JP6162630B2 - Target positioning system and target positioning method - Google Patents

Target positioning system and target positioning method Download PDF

Info

Publication number
JP6162630B2
JP6162630B2 JP2014050793A JP2014050793A JP6162630B2 JP 6162630 B2 JP6162630 B2 JP 6162630B2 JP 2014050793 A JP2014050793 A JP 2014050793A JP 2014050793 A JP2014050793 A JP 2014050793A JP 6162630 B2 JP6162630 B2 JP 6162630B2
Authority
JP
Japan
Prior art keywords
target
calculated
positioning
next time
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014050793A
Other languages
Japanese (ja)
Other versions
JP2015175662A (en
Inventor
裕和 下牧
裕和 下牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014050793A priority Critical patent/JP6162630B2/en
Publication of JP2015175662A publication Critical patent/JP2015175662A/en
Application granted granted Critical
Publication of JP6162630B2 publication Critical patent/JP6162630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の実施形態は、例えば、航空機等の目標を測位する目標測位システムおよび目標測位方法に関する。   Embodiments described herein relate generally to a target positioning system and a target positioning method for positioning a target such as an aircraft.

空港等の拡張に伴い、複雑化する航空管制業務への支援および滑走路への誤進入対策として、マルチラテレーション(MLAT)と呼ばれる目標測位システムの運用および整備が進められている。   With the expansion of airports and the like, operation and maintenance of a target positioning system called multi-lateration (MLAT) is being promoted as support for air traffic control operations that are becoming more complicated and countermeasures for erroneous entry to the runway.

マルチラテレーションとは、航空機等の目標から発信される信号を地上に配置される複数の受信局(センサ)で受信し、各センサの受信時刻(TOA:Time of Arrival)の差から航空機等の位置を推定するシステムである。このマルチラテレーションによれば、例えば、現用の空港面探知レーダ(ASDE:Airport Surface Detection Equipment)がカバーできない領域(ブラインドエリア)の監視が可能になる。   Multilateration is the reception of signals transmitted from targets such as aircraft by multiple receiving stations (sensors) on the ground, and the difference in reception time (TOA: Time of Arrival) of each sensor This is a system for estimating the position. According to this multilateration, for example, it is possible to monitor an area (blind area) that cannot be covered by an active airport surface detection radar (ASDE).

特開2013―44602号公報JP 2013-44602 A

「空港面監視用マルチラテレーションについて」、電子航法研究所研究発表会(第11回平成23年6月)"About multi-lateration for airport monitoring", Electronic Navigation Research Institute Research Presentation (11th June 2011)

しかしながら、従来のマルチラテレーションは、目標の測位精度が各受信局の配置に依存するため、目標の位置によっては、測位誤差が大きくなる、または全く異なる位置に測位結果が現れるという問題が生じる。   However, in the conventional multilateration, since the target positioning accuracy depends on the arrangement of each receiving station, there arises a problem that a positioning error becomes large or a positioning result appears at a completely different position depending on the target position.

そこで、本実施形態の目的は、目標の測位精度を向上させることができる目標測位方法およびこの目標測位方法を用いる目標測位システムを提供することにある。   Accordingly, an object of the present embodiment is to provide a target positioning method capable of improving the target positioning accuracy and a target positioning system using the target positioning method.

本実施形態によれば、目標測位システムは、複数の受信装置、複数のドップラー速度算出部、目標測位部、移動速度算出部および予想エリア設定部を具備する。複数の受信装置は、目標から所定の送信周波数で発信される信号を受信する。複数のドップラー速度算出部は、前記目標から発信される信号の送信周波数および前記複数の受信装置それぞれで受信された信号の受信周波数の差に基づいて、前記複数の受信装置それぞれから見た目標のドップラー速度を算出する。目標測位部は、前記複数の受信装置それぞれで受信された信号の受信時刻の差に基づいて、前記複数の受信装置間の双曲線を算出し、前記複数の受信装置間それぞれで算出された双曲線同士の交点を求めることで前記目標を測位する。移動速度算出部は、前記複数のドップラー速度算出部それぞれで算出された複数のドップラー速度情報から前記目標の移動速度を算出する。予想エリア設定部は、前記複数の受信装置間それぞれの双曲面に前記移動速度算出部で算出された目標の移動速度を加味して、次時刻の予想双曲面を複数算出し、前記算出された次時刻の複数の予想双曲面の論理積を前記次時刻に目標が測位されると予想される予想エリアとして設定する。前記予想エリア設定部は、前記次時刻の複数の予想双曲面にマージンを付加する。 According to the present embodiment, the target positioning system includes a plurality of receiving devices, a plurality of Doppler speed calculation units, a target positioning unit, a movement speed calculation unit, and an expected area setting unit. The plurality of receiving devices receive signals transmitted at a predetermined transmission frequency from the target. The plurality of Doppler velocity calculation units, based on a difference between a transmission frequency of a signal transmitted from the target and a reception frequency of a signal received by each of the plurality of reception devices, a target Doppler viewed from each of the plurality of reception devices. Calculate the speed. The target positioning unit calculates a hyperbola between the plurality of reception devices based on a difference in reception times of signals received by the plurality of reception devices, and calculates the hyperbola between the plurality of reception devices. The target is positioned by obtaining the intersection of The moving speed calculation unit calculates the target moving speed from the plurality of Doppler speed information calculated by each of the plurality of Doppler speed calculation units. The predicted area setting unit calculates a plurality of predicted hyperboloids at the next time by adding the target moving speed calculated by the moving speed calculating unit to each of the hyperboloids between the plurality of receiving devices. The logical product of a plurality of predicted hyperboloids at the next time is set as an expected area where the target is expected to be positioned at the next time. The predicted area setting unit adds a margin to a plurality of predicted hyperboloids at the next time.

本実施形態に係る目標測位システムの全体構成を示す概略図。Schematic which shows the whole structure of the target positioning system which concerns on this embodiment. 図1に示す目標測位システムの構成を示すブロック図。The block diagram which shows the structure of the target positioning system shown in FIG. 図2に示す受信局から見た目標のドップラー速度を示す概略図。Schematic which shows the target Doppler speed seen from the receiving station shown in FIG. 図2に示す測位処理装置の構成を示すブロック図。The block diagram which shows the structure of the positioning processing apparatus shown in FIG. 図4に示す測位処理装置の処理動作による予想エリアの設定過程を示す概略図。Schematic which shows the setting process of the prediction area by the processing operation of the positioning processing apparatus shown in FIG. 図4に示す測位処理装置の処理動作を示すフローチャート。The flowchart which shows the processing operation of the positioning processing apparatus shown in FIG.

以下、本実施形態に係る目標測位システムおよび目標測位方法について、図面を参照して説明する。   Hereinafter, a target positioning system and a target positioning method according to the present embodiment will be described with reference to the drawings.

図1は、本実施形態に係る目標測位システムの全体構成を示す概略図である。   FIG. 1 is a schematic diagram showing an overall configuration of a target positioning system according to the present embodiment.

図1に示す目標測位システムは、航空機等の目標Oに設置されるトランスポンダ(応答装置)200からアンテナ13を介して発信される信号(例えば、モードS信号)を地上に設置される複数の受信局で受信して、当該複数の受信局間におけるモードS信号の受信時刻(TOA:Time of Arrival)の差から、目標Oを測位するシステムである。本実施形態の目標測位システムでは、双曲線測位により目標Оを測位する。この目標測位システムは、複数の受信局(センサ)A〜Cおよび管制塔100に設けられる測位処理装置4を備える。   The target positioning system shown in FIG. 1 receives a plurality of signals installed on the ground from a transponder (response device) 200 installed on a target O such as an aircraft via an antenna 13 (for example, a mode S signal). In this system, the target O is received from the difference in the reception time (TOA: Time of Arrival) of the mode S signal among the plurality of receiving stations. In the target positioning system of the present embodiment, the target О is measured by hyperbolic positioning. This target positioning system includes a plurality of receiving stations (sensors) A to C and a positioning processing device 4 provided in the control tower 100.

複数の受信局A〜Cは、目標Oに設置されるトランスポンダ200からアンテナ13を介して発信される信号を受信する。   The plurality of receiving stations A to C receive signals transmitted from the transponder 200 installed at the target O via the antenna 13.

測位処理装置4は、例えば、空港等における航空管制業務を一括管理する管制塔100に設けられ、複数の受信局A〜Cで受信される信号に基づいて、目標Oを測位する。   The positioning processing device 4 is provided, for example, in a control tower 100 that collectively manages air traffic control operations at an airport or the like, and measures the target O based on signals received by a plurality of receiving stations A to C.

図2は、図1に示す目標測位システムの構成を示すブロック図である。なお、図2では、例として受信局Aの構成を示し、受信局BおよびCの構成は、受信局Aと同様の構成とする。   FIG. 2 is a block diagram showing a configuration of the target positioning system shown in FIG. In FIG. 2, the configuration of the receiving station A is shown as an example, and the configurations of the receiving stations B and C are the same as those of the receiving station A.

図2に示す目標測位システムにおいて、受信局Aは、受信装置2および速度成分算出器3を備える。   In the target positioning system shown in FIG. 2, the receiving station A includes a receiving device 2 and a velocity component calculator 3.

受信装置2は、アンテナ11、アンテナ12、GPS(Global Positioning System)受信機21および信号受信機22を有する。   The receiving device 2 includes an antenna 11, an antenna 12, a GPS (Global Positioning System) receiver 21 and a signal receiver 22.

GPS受信機21は、アンテナ11を介して、GPS衛星が発信する時刻情報(GPS時刻)が含まれるGPS信号を受信する。   The GPS receiver 21 receives a GPS signal including time information (GPS time) transmitted from a GPS satellite via the antenna 11.

信号受信機22は、アンテナ12を介して、目標Oに設置されるトランスポンダ200からアンテナ13を介して発信されたモードS信号を受信する。このモードS信号とは、目標Оごとに一意に割り当てられたアドレスに基づいて、一括または個別に質問応答を実施する信号である。信号受信機22で受信されたモードS信号は、例えば、目標Oの高度情報や目標Oの識別情報等が含まれる。また、信号受信機22では、GPS受信機21で受信されたGPS信号のGPS時刻を参照して、受信信号の受信時刻を表すタイムスタンプをモードS信号(受信信号)に付加する。タイムスタンプが付加された受信信号は、信号受信機22から速度成分算出器3へ伝送される。   The signal receiver 22 receives the mode S signal transmitted via the antenna 13 from the transponder 200 installed at the target O via the antenna 12. The mode S signal is a signal for performing question answering collectively or individually based on an address uniquely assigned to each target O. The mode S signal received by the signal receiver 22 includes, for example, altitude information of the target O, identification information of the target O, and the like. The signal receiver 22 refers to the GPS time of the GPS signal received by the GPS receiver 21 and adds a time stamp indicating the reception time of the received signal to the mode S signal (received signal). The reception signal to which the time stamp is added is transmitted from the signal receiver 22 to the speed component calculator 3.

速度成分算出器3は、目標Оのトランスポンダ200から発信されたモードS信号の送信周波数(中心周波数)(例えば、1090MHz)と、信号受信機22で受信された受信信号の受信周波数との差を計算し、受信局から見た目標Оのドップラー速度Vm(x=A,B,C,…)を算出する。式(1)は、ドップラー速度Vmを算出する式の一例である。
The velocity component calculator 3 calculates the difference between the transmission frequency (center frequency) (for example, 1090 MHz) of the mode S signal transmitted from the transponder 200 of the target О and the reception frequency of the reception signal received by the signal receiver 22. The Doppler speed Vm x (x = A, B, C,...) Of the target O as viewed from the receiving station is calculated. Equation (1) is an example of a formula for calculating the Doppler velocity Vm x.

本実施形態の目標測位システムでは、上記ドップラー速度Vmの算出処理を各受信局A〜Cで実施する。各受信局A〜Cで算出されたドップラー速度Vm〜Vm情報および受信信号に付加されたタイムスタンプ情報は、速度成分算出器3から測位処理装置4へ伝送される。 The target positioning system of the present embodiment performs a process for calculating the Doppler velocity Vm x in each of the receiving stations A through C. The Doppler speeds Vm A to Vm C information calculated by the receiving stations A to C and the time stamp information added to the received signal are transmitted from the speed component calculator 3 to the positioning processor 4.

図3は、図2に示す受信局Aから見た目標Оのドップラー速度Vmを示す概略図である。図3に示すように、ドップラー速度Vmは、目標Оが受信局Aから離れる向きを+とし、目標Оが受信局Aへ近づく向きを−とする。なお、受信局B〜Cから見た目標Оのドップラー速度Vm〜Vmについても、+と−の向きは、受信局Aと同様である。 FIG. 3 is a schematic diagram showing the Doppler speed Vm A of the target O as viewed from the receiving station A shown in FIG. As shown in FIG. 3, the Doppler speed Vm A is defined as a direction in which the target OO leaves the receiving station A is +, and a direction in which the target OO approaches the receiving station A is −. Note that the directions of + and − are the same as those of the receiving station A for the Doppler speeds Vm B to Vm C of the target O as viewed from the receiving stations B to C.

図4は、図2に示す測位処理装置4の構成を示すブロック図である。   FIG. 4 is a block diagram showing a configuration of the positioning processing device 4 shown in FIG.

測位処理装置4は、情報収集部41、目標測位部42、予想エリア設定部43および判定部44を有する。   The positioning processing device 4 includes an information collecting unit 41, a target positioning unit 42, an expected area setting unit 43, and a determination unit 44.

情報収集部41は、各受信局A〜Cから、ドップラー速度Vm〜Vmおよびタイムスタンプを収集する。 The information collecting unit 41 collects Doppler velocities Vm A to Vm C and time stamps from the receiving stations A to C.

目標測位部42は、情報収集部41で収集されたタイムスタンプを参照して、各受信局A〜Cにおける受信信号の受信時刻の差を計算し、双曲線測位により目標Оを測位する。例えば、受信局A、B、Cの3か所を用いる場合、受信局A−B間、受信局B−C間および受信局C−A間でそれぞれ計算される双曲線同士の交点を求めることで目標Oの位置Tを推定する。   The target positioning unit 42 refers to the time stamp collected by the information collecting unit 41, calculates the difference in reception time of the received signal at each of the receiving stations A to C, and measures the target O by hyperbolic positioning. For example, when using three locations of receiving stations A, B, and C, by obtaining the intersections of the hyperbolic curves calculated between the receiving stations A and B, between the receiving stations B and C, and between the receiving stations C and A, respectively. The position T of the target O is estimated.

予想エリア設定部43は、次に各受信局A〜Cによりトランスポンダ200から発信される受信信号が受信される受信時刻(以降、次時刻と表記)に目標Оが測位されると予想される予想エリアを設定する。この予想エリア設定部43は、移動速度算出部43−1、予想双曲面算出部43−2およびマージン付加部43−3を有する。   The prediction area setting unit 43 predicts that the target O is expected to be positioned at the reception time (hereinafter referred to as the next time) when the reception signal transmitted from the transponder 200 is received by each of the receiving stations A to C next. Set the area. The predicted area setting unit 43 includes a moving speed calculating unit 43-1, a predicted hyperboloid calculating unit 43-2, and a margin adding unit 43-3.

移動速度算出部43−1は、情報収集部41で収集されたドップラー速度Vm〜Vmから目標Oの移動速度Vm(ベクトル成分)を算出する。式(2)は、目標Oの移動速度Vm(ベクトル成分)を算出する式の一例であり、式(2)を満たす移動速度Vm(ベクトル成分)を求める。なお、Vmは、受信局Aから目標Оに向かった向きを+とし、目標Оが受信局Aへ近づく向きを−とする。また、受信局B、受信局Cについても同様にして定式化し、3元1次方程式を解き、移動速度Vm(ベクトル成分)を算出する。
The moving speed calculation unit 43-1 calculates the moving speed Vm (vector component) of the target O from the Doppler velocities Vm A to Vm C collected by the information collecting unit 41. Expression (2) is an example of an expression for calculating the moving speed Vm (vector component) of the target O, and the moving speed Vm (vector component) that satisfies Expression (2) is obtained. Incidentally, Vm x is the direction towards the receiving station A to the target o + and to the orientation of the target o approaches to the receiving station A - to. Similarly, the receiving station B and the receiving station C are similarly formulated to solve the ternary linear equation and calculate the moving speed Vm (vector component).

予想双曲面算出部43−2は、受信局間で測位処理を実施する過程で計算された双曲面を現時刻の双曲面とし、計算された現時刻の双曲面の各点に上記移動速度算出部43−1で算出された移動速度Vm(ベクトル成分)を加味した双曲面を算出する。予想双曲面算出部43−2は、算出した双曲面を次時刻の予想双曲面とする。   The predicted hyperboloid calculator 43-2 sets the hyperboloid calculated in the process of performing the positioning process between the receiving stations as the hyperboloid at the current time, and calculates the moving speed at each point of the calculated hyperboloid at the current time. A hyperboloid that takes into account the moving speed Vm (vector component) calculated by the unit 43-1 is calculated. The predicted hyperboloid calculator 43-2 sets the calculated hyperboloid as the predicted hyperboloid at the next time.

マージン付加部43−3は、予想双曲面算出部43−2で算出された次時刻の予想双曲面に座標として±のマージンを付加する。   The margin adding unit 43-3 adds a ± margin as coordinates to the predicted hyperboloid at the next time calculated by the predicted hyperboloid calculating unit 43-2.

図5は、図4に示す測位処理装置4の処理動作による予想エリアの設定過程を示す概略図である。   FIG. 5 is a schematic diagram showing a process of setting an expected area by the processing operation of the positioning processing device 4 shown in FIG.

予想エリア設定部43は、例えば、図5(a)に示すように、目標測位部42にて受信局A−B間で測位処理を実施する過程で計算された双曲面を現時刻の双曲面とする。予想双曲面算出部43−2は、図5(b)に示すように、目標測位部42で計算された現時刻の双曲面の各点に、上記移動速度算出部43−1で算出された移動速度Vmを加味した双曲面を算出する。この算出した双曲面を次時刻の予想双曲面とする。さらに、マージン付加部43−3は、図5(c)に示すように、予想双曲面算出部43−2で算出された次時刻の予想双曲面に座標として±のマージンを付加し、マージンを付加した予想双曲面の範囲をエリアフィルタとする。予想エリア設定部43は、受信局A−B間の他に、受信局B−C間および受信局C−A間におけるエリアフィルタを算出し、算出した各受信局間のエリアフィルタの論理積をとる。予想エリア設定部43は、各受信局間のエリアフィルタの論理積を、次時刻に目標Оが測位されると予想される予想エリアとして設定する。   For example, as shown in FIG. 5A, the prediction area setting unit 43 uses a hyperboloid calculated in the process of performing the positioning process between the receiving stations A and B in the target positioning unit 42 as a hyperboloid at the current time. And As shown in FIG. 5B, the predicted hyperboloid calculator 43-2 is calculated by the moving speed calculator 43-1 at each point of the hyperboloid at the current time calculated by the target positioning unit 42. A hyperboloid with the moving speed Vm taken into account is calculated. This calculated hyperboloid is used as the predicted hyperboloid at the next time. Further, as shown in FIG. 5C, the margin adding unit 43-3 adds a ± margin as a coordinate to the predicted hyperboloid at the next time calculated by the predicted hyperboloid calculating unit 43-2, and sets the margin. The range of the added predicted hyperboloid is set as an area filter. The predicted area setting unit 43 calculates area filters between the receiving stations B and C and between the receiving stations C and A in addition to the receiving stations A and B, and calculates the logical product of the calculated area filters between the receiving stations. Take. The predicted area setting unit 43 sets the logical product of the area filters between the receiving stations as the predicted area in which the target O is expected to be positioned at the next time.

判定部44は、目標測位部42において、次時刻に測位された目標Оが、予想エリア設定部43で設定された予想エリアに含まれるかを判定する。次時刻の目標Оが設定された予想エリアに含まれる場合、測位処理装置4は、次時刻の測位結果を表示装置等へ出力する。また、目標測位部42において、次時刻に測位された目標Оが、設定された予想エリアに含まれない場合、測位処理装置4は、次時刻の測位結果を破棄し、処理動作を情報収集部41へ戻す。   The determination unit 44 determines whether the target positioning unit 42 positioned at the next time in the target positioning unit 42 is included in the predicted area set by the predicted area setting unit 43. When the next time target O is included in the set prediction area, the positioning processing device 4 outputs the positioning result of the next time to a display device or the like. When the target positioning unit 42 does not include the target OO measured at the next time in the set expected area, the positioning processing device 4 discards the positioning result at the next time and changes the processing operation to the information collecting unit. Return to 41.

ここで、上記構成における測位処理装置4の処理動作を以下に説明する。   Here, the processing operation of the positioning processing device 4 in the above configuration will be described below.

図6は、図4に示す測位処理装置4の処理動作を示すフローチャートである。   FIG. 6 is a flowchart showing the processing operation of the positioning processing device 4 shown in FIG.

図6に示すように、測位処理装置4は、情報収集部41にて、各受信局A〜Cから、ドップラー速度Vm〜Vmおよびタイムスタンプを収集する(ステップST1)。 As shown in FIG. 6, the positioning processing device 4 collects Doppler velocities Vm A to Vm C and time stamps from the receiving stations A to C at the information collecting unit 41 (step ST1).

次に、測位処理装置4は、目標測位部42にて、情報収集部41で収集されたタイムスタンプを参照して、各受信局A〜C間における受信信号の受信時刻の差を計算し、双曲線測位により目標Оを測位する(ステップST2)。   Next, the positioning processing device 4 refers to the time stamp collected by the information collecting unit 41 in the target positioning unit 42, calculates the difference in the reception time of the received signal between the receiving stations A to C, The target О is determined by hyperbolic positioning (step ST2).

次に、測位処理装置4は、移動速度算出部43−1にて、情報収集部41で収集されたドップラー速度Vm〜Vmから目標Oの移動速度Vm(ベクトル成分)を算出する。(ステップST3)。 Next, the positioning processing device 4 calculates the moving speed Vm (vector component) of the target O from the Doppler speeds Vm A to Vm C collected by the information collecting unit 41 by the moving speed calculating unit 43-1. (Step ST3).

測位処理装置4は、予想双曲面算出部43−2にて、目標測位部42で計算された現時刻の双曲面の各点に、上記移動速度算出部43−1で算出された移動速度Vmを加味した双曲面を算出する。この算出した双曲面を次時刻の予想双曲面とする(ステップST4)。測位処理装置4は、マージン付加部43−3にて、予想双曲面算出部43−2で算出された次時刻の予想双曲面に座標として±のマージンを付加し(ステップST5)、マージンを付加した予想双曲面の範囲をエリアフィルタとする。測位処理装置4は、受信局A−B間の他に、受信局B−C間および受信局C−A間におけるエリアフィルタを算出し、算出した各受信局間のエリアフィルタの論理積をとる。測位処理装置4は、各受信局間のエリアフィルタの論理積を、次時刻に目標Оが測位されると予想される予想エリアとして設定する(ステップST6)。   The positioning processing device 4 uses the predicted hyperboloid calculator 43-2 to move the moving speed Vm calculated by the moving speed calculator 43-1 to each point of the hyperboloid at the current time calculated by the target positioning section 42. Calculate a hyperboloid taking into account. This calculated hyperboloid is used as the predicted hyperboloid at the next time (step ST4). The positioning processing device 4 adds a margin of ± as coordinates to the predicted hyperboloid at the next time calculated by the predicted hyperboloid calculator 43-2 in the margin adder 43-3 (step ST5), and adds the margin. The range of the predicted hyperboloid is set as an area filter. The positioning processing device 4 calculates area filters between the receiving stations B and C and between the receiving stations C and A in addition to the receiving stations A and B, and calculates a logical product of the calculated area filters between the receiving stations. . The positioning processing device 4 sets the logical product of the area filters between the receiving stations as an expected area where the target O is expected to be positioned at the next time (step ST6).

予想エリア設定部43にて予想エリアが設定された後、測位処理装置4は、次時刻での目標Оの測位処理を実施する(ステップST7)。なお、ステップST7において、測位処理装置4は、目標測位部42にて、次時刻に情報収集部41で収集されたタイムスタンプを参照して、各受信局A〜C間における受信信号の受信時刻の差を計算し、双曲線測位により次時刻の目標Оを測位する。   After the predicted area is set by the predicted area setting unit 43, the positioning processing device 4 performs a positioning process of the target О at the next time (step ST7). In step ST7, the positioning processing device 4 refers to the time stamp collected by the information collecting unit 41 at the next time in the target positioning unit 42, and the reception time of the received signal between the receiving stations A to C. The next time target О is determined by hyperbolic positioning.

ここで、測位処理装置4は、判定部44にて、目標測位部42において次時刻に測位された目標Оが、予想エリア設定部43で設定された予想エリアに含まれるかを判定する(ステップST8)。目標測位部42にて、次時刻に測位される目標Оが予想エリアで測位された場合(ステップST8のYes)、測位処理装置4は、次時刻の測位結果を表示装置等に出力し(ステップST9)、処理動作をステップST1へ戻す。また、目標測位部42にて、次時刻に測位される目標Оが予想エリアに含まれない場合(ステップST8のNo)、測位処理装置4は、次時刻の測位結果を破棄し、処理動作をステップST1へ戻す。   Here, the positioning processing device 4 determines in the determination unit 44 whether or not the target O measured at the next time by the target positioning unit 42 is included in the predicted area set by the predicted area setting unit 43 (step). ST8). When the target positioning unit 42 has positioned the target OO positioned at the next time in the predicted area (Yes in step ST8), the positioning processing device 4 outputs the positioning result at the next time to a display device or the like (step ST9) The processing operation is returned to step ST1. If the target positioning unit 42 does not include the target OO measured at the next time in the predicted area (No in step ST8), the positioning processing device 4 discards the positioning result at the next time and performs the processing operation. Return to step ST1.

上記構成によれば、本実施形態の目標測位システムは、予想エリア設定部43にて、次時刻に目標Оが測位されると予想される予想エリアを設定する。これにより、目標測位システムは、建造物による反射や遮蔽の影響等により目標Оの測位誤差が大きくなっても、予想エリアの範囲を超えた測位誤差が大きい目標Оは誤検出と判定されるため、測位誤差を予想エリア内まで低減することが可能である。また、目標測位システムは、全く異なる位置に測位結果が現れる場合であっても、予想エリア外であるため誤検出と判定することが可能である。   According to the above configuration, in the target positioning system of the present embodiment, the predicted area setting unit 43 sets the predicted area where the target O is expected to be positioned at the next time. As a result, even if the positioning error of the target О becomes large due to the influence of reflection or shielding by the building, the target positioning system will determine that the target О that has a large positioning error beyond the expected area range is a false detection. It is possible to reduce the positioning error to within the expected area. Moreover, even if a positioning result appears in a completely different position, the target positioning system can determine that it is a false detection because it is outside the expected area.

したがって、本実施形態の目標測位システムは、目標Оの測位精度を向上させることができる。   Therefore, the target positioning system of the present embodiment can improve the positioning accuracy of the target O.

また、本実施形態は、マルチラテレーション(MLAT)に実施したものであるが、同じ測位方式を持つワイドエリアマルチラテレーション(WAM)および楕円測位を用いるMSPSR(マルチスタティックPSR)に適用することが可能である。   Moreover, although this embodiment is implemented for multilateration (MLAT), it can be applied to wide area multilateration (WAM) having the same positioning method and MSPSR (multistatic PSR) using elliptical positioning. Is possible.

なお、本実施形態の目標測位システムでは、GPS受信機21で受信されるGPS信号により時刻情報を取得していたが、これに限らない。本実施形態の目標測位システムは、共通クロック等、時刻情報を取得可能な他の装置を用いて取得してもよい。   In the target positioning system of the present embodiment, the time information is acquired from the GPS signal received by the GPS receiver 21, but the present invention is not limited to this. The target positioning system of the present embodiment may be acquired using another device that can acquire time information such as a common clock.

また、図1では、具体例として、3つの受信局A〜Cが地上に配置される目標測位システムを示したが、4つ以上の受信局が地上に配置される目標測位システムであってもよい。   In addition, in FIG. 1, as a specific example, a target positioning system in which three receiving stations A to C are arranged on the ground is shown, but even in a target positioning system in which four or more receiving stations are arranged on the ground, Good.

また、次時刻の予想双曲面に付加される±のマージンは、求められる目標Оの測位精度に応じて任意に設定してもよい。上記WAMの±のマージンは、例えば、±30mに設定してもよい。   The ± margin added to the predicted hyperboloid at the next time may be arbitrarily set according to the required positioning accuracy of the target О. The WAM ± margin may be set to ± 30 m, for example.

以上、実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.

О…目標、100…管制塔、A〜C…受信局、200…トランスポンダ、11〜13…アンテナ、2…受信装置、21…GPS受信機、22…信号受信機、3…速度成分算出器、4…測位処理装置、41…情報収集部、42…目標測位部、43…予想エリア設定部、43−1…移動速度算出部、43−2…予想双曲面算出部、43−3…マージン付加部、44…判定部。   О ... target, 100 ... control tower, AC ... receiving station, 200 ... transponder, 11-13 ... antenna, 2 ... receiving device, 21 ... GPS receiver, 22 ... signal receiver, 3 ... speed component calculator, DESCRIPTION OF SYMBOLS 4 ... Positioning processing apparatus, 41 ... Information collecting part, 42 ... Target positioning part, 43 ... Expected area setting part, 43-1 ... Moving speed calculating part, 43-2 ... Expected hyperboloid calculating part, 43-3 ... Adding a margin Part, 44 ... determination part.

Claims (2)

目標から所定の送信周波数で発信される信号を受信する複数の受信装置と、
前記目標から発信される信号の送信周波数および前記複数の受信装置それぞれで受信された信号の受信周波数の差に基づいて、前記複数の受信装置それぞれから見た目標のドップラー速度を算出する複数のドップラー速度算出部と、
前記複数の受信装置それぞれで受信された信号の受信時刻の差に基づいて、前記複数の受信装置間の双曲線を算出し、前記複数の受信装置間それぞれで算出された双曲線同士の交点を求めることで前記目標を測位する目標測位部と、
前記複数のドップラー速度算出部それぞれで算出された複数のドップラー速度情報から前記目標の移動速度を算出する移動速度算出部と、
前記複数の受信装置間それぞれの双曲面に前記移動速度算出部で算出された目標の移動速度を加味して、次時刻の予想双曲面を複数算出し、前記算出された次時刻の複数の予想双曲面の論理積を前記次時刻に目標が測位されると予想される予想エリアとして設定する予想エリア設定部と
を具備し、
前記予想エリア設定部は、前記次時刻の複数の予想双曲面にマージンを付加する
目標測位システム。
A plurality of receiving devices for receiving signals transmitted from a target at a predetermined transmission frequency;
A plurality of Doppler speeds for calculating a target Doppler speed viewed from each of the plurality of receiving apparatuses based on a difference between a transmission frequency of a signal transmitted from the target and a reception frequency of a signal received by each of the plurality of receiving apparatuses. A calculation unit;
Calculating a hyperbola between the plurality of receiving devices based on a difference in reception time of signals received by the plurality of receiving devices, and obtaining an intersection of the hyperbola calculated between the plurality of receiving devices; A target positioning unit for positioning the target with
A moving speed calculator that calculates the moving speed of the target from a plurality of Doppler speed information calculated by each of the plurality of Doppler speed calculators;
A plurality of predicted hyperboloids for the next time are calculated by adding the target moving speed calculated by the moving speed calculator to each hyperboloid between the plurality of receiving devices, and a plurality of predictions for the calculated next time are calculated. An expected area setting unit for setting a logical product of hyperboloids as an expected area where a target is expected to be positioned at the next time ;
The predicted area setting unit adds a margin to a plurality of predicted hyperboloids at the next time .
目標から所定の送信周波数で発信される信号を複数個所で受信し、
前記目標から発信される信号の送信周波数および前記複数個所それぞれで受信された信号の受信周波数の差に基づいて、前記複数個所それぞれから見た目標のドップラー速度を複数算出し、
前記複数個所それぞれで受信された信号の受信時刻の差に基づいて、前記複数個所間の双曲線を算出し、前記複数個所間それぞれで算出された双曲線同士の交点を求めることで前記目標を測位し、
前記算出された複数のドップラー速度情報から前記目標の移動速度を算出し、
前記複数個所間それぞれの双曲面に前記算出された目標の移動速度を加味して、次時刻の予想双曲面を複数算出し、前記算出された次時刻の複数の予想双曲面の論理積を前記次時刻に目標が測位されると予想される予想エリアとして設定し、
前記次時刻の複数の予想双曲面にマージンを付加する目標測位方法。
Receive signals transmitted from the target at a predetermined transmission frequency at multiple locations,
Based on the difference between the reception frequency of the transmission frequency and the plurality location signals received by each of the signal transmitted from the target, and calculates a plurality of Doppler velocity of the target as seen from the plurality locations respectively,
Based on the difference between the reception time of the received No. signal with the plurality of locations, respectively, to calculate the hyperbolic between said plurality of locations, positioning the target by finding the intersection of the hyperbolas between calculated in each between said plurality of locations And
Calculate the moving speed of the target from the calculated plurality of Doppler speed information,
A plurality of predicted hyperboloids at the next time are calculated in consideration of the calculated target moving speed for each hyperboloid between the plurality of locations, and a logical product of the plurality of predicted hyperboloids at the next time is calculated. Set as the expected area where the target is expected to be positioned at the next time ,
A target positioning method for adding a margin to a plurality of predicted hyperboloids at the next time .
JP2014050793A 2014-03-13 2014-03-13 Target positioning system and target positioning method Active JP6162630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050793A JP6162630B2 (en) 2014-03-13 2014-03-13 Target positioning system and target positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050793A JP6162630B2 (en) 2014-03-13 2014-03-13 Target positioning system and target positioning method

Publications (2)

Publication Number Publication Date
JP2015175662A JP2015175662A (en) 2015-10-05
JP6162630B2 true JP6162630B2 (en) 2017-07-12

Family

ID=54254991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050793A Active JP6162630B2 (en) 2014-03-13 2014-03-13 Target positioning system and target positioning method

Country Status (1)

Country Link
JP (1) JP6162630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6309924B2 (en) * 2015-09-07 2018-04-11 京楽産業.株式会社 Game machine
KR101833007B1 (en) 2016-03-29 2018-02-27 조선대학교산학협력단 Method and system for estimating position and velocity of underwater vehicle using doppler beacon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126930A (en) * 1991-11-05 1993-05-25 Nousakumotsu Seiiku Kanri Syst Kenkyusho:Kk Method for deciding position of moving robot
JPH07294619A (en) * 1994-04-28 1995-11-10 Fujitsu Ltd Method for detecting position of moving station by hyperbolic method
JP4970077B2 (en) * 2007-02-20 2012-07-04 三菱電機株式会社 Motion specification estimation device
JP5566039B2 (en) * 2009-03-13 2014-08-06 富士通株式会社 Positioning device
CN103548400B (en) * 2011-03-31 2017-04-05 爱立信(中国)通信有限公司 Method and apparatus for estimating the difference of the timing slip in cellular network

Also Published As

Publication number Publication date
JP2015175662A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
US8970401B2 (en) Using image sensor and tracking filter time-to-go to avoid mid-air collisions
US8134493B2 (en) System and method for precision geolocation utilizing multiple sensing modalities
RU2458358C1 (en) Goniometric-correlation method of determining location of surface radio sources
KR101221978B1 (en) Localization method of multiple jammers based on tdoa method
Svyd et al. Method for Increasing the Interference Immunity of the Channel for Measuring of the Short-Range Navigation Radio System
JP5896823B2 (en) Target tracking device and target tracking method
JP6162630B2 (en) Target positioning system and target positioning method
WO2013136648A1 (en) Wide-area multilateration system, central station, and 2-dimensional-position calculation method using same
WO2020113357A1 (en) Target detection method and device, flight path management method and device and unmanned aerial vehicle
RU2562616C1 (en) Method of acquiring radio information and radio system therefor
JP6210845B2 (en) Target tracking device and target tracking method
EP3688496A1 (en) A method for determining the base line for a synthetic aperture of a sar using gnss
JP5609032B2 (en) Multi-lateration device and airport surface monitoring system
US10451417B2 (en) Acquisition and/or tracking of remote object
JP2004309166A (en) Target tracking apparatus
CA3033799A1 (en) Method and system for tracking objects using passive secondary surveillance radar
RU2617447C1 (en) Method of determining range to fixed radiation source by moving direction finder
JP6482733B2 (en) Position measuring system, position measuring device and receiving device
US20200182997A1 (en) Method and system for tracking non-cooperative objects using secondary surveillance radar
RU2296372C2 (en) Method of landing aircraft
RU2668597C1 (en) Method of troubleshooting and failures of aircraft measurement parameters of movement and satellite navigation systems of moving objects
EP3315997A1 (en) Acquisition and/or tracking of remote object
WO2016040239A1 (en) Multi-sensor target location registration
JP2002267732A (en) Method and device for locating passive position
JP6139210B2 (en) Aircraft monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R151 Written notification of patent or utility model registration

Ref document number: 6162630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151