JP6127171B1 - 偏波無依存波長フィルタ - Google Patents

偏波無依存波長フィルタ Download PDF

Info

Publication number
JP6127171B1
JP6127171B1 JP2016035720A JP2016035720A JP6127171B1 JP 6127171 B1 JP6127171 B1 JP 6127171B1 JP 2016035720 A JP2016035720 A JP 2016035720A JP 2016035720 A JP2016035720 A JP 2016035720A JP 6127171 B1 JP6127171 B1 JP 6127171B1
Authority
JP
Japan
Prior art keywords
waveguide
sub
mode
polarization
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016035720A
Other languages
English (en)
Other versions
JP2017151370A (ja
Inventor
陽介 太縄
陽介 太縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Photonics Electronics Technology Research Association
Original Assignee
Oki Electric Industry Co Ltd
Photonics Electronics Technology Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Photonics Electronics Technology Research Association filed Critical Oki Electric Industry Co Ltd
Priority to JP2016035720A priority Critical patent/JP6127171B1/ja
Application granted granted Critical
Publication of JP6127171B1 publication Critical patent/JP6127171B1/ja
Publication of JP2017151370A publication Critical patent/JP2017151370A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】Si細線導波路を用いたグレーティング型波長フィルタを偏波無依存で動作可能にする。【解決手段】第1サブ導波路、第3サブ導波路及び第1モード変換部を長さ方向に直列に備え、第2サブ導波路、第4サブ導波路及び第2モード変換部を長さ方向に直列に備えて構成される。第1サブ導波路と第2サブ導波路が構成する第1光結合部では、第1サブ導波路を伝播するX偏波の基本モードは第2サブ導波路にN次モードとして移行し、それ以外は移行しない。第3サブ導波路と第4サブ導波路が構成する第2光結合部では、第3サブ導波路を伝搬する、Y偏波のM次モードは第4サブ導波路に基本モードとして移行可能し、それ以外は移行しない。第1モード変換部は、特定の波長に対して、Y偏波の基本モードをM次モードにモード次数を変換して反射し、第2モード変換部は、特定の波長に対して、X偏波のN次モードを基本モードにモード次数を変換して反射する。【選択図】図1

Description

この発明は、光導波路素子として構成される偏波無依存波長フィルタに関する。
高速信号処理を要する情報処理機器において、電気配線の帯域制限がボトルネックとなっている。このため、情報伝達量の増大に伴い、光配線技術が注目されている。光配線技術では、光ファイバや光導波路素子を伝送媒体とした光デバイスを用いて、情報処理機器内の素子間、ボード間又はチップ間等の情報伝達を光信号で行う。
光デバイスは、光送信器や光受信器等の光学素子を備えて構成される。これらの光学素子は、各光学素子の中心位置(受光位置あるいは発光位置)を設計位置に合せるための複雑な光軸合わせを行った上で、例えばレンズを用いて互いに空間結合することができる。
ここで、各光学素子を結合するための手段として、レンズの代わりに光導波路素子を利用する技術がある(例えば、特許文献1参照)。光導波路素子を利用する場合には、光が光導波路内に閉じ込められて伝搬するため、レンズを利用する場合と異なり、複雑な光軸合わせを必要としない。従って、光デバイスは、その組立工程が簡易となるため、量産に適している。
特に、電子機能回路の基板と同様の材料であるシリコン(Si)を導波路材料とした光導波路素子では、電子機能回路及び光機能回路を一括形成する光電融合(シリコンフォトニクス)の実現が期待されている(例えば、非特許文献1又は非特許文献2参照)。シリコンフォトニクスでは、製造に際して、技術成熟した半導体製造技術を流用することができる。
光導波路の構造としては、リブ型や埋め込み(細線)型導波路が挙げられるが、特に後者は光の閉じ込めの面で有利であり、光導波路素子の小型化に適する。
一方でSi細線導波路は偏波依存性が大きく、Si導波路で形成された波長フィルタも同様に大きな偏波依存性を示す。ここでの偏波依存性とは、互いに直交するTE(Transverse−Electric)偏波及びTM(Transverse−Magnetic)偏波間での動作波長の不一致を指す。このため、Si細線導波路を用いた波長フィルタを偏波状態が時間と共に変動する環境下で使用する場合には、偏波変動に対し適正な設計処置をとらないと、動作が不安定となる。
光導波路素子として構成される波長フィルタには、導波路に周期的な屈折率変調領域を形成したグレーティングを用いたものが知られている。グレーティングはBragg条件を満たす波長のみ選択的に反射する機能をもつため、特定波長を取り出す波長フィルタなどとして利用される。また、Si細線導波路を用いると屈折率変調強度が大きくなり、グレーティングの反射効率が高まるため、素子長を小さく出来るというメリットがある。しかしながら先にも述べたようにSi細線導波路は偏波依存性が大きく、グレーティングにおいても偏波依存性を解決するための措置が必要となる。
Si細線導波路の偏波依存性を緩和する手法としては、互いに直交して導波路を伝搬するTE偏波及びTM偏波の導波モードの伝搬定数(あるいは等価屈折率)を一致させる手法が一般的である。このためには、Siの導波路コアの断面構造を、幅方向と厚み方向とで等方的な正方構造とすれば良い。例えば、SOIウェハのSOI層をSi導波路コアとして用いる場合、導波路コアの幅寸法をSOI層の厚み寸法に合わせて設計すればよい。
特開2011−77133号公報
T.Tsuchizawa.et.al."Microphotonics Devises Based on Silicon Mirrofabrication Technology"IEEE Journal of selected topics quantum electronics, vol.11, No.1, 2005 p.232-240 H.Yamada.et.al"Si Photonic Wire Waveguide Devices"IEEE Journal of selected topics quantum electronics, vol.12, No.6, November/December 2006 p.1371-1379
ところで、Si細線導波路を用いたデバイス開発において、利用されるSOIウェハはSOI層の厚みが220nm、あるいはそれ以下のものが主流となっている。この理由として、シングルモード伝搬条件を確保しつつ、伝搬損失を抑制しやすいということが挙げられる。また、波長フィルタにおける偏波依存性を緩和するためには、Siの導波路コアの断面構造が、幅方向と厚み方向とで等方的な正方構造とされる。従って、設計上のSi細線導波路の導波路コアの断面寸法を幅×厚さ=220×220nmとすればよい。
しかしながら、導波路コアの断面寸法が小さくなるほどSiの導波路コアへの光の閉じ込め作用は弱くなり、導波路外部への放射損失の問題が生じる。波長フィルタの導波路コアの幅及び厚さの寸法として、上記の220nm程度の値を適用しようとすると、例えば曲線部での放射損失を抑制するため曲率半径を大きくとらざるを得ず、現実的に波長フィルタの偏波無依存化が困難となる。
従って、Si細線導波路の伝搬損失を抑制しつつ、かつ波長フィルタの偏波依存性を緩和するには、TE偏波及びTM偏波の導波モードの伝搬定数を一致させる以外の方法が求められる。このため、光導波路素子中に偏波分離素子の構造を導入することも考えられている。しかし、TE偏波及びTM偏波用の2つの光回路が必要となるため、レイアウトサイズが大きく、光導波路素子としては煩雑な構造となってしまう。
この発明は、上述の問題点に鑑みてなされたものである。従って、この発明の目的は、Si細線導波路を用いたグレーティング型波長フィルタとして、偏波無依存で動作可能な、偏波無依存波長フィルタを提供することにある。
上述した目的を達成するために、この発明の偏波無依存波長フィルタは、第1サブ導波路、第3サブ導波路及び第1モード変換部を長さ方向に直列に備える第1導波路と、第2サブ導波路、第4サブ導波路及び第2モード変換部を長さ方向に直列に備える第2導波路とを備えて構成される。
第1サブ導波路と第2サブ導波路は、方向性結合器として機能する第1光結合部を構成する。第1光結合部では、互いに直交して伝播するX偏波及びY偏波に対して、第1サブ導波路を伝播するX偏波の基本モードは、第2サブ導波路にN次モード(Nは0より大きい整数)として移行可能であり、かつ、X偏波の他のモード及びY偏波は第2サブ導波路に移行不可能であり、並びに、第2サブ導波路を伝播するX偏波のN次モードは、第1サブ導波路に基本モードとして移行可能であり、及び、X偏波の他のモード及びY偏波は第1サブ導波路に移行不可能である。
第3サブ導波路と第4サブ導波路は、方向性結合器として機能する第2光結合部を構成する。第2光結合部では、第3サブ導波路を伝搬するY偏波のM次モード(Mは0より大きい整数)は、第4サブ導波路に基本モードとして移行可能であり、かつ、Y偏波の他のモード及びX偏波は、第4サブ導波路に移行不可能であり、並びに、第4サブ導波路を伝搬するY偏波の基本モードは、第3サブ導波路にM次モードとして移行可能であり、かつ、Y偏波の他のモード及びX偏波は第3サブ導波路に移行不可能である。
第1モード変換部は、特定の波長に対して、Y偏波の基本モードをM次モードにモード次数を変換して反射し、第2モード変換部は、特定の波長に対して、X偏波のN次モードを基本モードにモード次数を変換して反射する。
この発明の偏波無依存波長フィルタによれば、偏波に依存することなく所望の信号波長を取り出すことができる。
偏波無依存波長フィルタを示す概略的平面図である。 図1に示す偏波無依存波長フィルタをI−I線で切り取った概略的端面図である。 グレーティング構造を説明するための模式図である。 波長フィルタの動作を説明するための模式図(1)である。 波長フィルタの動作を説明するための模式図(2)である。 シミュレーション結果を示す特性図である。
以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
(構成)
図1及び図2を参照して、この発明の実施の形態による偏波無依存波長フィルタについて説明する。図1は、偏波無依存波長フィルタを示す概略的平面図である。なお、図1では、後述するクラッド層及び支持基板を省略して示してある。図2は、図1に示す偏波無依存波長フィルタをI−I線で切り取った概略的端面図である。
なお、図1において、光の概略的な伝搬方向を矢印zで示す。ただし、光は逆過程が成り立つので、光の伝搬方向は矢印zと反対方向でも成立する。また、以下の説明では、支持基板の厚さに沿った方向を厚さ方向とする。また、光の伝播方向に沿った方向を長さ方向とする。また、長さ方向及び厚さ方向に直交する方向を幅方向とする。
偏波無依存波長フィルタ(以下、単に波長フィルタとも称する。)100は、支持基板10、クラッド層20、第1導波路30及び第2導波路40を備えて構成されている。
支持基板10は、例えば単結晶Siを材料とした平板状体で構成されている。
クラッド層20は、支持基板10上に、支持基板10の上面10aを被覆し、かつ第1導波路30及び第2導波路40を包含して形成されている。クラッド層20は、例えばSiOを材料として形成されている。
第1導波路30及び第2導波路40は、クラッド層20よりも高い屈折率を有する例えばSiを材料としてそれぞれ形成されている。その結果、第1導波路30及び第2導波路40は、実質的な光の伝送路として機能し、入力された光がこれらの平面形状に応じた伝播方向に伝播する。また、第1導波路30及び第2導波路40は、伝播する光が支持基板10へ逃げるのを防止するために、支持基板10の上面10aから例えば少なくとも1〜3μm程度の範囲内の距離で離間して形成されているのが好ましい。
第1導波路30は、入力導波路2、第1サブ導波路31、第3サブ導波路41及び第1モード変換部5を長さ方向に直列に備えている。第1サブ導波路31と第3サブ導波路41は、第1テーパ導波路81を介して光学的に接続されている。第1テーパ導波路81の第1サブ導波路31側の端部81aの幅は、第1サブ導波路31の幅と等しく、第1テーパ導波路81の第3サブ導波路41側の端部81bの幅は、第3サブ導波路41の幅と等しい。
また、第2導波路40は、出力導波路7、第2サブ導波路32、第4サブ導波路42及び第2モード変換部6を長さ方向に直列に備えている。第2サブ導波路32と第4サブ導波路42は、第2テーパ導波路82を介して光学的に接続されている。第2テーパ導波路82の第2サブ導波路32側の端部82aの幅は、第2サブ導波路32の幅と等しく、第2テーパ導波路82の第4サブ導波路42側の端部82bの幅は、第4サブ導波路42の幅と等しい。
第1サブ導波路31と第2サブ導波路32は、平行に配置されており、方向性結合器として機能する第1光結合部3を構成する。また、第3サブ導波路41と第4サブ導波路42は、平行に配置されており、方向性結合器として機能する第2光結合部4を構成する。これに対し、第1モード変換部5と第2モード変換部6とは、互いに光の相互結合が生じないように配置されている。
第1光結合部3を構成する第1サブ導波路31及び第2サブ導波路32の固有モードフィールドをそれぞれE及びEで表わすと、第1サブ導波路31と第2サブ導波路32との各固有モード間でのモード結合係数κabは、以下の式(a1)で与えられる。
Figure 0006127171
ここで、δεは、互いのサブ導波路の存在に起因する、孤立した導波路構造からの誘電率の摂動項である。
例えば、第1サブ導波路31の、第3サブ導波路41とは反対側の一端(入射端)31aに光の入射があった場合、第1サブ導波路31及び第2サブ導波路32の固有モードの伝搬定数をそれぞれβ及びβとすると、伝搬軸座標zにおけるそれぞれの固有モードの電力変化率は、以下の式(a2)〜(a4)で表わすことができる。
Figure 0006127171
ここで伝搬軸は、長手方向に沿った軸であり、入射端31aをz=0とする。また、第1サブ導波路31から第3サブ導波路41に向かう方向を正とする。
第1光結合部3において、第1サブ導波路31から第2サブ導波路32へ、あるいは、第2サブ導波路32から第1サブ導波路31へ、100%電力を移行させるための完全結合条件は、上記(a2)〜(a4)式からβ=βとなる。すなわち、第1サブ導波路31を伝搬するモードの伝搬定数と、第2サブ導波路32を伝搬するモードの伝搬定数とが一致することが求められる。
第1サブ導波路31と第2サブ導波路32とが同一構造でかつ相互結合に寄与するモードの次数が一致する場合には、β=βは必然的に満たされ、第1光結合部3を構成する第1サブ導波路31及び第2サブ導波路32の間では完全結合が可能となる。しかしながら、第1サブ導波路31と第2サブ導波路32とで構造が異なり、相互結合に寄与するモードの次数が同次数の場合、基本的にはβ≠βとなり、両モードの伝搬定数の乖離が大きくなるほど2つのモード間での相互結合は無視できるようになる。
第1サブ導波路31と第2サブ導波路32の構造が異なる場合に、β=βの完全結合条件を満たすための方法として、例えば、相互結合に寄与するモードとして互いに次数の異なるモードを利用することが考えられる。
そこで第1光結合部3を以下の式(1)を満たすように設計する。
Figure 0006127171
ここで、βaX0及びβaXiは、それぞれ、第1サブ導波路31における、X偏波に対する基本モード及びi次モード(iは0以上の整数)の伝搬定数を示している。βaYjは、第1サブ導波路31における、Y偏波に対するj次モード(jは0以上の整数)の伝搬定数を示している。βbX0及びβbXNは、それぞれ、第2サブ導波路32における、X偏波に対する基本モード及びN次モード(Nは0より大きい整数)の伝搬定数を示している。βbYkは、第2サブ導波路32における、Y偏波に対するk次モード(kは0以上の整数)の伝搬定数を示している。また、X偏波及びY偏波は、互いに直交する偏波であり、ここでは、TE偏波及びTM偏波の何れかである。
上記式(1)の関係を満足するとき、第1光結合部3では、X偏波に対して、第1サブ導波路31における基本モードと、第2サブ導波路32におけるN次モードの間でのみモードの相互結合が生じ、第1サブ導波路31と第2サブ導波路32の間での電力の移行が起こる。実際には、他のモード間での相互結合も生じ得るが、ここでは比較的導波路コアへの閉じ込め作用が強い導波モードを扱い、式(1)で与えられるモード結合係数|κab|が伝搬定数の乖離|β−β|よりも十分小さいものとする。従って、他のモード間では第1サブ導波路31と第2サブ導波路32の間の電力移行は無視できる。
つまり、第1光結合部3において、第1サブ導波路31に入力された、X偏波の基本モードは第2サブ導波路32にN次モードとして移行する。一方、第1サブ導波路31に入力された、Y偏波及びX偏波の他のモードは第2サブ導波路32に移行しない。また、第2サブ導波路32に入力された、X偏波のN次モードは、第1サブ導波路31に基本モードとして移行しうるが、X偏波の他のモード及びY偏波は第1サブ導波路31に移行しない。
第2光結合部4は、第1光結合部3と同様の思想で構成され、以下の式(2)を満たすように設計される。
Figure 0006127171
ここで、βcXi´は、第3サブ導波路41における、X偏波に対するi´モード(i´は0以上の整数)の伝搬定数を示している。βcY0及びβcYMは、それぞれ、第3サブ導波路41における、Y偏波に対する基本モード及びM次モード(Mは0より大きい整数)の伝搬定数を示している。βdXj´は、第4サブ導波路42における、X偏波に対するj´次モード(j´は0以上の整数)の伝搬定数を示している。βdY0及びβdYk´は、それぞれ、第4サブ導波路42における、Y偏波に対する基本モード及びk´次モード(k´は0以上の整数)の伝搬定数を示している。
上記式(2)の関係を満足するとき、第2光結合部4では、第3サブ導波路41におけるY偏波のM次モードと、第4サブ導波路42におけるY偏波の基本モードの間でのみモードの相互結合が生じる。一方、Y偏波の他のモードやX偏波の間でのモード相互結合は生じない。
つまり、第2光結合部4において、第3サブ導波路41に入力されたY偏波のM次モードは第4サブ導波路42に基本モードとして移行する。一方、第3サブ導波路41に入力されたY偏波の他のモード及びX偏波は、第4サブ導波路42に移行しない。また、第4サブ導波路42に入力された、Y偏波の基本モードは、第3サブ導波路41にM次モードとして移行しうるが、Y偏波の他のモード及びX偏波は第3サブ導波路41に移行しない。
第1モード変換部5及び第2モード変換部6は、コア側壁に周期的屈折率変調が形成されたグレーティングを備えている。図3を参照して、第1モード変換部5及び第2モード変換部6のグレーティング構造を説明する。図3は、グレーティング構造を説明するための模式図である。
グレーティングは、基準導波路コア幅をWとして、コア側壁に変調幅Dの凸凹領域が変調周期Λに従って交互に配置された構造となっている。また、コア両サイドの凸凹領域はz軸に沿って互いにΛ/2だけずれて配置される。
第1モード変換部5及び第2モード変換部6におけるグレーティングのBragg条件として、以下の式(3)を満たすように設計される。
Figure 0006127171
ここで、Λ及びΛは、それぞれ第1モード変換部5及び第2モード変換部6の屈折率変調周期を示す。nY0及びnYMは、それぞれ、第1モード変換部5における、Y偏波の基本モードとM次モードの等価屈折率を示す。また、nXN及びnX0は、それぞれ、第2モード変換部6における、X偏波のN次モードと基本モードの等価屈折率を示す。λは、ブラッグ波長である。各導波モードの等価屈折率は波長依存性を含む。このため、上記式(3)で与えられるBragg条件は、ブラッグ波長λでのみ成立し、特定の波長だけを選別することが可能となる。
なお、ここでは、第1導波路30が、入力導波路2、第1サブ導波路31、第3サブ導波路41及び第1モード変換部5を、この順に長さ方向に直列に備え、第2導波路40が、出力導波路7、第2サブ導波路32、第4サブ導波路42及び第2モード変換部6を、この順に長さ方向に直列に備える例を説明したが、接続順序は、これに限定されない。第1サブ導波路31と第3サブ導波路41を入れ換え、かつ、第2サブ導波路32と第4サブ導波路42を入れ換えても良い。すなわち、第1導波路30が、入力導波路2、第3サブ導波路41、第1サブ導波路31及び第1モード変換部5を、この順に長さ方向に直列に備え、第2導波路40が、出力導波路7、第4サブ導波路42、第2サブ導波路32及び第2モード変換部6を、この順に長さ方向に直列に備える構成にしても良い。
このように、入力導波路2を経て入力された光が、第1光結合部3及び第2光結合部4をこの順に経て、第1モード変換部5及び第2モード変換部6で特定の波長を反射させて、第2光結合部4及び第1光結合部3をこの順に経て、出力導波路7を経て出力する構成としても、入力導波路2を経て入力された光が、第2光結合部4及び第1光結合部3をこの順に経て、第1モード変換部5及び第2モード変換部6で特定の波長を反射させて、第1光結合部3及び第2光結合部4をこの順に経て、出力導波路7を経て出力する構成としても、同様の効果を得ることができる。
(動作)
図4及び図5を参照して、波長フィルタの動作を説明する。図4及び図5は、波長フィルタの動作を説明するための模式図である。図4は、X偏波が入力された場合の動作を示し、図5は、Y偏波が入力された場合の動作を示している。
入力導波路2を経て第1サブ導波路31の一端へと入力された基本モードの光信号は、第1光結合部3を通過する際、上記式(1)の関係より、X偏波については第2サブ導波路32にN次モードとして移行する(図4中、矢印Iで示す。)。一方、Y偏波については第2サブ導波路32に移行せずに第1サブ導波路31を伝搬する。
第1サブ導波路31を伝播するY偏波の基本モードは、第1テーパ導波路81を経て第3サブ導波路41に入力される。また、第2サブ導波路32を伝播するX偏波のN次モードは、第2テーパ導波路82を経て第4サブ導波路42に入力される(図4中、矢印IIで示す)。
第2光結合部4では、上記式(2)の関係から、第3サブ導波路41を伝搬するY偏波の基本モードは第4サブ導波路42の導波モードと相互結合を生じない。このため、Y偏波の基本モードは第4サブ導波路42に移行せず、第3サブ導波路41をそのまま伝搬し、第1モード変換部5に送られる。一方、第4サブ導波路42を伝搬するX偏波のN次モードは、第3サブ導波路41の導波モードと相互結合を生じない。このため、X偏波のN次モードは、第3サブ導波路41に移行せず、第4サブ導波路42をそのまま伝搬し第2モード変換部6に送られる。
第1モード変換部5には、第3サブ導波路41からY偏波の基本モードが入力される。Y偏波の基本モードは上記式(3)に従って、M次モードにモード次数を変換して反射される(図5中、矢印Iで示す)。反射されたY偏波のM次モードは、第3サブ導波路41に送られる。
一方、第2モード変換部6には、第4サブ導波路42からX偏波のN次モードが入力される。X偏波のN次モードは上記式(3)に従って、基本モードにモード次数を変換して反射される(図4中、矢印IIIで示す。)。反射されたX偏波の基本モードは、第4サブ導波路42に送られる。
第2光結合部4では、上記式(2)の関係より、第3サブ導波路41を伝搬するY偏波のM次モードは、第4サブ導波路42の基本モードと結合し、第4サブ導波路42にY偏波の基本モードとして移行する(図5中、矢印IIで示す)。また、第4サブ導波路42を伝搬するX偏波の基本モードは、第3サブ導波路41の導波モードと結合せず、第4サブ導波路42をそのまま伝搬する。
第4サブ導波路42を伝搬する、X偏波の基本モード及びY偏波の基本モードは、第2テーパ導波路82を介して第2サブ導波路32に送られる。X偏波の基本モード及びY偏波の基本モードは、上記式(1)の関係より、第1サブ導波路31の導波モードと相互結合することなく、第2サブ導波路32をそのまま伝搬し、出力導波路7に送られる。
この結果、X偏波及びY偏波ともに出力導波路7から基本モードの光信号として取り出すことができ、偏波に依存することなく波長フィルタとしての機能をもたせることが可能となる。
以上説明したように、この発明の偏波無依存波長フィルタによると、偏波に依存することなく所望の信号波長を取り出すことができる。また、互いに直交する偏波に対して各モード変換領域を独立して制御できるので、設計が容易になる。
ここで、式(1)を満たす第1光結合部3と式(2)を満たす第2光結合部4の順列構造は、X偏波とY偏波の基本モードが入力されると、Y偏波の基本モードとX偏波のN次モードに空間的に分離する、偏光ビームスプリッタ(PBS:Polarization Beam Splitter)として振舞うことを示している。
また、式(2)を満たす第2光結合部4と式(1)を満たす第1光結合部3の順列構造は、Y偏波のM次モードとX偏波の基本モードが入力されると、これらを合波する、偏波ビームコンバイナ(PBC:Polarization Beam Combiner)として振る舞うことを示している。
また、第1光結合部3と第2光結合部4とは、伝搬方向に沿って第1光結合部3と第2光結合部4との接続順序を入れ替えても同様の効果を得ることができる。
(実施例)
偏波無依存波長フィルタを実現するため、先ず、基本となる光導波路構造の検討をした。例えば、SOIウェハを用いて偏波無依存波長フィルタを作製する場合、支持基板及びコアをSiとし、クラッドをSiOとする。
次に波長フィルタが備える第1光結合部3及び第2光結合部4に、式(1)及び式(2)の特性を与えるための各導波路の条件寸法を考える。Siの導波路コアの厚さは、220nmSOIを用いた場合を想定し、一律に220nmとした。前提として、X偏波をTE偏波とし、Y偏波をTM偏波とし、また、簡単化のためN=M=1とする。すなわち、第1光結合部3では、第1サブ導波路31を導波するTE偏波の基本モードと第2サブ導波路32を導波するTE偏波の1次モードとが相互結合し、第2光結合部4では、第3サブ導波路41を導波するTM偏波の1次モードと第4サブ導波路42を導波するTM偏波の基本モードとが相互結合する。
各々導波路の固有モードの解析には有限要素法を用いた。ここでは、入力される光の波長を1.55μmとしている。
第1光結合部3において、式(1)の関係を満足するため、導波路コアの幅をパラメータとして導波モードの解析をした。第1サブ導波路31の導波路コアの幅を0.36μm、第2サブ導波路32の導波路コアの幅を0.76μmとしたときの各導波モードの等価屈折率(伝搬定数と等価屈折率は比例関係にあるため)を以下の表1に示す。
Figure 0006127171
表1では第1サブ導波路31のTE偏波の基本モードの等価屈折率(2.096957)と第2サブ導波路32のTE偏波の1次モードの等価屈折率(2.094962)がほぼ一致し、かつ、他の導波モード間では、等価屈折率が一致していないことが分かる。すなわち式(1)の関係が満たされている。第1サブ導波路31と第2サブ導波路32との間隔S1は、モード結合係数κabを小さくして、余分なモード間の結合を抑制するため、0.3μmとした。さらに式(a2)、(a3)から第1サブ導波路31のTE偏波の基本モードを第2サブ導波路32のTE偏波の1次モードへと100%移行するための並走長L1を23μmとした。
同様に第2光結合部4においても、式(2)の関係を満足するため、導波路コアの幅をパラメータとして導波モードの解析をした。第3サブ導波路41の導波路コアの幅 を1.40μm、第4サブ導波路42の導波路コアの幅を0.58μmとしたときの各導波モードの等価屈折率を上記表1に示す。
表1では第3サブ導波路41のTM偏波の1次モードの等価屈折率(1.828818)と第4サブ導波路42のTM偏波の基本モードの等価屈折率(1.827764)がほぼ一致し、かつ他の導波モード間では、等価屈折率が一致していないことが分かる。すなわち式(2)の関係が満たされている。第3サブ導波路41と第4サブ導波路42との間隔S2は、モード結合係数κabを小さくして、余分なモード間の結合を抑制するため、0.45μmとした。さらに、第3サブ導波路41のTM偏波の1次モードを第4サブ導波路42のTM偏波の基本モードへと100%移行するための並走長L2を46.9μmとした。
第1サブ導波路31と第3サブ導波路41とは光学的に接続されるが、幅の不一致を解消するため、両者の間に第1テーパ導波路81が挿入される。また、第2サブ導波路32と第4サブ導波路42とは光学的に接続されるが、幅の不一致を解消するため、両者の間には第2テーパ導波路82が挿入される。第1テーパ導波路81及び第2テーパ導波路82が並走する区間において生じる余分なモード間結合を抑制するため、これら第1テーパ導波路81及び第2テーパ導波路82の長さは、この部分での放射損失の影響を許容できる範囲で極力短くすることが好ましい。
次に、第1モード変換部5及び第2モード変換部6の設計について説明する。第3サブ導波路41の光学経路に接続される第1モード変換部5では、TM偏波の基本モードをTM偏波の1次モードにモード変換して反射させる必要がある。このため、第1モード変換部5では、少なくともTM偏波に対して基本モードと1次モードとが導波可能である条件が求められる。そこで有限要素法を用いた固有モード解析をし、基準導波路幅Wを0.9μmとした。上記式(3)を考慮し、ブラッグ波長λが1.55μmとなるように、屈折率変調周期Λを0.438μmとした。また、屈折率の変調幅Dは短い素子長で十分な反射強度を得られるようにするため0.15μmとした。
さらに、第4サブ導波路42の光学経路に接続される第2モード変換部6では、TE偏波の1次モードをTE偏波の基本モードにモード変換して反射させる必要がある。このため、第2モード変換部6では、少なくともTE偏波に対して基本モードと1次モードとが導波可能である条件が求められる。そこで有限要素法を用いた固有モード解析をし、基準導波路幅Wを0.55μmとした。上記式(3)を考慮し、ブラッグ波長λを1.55μmとなるように、屈折率変調周期Λを0.379μmとした。また、屈折率の変調幅Dは短い素子長で十分な反射強度を得られるようにするため0.1μmとした。
上記の設計で得られた波長フィルタの波長応答特性を確認するため、FDTD(Finite Differential Time Domain)法による光学シミュレーションをした。入力導波路2から基本モード信号を入力し、出力導波路7における基本モードのパワーをモニタした。その結果を図6に示す。図6はシミュレーション結果を示す特性図である。図6では、横軸に波長(μm)を取って示し、縦軸に信号強度(dB)を取って示している。図6に示されるようにブラッグ波長λに対応する1.55μm付近において、TE偏波とTM偏波の両者に対する出力導波路7へのスペクトルピークが確認でき、設計した波長フィルタが偏波によらず動作していることが示された。厳密にはTM偏波のスペクトルピークが若干長波にシフトしているが、これはFDTDの計算グリッドが若干大きく(粗く)実効的な屈折率が設計からずれてしまったためであると考えられる。FDTDの計算グリッドを少々大きくせざるをえない原因は、シミュレーションに用いる計算機の実装メモリによる制限のためである。従って、TM偏波で観測された設計波長からの波長シフトは本波長フィルタの本質的なものではないと考えられる。
2 入力導波路
3 第1光結合部
4 第2光結合部
5 第1モード変換部
6 第2モード変換部
7 出力導波路
10 支持基板
20 クラッド層
30 第1導波路
31 第1サブ導波路
32 第2サブ導波路
40 第2導波路
41 第3サブ導波路
42 第4サブ導波路
81 第1テーパ導波路
82 第2テーパ導波路
100 偏波無依存波長フィルタ

Claims (4)

  1. 第1サブ導波路、第3サブ導波路及び第1モード変換部を長さ方向に直列に備える第1導波路と、
    第2サブ導波路、第4サブ導波路及び第2モード変換部を長さ方向に直列に備える第2導波路と
    を備え、
    前記第1サブ導波路と前記第2サブ導波路は、方向性結合器として機能する第1光結合部を構成し、
    前記第1光結合部では、互いに直交して伝播するX偏波及びY偏波に対して、第1サブ導波路を伝播するX偏波の基本モードは、第2サブ導波路にN次モード(Nは0より大きい整数)として移行可能であり、かつ、X偏波の他のモード及びY偏波は第2サブ導波路に移行不可能であり、並びに、第2サブ導波路を伝播するX偏波のN次モードは、第1サブ導波路に基本モードとして移行可能であり、及び、X偏波の他のモード及びY偏波は第1サブ導波路に移行不可能であり、
    前記第3サブ導波路と前記第4サブ導波路は、方向性結合器として機能する第2光結合部を構成し、
    第2光結合部では、第3サブ導波路を伝搬するY偏波のM次モード(Mは0より大きい整数)は、第4サブ導波路に基本モードとして移行可能であり、かつ、Y偏波の他のモード及びX偏波は、第4サブ導波路に移行不可能であり、並びに、第4サブ導波路を伝搬するY偏波の基本モードは、第3サブ導波路にM次モードとして移行可能であり、かつ、Y偏波の他のモード及びX偏波は第3サブ導波路に移行不可能であり、
    前記第1モード変換部は、特定の波長に対して、Y偏波の基本モードをM次モードにモード次数を変換して反射し、
    前記第2モード変換部は、特定の波長に対して、X偏波のN次モードを基本モードにモード次数を変換して反射する
    ことを特徴とする偏波無依存波長フィルタ。
  2. 第1サブ導波路、第3サブ導波路及び第1モード変換部を長さ方向に直列に備える第1導波路と、
    第2サブ導波路、第4サブ導波路及び第2モード変換部を長さ方向に直列に備える第2導波路と
    を備え、
    前記第1サブ導波路と前記第2サブ導波路は、方向性結合器として機能する第1光結合部を構成し、
    前記第3サブ導波路と前記第4サブ導波路は、方向性結合器として機能する第2光結合部を構成し、
    前記第1モード変換部は、特定の波長に対して、Y偏波の基本モードをM次モード(Mは0より大きい整数)にモード次数を変換して反射し、
    前記第2モード変換部は、特定の波長に対して、X偏波のN次モード(Nは0より大きい整数)を基本モードにモード次数を変換して反射し、
    前記第1サブ導波路における、X偏波に対する基本モード及びi次モード(iは0以上の整数)の伝搬定数をそれぞれβaX0及びβaXiとし、前記第1サブ導波路における、Y偏波に対するj次モード(jは0以上の整数)の伝搬定数をβaYjとし、前記第2サブ導波路における、X偏波に対する基本モード及びN次モードの伝搬定数をそれぞれβbX0及びβbXNとし、前記第2サブ導波路における、Y偏波に対するk次モード(kは0以上の整数)の伝搬定数をβbYkとしたとき、以下の式(1)が成り立ち、
    前記第3サブ導波路における、X偏波に対するi´モード(i´は0以上の整数)の伝搬定数をβcXi´とし、前記第3サブ導波路における、Y偏波に対する基本モード及びM次モードの伝搬定数を、それぞれβcY0及びβcYMとし、前記第4サブ導波路における、X偏波に対するj´次モード(j´は0以上の整数)の伝搬定数をβdXj´とし、前記第4サブ導波路における、Y偏波に対する基本モード及びk´次モード(k´は0以上の整数)の伝搬定数を、それぞれβdY0及びβdYk´としたとき、以下の式(2)が成り立つ
    ことを特徴とする偏波無依存波長フィルタ。
    Figure 0006127171
    Figure 0006127171
  3. 前記第1モード変換部及び第2モード変換部は、
    コア側壁に周期的に屈折率変調領域が形成されたグレーティングであり、
    前記第1モード変換部及び第2モード変換部の屈折率変調周期をΛ及びΛとし、
    前記第1モード変換部における、Y偏波の基本モードとM次モードの等価屈折率をnY0及びnYMとし、前記第2モード変換部における、X偏波のN次モードと基本モードの等価屈折率を、それぞれ、nXN及びnX0とし、ブラッグ波長をλとしたときに、以下の式(3)を満たし、
    前記特定の波長が前記ブラッグ波長である
    ことを特徴とする請求項1又は2に記載の偏波無依存波長フィルタ。
    Figure 0006127171
  4. 前記第1サブ導波路と前記第3サブ導波路は、第1テーパ導波路を介して光学的に接続され、前記第1テーパ導波路の前記第1サブ導波路側の端部の幅は、前記第1サブ導波路の幅と等しく、前記第1テーパ導波路の前記第3サブ導波路側の端部の幅は、前記第3サブ導波路の幅と等しく、
    前記第2サブ導波路と前記第4サブ導波路は、第2テーパ導波路を介して光学的に接続され、前記第2テーパ導波路の前記第2サブ導波路側の端部の幅は、前記第2サブ導波路の幅と等しく、前記第2テーパ導波路の前記第4サブ導波路側の端部の幅は、前記第4サブ導波路の幅と等しい
    ことを特徴とする請求項1〜3のいずれか一項に記載の偏波無依存波長フィルタ。
JP2016035720A 2016-02-26 2016-02-26 偏波無依存波長フィルタ Active JP6127171B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016035720A JP6127171B1 (ja) 2016-02-26 2016-02-26 偏波無依存波長フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035720A JP6127171B1 (ja) 2016-02-26 2016-02-26 偏波無依存波長フィルタ

Publications (2)

Publication Number Publication Date
JP6127171B1 true JP6127171B1 (ja) 2017-05-10
JP2017151370A JP2017151370A (ja) 2017-08-31

Family

ID=58704651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035720A Active JP6127171B1 (ja) 2016-02-26 2016-02-26 偏波無依存波長フィルタ

Country Status (1)

Country Link
JP (1) JP6127171B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075766A (zh) * 2021-04-06 2021-07-06 浙江大学 一种基于双层结构的偏振不敏感波导光栅滤波器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771600B2 (ja) * 2019-01-15 2020-10-21 沖電気工業株式会社 光導波路回路
JP6656435B1 (ja) * 2019-01-15 2020-03-04 沖電気工業株式会社 光導波路回路
JP7070738B1 (ja) * 2021-02-19 2022-05-18 沖電気工業株式会社 光波長フィルタ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114847A (ja) * 1997-06-20 1999-01-22 Kokusai Denshin Denwa Co Ltd <Kdd> 結合導波路構造
US20050123241A1 (en) * 2003-12-03 2005-06-09 Moti Margalit Polarization independent frequency selective optical coupler
JP2014066905A (ja) * 2012-09-26 2014-04-17 Oki Electric Ind Co Ltd 光導波路素子
JP2015059982A (ja) * 2013-09-17 2015-03-30 沖電気工業株式会社 光導波路素子及びその製造方法
JP2015121696A (ja) * 2013-12-24 2015-07-02 沖電気工業株式会社 光導波路素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114847A (ja) * 1997-06-20 1999-01-22 Kokusai Denshin Denwa Co Ltd <Kdd> 結合導波路構造
US20050123241A1 (en) * 2003-12-03 2005-06-09 Moti Margalit Polarization independent frequency selective optical coupler
JP2014066905A (ja) * 2012-09-26 2014-04-17 Oki Electric Ind Co Ltd 光導波路素子
JP2015059982A (ja) * 2013-09-17 2015-03-30 沖電気工業株式会社 光導波路素子及びその製造方法
JP2015121696A (ja) * 2013-12-24 2015-07-02 沖電気工業株式会社 光導波路素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075766A (zh) * 2021-04-06 2021-07-06 浙江大学 一种基于双层结构的偏振不敏感波导光栅滤波器
CN113075766B (zh) * 2021-04-06 2022-01-11 浙江大学 一种基于双层结构的偏振不敏感波导光栅滤波器

Also Published As

Publication number Publication date
JP2017151370A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
Xu et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform
Dai et al. Polarization management for silicon photonic integrated circuits
Niemi et al. Wavelength-division demultiplexing using photonic crystal waveguides
Dai et al. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects
JP6194789B2 (ja) 光導波路素子
US9588295B2 (en) Directional coupler and design method thereof, optical waveguide element and wavelength filter
US8503839B2 (en) Composite subwavelength-structured waveguide in optical systems
Jeong et al. Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer
JP6402519B2 (ja) 光導波路素子
JP5880209B2 (ja) 光素子
JP6127171B1 (ja) 偏波無依存波長フィルタ
JP6300437B2 (ja) 光導波路素子
JP2014170056A (ja) 光導波路素子
JP6397862B2 (ja) 光導波路素子
Zhou et al. Silicon photonic devices based on binary blazed gratings
Kannaiyan et al. 2D-Photonic Crystal based Demultiplexer for WDM Systems–A Review
Liou et al. Design and fabrication of ring resonator spectral response through-drop wavelengths selective
González‐Andrade et al. Spatial and Polarization Division Multiplexing Harnessing On‐Chip Optical Beam Forming
He et al. Ultra-compact silicon TM-pass polarizer with a photonic crystal nanobeam structure
Teng Design and characterization of optical fiber-to-chip edge couplers and on-chip mode division multiplexing devices
Mookherjea et al. Microring resonators in integrated optics
Janz et al. MICROPHOTONICS Current challenges and applications
Zhu et al. Novel high efficiency vertical optical coupler using subwavelength high contrast grating
Naghdi Silicon subwavelength grating structures for wavelength filtering applications
Shirane et al. Optical add-drop multiplexers based on autocloned photonic crystals

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6127171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350