバであり、かつ、そのバンドルファイバの出射側の端面形状が菱形であり、その一方の対角線が上記回折格子の溝の伸びる方向と一致するように当該出射側の端部が上記筐体に固定されていることを特徴とする分光センサ。
The measurement target light is guided to the diffraction grating in the housing through the optical fiber, and the light diffracted by the diffraction grating is received by the photodiode array, so that the wavelength spectrum information of the measurement target light is obtained and the concave diffraction is used as the diffraction grating. In a spectroscopic sensor equipped with a grating,
The optical fiber is a bundle fiber, and the shape of the end face on the exit side of the bundle fiber is rhombus, and the end on the exit side is aligned so that one of the diagonals coincides with the direction in which the groove of the diffraction grating extends. A spectral sensor fixed to the housing.
上記回折格子の外形形状が矩形であることを特徴とする請求項1に記載の分光センサ。   The spectroscopic sensor according to claim 1, wherein an outer shape of the diffraction grating is rectangular. 上記フォトダイオードアレイの各素子の受光面は、素子の配列方向への寸法よりもそれに直交する方向への寸法が長く、上記バンドルファイバの出射側の端面形状の菱形は、上記回折格子の溝の伸びる方向に沿った一方の対角線の長さが他方の対角線の長さよりも長いことを特徴とする請求項1又は2に記載の分光センサ。   The light receiving surface of each element of the photodiode array has a dimension in a direction perpendicular to the dimension in the arrangement direction of the elements, and the rhombus of the end face shape on the emission side of the bundle fiber is a groove of the diffraction grating. 3. The spectroscopic sensor according to claim 1, wherein the length of one diagonal along the extending direction is longer than the length of the other diagonal.
JP2014097278A 2014-05-09 2014-05-09 Spectroscopic sensor Expired - Fee Related JP6167985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097278A JP6167985B2 (en) 2014-05-09 2014-05-09 Spectroscopic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097278A JP6167985B2 (en) 2014-05-09 2014-05-09 Spectroscopic sensor

Publications (2)

Publication Number Publication Date
JP2015215196A JP2015215196A (en) 2015-12-03
JP6167985B2 true JP6167985B2 (en) 2017-07-26

Family

ID=54752219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097278A Expired - Fee Related JP6167985B2 (en) 2014-05-09 2014-05-09 Spectroscopic sensor

Country Status (1)

Country Link
JP (1) JP6167985B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885631B (en) * 2017-02-17 2018-11-30 天津大学 A kind of spectral method of detection based on digital projection
US11692931B2 (en) * 2019-04-19 2023-07-04 Fujikin Incorporated Concentration measurement device
CN110736541A (en) * 2019-09-19 2020-01-31 杭州远方光电信息股份有限公司 spectrometers
JPWO2021065348A1 (en) * 2019-09-30 2021-04-08

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259014A (en) * 1979-04-03 1981-03-31 Princeton Applied Research Corporation Fiber optic polychromator
JPS58111729A (en) * 1981-12-25 1983-07-02 Matsushita Electric Ind Co Ltd Color resolving head
JPH0650814A (en) * 1990-01-30 1994-02-25 Seca Corp Multispectral reflectometer
JPH04140619A (en) * 1990-09-29 1992-05-14 Shimadzu Corp Spectroscope
US5042893A (en) * 1990-11-09 1991-08-27 Hewlett-Packard Company Direct mount coupling to a spectrophotometer
US6636305B2 (en) * 2001-09-13 2003-10-21 New Chromex, Inc. Apparatus and method for producing a substantially straight instrument image
JP2004239627A (en) * 2003-02-03 2004-08-26 Olympus Corp Spectroscope, and confocal microscope equipped therewith
JP2006189291A (en) * 2005-01-05 2006-07-20 Konica Minolta Sensing Inc Photometric system and photometric method for monochromatic light
EP2126528A4 (en) * 2007-03-22 2011-10-05 Ca Nat Research Council Planar waveguide wavelength dispersive devices with multiple waveguide input aperture
JP5614367B2 (en) * 2011-04-28 2014-10-29 コニカミノルタ株式会社 Multi-angle colorimeter

Also Published As

Publication number Publication date
JP2015215196A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
CA2938443C (en) An optical filter and spectrometer
JP6167985B2 (en) Spectroscopic sensor
Wang et al. Improved resolution optical time stretch imaging based on high efficiency in-fiber diffraction
JP2016080429A (en) Spectral measurement device
EP2520924A1 (en) Method and measurement assembly for improving signal resolution in gas absorption spectroscopy
US20210181021A1 (en) Apparatus for optical applications, spectrometer system and method for producing an apparatus for optical applications
DE112011103836T5 (en) spectrophotometer
US9863809B2 (en) Spectrograph
KR101078135B1 (en) Full range calibration apparatus for light spectrum analysis and method for acquisition information in calibration apparatus
AT510631B1 (en) SPECTROMETER
KR19990045315A (en) Laser spectrometer in high-resolution, compact cavity
DE102012216164A1 (en) Device with an arrangement of optical elements
Ha et al. Development of an ultraviolet Raman spectrometer for standoff detection of chemicals
NL2016040B1 (en) An optical module
DE102013005372B4 (en) Device for spectroscopic measured value acquisition of physical and / or chemical parameters of a measurement object
Mohammadi et al. Investigation of spectral resolution in a Czerny Turner spectrograph
JP2008026127A (en) Spectral unit, and meteorological observation lidar system
WO2019038823A1 (en) Far-infrared spectroscopic device and far-infrared spectroscopic method
US9170152B2 (en) Systems and methods for receiving optical pulses
CN105181605A (en) Spectrometer based on Bragg reflection effect
JP5929504B2 (en) Spectrometer
CN105510296B (en) The portable fluorescence Raman spectrum detection system that disappears
CN108713135B (en) Spectral analysis system
RU2540218C1 (en) Multichannel optical spectrometer
Quélène et al. Compact fiber optic spectrometers formed by chirped diffraction gratings inscribed with a femtosecond laser platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees