JP6147351B2 - Materials for electrical contact members - Google Patents

Materials for electrical contact members Download PDF

Info

Publication number
JP6147351B2
JP6147351B2 JP2015535984A JP2015535984A JP6147351B2 JP 6147351 B2 JP6147351 B2 JP 6147351B2 JP 2015535984 A JP2015535984 A JP 2015535984A JP 2015535984 A JP2015535984 A JP 2015535984A JP 6147351 B2 JP6147351 B2 JP 6147351B2
Authority
JP
Japan
Prior art keywords
metal strip
nickel
silicon
cobalt
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015535984A
Other languages
Japanese (ja)
Other versions
JP2015537117A (en
Inventor
ローデ・ディルク
ヘルメンカンプ・トーマス
シュルツェ・ハルク
ルムバッハ・アルベルト
ユステン・ヨハン
Original Assignee
ケイエムイー・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイエムイー・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト filed Critical ケイエムイー・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト
Publication of JP2015537117A publication Critical patent/JP2015537117A/en
Application granted granted Critical
Publication of JP6147351B2 publication Critical patent/JP6147351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

本発明は、請求項1の前提部の特徴に従う電気コンタクト部材の製造のための金属ストリップ用の材料、並びに請求項5の特徴に従う電気コンタクト部材の製造のための、このような電導性金属ストリップ用の材料の使用に関する。   The invention relates to a material for a metal strip for the manufacture of an electrical contact member according to the features of the preamble of claim 1 as well as such an electrically conductive metal strip for the manufacture of an electrical contact member according to the feature of claim 5 Related to the use of materials.

コンタクト部材は、電気工学並びに電子工学の分野において様々な可能な用途がある。機械的に互いに接合可能で並びに分離可能な複合体要素として、それの主たる課題は、電導性コンタクトの製造にある。電流回路の接続の他に、電子構成部材との直接的な結合も実現可能である。   Contact members have various possible applications in the fields of electrical engineering and electronics. As a composite element that can be mechanically joined to each other as well as separable, its main challenge is in the production of conductive contacts. In addition to the connection of the current circuit, a direct coupling with the electronic component is also possible.

各々の形態は、国ごとの規格ばかりでなく、使用分野において満たすべき要件に合わせられる。それ故、特に手で外すことができるプラグコンタクトの形態では、機械的負荷能力に対する高められた要求も課せられる。   Each form is tailored to the requirements to be met in the field of use as well as national standards. Therefore, particularly in the form of plug contacts that can be removed by hand, there is also an increased demand for mechanical load capacity.

価値の高いプラグコンタクトは、安定した接触抵抗を示し、この際、低い境界抵抗の維持が重要である。接触抵抗の変化は、大概は、腐食または汚染層の電気的破壊の原因となる。このようなコンタクト部材のためにできるたけ維持が可能な接触表面を得るために、これらは、しばしば、スズもしくはクロムコーティングから銀もしくは金コーティングに至るまでのコーティングを有する。   A high-value plug contact exhibits a stable contact resistance, and it is important to maintain a low boundary resistance. Changes in contact resistance generally cause corrosion or electrical breakdown of the contaminated layer. In order to obtain a contact surface that can be maintained as much as possible for such contact members, they often have coatings ranging from tin or chrome coatings to silver or gold coatings.

このようなプラグコンタクトの製造のためには、大概は、銅合金でできた金属ストリップが使用され、これから、個々の形態が打ち抜かれる。合金化パートナーである亜鉛またスズの使用量に応じて、これは、黄銅または延性のある青銅、例えばCuSn4乃至CuSn8のいずれかである。後者の材料は、中程度の強度において優れた曲げ性を有する。しかし、ここでこの材料は固溶体−及び冷間硬化された材料であるので、緩和に対するそれの耐性は比較的低い。加えて、曲げ性は、>R700(R≧700MPa、DIN EN 1173/95)の高い強度状態(Festigkeitszustaenden)では明らかに低下し、これは、より強い亀裂形成を伴うより大きな曲げ半径として現れる。 For the manufacture of such plug contacts, metal strips made of copper alloys are generally used, from which individual forms are stamped. Depending on the amount of alloying partner zinc or tin used, this is either brass or ductile bronze, for example CuSn4 to CuSn8. The latter material has excellent bendability at moderate strength. However, since this material is now a solid solution- and cold-cured material, its resistance to relaxation is relatively low. In addition, bendability is clearly reduced in the high strength state (Festigkeitszustaenden)> R700 (R m ≧ 700 MPa, DIN EN 1173/95), which appears as a larger bend radius with stronger crack formation.

電気コンタクト部材は大量生産品であるため、各々の原材料の原価は非常に重要である。決定的なのは、合金内での銅の各々の含有率である。それ故、黄銅中の高い亜鉛の割合の故に、銅の割合が高い銅合金は、それに対し約20%高い価格を有する。   Since the electrical contact members are mass-produced products, the cost of each raw material is very important. What is decisive is the content of each of the copper in the alloy. Therefore, because of the high zinc percentage in brass, copper alloys with a high copper percentage have a price about 20% higher than that.

特開2008−208466号公報(特許文献1)からは、亜鉛(Zn)の割合が、重量%で23%〜28%である、プラグコンタクトのための銅合金が知られている。他の以下の成分が少なくとも0.01%で存在し、その際、ケイ素(Si)は最大で3%に達し、他方でニッケル(Ni)は、5%までの割合を占める。   JP-A-2008-208466 (Patent Document 1) discloses a copper alloy for plug contacts in which the ratio of zinc (Zn) is 23% to 28% by weight. The following other components are present in at least 0.01%, with silicon (Si) reaching a maximum of 3%, while nickel (Ni) accounting for up to 5%.

特開2009−013499号公報(特許文献2)も同様に、亜鉛(Zn)の割合が重量%で20%〜41%の、プラグコンタクトのための銅材料を開示している。この際、ニッケル(Ni)の割合は、0.1%〜5.0%に達し、他方で錫(Sn)の割合は0.5%〜5.0%である。   Similarly, Japanese Unexamined Patent Application Publication No. 2009-013499 (Patent Document 2) discloses a copper material for plug contacts in which the proportion of zinc (Zn) is 20% to 41% by weight. At this time, the proportion of nickel (Ni) reaches 0.1% to 5.0%, while the proportion of tin (Sn) is 0.5% to 5.0%.

DE10308779B3(特許文献3)は、鉛不含の銅合金並びにそれの使用を記載している。重量%でのそれの構成成分は、銅(Cu)に関しては少なくとも60%から最大で70%であるため、かなり多い。それに対して、0.01%〜0.5%のニッケル(Ni)の割合が提案されており、他方、錫(Sn)の割合は0.5%〜3.5%で変動する。ケイ素(Si)の可能な割合は、0.01%〜0.5%に達することができる。   DE 103088779 B3 describes a lead-free copper alloy and its use. Its constituents in% by weight are quite abundant since it is at least 60% up to 70% for copper (Cu). In contrast, a proportion of nickel (Ni) of 0.01% to 0.5% has been proposed, while the proportion of tin (Sn) varies from 0.5% to 3.5%. The possible proportion of silicon (Si) can reach 0.01% to 0.5%.

特に、銅の高い割合は、原材料のためのかなり高い原価を伴う。更に、他の合金化パートナーの割合も、向上された材料特性に関して、なおも改善の余地を提供する。   In particular, a high proportion of copper involves a fairly high cost for raw materials. Furthermore, the proportion of other alloying partners still offers room for improvement with regard to improved material properties.

特開2008−208466号公報JP 2008-208466 A 特開2009−013499号公報JP 2009-013499 A DE10308779B3DE103088779B3

それ故、本発明は、電気コンタクト部材の製造のための金属ストリップ用材料を、それの個々の合金化パートナーの低廉な割合にもかかわらず、電気コンタクト部材の製造のための電導性材料用に使用するために必要な性質を満たすように改善するという課題に基づくものである。   Therefore, the present invention provides a metal strip material for the manufacture of electrical contact members for conductive materials for the manufacture of electrical contact members, despite the low proportion of its individual alloying partners. It is based on the problem of improving to meet the properties required for use.

上記課題の解決策は、本発明に従い、請求項1の特徴に従う電気コンタクト部材の製造のための金属ストリップ用の材料にある。   The solution to the above problem lies in the material for a metal strip for the manufacture of an electrical contact member according to the features of claim 1 according to the invention.

それによれば、次の成分を重量%で、
亜鉛(Zn) 25.0%〜33.0%、
錫(Sn) 0.5%〜1.2%、
ニッケル(Ni) 0.8%〜2.5%、及び
ケイ素(Si) 0.1%〜0.6%
を有する析出硬化可能な合金からなる、電気コンタクト部材、特にプラグコンタクトの製造のための金属ストリップ用材料が提案される。
According to it, the following ingredients in wt%,
Zinc (Zn) 25.0% to 33.0%,
Tin (Sn) 0.5% -1.2%,
Nickel (Ni) 0.8% -2.5% and Silicon (Si) 0.1% -0.6%
A metal strip material for the manufacture of electrical contact members, in particular plug contacts, is proposed which consists of a precipitation hardenable alloy with

加えて、前記材料は、任意選択的に、次の群からの少なくとも一種の元素を含み得る:リン(P)、ホウ素(B)、銀(Ag)、マンガン(Mn)、クロム(Cr)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、ジルコニウム(Zr)またはヒ素(As)。   In addition, the material may optionally contain at least one element from the following group: phosphorus (P), boron (B), silver (Ag), manganese (Mn), chromium (Cr), Aluminum (Al), magnesium (Mg), iron (Fe), zirconium (Zr) or arsenic (As).

上記群からの全ての元素が存在する場合には、これらは、最大で材料の4.55%の総割合を構成する。基本的に、上記群からの元素はいずれも、それらが存在する場合には、合金全体中で0.8%を越える割合は示さない。   If all elements from the above group are present, they constitute a total proportion of up to 4.55% of the material. Basically, any element from the above group does not show a proportion of over 0.8% in the overall alloy when they are present.

材料の残部は、銅(Cu)並びに融解起因の不純物から形成される。更に、ニッケル(Ni)の割合は、少なくとも部分的にコバルト(Co)で置き換えてもよい。それ故、ニッケル(Ni)は、100%まで、それ故完全にコバルト(Co)で置き換えることもできる。ニッケル(Ni)及び/またはコバルト(Co)の割合と元素ケイ素(Si)との比率は、3.5:1〜7.5:1である。   The balance of the material is formed from copper (Cu) as well as impurities due to melting. Furthermore, the proportion of nickel (Ni) may be at least partially replaced by cobalt (Co). Therefore, nickel (Ni) can be replaced by up to 100% and hence completely cobalt (Co). The ratio of nickel (Ni) and / or cobalt (Co) to elemental silicon (Si) is 3.5: 1 to 7.5: 1.

電気コンタクト部材の製造のための金属ストリップは、析出硬化可能な合金CuZn30SnNiSi0.2からなる。 The metal strip for the production of electrical contact members consists of the precipitation hardenable alloy CuZn 30 Sn 1 Ni 1 Si 0.2 .

格別な利点が、亜鉛(Zn)の高含有率、それに伴う有利な製造コストの他に、材料の高められた強度にある。銅に対し、この高められた強度は固溶体形成に基づく。こうして達成される硬化は、他の点では比較的軟質な金属から硬質な材料を得るための、可能な強度増強プロセスのうちの一つである。   A special advantage lies in the increased strength of the material, in addition to the high zinc (Zn) content and the associated advantageous manufacturing costs. For copper, this increased strength is based on solid solution formation. The cure thus achieved is one of the possible strength enhancement processes to obtain a hard material from an otherwise relatively soft metal.

更に、ニッケル(Ni)−ケイ化物の析出硬化によって、明らかにより高い強度が、良好な伸張性、それ故高められた曲げ性を持って達成され得る。これは、特に、純粋な固溶体硬化及び冷間硬化された高力黄銅、例えばCuZn25Sn1と比べてそうである。このようにして、高い強度状態、例えばR780(R≧780MPa)でも、>3%の破断伸びA50を達成できる(DIN50125)。この際、緩和特性(Relaxationsbestaendigkeit)は、CuSn4及びCuZn25Sn1よりも明らかに良好である。 Furthermore, by virtue of precipitation hardening of nickel (Ni) -silicide, a clearly higher strength can be achieved with good extensibility and hence increased bendability. This is especially true compared to pure solid solution hardened and cold hardened high strength brass such as CuZn25Sn1. In this way, even at high strength conditions, for example R780 (R m ≧ 780 MPa), an elongation at break A 50 of> 3% can be achieved (DIN 50125). At this time, the relaxation properties are clearly better than CuSn4 and CuZn25Sn1.

基本的な本発明思想の有利な発展形態は、従属請求項2〜7に記載の発明である。   Advantageous developments of the basic inventive idea are the inventions according to the dependent claims 2 to 7.

それによれば、重量%で表して好ましい割合は、
亜鉛(Zn) 27.0%〜31.0%、
錫(Sn) 0.5%〜1.2%、並びに
ニッケル(Ni) 0.8〜2.0%、及び
ケイ素(Si) 0.1%〜0.6%
であることができる。
According to it, the preferred ratio expressed in weight% is
Zinc (Zn) 27.0% to 31.0%,
Tin (Sn) 0.5% to 1.2%, and Nickel (Ni) 0.8 to 2.0%, and Silicon (Si) 0.1% to 0.6%
Can be.

ニッケル(Ni)の割合は、少なくとも部分的にコバルト(Co)で置き換えてよい。   The proportion of nickel (Ni) may be at least partially replaced by cobalt (Co).

最適な析出硬化のためには、3.5:1〜7.5:1のニッケル(Ni)及び/またはコバルト(Co)とケイ素(Si)との比率を維持するべきである。好ましくは、この比率は4.0:1〜5.0:1であることができる。   For optimum precipitation hardening, a ratio of nickel (Ni) and / or cobalt (Co) to silicon (Si) of 3.5: 1 to 7.5: 1 should be maintained. Preferably, this ratio can be 4.0: 1 to 5.0: 1.

重量%の割合での上記の群からの個々の元素の任意選択的な存在は、それらが存在する場合において、好ましくは、
リン(P) 0.001%〜0.05%、
ホウ素(B) 0.02%〜0.5%、
銀(Ag) 0.02%〜0.5%、
マンガン(Mn) 0.03%〜0.8%、
クロム(Cr) 0.01%〜0.7%、
アルミニウム(Al) 0.02%〜0.5%、
マグネシウム(Mg) 0.01%〜0.4%、
鉄(Fe) 0.01%〜0.6%、並びに
ジルコニウム(Zr) 0.01%〜0.4%、及び
ヒ素(As) 0.001%〜0.1%、
である。
The optional presence of individual elements from the above group in proportions by weight is preferably, where they are present,
Phosphorus (P) 0.001% to 0.05%,
Boron (B) 0.02% to 0.5%,
Silver (Ag) 0.02% to 0.5%,
Manganese (Mn) 0.03% to 0.8%,
Chromium (Cr) 0.01% to 0.7%,
Aluminum (Al) 0.02% to 0.5%,
Magnesium (Mg) 0.01% to 0.4%,
Iron (Fe) 0.01% to 0.6%, and zirconium (Zr) 0.01% to 0.4%, and arsenic (As) 0.001% to 0.1%,
It is.

上記の群に含まれる元素は、任意選択的に、本発明の材料中に存在することができる。例えば、リン(P)及び/またはホウ素(B)は、上記の量で加えることができ、この際これらは脱酸素剤として役に立つ。それらの存在により、溶融物中に溶解したフリーの酸素(O)が結合される。このようにして、気泡の形成並びに合金成分の酸化が防止されることによって、水素脆性が抑えられる。   The elements included in the above group can optionally be present in the material of the invention. For example, phosphorus (P) and / or boron (B) can be added in the above amounts, where they serve as oxygen scavengers. Their presence binds free oxygen (O) dissolved in the melt. In this manner, hydrogen embrittlement is suppressed by preventing the formation of bubbles and the oxidation of the alloy components.

更に、リン(P)は、鋳造の時の本発明の銅合金の流動性を改善する働きをする。   Furthermore, phosphorus (P) serves to improve the fluidity of the copper alloy of the present invention during casting.

マンガン(Mn)を添加する時は、主に、銅合金に対するその硬化特性が利用される。同時に、マンガン(Mn)は同様に脱酸素剤として働く。   When adding manganese (Mn), its hardening properties for copper alloys are mainly utilized. At the same time, manganese (Mn) likewise acts as an oxygen scavenger.

アルミニウム(Al)の添加によって、材料の硬度並びにその耐力が向上する。この際、上記の有利な向上は、材料の靱性の低下を伴うことなく現れる。全体として、アルミニウム(Al)の添加には、高温下での合金の強度、加工性並びに耐摩耗性及び耐酸化性を改善する働きがある。   Addition of aluminum (Al) improves the hardness and proof stress of the material. In this case, the above-mentioned advantageous improvement appears without a reduction in the toughness of the material. Overall, the addition of aluminum (Al) serves to improve the strength, workability, wear resistance and oxidation resistance of the alloy at high temperatures.

クロム(Cr)及びマグネシウム(Mg)の添加は、高温下での耐酸化性の向上のために役立つ。この際、クロム(Cr)及びマグネシウム(Mg)をアルミニウム(Al)と混合することによって、より良好な結果を達成できる。   Addition of chromium (Cr) and magnesium (Mg) serves to improve oxidation resistance at high temperatures. At this time, better results can be achieved by mixing chromium (Cr) and magnesium (Mg) with aluminum (Al).

上記に示した量での鉄(Fe)の添加は、結晶粒微細化の働きをし、全体的には硬化作用を持つ。リン(P)と化合して、リン化鉄が生ずる。   Addition of iron (Fe) in the amount shown above serves to refine crystal grains and has a hardening effect as a whole. Combines with phosphorus (P) to form iron phosphide.

ジルコニウム(Zr)の添加によって、材料の熱間変形性が向上する。   Addition of zirconium (Zr) improves the hot deformability of the material.

更に、ヒ素(As)の添加は、脱亜鉛化傾向を低下させる。   Furthermore, the addition of arsenic (As) reduces the tendency to dezincification.

結果として、その低い銅の割合の故に、電気コンタクト部材の製造のための低廉な方法を可能とする銅材料が提示される。銅(Cu)の割合が少ないにもかかわらず、電気コンタクト部材の製造用の電導性材料として使用するための必要な性質は満たされる。こうして生成された銅材料は、金属ストリップの形で使用でき、これは、電気コンタクト部材の製造に役立つ。   As a result, a copper material is presented that allows an inexpensive method for the manufacture of electrical contact members because of its low copper percentage. Despite the low proportion of copper (Cu), the necessary properties for use as a conductive material for the manufacture of electrical contact members are met. The copper material thus produced can be used in the form of a metal strip, which is useful for the production of electrical contact members.

更に、本発明は、電導性金属ストリップのための該銅材料の使用も提供する。この金属ストリップは、電気コンタクト部材、特にプラグコンタクトの製造のために役立つ。   Furthermore, the present invention also provides the use of the copper material for conductive metal strips. This metal strip is useful for the manufacture of electrical contact members, in particular plug contacts.

要求に応じて、こうして使用される金属ストリップは、表面に錫メッキを施すことができる。   If desired, the metal strips used in this way can be tinned on the surface.

代替的な態様の一つでは、使用される金属ストリップは、錫−銀層(SnAg)を有することができる。
本願は特許請求の範囲に記載の発明に係るものであるが、本願の開示は以下も包含する:
1. 電気コンタクト部材、特にプラグコンタクトを製造するための金属ストリップ用の材料であって、重量%で表して以下の合金成分:
亜鉛(Zn) 19.0%〜40.0%、
錫(Sn) 0.1%〜1.5%、
ニッケル(Ni) 0.6%〜3.0%、及び
ケイ素(Si) 0.1%〜0.9%、並びに
任意選択的に、リン(P)、ホウ素(B)、銀(Ag)、マンガン(Mn)、クロム(Cr)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、ジルコニウム(Zr)またはヒ素(As)の群からの少なくとも一種の元素、
を有する析出硬化可能な銅合金からなり、
ここで、上記群からの個々元素の割合が最大で0.8%であり、及び上記群からの全ての元素の割合が最大で4.55%であり、残部は銅(Cu)並びに融解起因の不純物であり、及びニッケル(Ni)は、少なくとも部分的にコバルト(Co)で置き換え可能であり、及びニッケル(Ni)及び/またはコバルト(Co)とケイ素(Si)の比率は3.5:1〜7.5:1である、前記材料。

2. 重量%で表した割合が、
亜鉛(Zn) 25.0%〜33.0%、
錫(Sn) 0.5%〜1.2%、
ニッケル(Ni) 0.8%〜2.5%、
ケイ素(Si) 0.1%〜0.6%、
であり、ここで、ニッケル(Ni)は、少なくとも部分的にコバルト(Co)と置き換え可能である、
ことを特徴とする、上記1に記載の材料。

3. 重量%で表した割合が、
亜鉛(Zn) 27.0%〜31.0%、
錫(Sn) 0.5%〜1.2%、
ニッケル(Ni) 0.8%〜2.0%、
ケイ素(Si) 0.1%〜0.6%、
であり、ここで、ニッケル(Ni)は、少なくとも部分的にコバルト(Co)と置き換え可能である、
ことを特徴とする、上記1または2に記載の材料。

4. ニッケル(Ni)及び/またはコバルト(Co)とケイ素(Si)との比率が4.0:1〜5.0:1であることを特徴とする上記1〜3のいずれか一つに記載の材料。

5. 上記群中の任意選択的な元素が、それらが存在する場合に、重量%で表して次の割合:
リン(P) 0.001%〜0.05%、
ホウ素(B) 0.02%〜0.5%、
銀(Ag) 0.02%〜0.5%、
マンガン(Mn) 0.03%〜0.8%、
クロム(Cr) 0.01%〜0.7%、
アルミニウム(Al) 0.02%〜0.5%、
マグネシウム(Mg) 0.01%〜0.4%、
鉄(Fe) 0.01%〜0.6%、
ジルコニウム(Zr) 0.01%〜0.4%、
ヒ素(As) 0.001%〜0.1%、
に相当することを特徴とする、上記1〜4のいずれか一つに記載の材料。

6. 電気コンタクト部材、特にプラグコンタクトの製造用の電導性金属ストリップのための、上記1〜5のいずれか一つに記載の材料の使用。

7. 金属ストリップが錫メッキされていることを特徴とする、上記6に記載の電導性金属ストリップのための材料の使用。

8. 金属ストリップが、錫−銀層を有することを特徴とする、上記6または7に記載の電導性金属ストリップのための材料の使用。
In one alternative embodiment, the metal strip used can have a tin-silver layer (SnAg).
This application is directed to the claimed invention, but the disclosure of this application also includes:
1. A material for metal strips for producing electrical contact members, in particular plug contacts, and the following alloy components expressed in weight%:
Zinc (Zn) 19.0% to 40.0%,
Tin (Sn) 0.1% -1.5%,
Nickel (Ni) 0.6% to 3.0%, and
Silicon (Si) 0.1% to 0.9%, and
Optionally, phosphorus (P), boron (B), silver (Ag), manganese (Mn), chromium (Cr), aluminum (Al), magnesium (Mg), iron (Fe), zirconium (Zr) or At least one element from the group of arsenic (As),
Consisting of a precipitation-hardenable copper alloy having
Here, the proportion of individual elements from the group is 0.8% at maximum, and the proportion of all elements from the group is 4.55% at maximum, with the balance being copper (Cu) and melting And nickel (Ni) can be at least partially replaced by cobalt (Co) and the ratio of nickel (Ni) and / or cobalt (Co) to silicon (Si) is 3.5: Said material, which is 1-7.5: 1.

2. The percentage expressed in weight percent
Zinc (Zn) 25.0% to 33.0%,
Tin (Sn) 0.5% -1.2%,
Nickel (Ni) 0.8% -2.5%,
Silicon (Si) 0.1% to 0.6%,
Where nickel (Ni) is at least partially replaceable by cobalt (Co),
2. The material according to 1 above, wherein

3. The percentage expressed in weight percent
Zinc (Zn) 27.0% to 31.0%,
Tin (Sn) 0.5% -1.2%,
Nickel (Ni) 0.8% to 2.0%,
Silicon (Si) 0.1% to 0.6%,
Where nickel (Ni) is at least partially replaceable by cobalt (Co),
3. The material according to 1 or 2 above, wherein

4). The ratio of nickel (Ni) and / or cobalt (Co) to silicon (Si) is 4.0: 1 to 5.0: 1, according to any one of the above 1 to 3, material.

5. Optional elements in the above groups, when present, expressed as a percentage by weight:
Phosphorus (P) 0.001% to 0.05%,
Boron (B) 0.02% to 0.5%,
Silver (Ag) 0.02% to 0.5%,
Manganese (Mn) 0.03% to 0.8%,
Chromium (Cr) 0.01% to 0.7%,
Aluminum (Al) 0.02% to 0.5%,
Magnesium (Mg) 0.01% to 0.4%,
Iron (Fe) 0.01% to 0.6%,
Zirconium (Zr) 0.01% to 0.4%,
Arsenic (As) 0.001% to 0.1%,
The material according to any one of 1 to 4 above, which corresponds to:

6). Use of a material according to any one of the preceding claims for an electrically conductive metal strip for the manufacture of electrical contact members, in particular plug contacts.

7). Use of a material for an electrically conductive metal strip according to claim 6, characterized in that the metal strip is tinned.

8). 8. Use of a material for an electrically conductive metal strip according to claim 6 or 7, characterized in that the metal strip has a tin-silver layer.

Claims (8)

電気コンタクト部材を製造するための金属ストリップ用の材料であって、重量%で表して以下の合金成分:
亜鉛(Zn) 25.0%〜33.0%、
錫(Sn) 0.5%〜1.2%、
ニッケル(Ni) 0.8%〜2.5%、
ケイ素(Si) 0.1%〜0.6%、
ジルコニウム(Zr) 0.01〜0.4%、及び
任意選択的に、
リン(P) 0.001%〜0.05%、
ホウ素(B) 0.02%〜0.5%、
マンガン(Mn) 0.03%〜0.8%、
クロム(Cr) 0.01%〜0.7%、
アルミニウム(Al) 0.02%〜0.5%、
マグネシウム(Mg) 0.01%〜0.4%、
ヒ素(As) 0.001%〜0.1%、
の群からの少なくとも一種の元素、
を有する析出硬化可能な銅合金からなり、
ここで、上記群からの全ての元素の割合が最大で4.55%であり、残部は銅(Cu)並びに融解起因の不純物であり、及びニッケル(Ni)は、部分的にコバルト(Co)で置き換え可能であり、及びニッケル(Ni)及び/またはコバルト(Co)とケイ素(Si)の比率は3.5:1〜7.5:1である、前記材料。
A material for a metal strip for manufacturing an electrical contact member, the following alloy components in weight percent:
Zinc (Zn) 25.0% to 33.0%,
Tin (Sn) 0.5% -1.2%,
Nickel (Ni) 0.8% -2.5%,
Silicon (Si) 0.1% to 0.6%,
Zirconium (Zr) 0.01-0.4%, and optionally,
Phosphorus (P) 0.001% to 0.05%,
Boron (B) 0.02% to 0.5%,
Manganese (Mn) 0.03% to 0.8%,
Chromium (Cr) 0.01% to 0.7%,
Aluminum (Al) 0.02% to 0.5%,
Magnesium (Mg) 0.01% to 0.4%,
Arsenic (As) 0.001% to 0.1%,
At least one element from the group of
Consisting of a precipitation-hardenable copper alloy having
Here is 4.55 percentage of all elements at the maximum from the top SL group, and the remainder is copper (Cu) and melting-induced impurities, and nickel (Ni) is part component to cobalt ( Co) and the ratio of nickel (Ni) and / or cobalt (Co) to silicon (Si) is 3.5: 1 to 7.5: 1.
重量%で表した割合が、
亜鉛(Zn) 27.0%〜31.0%、
錫(Sn) 0.5%〜1.2%、
ニッケル(Ni) 0.8%〜2.0%、
ケイ素(Si) 0.1%〜0.6%、
ジルコニウム(Zr) 0.01〜0.4%、
であり、ここで、ニッケル(Ni)は、部分的にコバルト(Co)と置き換え可能である、
ことを特徴とする、請求項1に記載の材料。
The percentage expressed in weight percent
Zinc (Zn) 27.0% to 31.0%,
Tin (Sn) 0.5% -1.2%,
Nickel (Ni) 0.8% to 2.0%,
Silicon (Si) 0.1% to 0.6%,
Zirconium (Zr) 0.01-0.4%,
, And the wherein the nickel (Ni) is a part partial feasible replaced with cobalt (Co),
The material according to claim 1, wherein:
ニッケル(Ni)及び/またはコバルト(Co)とケイ素(Si)との比率が4.0:1〜5.0:1であることを特徴とする請求項1または2に記載の材料。 The material according to claim 1 or 2, wherein the ratio of nickel (Ni) and / or cobalt (Co) to silicon (Si) is 4.0: 1 to 5.0: 1. プラグコンタクトを製造するための金属ストリップ用の、請求項1〜3のいずれか一つに記載の材料。4. A material according to any one of claims 1 to 3 for a metal strip for manufacturing a plug contact. 電気コンタクト部材の製造用の電導性金属ストリップのための、請求項1〜4のいずれか一つに記載の材料の使用。 For conductive metal strip for manufacturing electric contact member, the use of material according to any one of claims 1 to 4. 金属ストリップが錫メッキされていることを特徴とする、請求項5に記載の電導性金属ストリップのための材料の使用。 Use of a material for an electrically conductive metal strip according to claim 5, characterized in that the metal strip is tinned. 金属ストリップが、錫−銀層を有することを特徴とする、請求項5に記載の電導性金属ストリップのための材料の使用。 Use of a material for an electrically conductive metal strip according to claim 5 , characterized in that the metal strip has a tin-silver layer. プラグコンタクトの製造用の、請求項5〜7のいずれか一つに記載の電導性金属ストリップのための材料の使用。Use of a material for an electrically conductive metal strip according to any one of claims 5 to 7 for the manufacture of a plug contact.
JP2015535984A 2012-10-10 2012-10-10 Materials for electrical contact members Active JP6147351B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2012/100316 WO2014056466A1 (en) 2012-10-10 2012-10-10 Material for electric contact components

Publications (2)

Publication Number Publication Date
JP2015537117A JP2015537117A (en) 2015-12-24
JP6147351B2 true JP6147351B2 (en) 2017-06-14

Family

ID=47115095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015535984A Active JP6147351B2 (en) 2012-10-10 2012-10-10 Materials for electrical contact members

Country Status (9)

Country Link
EP (1) EP2906733B1 (en)
JP (1) JP6147351B2 (en)
CN (1) CN104704134A (en)
DK (1) DK2906733T3 (en)
ES (1) ES2593624T3 (en)
HK (1) HK1205768A1 (en)
MX (1) MX351542B (en)
PL (1) PL2906733T3 (en)
WO (1) WO2014056466A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222482A (en) * 2016-08-29 2016-12-14 芜湖楚江合金铜材有限公司 High intensity copper cash that a kind of tensile property is good and preparation method thereof
WO2018079507A1 (en) * 2016-10-28 2018-05-03 Dowaメタルテック株式会社 Copper alloy sheet and method for manufacturing same
DE102018100440A1 (en) * 2018-01-10 2019-07-11 Phoenix Contact Gmbh & Co. Kg A method of making a cold-formable crimp contact, method of making an electro-mechanical crimp connection and crimp contact
JP6713074B1 (en) * 2019-04-16 2020-06-24 Dowaメタルテック株式会社 Copper alloy sheet and method for producing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853059B2 (en) * 1979-12-25 1983-11-26 日本鉱業株式会社 Precipitation hardening copper alloy
JP3413864B2 (en) * 1993-02-05 2003-06-09 三菱伸銅株式会社 Connector for electrical and electronic equipment made of Cu alloy
JP4441669B2 (en) * 2000-09-13 2010-03-31 Dowaメタルテック株式会社 Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
DE10139953A1 (en) * 2001-08-21 2003-03-27 Stolberger Metallwerke Gmbh Material for a metal band
CN1177946C (en) * 2001-09-07 2004-12-01 同和矿业株式会社 Copper alloy for connector use and producing method thereof
DE10308779B8 (en) 2003-02-28 2012-07-05 Wieland-Werke Ag Lead-free copper alloy and its use
JP4068626B2 (en) * 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP2007314859A (en) * 2006-05-29 2007-12-06 Nikko Kinzoku Kk Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
JP5191725B2 (en) * 2007-08-13 2013-05-08 Dowaメタルテック株式会社 Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP5036623B2 (en) 2008-05-15 2012-09-26 Dowaメタルテック株式会社 Copper alloy for connector and manufacturing method thereof
JP5150908B2 (en) 2008-07-07 2013-02-27 Dowaメタルテック株式会社 Copper alloy for connector and its manufacturing method
EP2508635B1 (en) * 2009-12-02 2017-08-23 Furukawa Electric Co., Ltd. Copper alloy sheet and process for producing same
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot

Also Published As

Publication number Publication date
JP2015537117A (en) 2015-12-24
CN104704134A (en) 2015-06-10
MX2015004305A (en) 2015-11-13
ES2593624T3 (en) 2016-12-12
HK1205768A1 (en) 2015-12-24
EP2906733B1 (en) 2016-08-24
WO2014056466A1 (en) 2014-04-17
MX351542B (en) 2017-10-19
EP2906733A1 (en) 2015-08-19
DK2906733T3 (en) 2016-09-26
PL2906733T3 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5563489B2 (en) Sliding bearing alloy made of tin-based white metal
JP5320541B2 (en) Copper alloy material for electrical and electronic parts
JP2009535500A (en) Multi-component copper alloy and method of using the same
JP6126791B2 (en) Cu-Ni-Si copper alloy
KR20170088355A (en) Metal alloys including copper
JP6147351B2 (en) Materials for electrical contact members
KR100786592B1 (en) Electrical conductive metal strip and connector
US6638643B2 (en) Electrically conductive metal tape and plug connector made of it
EP1650317A2 (en) Copper based precipitation hardening alloy
JP2007126739A (en) Copper alloy for electronic material
JPH0469218B2 (en)
US6379478B1 (en) Copper based alloy featuring precipitation hardening and solid-solution hardening
JP2021509934A (en) Copper-zinc alloy
JP2009068114A (en) Copper alloy excellent in press-punching property and its production method
EP1021575B1 (en) Copper based alloy featuring precipitation hardening and solid-solution hardening
CN102220513B (en) Elastic copper alloy and preparation method and application thereof in electric and electrotechnical equipment
KR100874396B1 (en) Materials for metal strip
JP2010065275A (en) Heat-resistant copper alloy with high electroconductivity, and production method therefor
EP1264905A2 (en) Copper based alloy featuring precipitation hardening and solid-solution hardening
CN105821239B (en) The manufacture method for the metal mould casting forging piece being made up of acid bronze alloy
JP7537643B2 (en) Copper alloy material and method for producing the same
KR20230077876A (en) Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
KR101468203B1 (en) Hybrid Copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP2006176886A (en) Copper alloy material for terminal or connector
JP2020059898A (en) Method for producing age-hardening copper alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170516

R150 Certificate of patent or registration of utility model

Ref document number: 6147351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250