JP6116086B2 - Portal culvert structure - Google Patents

Portal culvert structure Download PDF

Info

Publication number
JP6116086B2
JP6116086B2 JP2012191277A JP2012191277A JP6116086B2 JP 6116086 B2 JP6116086 B2 JP 6116086B2 JP 2012191277 A JP2012191277 A JP 2012191277A JP 2012191277 A JP2012191277 A JP 2012191277A JP 6116086 B2 JP6116086 B2 JP 6116086B2
Authority
JP
Japan
Prior art keywords
horizontal member
side wall
view
cross
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012191277A
Other languages
Japanese (ja)
Other versions
JP2014047537A (en
Inventor
岩佐 隆
隆 岩佐
三浦 昌雄
昌雄 三浦
Original Assignee
岩佐 隆
隆 岩佐
三浦 昌雄
昌雄 三浦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩佐 隆, 隆 岩佐, 三浦 昌雄, 昌雄 三浦 filed Critical 岩佐 隆
Priority to JP2012191277A priority Critical patent/JP6116086B2/en
Publication of JP2014047537A publication Critical patent/JP2014047537A/en
Application granted granted Critical
Publication of JP6116086B2 publication Critical patent/JP6116086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水路或いは道路を立体交差して構築する門形カルバートで、水平部材と左右側壁部材とが一体成型されたプレキャストコンクリート製の門形カルバートを軽量化して左右側壁の内幅(スパン)を拡幅した門形カルバート構造に関する。   The present invention is a portal culvert constructed by three-dimensionally intersecting a waterway or a road, and reduces the weight of a precast concrete portal culvert in which a horizontal member and left and right side wall members are integrally molded, and the inner width (span) of the left and right side walls. This relates to a gate-shaped culvert structure that is widened.

図17に示すのは、従来のプレキャストコンクリート製の門形カルバートで施工した斜視図で、手前の左右側壁下部を省略している。道路Rの両側が平行な両路端外側近傍に設けた左右基礎Fの上部に嵌合して立体交差する従来の門形カルバートは、水平部材1と左側壁部材2及び右側壁部材3の部材構成で隅部4を成して一体成型されている。何れの部材も版状の長方形断面で構成され、水平部材1の上面には断面欠損を伴う連接時の接合手段5を備えて連結している。 FIG. 17 is a perspective view constructed with a conventional portal culvert made of precast concrete, in which the lower left and right side walls in the front are omitted. Conventional gate-shaped culverts both sides of the road R is crossing to fit on top of the right and left basal F provided in the Ryomichitan outside near parallel, the members of the horizontal member 1 and the left side wall member 2 and the right side wall member 3 The corner portion 4 is formed integrally with the structure. All of the members have a plate-like rectangular cross section, and are connected to the upper surface of the horizontal member 1 with a joining means 5 at the time of connection with a cross-sectional defect.

図18に示すのは、立体交差する場合の概略平面図である。図18(a)は、道路Rや水路Wの両端が平行で幅員が一定で、立体交差する距離は最短で直交している。図18(b)は、道路Rや水路Wの両端が平行で幅員が一定で、立体交差する距離は右方向斜めの斜長距離で斜交している。図18(c)は、道路Rや水路Wの片端を拡幅して幅員が変化して増加しており、立体交差する距離は幅員の変化に伴って増加して交差している。図18(d)は、道路Rや水路Wの両端を拡幅して幅員が変化して増加しており、立体交差する距離は幅員の変化に伴って増加して交差している。尚、図示を省略するが、左右側壁部材2,3は、水平土圧を面とて受け持つことから、平面視する交差下の道路Rや水路Wの両端に沿わせた角度に偏向することを伴う。   FIG. 18 is a schematic plan view in the case of a three-dimensional intersection. In FIG. 18A, both ends of the road R and the water channel W are parallel, the width is constant, and the distance at which the three-dimensional intersection intersects is shortest and orthogonal. In FIG. 18B, both ends of the road R and the water channel W are parallel and the width is constant, and the distance at which the three-dimensional intersection intersects is a diagonally long distance oblique to the right. In FIG. 18C, the width of one end of the road R or the water channel W is widened and the width changes, and the distance of the three-dimensional intersection increases and crosses with the change of the width. In FIG. 18 (d), the width of the road R or the water channel W is widened and the width is changed and increased, and the three-dimensional crossing distance is increased and the width intersects with the change of the width. In addition, although illustration is abbreviate | omitted, since the right-and-left side wall members 2 and 3 take a horizontal earth pressure as a surface, they deflect to the angle along the both ends of the road R and the waterway W under the crossing which are planarly viewed. Accompany.

門形カルバートを設計する場合、左側壁部材2と右側壁部材3との内幅距離(スパン)すなわち道路Rや水路Wの幅員に応じて設計されることが多い。道路Rの幅員が従来より広い場合、道路Rの幅員が変化して広くなる場合、または、高低差等の地形的理由から車線を段差にして幅員を広げなければならない場合(図示省略)では、左右側壁の内幅(スパン)を拡幅する必要があるが、門形カルバート総重量の要因から対応できないケースが多い。前記要因とは、成型過程では工場のクレーン能力等,運搬過程では車輌搬送能力,施工過程では現場のクレーン能力等の設備・機械的要因により制約される場合が多い。   When designing the portal culvert, it is often designed according to the inner width distance (span) between the left side wall member 2 and the right side wall member 3, that is, the width of the road R or the water channel W. When the width of the road R is wider than before, when the width of the road R changes and becomes wider, or when the width of the road R has to be widened by a lane for topographical reasons such as height difference (not shown), Although it is necessary to widen the inner width (span) of the left and right side walls, there are many cases that cannot be dealt with due to the total weight of the portal culvert. In many cases, the factors are limited by equipment and mechanical factors such as a factory crane capacity in the molding process, a vehicle transport capacity in the transportation process, and a crane capacity in the field in the construction process.

また、道路Rに対して平面視で右方向斜めや左方向斜めに立体交差するいわゆる斜角となる場合には、道路Rの幅員に対して距離の長い斜長の幅員として対応する必要がある。この場合には、前記の設備・機械的要因と共に、平面視する左右側壁部材2,3を道路Rに沿わせて角度偏向する必要があり、成型過程の設備的要因から制約を受ける。尚、前記する道路Rの幅員が変化して広くなる場合も同様に、道路Rに沿わせて角度偏向する必要がある。   In addition, when the road R has a so-called oblique angle that is three-dimensionally crossed obliquely rightward or leftward in plan view, the width of the road R needs to be handled as an oblique width having a long distance. . In this case, it is necessary to deflect the left and right side wall members 2 and 3 in plan view along the road R together with the equipment and mechanical factors described above, which is restricted by equipment factors in the molding process. In addition, when the width of the road R changes and becomes wider, it is necessary to deflect the angle along the road R in the same manner.

特開2004−218372号公報JP 2004-218372 A 特開2002−70135号公報JP 2002-70135 A 特開2004−142159号公報JP 2004-142159 A 特開2006−51744号公報JP 2006-51744 A

本発明の課題は、軽量化して左右側壁の内幅(スパン)を拡幅することであり、一体成型されるプレキャストコンクリート製の門形カルバートを構成する各部材が断面性能を損なわずに版状の長方形断面形状から縦リブ状に立設する断面形状に変更して軽量化し、左右側壁の内幅を拡幅しても成型過程・運搬過程・施工過程で支障とならない門形カルバート構造を提供することである。更に、連設施工時には縦リブ間の空間に容易に接合可能な手段を備え、連設施工後においても外力を一様に負担する手段を備えた門形カルバート構造を提供することである。 An object of the present invention is to reduce the weight and widen the inner width (span) of the left and right side walls, and each member constituting the monolithic precast concrete portal culvert is formed into a plate-like shape without impairing the cross-sectional performance. To reduce the weight by changing from a rectangular cross-sectional shape to a vertical rib-shaped cross-sectional shape, and to provide a portal culvert structure that does not hinder the molding process, transportation process, and construction process even if the inner width of the left and right side walls is increased. It is. Furthermore, it is to provide a portal culvert structure provided with means that can be easily joined to the space between the longitudinal ribs at the time of continuous construction, and provided with means for uniformly burdening external force even after the continuous construction.

本発明の請求項1では前記課題を解決する手段として、水路或いは道路を立体交差する目的で該路両端外側近傍に設けた基礎上に嵌合する左右鉛直側壁部材と水平部材とが隅部を成して一体成型されるプレキャストコンクリート製の門形カルバートであって、
水平部材は平面視する左右側壁の前後端部以内に位置して縦リブ或いはフランジ付縦リブが単独で外側に立設する部材断面とし、左右側壁部材は前記水平部材と内側で隅部を介して該縦リブ幅より突設する版による長方形部材断面または内側が版で外側に前記水平部材の縦リブと出隅で連なり立設する部材断面とし、門形カルバートを軽量化して前記左右側壁の内幅を拡幅して一体成型した、ことを特徴とする門形カルバート構造を構成する。
In the first aspect of the present invention, as means for solving the above-mentioned problem, the right and left vertical side wall members and the horizontal member fitted on the foundation provided near the outside of both ends of the road for the purpose of three-dimensionally intersecting the waterway or road have corners. It is a portal cast culvert made of precast concrete that is integrally molded,
The horizontal member is located within the front and rear ends of the left and right side walls in plan view, and has a vertical section or a section with a flanged vertical rib alone standing outside. A rectangular member cross-section by a plate protruding from the vertical rib width or a member cross-section in which the inside is a plate and the outside is connected to the vertical rib of the horizontal member at the outer corner, and the portal culvert is reduced in weight, and the left and right side walls The gate-shaped culvert structure is characterized in that the inner width is increased and integrally molded.

また、本発明の請求項2では前記課題を解決する手段として、前記水平部材には連設施工時に少なくとも前記左右側壁部材の当接面を介して離間する縦リブ間を横架或いは横通する接合材を介して容易に接合する手段を備えた、ことを特徴とする請求項1記載の門形カルバート構造を構成する。 As a means for solving the claim 2 wherein the object in the present invention, is laterally placed or lateral communication between the vertical ribs spaced through the contact surface of at least said left and right side wall members at continuously provided construction in the horizontal member The portal culvert structure according to claim 1 , further comprising means for easily joining via a joining material.

更に、本発明の請求項3では前記課題を解決する手段として、前記水平部材には連設施工後に左右側壁部材の当接面を介して離間する縦リブ間で交互する空間内を間詰めコンクリートを介在して打設することで外力を一様に負担する手段を備えた、ことを特徴とする請求項1乃至のうち何れか1項記載の門形カルバート構造を構成する。 Further, according to a third aspect of the present invention, as a means for solving the above-mentioned problem, the horizontal member is stuffed in a space alternating between the vertical ribs spaced apart through the contact surfaces of the left and right side wall members after the continuous construction. comprising means to bear uniformly the external force by pouring interposed concrete, constituting the portal culvert structure of any one of claims 1 to 2, characterized in that.

断面の力学的特性として、矩形断面における断面幅をb,断面高をhとすれば、曲げ剛性はbにhの二乗を乗じた値に比例する。言い換えれば、断面幅を小さくして断面高を大きくしたリブ状の場合には、曲げ剛性に対して最も効果的で、かつ最も軽量化に寄与する。従って、門形カルバートを軽量化して左右側壁の内幅(スパン)を拡幅するためには、門形カルバートの水平部材を版状の長方形断面に変え、左右側壁の前後端部内に位置して縦リブ或いはフランジ付縦リブが単独で外側に立設する部材断面とすることが有効である。ここでいう縦リブとは、⊥形,L形,I形とかがある。⊥形の場合は、縦リブであるウェブと水平フランジで断面構成され、外力の作用による曲げモーメントに対してはウェブが負担し、門形カルバートを軽量化できる効果があり、水平フランジは間詰めコンクリートを打設する場合には型枠として機能する効果がある。L形の場合は、前記⊥形の効果に加え、現場で連設施工する場合に最端部に設置することで最端部での間詰め作業を省略する効果がある。I形の場合には、門形カルバートを軽量化するために最も効果がある。但し、間詰めコンクリートを打設する場合には、水平フランジに代わる別途型枠を必要とする。尚、水平部材と同様に左右側壁部材の断面形状等を変更することも軽量化に寄与する。 As the mechanical characteristics of the cross section, if the cross section width in a rectangular cross section is b and the cross section height is h, the bending rigidity is proportional to the value of b multiplied by the square of h. In other words, the rib shape having a reduced cross-sectional width and a high cross-sectional height is most effective for bending rigidity and contributes most to weight reduction. Therefore, in order to reduce the weight of the portal culvert and widen the inner width (span) of the left and right side walls, the horizontal member of the portal culvert is changed to a plate-shaped rectangular cross section and positioned vertically in the front and rear ends of the left and right side walls. It is effective that the rib or the longitudinal rib with a flange is a member cross section that stands up outside. Here, the vertical rib includes a bowl shape, an L shape, and an I shape. In the case of a saddle type, the cross section is composed of a vertical rib web and a horizontal flange. The web bears the bending moment caused by the action of external force, and the portal culvert can be reduced in weight. When placing concrete, it has the effect of functioning as a formwork. In the case of the L shape, in addition to the effect of the saddle shape, there is an effect of omitting the stuffing operation at the end portion by installing it at the end portion when performing continuous construction on site. In the case of the I type, it is most effective for reducing the weight of the portal culvert. However, a separate form is required in place of the horizontal flange when placing concrete in between. Note that changing the cross-sectional shape and the like of the left and right side wall members as well as the horizontal member also contributes to weight reduction.

また、軽量化した門形カルバートは、成型過程・運搬過程・施工過程等で設備・機械的要因から制約を受けない範囲で水平部材を延長して内幅(スパン)を増加して、水路や道路幅員が従来より広い場所でも立体交差して架設可能となる効果がある。   In addition, the lightweight portal culvert increases the inner width (span) by extending the horizontal member within the range that is not restricted by equipment and mechanical factors in the molding process, transportation process, construction process, etc. There is an effect that it is possible to erection at three-dimensional intersection even in a place where the road width is wider than before.

また、道路や水路を斜めに立体交差して斜長となる従来より広い幅員にも、平面視する水平部材長手方向に対して左右側壁部材を時計廻りまたは反時計廻りの任意角度に偏向し、軽量化して左右側壁の内幅(スパン)を拡幅して一体成型した門形カルバートを、立体交差下の道路や水路に沿わせて架設可能となる効果がある。   In addition, for the wider width than the conventional width which obliquely crosses roads and waterways obliquely, the left and right side wall members are deflected at an arbitrary angle clockwise or counterclockwise with respect to the horizontal member longitudinal direction in plan view, There is an effect that the portal culvert, which is reduced in weight and the inner width (span) of the left and right side walls is integrally formed, can be installed along a road or waterway under a three-dimensional intersection.

更に、連設施工時には水平部材として縦リブが外側に立設することで、縦リブ間の空間を利用して接合材を介して容易な接合が可能となり、連設施工後においても該空間に間詰めコンクリートを打設することで外力を一様に負担することが可能で、左右側壁の内幅を拡幅して一体成型される門形カルバートで施工すれば工期短縮や環境配慮等の効果がある。   Furthermore, the vertical ribs are set up outside as a horizontal member at the time of continuous construction, making it possible to easily join through the bonding material using the space between the vertical ribs, and even after the continuous construction, It is possible to bear external force uniformly by placing the interstitial concrete, and if it is constructed with a portal culvert that is integrally molded with the inner width of the left and right side walls widened, effects such as shortening the construction period and environmental considerations can be achieved is there.

図1は本発明に係る門形カルバート構造を示す斜視図で、図1(a)は水平部材断面形状が⊥形となる斜視図、図1(b)は水平部材断面形状がL形とる斜視図、図1(c)は水平部材断面形状がI形となる斜視図、図1(d)は水平部材断面形状がI形で端部に設けた斜視図、図1(e)は各部材断面形状が⊥形となる斜視図、図1(f)は各部材断面形状がL形となる斜視図である。1A and 1B are perspective views showing a portal culvert structure according to the present invention. FIG. 1A is a perspective view in which a horizontal member sectional shape is a bowl shape, and FIG. 1B is a perspective view in which a horizontal member sectional shape is an L shape. FIG. 1 (c) is a perspective view in which the horizontal member cross-sectional shape is I-shaped, FIG. 1 (d) is a perspective view in which the horizontal member cross-sectional shape is I-shaped and provided at the end, and FIG. 1 (e) is each member. FIG. 1F is a perspective view in which the cross-sectional shape of each member is an L shape. 図2は平面視する左右側壁部材の版がそれぞれ時計廻りまたは反時計廻りの任意角度に偏向した平面図で、図2(a)は水平部材断面形状が⊥形で右側壁を時計廻りに偏向した平面図、図2(b)は水平部材断面形状が⊥形で左側壁を反時計回りに偏向した平面図、図2(c)は水平部材断面形状がI形で左側壁が時計廻りで右側壁が反時計廻りに偏向した平面図、図2(d)は水平部材断面形状がI形で左右側壁をそれぞれ反時計廻りに偏向した平面図、図2(e)は各部材断面形状が⊥形で左右側壁をそれぞれ時計廻りに偏向した平面図、図2(f)は各部材断面形状が⊥形で左右側壁をそれぞれ反時計廻りに偏向した平面図である。 FIG. 2 is a plan view in which the left and right side wall members in plan view are deflected to arbitrary angles of clockwise or counterclockwise, respectively, and FIG. 2A is a horizontal member cross-sectional shape having a bowl shape and the right side wall is deflected clockwise. 2B is a plan view in which the horizontal member cross-sectional shape is bowl-shaped and the left side wall is deflected counterclockwise, and FIG. 2C is a horizontal member cross-sectional shape that is I-shaped and the left side wall is clockwise. FIG. 2D is a plan view in which the right side wall is deflected counterclockwise, FIG. 2D is a plan view in which the horizontal member cross-sectional shape is I-shaped and the left and right side walls are deflected counterclockwise, and FIG. FIG. 2 (f) is a plan view in which the left and right side walls are deflected clockwise in a bowl shape, and FIG. 2 (f) is a plan view in which each member has a bowl shape and the left and right side walls are deflected counterclockwise. 図3は左右側壁内高が異なる断面図である。FIG. 3 is a cross-sectional view with different inner heights on the left and right side walls. 図4は水平部材断面内にPC鋼材を備えた説明図で、図4(a)は水平部材断面形状⊥形内にPC鋼材を備えた斜視図で、図4(b)は図4(a)のYa断面図、図4(c)は水平部材断面形状I形内にPC鋼材を湾曲して備えた斜視図で、図4(d)は図4(c)のYb断面図である。 FIG. 4 is an explanatory view including a PC steel material in a horizontal member cross section , FIG. 4A is a perspective view including a PC steel material in a horizontal member cross-sectional shape saddle shape, and FIG. 4) is a perspective view in which a PC steel material is curved in the horizontal member cross-sectional shape I, and FIG. 4 (d) is a Yb cross-sectional view of FIG. 4 (c). 図5は水平部材断面形状が⊥形の接合方法M1の説明図で、図5(a)は拡大断面図で、図5(b)は図5(a)の拡大部分平面図である。FIG. 5 is an explanatory view of the joining method M1 in which the cross-sectional shape of the horizontal member is a bowl shape, FIG. 5 (a) is an enlarged cross-sectional view, and FIG. 5 (b) is an enlarged partial plan view of FIG. 図6は水平部材断面形状がI形の接合方法M1の説明図で、図6(a)は拡大断面図で、図6(b)は図6(a)の拡大部分平面図である。6A and 6B are explanatory views of the joining method M1 in which the horizontal member sectional shape is I-shaped, FIG. 6A is an enlarged sectional view, and FIG. 6B is an enlarged partial plan view of FIG. 6A. 図7は水平部材断面形状が⊥形の接合方法M2の説明図で、図7(a)は拡大断面図で、図7(b)は図7(a)の拡大部分平面図である。7A and 7B are explanatory views of the joining method M2 in which the horizontal member has a cross-sectional shape, FIG. 7A is an enlarged cross-sectional view, and FIG. 7B is an enlarged partial plan view of FIG. 7A. 図8は水平部材断面形状がI形の接合方法M2の説明図で、図8(a)は拡大断面図で、図8(b)は図8(a)の拡大部分平面図である。8A and 8B are explanatory views of the joining method M2 in which the cross-sectional shape of the horizontal member is I, FIG. 8A is an enlarged cross-sectional view, and FIG. 8B is an enlarged partial plan view of FIG. 図9は水平部材断面形状が⊥形の接合方法M3の説明図で、図9(a)は拡大断面図で、図9(b)は図9(a)の拡大部分平面図である。FIG. 9 is an explanatory view of the joining method M3 in which the cross-sectional shape of the horizontal member is a bowl shape, FIG. 9 (a) is an enlarged cross-sectional view, and FIG. 9 (b) is an enlarged partial plan view of FIG. 9 (a). 図10は水平部材断面形状がI形の接合方法M3の説明図で、図10(a)は拡大断面図で、図10(b)は図10(a)の拡大部分平面図である。FIG. 10 is an explanatory view of the joining method M3 in which the horizontal member sectional shape is I-shaped, FIG. 10 (a) is an enlarged sectional view, and FIG. 10 (b) is an enlarged partial plan view of FIG. 10 (a). 図11は水平部材断面形状が⊥形の間詰め方法M4の説明図で、図11(a)は拡大断面図で、図11(b)は図11(a)の拡大部分平面図である。11A and 11B are explanatory diagrams of the interlining method M4 in which the horizontal member sectional shape is a bowl shape, FIG. 11A is an enlarged sectional view, and FIG. 11B is an enlarged partial plan view of FIG. 11A. 図12は水平部材断面形状がI形の間詰め方法M4の説明図で、図12(a)は拡大断面図で、図12(b)は図12(a)の拡大部分平面図である。12A and 12B are explanatory diagrams of the filling method M4 in which the horizontal member cross-sectional shape is I-shaped, FIG. 12A is an enlarged cross-sectional view, and FIG. 12B is an enlarged partial plan view of FIG. 図13は水平部材断面形状が⊥形の間詰め方法M5の説明図で、図13(a)は拡大断面図で、図13(b)は図13(a)の拡大部分平面図である。FIGS. 13A and 13B are explanatory diagrams of the filling method M5 in which the horizontal member cross-sectional shape is a bowl shape, FIG. 13A is an enlarged cross-sectional view, and FIG. 13B is an enlarged partial plan view of FIG. 図14は水平部材断面形状がI形の間詰め方法M5の説明図で、図14(a)は拡大断面図で、図14(b)は図14(a)の拡大部分平面図である。14A and 14B are explanatory diagrams of the filling method M5 in which the horizontal member sectional shape is I-shaped, FIG. 14A is an enlarged sectional view, and FIG. 14B is an enlarged partial plan view of FIG. 図15は水平部材断面形状が⊥形の間詰め方法M6の説明図で、図15(a)は拡大断面図で、図15(b)は図15(a)の縦断面である。FIGS. 15A and 15B are explanatory views of the filling method M6 in which the horizontal member cross-sectional shape is a bowl shape, FIG. 15A is an enlarged cross-sectional view, and FIG. 15B is a vertical cross-section of FIG. 図16は水平部材断面形状がI形の間詰め方法M6の説明図で、図16(a)は拡大断面図で、図16(b)は図16(a)の縦断面である。16A and 16B are explanatory diagrams of the filling method M6 in which the horizontal member cross-sectional shape is I-shaped, FIG. 16A is an enlarged cross-sectional view, and FIG. 16B is a vertical cross-section of FIG. 従来の門形カルバートで施工した斜視図である。It is the perspective view constructed with the conventional portal culvert. 立体交差する場合の概略平面図である。It is a schematic plan view in the case of a three-dimensional intersection. 本発明に係る門形カルバートを利用した施工説明図である。It is construction explanatory drawing using the portal culvert concerning the present invention.

図1は、本発明に係る門形カルバート構造を示す斜視図で、水平部材10と左側壁部材20及び右側壁部材30で構成して、水平部材10は平面視する左右側壁部材20,30の前後端部以内に位置して縦リブ12或いはフランジ付縦リブ12が単独で外側に立設する部材断面で、左右側壁部材20,30は水平部材10と内側で隅部40を介して該縦リブ幅より突設する版21,31による長方形部材断面または内側が版21,31で外側に水平部材10の縦リブ12と出隅で連なり立設部22,32を立設する部材断面とし、門形カルバートを軽量化することで左右側壁の内幅を拡幅して一体成型した門形カルバート構造を記載する。図1(a)は水平部材断面形状が⊥形となる斜視図で、水平部材10は平面視する左右側壁部材20,30のほぼ中央に位置して縦リブ12が外側に立設し、左右側壁部材20,30は版状の長方形断面形状で一体成型され、水平部材10の縦リブ12の前後を欠切して軽量化している。図1(b)は水平部材断面形状がL形とる斜視図で、水平部材10は平面視する左右側壁部材20,30の片端部に位置して縦リブ12が外側に立設し、左右側壁部材20,30は版状の長方形断面形状で一体成型され、水平部材10の縦リブ12の片側を欠切して軽量化している。図1(c)は水平部材断面形状がI形となる斜視図で、水平部材10は平面視する左右側壁部材20,30のほぼ中央に位置して縦リブ12が外側に立設し、左右側壁部材20,30は版状の長方形断面形状で一体成型され、水平部材10の縦リブ12が単独する桁として軽量化している。図1(d)は水平部材断面形状がI形で端部に設けた斜視図で、水平部材10は平面視する左右側壁部材20,30の片端部に位置して縦リブ12が外側に立設し、左右側壁部材20,30は版状の長方形断面形状で一体成型され、水平部材10の縦リブ12が単独する桁として軽量化している。図1(e)は各部材断面形状が⊥形となる斜視図で、水平部材10は平面視する左右側壁部材20,30のほぼ中央に位置して縦リブ12が外側に立設し、左右側壁部材20,30は内側が版21,31で外側に水平部材10の縦リブ12と出隅で連なり立設部22,32を立設する部材断面で一体成型され、水平部材10の縦リブ12の前後を欠切すると共に左右側壁部材20,30の立設部22,32の前後を欠切して軽量化している。図1(f)は各部材断面形状がL形となる斜視図で、水平部材10は平面視する左右側壁部材20,30の片端部に位置して縦リブ12が外側に立設し、左右側壁部材20,30は内側が版21,31で外側に水平部材10の縦リブ12と出隅で連なり立設部22,32を立設する部材断面で一体成型され、水平部材10の縦リブ12の片側を欠切すると共に左右側壁部材20,30の立設部22,32の片側を欠切して軽量化している。 FIG. 1 is a perspective view showing a portal culvert structure according to the present invention, which is composed of a horizontal member 10, a left side wall member 20, and a right side wall member 30. The horizontal member 10 is a plan view of left and right side wall members 20, 30. longitudinal ribs 12 or the vertical ribs 12 with flange alone member section erected outwardly located within the front and rear ends, right and left side wall members 20 and 30 and through the corner 40 and the horizontal member 10 inside the A rectangular cross section of the plates 21 and 31 projecting from the width of the vertical ribs or a cross section of the plates 21 and 31 where the inside is the plates 21 and 31 and the vertical ribs 12 of the horizontal member 10 is connected to the outside and the standing portions 22 and 32 are erected. A portal culvert structure in which the inner width of the left and right side walls is widened by reducing the weight of the portal culvert will be described. FIG. 1A is a perspective view in which the horizontal member cross-sectional shape is a bowl shape. The horizontal member 10 is positioned at the approximate center of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 are erected on the outside. The side wall members 20 and 30 are integrally formed with a plate-like rectangular cross-sectional shape, and the front and rear of the vertical ribs 12 of the horizontal member 10 are cut off to reduce the weight. FIG. 1B is a perspective view in which the horizontal member cross-sectional shape is L-shaped. The horizontal member 10 is positioned at one end of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 are erected on the outer side. The members 20 and 30 are integrally formed with a plate-like rectangular cross-sectional shape, and lighten by cutting off one side of the vertical rib 12 of the horizontal member 10. FIG. 1C is a perspective view in which the horizontal member cross-sectional shape is I-shaped. The horizontal member 10 is positioned at the approximate center of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 are erected on the outside. The side wall members 20 and 30 are integrally formed with a plate-like rectangular cross-sectional shape, and are lightened as a girder in which the vertical ribs 12 of the horizontal member 10 are independent. FIG. 1 (d) is a perspective view in which the horizontal member has an I-shaped cross section and is provided at the end. The horizontal member 10 is positioned at one end of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 stand outward. The left and right side wall members 20 and 30 are integrally formed with a plate-like rectangular cross-sectional shape, and the vertical ribs 12 of the horizontal member 10 are reduced in weight as a single girder. FIG. 1 (e) is a perspective view in which the cross-sectional shape of each member is a bowl shape. The horizontal member 10 is positioned substantially at the center of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 are erected on the outside. The side wall members 20, 30 are integrally molded with the plates 21, 31 on the inner side and the outer side of the vertical ribs 12 of the horizontal member 10 at the outer corners, and are formed integrally with the cross section of the standing members 22, 32. The front and rear portions of the left and right side wall members 20 and 30 are cut off and the front and rear portions 22 and 32 of the left and right side wall members 20 and 30 are cut off to reduce the weight. FIG. 1F is a perspective view in which each member has an L-shaped cross section. The horizontal member 10 is positioned at one end of the left and right side wall members 20 and 30 in plan view, and the vertical ribs 12 are erected on the outside. The side wall members 20, 30 are integrally molded with the plates 21, 31 on the inner side and the outer side of the vertical ribs 12 of the horizontal member 10 at the outer corners, and are formed integrally with the cross section of the standing members 22, 32. 12 is cut off and one side of the standing portions 22 and 32 of the left and right side wall members 20 and 30 is cut off to reduce the weight.

図2は、平面視する左右側壁部材の版がそれぞれ時計廻りまたは反時計廻りの任意角度に偏向した平面図で、図1(a),図1(c),図1(e)に記載する門形カルバートの左右側壁部材20,30の版21,31を時計廻りまたは反時計廻りの任意角度に偏向した門形カルバート構造を記載し、図1(b),図1(d),図1(f)に記載する門形カルバートについては図示を省略する。図2(a)は水平部材断面形状が⊥形で右側壁を時計廻りに偏向した平面図で、水平部材10の長手方向に対して、左側壁部材20の版21が直角に静止し、右側壁部材30の版31が時計廻りの任意角度に偏向した門形カルバートを一体成型しており、道路の片側が拡幅して広くなる場合に対応する。図2(b)は水平部材断面形状が⊥形で左側壁を反時計回りに偏向した平面図で、水平部材10の長手方向に対して、左側壁部材20の版21が反時計廻りの任意角度に偏向し、右側壁部材30の版31が直角に静止した門形カルバートを一体成型しており、前記同様に道路の片側が拡幅して広くなる場合に対応する。図2(c)は水平部材断面形状がI形で左側壁が時計廻りで右側壁が反時計廻りに偏向した平面図で、水平部材10の長手方向に対して、左側壁部材20の版21が時計廻りの任意角度に偏向し、右側壁部材30の版31が反時計廻りの任意角度に偏向した平面視ラッパ状の門形カルバートを一体成型しており、道路の両側が拡幅して広くなる場合にも対応する。図2(d)は水平部材断面形状がI形で左右側壁をそれぞれ反時計廻りに偏向した平面図で、水平部材10の長手方向に対して、左右側壁部材20,30の版21,31がそれぞれ反時計廻りの任意角度に偏向した門形カルバートを一体成型しており、斜めに立体交差する場合に対応する。図2(e)は各部材断面形状が⊥形で左右側壁をそれぞれ時計廻りに偏向した平面図で、水平部材10の長手方向に対して、左右側壁部材20,30の版21,31がそれぞれ時計廻りの任意角度に偏向した門形カルバートを一体成型しており、斜めに立体交差する場合に対応する。図2(f)は各部材断面形状が⊥形で左右側壁をそれぞれ反時計廻りに偏向した平面図で、水平部材10の長手方向に対して、左右側壁部材20,30の版21,31がそれぞれ反時計廻りの任意角度に偏向した門形カルバートを一体成型しており、斜めに立体交差する場合に対応する。尚、水平部材10の平面視する左右端部または左右出隅端部は、左右側壁部材20,30の版21,31の任意角度の偏向と同一に偏向して一体成型している。 FIG. 2 is a plan view in which the plates of the left and right side wall members viewed in plan are deflected to arbitrary angles in the clockwise direction or the counterclockwise direction, respectively, and are described in FIGS. 1 (a), 1 (c), and 1 (e). A portal culvert structure in which the plates 21 and 31 of the left and right side wall members 20 and 30 of the portal culvert are deflected to an arbitrary angle in the clockwise or counterclockwise direction is described, and FIGS. Illustration of the portal culvert described in (f) is omitted. 2A is a plan view in which the horizontal member has a bowl-shaped cross section and the right side wall is deflected clockwise. The plate 21 of the left side wall member 20 is stationary at a right angle with respect to the longitudinal direction of the horizontal member 10. FIG. This corresponds to the case where the plate 31 of the wall member 30 is integrally formed with a portal culvert deflected at an arbitrary angle in the clockwise direction, and one side of the road is widened and widened. 2B is a plan view in which the horizontal member has a bowl-shaped cross section and the left side wall is deflected counterclockwise. The plate 21 of the left side wall member 20 is arbitrarily counterclockwise with respect to the longitudinal direction of the horizontal member 10. FIG. This corresponds to a case in which a portal culvert that is deflected to an angle and the plate 31 of the right side wall member 30 is stationary at a right angle is integrally formed, and one side of the road is widened and widened as described above. 2C is a plan view in which the horizontal member has an I-shaped cross section, the left side wall is clockwise, and the right side wall is deflected counterclockwise. The plate 21 of the left side wall member 20 with respect to the longitudinal direction of the horizontal member 10 is shown in FIG. Is formed by integrally forming a trumpet-shaped gate-shaped culvert in a plan view in which the plate 31 of the right side wall member 30 is deflected at an arbitrary angle in the counterclockwise direction, and both sides of the road are widened and widened. It corresponds also to become. FIG. 2D is a plan view in which the horizontal member has an I-shaped cross section and the left and right side walls are deflected counterclockwise. The plates 21 and 31 of the left and right side wall members 20 and 30 are arranged in the longitudinal direction of the horizontal member 10. Each gate-shaped culvert deflected to an arbitrary angle in the counterclockwise direction is integrally molded, and this corresponds to the case where three-dimensional crossing is performed obliquely. FIG. 2E is a plan view in which each member has a bowl shape and the left and right side walls are deflected clockwise. The plates 21 and 31 of the left and right side wall members 20 and 30 are respectively shown in the longitudinal direction of the horizontal member 10. A gate-shaped culvert deflected at an arbitrary angle in the clockwise direction is integrally molded, and it corresponds to the case of three-dimensional crossing diagonally. FIG. 2F is a plan view in which each member has a bowl shape and the left and right side walls are deflected counterclockwise. The plates 21 and 31 of the left and right side wall members 20 and 30 are arranged in the longitudinal direction of the horizontal member 10. Each gate-shaped culvert deflected to an arbitrary angle in the counterclockwise direction is integrally molded, and this corresponds to the case where three-dimensional crossing is performed obliquely. The left and right end portions or left and right protruding corner end portions of the horizontal member 10 in plan view are deflected in the same manner as the deflection of the plates 21 and 31 of the left and right side wall members 20 and 30, and are integrally molded.

図3は、左右側壁内高が異なる断面図である。水路Wの左護岸WLと右護岸WRの高低差は現地の地形的要因で、左護岸WL側の基礎Fは上部に、右護岸WR側の基礎Fは下部に位置している。左右高さの異なる基礎Fに載置して立体交差する門形カルバートは、左側壁部材20の内面の鉛直高さH1と右側壁部材30の内面の鉛直高さH2はそれぞれ異なり軽量化を加えて左右側壁の内幅(スパン)を拡幅して一体成型している。尚、図示を省略するが、現地の地形的要因から、道路の両端で高低差のある場合も同様である。   FIG. 3 is a cross-sectional view in which the inner heights of the left and right side walls are different. The difference in elevation between the left revetment WL and the right revetment WR in the waterway W is a local topographical factor. The foundation F on the left revetment WL side is located in the upper part, and the foundation F on the right revetment WR side is located in the lower part. The gate-shaped culvert placed on the foundation F having different left and right heights and three-dimensionally intersecting is different in the vertical height H1 of the inner surface of the left side wall member 20 and the vertical height H2 of the inner surface of the right side wall member 30 and adding weight reduction. The inner width (span) of the left and right side walls is widened and integrally molded. Although not shown in the drawings, the same applies to the case where there is a height difference at both ends of the road due to local topographical factors.

図4は、水平部材断面内にPC鋼材を備えた説明図で、図1(a),図1(c)に記載する門形カルバートについて説明し、図1(b),図1(d)から図1(f)に記載する門形カルバートについては図示を省略する。図4(a)は水平部材断面形状⊥形内にPC鋼材を備えた斜視図で、水平部材10にはPC鋼材であるPC鋼棒pbが内設され一体成型している。成型時あるいは成型後に張力を加え、水平部材10の断面内に圧縮応力を与えることで曲げ剛性を高めて左右側壁部材20,30の内幅をさらに拡幅した門形カルバートを記載する。図4(b)は図4(a)のYa断面図で、内設する図示省略の鉄筋と協働で曲げ剛性を高める。図4(c)は水平部材断面形状I形内にPC鋼材を湾曲して備えた斜視図で、水平部材10にはPC鋼材であるPC鋼線pyが内設され一体成型している。図4(a)と同様に水平部材10の曲げ剛性を高めて左右側壁部材20,30の内幅をさらに拡幅した門形カルバートを記載する。図4(d)は図4(c)のYb断面図で、湾曲を利用して曲げ剛性を高める。 FIG. 4 is an explanatory diagram provided with a PC steel material in a horizontal member cross section , illustrating the portal culvert described in FIGS. 1 (a) and 1 (c), and FIGS. 1 (b) and 1 (d). From FIG. 1F, illustration of the portal culvert is omitted. FIG. 4A is a perspective view in which a PC steel material is provided in a horizontal member cross-sectional shape saddle. A PC steel rod pb which is a PC steel material is provided in the horizontal member 10 and integrally molded. A portal culvert is described in which tension is applied during or after molding, and compressive stress is applied to the cross section of the horizontal member 10 to increase bending rigidity and further expand the inner width of the left and right side wall members 20 and 30. FIG. 4B is a Ya cross-sectional view of FIG. 4A, and increases bending rigidity in cooperation with a reinforcing bar (not shown) provided therein. FIG. 4C is a perspective view in which a PC steel material is curved in a horizontal member cross-sectional shape I shape, and a PC steel wire py, which is a PC steel material, is provided in the horizontal member 10 and integrally molded. Similar to FIG. 4A, a portal culvert is described in which the bending rigidity of the horizontal member 10 is increased and the inner widths of the left and right side wall members 20 and 30 are further increased. FIG. 4D is a Yb cross-sectional view of FIG. 4C, and uses bending to increase bending rigidity.

図5から図10は、水平部材10には連設施工時に少なくとも左右側壁部材20,30の当接部24,34が当接面を介して離間する縦リブ間を横架或いは横通する接合材を介して容易に接合する接合方法M1,接合方法M2,接合方法M3による接合手段を備えた、説明図である。図1(a),図1(c)について記載し、図1(b),図1(d)から図1(f)については図示を省略する。また、図5(a)から図10(a)は、左右側壁部材20,30の下側を省略し、図5(b)から図10(b)は水平部材10の中間部を抜視する。以下、図5から図10まで説明する。 FIGS. 5 to 10 show that the horizontal member 10 is joined in such a manner that at least the contact portions 24 and 34 of the left and right side wall members 20 and 30 are installed between the longitudinal ribs separated from each other through the contact surfaces when the continuous construction is performed. It is explanatory drawing provided with the joining means by joining method M1, joining method M2, and joining method M3 which join easily through a material. 1A and 1C will be described, and illustration of FIGS. 1B and 1D to 1F will be omitted. 5 (a) to 10 (a) omit the lower side of the left and right side wall members 20 and 30, and FIG. 5 (b) to FIG. . Hereinafter, FIG. 5 to FIG. 10 will be described.

図5は水平部材断面形状が⊥形の接合方法M1の説明図で、図5(a)は拡大断面図で、図5(b)は図5(a)の拡大部分平面図である。水平部材10には連設施工時に左右側壁部材20,30の当接部24,34が当接した後に当接面を介して離間する縦リブ12間のスペースsp内で箱状の接合材60とボルト62を介して接合する手段である雌ねじを螺刻したインサート50を内設して備えることで横架して接合を容易にしている。尚、縦リブ12下側のフランジ15は、連設施工時にフランジ端部14で当接すると共に、接合後のスペースsp内に間詰めコンクリート70を打設する際には型枠の役目を負う。 FIG. 5 is an explanatory view of the joining method M1 in which the cross-sectional shape of the horizontal member is a bowl shape, FIG. 5 (a) is an enlarged cross-sectional view, and FIG. 5 (b) is an enlarged partial plan view of FIG. The horizontal member 10 has a box-shaped bonding material 60 in the space sp between the vertical ribs 12 separated via the contact surfaces after the contact portions 24 and 34 of the left and right side wall members 20 and 30 contact each other during construction. And an insert 50 screwed with a female screw, which is a means for joining via the bolt 62, is provided in the inside so that the joining is facilitated. The flange 15 on the lower side of the vertical rib 12 abuts on the flange end portion 14 during continuous construction, and also serves as a formwork when placing the interstitial concrete 70 in the space sp after joining.

図6は水平部材断面形状がI形の接合方法M1の説明図で、図6(a)は拡大断面図で、図6(b)は図6(a)の拡大部分平面図である。水平部材10には連設施工時に左右側壁部材20,30の当接部24,34が当接した後に当接面を介して離間する縦リブ12間のスペースsp内で箱状の接合材60とボルト62を介して接合する手段である雌ねじを螺刻したインサート50を内設して備えることで横架して接合を容易にしている。尚、接合後のスペースsp内には、接合材60で支持される折板状のデッキプレート61を敷設して間詰めコンクリート70を打設することもできる。 6A and 6B are explanatory views of the joining method M1 in which the horizontal member sectional shape is I-shaped, FIG. 6A is an enlarged sectional view, and FIG. 6B is an enlarged partial plan view of FIG. 6A. The horizontal member 10 has a box-shaped bonding material 60 in the space sp between the vertical ribs 12 separated via the contact surfaces after the contact portions 24 and 34 of the left and right side wall members 20 and 30 contact each other during construction. And an insert 50 screwed with a female screw, which is a means for joining via the bolt 62, is provided in the inside so that the joining is facilitated. In the space sp after joining, a folded concrete deck plate 61 supported by the joining material 60 can be laid and the interstitial concrete 70 can be placed.

図7は水平部材断面形状が⊥形の接合方法M2の説明図で、図7(a)は拡大断面図で、図7(b)は図7(a)の拡大部分平面図である。水平部材10の縦リブ12内には貫通孔52を設け、連設施工時に左右側壁部材20,30の当接部24,34が当接した後に当接面を介して離間して隣接する縦リブ12間の貫通孔52に接合用の螺杆材63を挿通し、台座64とナットnにより横通する接合を可能にしている。尚、図5と同様に、縦リブ12下側のフランジ15は、連設施工時にフランジ端部14で当接すると共に、接合後のスペースsp内に間詰めコンクリート70を打設する際には型枠の役目を負う。 7A and 7B are explanatory views of the joining method M2 in which the horizontal member has a cross-sectional shape, FIG. 7A is an enlarged cross-sectional view, and FIG. 7B is an enlarged partial plan view of FIG. 7A. A through hole 52 is provided in the vertical rib 12 of the horizontal member 10, and the vertical contact holes 24 and 34 of the left and right side wall members 20 and 30 come into contact with each other and are spaced apart and adjacent to each other through the contact surfaces during continuous construction. A screw member 63 for bonding is inserted into the through hole 52 between the ribs 12 so as to enable horizontal bonding by the base 64 and the nut n. As in FIG. 5, the flange 15 below the vertical rib 12 abuts at the flange end 14 at the time of continuous construction, and at the time of placing the interstitial concrete 70 in the space sp after joining. Take the role of a frame.

図8は水平部材断面形状がI形の接合方法M2の説明図で、図8(a)は拡大断面図で、図8(b)は図8(a)の拡大部分平面図である。図7と同様に、水平部材10の縦リブ12内には貫通孔52を設け、連設施工時に左右側壁部材20,30の当接部24,34が当接した後に当接面を介して離間して隣接する縦リブ12間の貫通孔52に接合用の螺杆材63を挿通し、台座64とナットnにより横通する接合を可能にしている。尚、水平部材10の縦リブ12上部の欠切部54により、接合後のスペースsp内に間詰めコンクリート70を掛合して打設することもできる。 8A and 8B are explanatory views of the joining method M2 in which the cross-sectional shape of the horizontal member is I, FIG. 8A is an enlarged cross-sectional view, and FIG. 8B is an enlarged partial plan view of FIG. As in FIG. 7, through holes 52 are provided in the vertical ribs 12 of the horizontal member 10, and the contact portions 24 and 34 of the left and right side wall members 20 and 30 come into contact with each other through the contact surfaces during continuous installation. spaced by inserting a screw杆材63 for bonding the through hole 52 between the longitudinal ribs 12 adjacent, enabling the joint to Yokodori by pedestal 64 and a nut n. In addition, the interstitial concrete 70 can be hooked and placed in the space sp after joining by the notch 54 at the upper part of the vertical rib 12 of the horizontal member 10.

図9は水平部材断面形状が⊥形の接合方法M3の説明図で、図9(a)は拡大断面図で、図9(b)は図9(a)の拡大部分平面図である。水平部材10の縦リブ12の左右には、接合用ボックス58を埋設した接合用リブ56を一体成型して設け、連設施工時に左右側壁部材20,30の当接部24,34が当接した後に隣接する接合用ボックス58内にボルト62とナットnを介して接合を容易にしている。尚、図5と同様に、縦リブ12下側のフランジ15は、連設施工時にフランジ端部14で当接すると共に、接合後のスペースsp内に間詰めコンクリート70を打設する際には型枠の役目を負う。また、接合用ボックス58内には間詰めモルタル72が充填される。   FIG. 9 is an explanatory view of the joining method M3 in which the cross-sectional shape of the horizontal member is a bowl shape, FIG. 9 (a) is an enlarged cross-sectional view, and FIG. 9 (b) is an enlarged partial plan view of FIG. 9 (a). On the left and right sides of the vertical ribs 12 of the horizontal member 10, the bonding ribs 56 in which the bonding boxes 58 are embedded are integrally molded, and the contact portions 24, 34 of the left and right side wall members 20, 30 are in contact with each other at the time of continuous installation. After that, the joining is made easy in the adjacent joining box 58 via the bolt 62 and the nut n. As in FIG. 5, the flange 15 below the vertical rib 12 abuts at the flange end 14 at the time of continuous construction, and at the time of placing the interstitial concrete 70 in the space sp after joining. Take the role of a frame. The joining box 58 is filled with a filling mortar 72.

図10は水平部材断面形状がI形の接合方法M3の説明図で、図10(a)は拡大断面図で、図10(b)は図10(a)の拡大部分平面図である。水平部材10の縦リブ12の左右には、接合用ボックス58を埋設した接合用リブ56を一体成型して設け、連設施工時に左右側壁部材20,30の当接部24,34が当接した後に隣接する接合用ボックス58内にボルト62とナットnを介して接合を容易にしている。尚、接合後のスペースsp内には、接合用リブ56上面で支持される折板状のデッキプレート61を敷設して間詰めコンクリート70を打設することもできる。また、接合用ボックス58内には間詰めモルタル72が充填される。   FIG. 10 is an explanatory view of the joining method M3 in which the horizontal member sectional shape is I-shaped, FIG. 10 (a) is an enlarged sectional view, and FIG. 10 (b) is an enlarged partial plan view of FIG. 10 (a). On the left and right sides of the vertical ribs 12 of the horizontal member 10, the bonding ribs 56 in which the bonding boxes 58 are embedded are integrally molded, and the contact portions 24, 34 of the left and right side wall members 20, 30 are in contact with each other at the time of continuous installation. After that, the joining is made easy in the adjacent joining box 58 via the bolt 62 and the nut n. In addition, in the space sp after joining, it is also possible to lay the interstitial concrete 70 by laying a folded plate-like deck plate 61 supported on the upper surface of the joining rib 56. The joining box 58 is filled with a filling mortar 72.

図11から図16は、水平部材10には連設施工後に左右側壁部材の当接面を介して離間する縦リブ12間で交互して空間となるスペースspに、間詰め方法M4,間詰め方法M5,間詰め方法M6による間詰めコンクリート70を介在して打設することで外力を一様に負担する手段を備えた、説明図である。図1(a),図1(c)について記載し、図1(b),図1(d)から図1(f)については図示を省略する。また、図11(a)から図16(a)は、左右側壁部材20,30の下側を省略し、図11(b)から図14(b)は水平部材10の中間部を抜視する。以下、図11から図16まで説明する。 11 to 16 show that the horizontal member 10 has a space filling method M4 between the vertical ribs 12 spaced apart via the contact surfaces of the left and right side wall members after the continuous construction. packed method M5, comprising means to bear uniformly the external force by pouring interposed between filling concrete 70 by between filling method M6, is an explanatory diagram. 1A and 1C will be described, and illustration of FIGS. 1B and 1D to 1F will be omitted. 11 (a) to 16 (a) omit the lower side of the left and right side wall members 20 and 30, and FIGS. 11 (b) to 14 (b) take out the intermediate portion of the horizontal member 10. FIG. . Hereinafter, FIGS. 11 to 16 will be described.

図11は水平部材断面形状が⊥形の間詰め方法M4の説明図で、図11(a)は拡大断面図で、図11(b)は図11(a)の拡大部分平面図である。水平部材10の縦リブ12には定着鉄筋55を突き出して埋め込んでおり、連設施工後に左右側壁部材の当接面を介して離間する縦リブ12間のスペースspには定着補助鉄筋65,66を配置してから間詰めコンクリート70を介在して打設し、水平部材10と一体化して固着しており、間詰めコンクリート70は所要の養生を経た後に硬化することで外力を一様に負担することができる。尚、縦リブ12下側のフランジ15は、間詰めコンクリート70を介在して打設する際には型枠の役目を負う。 11A and 11B are explanatory diagrams of the interlining method M4 in which the horizontal member sectional shape is a bowl shape, FIG. 11A is an enlarged sectional view, and FIG. 11B is an enlarged partial plan view of FIG. 11A. The fixing rebar 55 is protruded and embedded in the vertical rib 12 of the horizontal member 10, and the fixing auxiliary reinforcing bar 65, or the like is provided in the space sp between the vertical ribs 12 separated through the contact surfaces of the left and right side wall members after continuous installation. and pouring interposed between filling concrete 70 after placing 66, and secured integrally with the horizontal member 10, while filling concrete 70 uniformly to the external force by curing after being subjected to a predetermined aging Can bear. In addition, the flange 15 below the vertical ribs 12 plays a role of a formwork when the concrete is placed with the interstitial concrete 70 interposed therebetween .

図12は水平部材断面形状がI形の間詰め方法M4の説明図で、図12(a)は拡大断面図で、図12(b)は図12(a)の拡大部分平面図である。図11と同様に、水平部材10の縦リブ12には定着鉄筋55を突き出して埋め込んでおり、連設施工後に左右側壁部材の当接面を介して離間する縦リブ12間のスペースspには定着補助鉄筋65,66を配置してから間詰めコンクリート70を介在して打設し、水平部材10と一体化して固着しており、間詰めコンクリート70は所要の養生を経た後に硬化することで外力を一様に負担することができる。尚、水平部材断面形状がI形ではフランジ15に代わり、折板状のデッキプレート61を左右側壁部材20,30の上端部26,36に橋架して間詰めコンクリート70を介在して打設する。 12A and 12B are explanatory diagrams of the filling method M4 in which the horizontal member cross-sectional shape is I-shaped, FIG. 12A is an enlarged cross-sectional view, and FIG. 12B is an enlarged partial plan view of FIG. As in FIG. 11, the fixing reinforcing bar 55 is protruded and embedded in the vertical rib 12 of the horizontal member 10, and the space sp between the vertical ribs 12 that are separated from each other through the contact surfaces of the left and right side wall members after the continuous installation is performed. Is placed after interposing the interfacing concrete 70 after the fixing auxiliary reinforcing bars 65 and 66 are arranged, and is fixed integrally with the horizontal member 10, and the interfacing concrete 70 is hardened after passing through the required curing. The external force can be borne uniformly. If the horizontal member has an I-shaped cross section, instead of the flange 15, a folded plate-like deck plate 61 is bridged to the upper end portions 26, 36 of the left and right side wall members 20, 30 and is placed with interposing concrete 70. .

図13は水平部材断面形状が⊥形の間詰め方法M5の説明図で、図13(a)は拡大断面図で、図13(b)は図13(a)の拡大部分平面図である。水平部材10の縦リブ12には雌ねじを螺刻したインサート51を埋設し、連設施工後に左右側壁部材の当接面を介して離間する縦リブ12間のスペースspには首下が長目の定着用のボルト62を突出状態で螺入し、定着補助鉄筋65を配置してから間詰めコンクリート70を介在して打設し、水平部材10と一体化して固着しており、間詰めコンクリート70は所要の養生を経た後に硬化することで外力を一様に負担することができる。尚、縦リブ12下側のフランジ15は、間詰めコンクリート70を介在して打設する際には型枠の役目を負う。 FIGS. 13A and 13B are explanatory diagrams of the filling method M5 in which the horizontal member cross-sectional shape is a bowl shape, FIG. 13A is an enlarged cross-sectional view, and FIG. 13B is an enlarged partial plan view of FIG. An insert 51 threaded with a female screw is embedded in the vertical rib 12 of the horizontal member 10, and the space sp between the vertical ribs 12 spaced apart via the contact surfaces of the left and right side wall members after the continuous installation is long at the neck. screwed into the bolt 62 for fixing the eye in projected state, the auxiliary fixing reinforcement 65 and pouring interposed between filling concrete 70 from the arrangement, and fixed integrally with the horizontal member 10, while filling The concrete 70 can be uniformly burdened with external force by curing after undergoing a required curing. In addition, the flange 15 below the vertical ribs 12 plays a role of a formwork when the concrete is placed with the interstitial concrete 70 interposed therebetween .

図14は水平部材断面形状がI形の間詰め方法M5の説明図で、図14(a)は拡大断面図で、図14(b)は図14(a)の拡大部分平面図である。図13と同様に、水平部材10の縦リブ12には雌ねじを螺刻したインサート51を埋設し、連設施工後に左右側壁部材の当接面を介して離間する縦リブ12間のスペースspには首下が長目の定着用のボルト62を突出状態で螺入し、定着補助鉄筋65を配置してから間詰めコンクリート70を介在して打設し、水平部材10と一体化して固着しており、間詰めコンクリート70は所要の養生を経た後に硬化することで外力を一様に負担することができる。尚、図12と同様に、水平部材断面形状がI形ではフランジ15に代わり、折板状のデッキプレート61を左右側壁部材20,30の上端部26,36に橋架して間詰めコンクリート70を介在して打設する。 14A and 14B are explanatory diagrams of the filling method M5 in which the horizontal member sectional shape is I-shaped, FIG. 14A is an enlarged sectional view, and FIG. 14B is an enlarged partial plan view of FIG. As in FIG. 13, the vertical rib 12 of the horizontal member 10 is embedded with an insert 51 in which a female screw is threaded, and the space sp between the vertical ribs 12 that are separated from each other through the contact surfaces of the left and right side wall members after the continuous installation. the bolts 62 for fixing the lower neck long eyes is screwed in the protruding state, and pouring interposed between filling concrete 70 the fixing auxiliary reinforcing bar 65 disposed in, secured integral with the horizontal member 10 In addition, the interstitial concrete 70 can be uniformly burdened with external force by curing after undergoing a required curing. In the same manner as in FIG. 12, when the horizontal member cross-sectional shape is I-shaped, instead of the flange 15, folded plate-like deck plates 61 are bridged to the upper end portions 26, 36 of the left and right side wall members 20, 30 to form the interstitial concrete 70. It is placed with intervention .

図15は水平部材断面形状が⊥形の間詰め方法M6の説明図で、図15(a)は拡大断面図で、図15(b)は図15(a)の縦断面である。水平部材10の縦リブ12間のスペースspには、縦リブ12と同等の軸方向鉄筋68とスターラップ鉄筋69を配置し、左右側壁部材20,30の上端部26,36にはスペースspに間詰めコンクリート70を介在して打設して形成される梁の両端を固着して支持する為に支持用定着鉄筋59が埋設して突出している。スペースsp内の梁は間詰めの役割の他に外力を一様に負担する役割を負う。尚、図11と同様に、縦リブ12下側のフランジ15は、間詰めコンクリート70を介在して打設する際には型枠の役目を負う。 FIGS. 15A and 15B are explanatory views of the filling method M6 in which the horizontal member cross-sectional shape is a bowl shape, FIG. 15A is an enlarged cross-sectional view, and FIG. 15B is a vertical cross-section of FIG. In the space sp between the vertical ribs 12 of the horizontal member 10, axial rebars 68 and stirrup rebars 69 equivalent to the vertical ribs 12 are arranged, and the upper ends 26 and 36 of the left and right side wall members 20 and 30 are arranged in the space sp. supporting the fixing reinforcement 59 for supporting and fixing both ends of the beam formed by pouring interposed between filling concrete 70 protrudes buried. The beam in the space sp has a role of uniformly bearing an external force in addition to the function of filling. Incidentally, similarly to FIG. 11, the longitudinal ribs 12 below the flange 15, at the time of pouring interposed between filling concrete 70 bears the role of the form.

図16は水平部材断面形状がI形の間詰め方法M6の説明図で、図16(a)は拡大断面図で、図16(b)は図16(a)の縦断面である。図15と同様に、水平部材10の縦リブ12間のスペースspには、縦リブ12と同等の軸方向鉄筋68とスターラップ鉄筋69を配置し、左右側壁部材20,30の上端部26,36にはスペースspに間詰めコンクリート70を介在して打設して形成される梁の両端を固着して支持する為に支持用定着鉄筋59が埋設して突出している。スペースsp内の梁は間詰めの役割の他に外力を一様に負担する役割を負う。尚、左右側壁部材20,30の内面21,31の上部には、雌ねじを螺刻したインサート51を埋設し、受けアングル67をボルト62で固定し、折板状のデッキプレート61を橋架し、間詰めコンクリート70を介在して打設する。 16A and 16B are explanatory diagrams of the filling method M6 in which the horizontal member cross-sectional shape is I-shaped, FIG. 16A is an enlarged cross-sectional view, and FIG. 16B is a vertical cross-section of FIG. Similarly to FIG. 15, in the space sp between the vertical ribs 12 of the horizontal member 10, axial reinforcing bars 68 and stirrup reinforcing bars 69 equivalent to the vertical ribs 12 are arranged, and the upper end portions 26 of the left and right side wall members 20, 30 are arranged. 36 supporting the fixing reinforcement 59 protrudes embedded to support by fixing both ends of the beam formed by pouring interposed between filling concrete 70 space sp in. The beam in the space sp has a role of uniformly bearing an external force in addition to the function of filling. In addition, in the upper part of the inner surfaces 21 and 31 of the left and right side wall members 20 and 30, an insert 51 screwed with a female screw is embedded, a receiving angle 67 is fixed with a bolt 62, a folded plate-like deck plate 61 is bridged, between filling concrete 70 to pouring interposed.

図19は、本発明に係る門形カルバートを利用した施工説明図である。手前の左右側壁下部を省略している。道路Rの両端外側近傍に設けた基礎F上に嵌合する左右側壁部材20,30と水平部材10とが隅部40を成して一体成型されるプレキャストコンクリート製の門形カルバートであって、水平部材10は平面視する左右側壁のほぼ中央に位置して縦リブ12が単独で外側に立設する⊥形の断面形状で、門形カルバートを軽量化して左右側壁の内幅(スパン)を拡幅して一体成型した門形カルバート構造により連設施工されている。連設する後方では、縦リブ12間の空間には間詰めコンクリート70が介在して打設され、外力を一様に負担することができる。尚、接合方法や斜めに立体交差する場合、道路Rの両側が平行でない場合等の図示を省略する。 FIG. 19 is an explanatory diagram of construction using the portal culvert according to the present invention. The lower left and right side walls in front are omitted. A portal culvert made of precast concrete in which left and right side wall members 20, 30 and a horizontal member 10 fitted on a foundation F provided in the vicinity of both ends outside the road R are integrally formed with a corner 40, horizontal member 10 is ⊥-shaped section erected outside longitudinal ribs 12 alone is located substantially at the center of the left and right side walls in plan view, the inner width of the left and right side walls by weight of the portal culvert (the span) It is continuously constructed by a portal culvert structure which is widened and integrally molded. In the rear side of the continuous arrangement, the space between the vertical ribs 12 is placed with the interstitial concrete 70 interposed therebetween , and the external force can be uniformly applied. It should be noted that illustrations such as a joining method, a case where a three-dimensional intersection is oblique, and a case where both sides of the road R are not parallel are omitted.

1 従来の門形カルバートの水平部材
2 従来の門形カルバートの左側壁部材
3 従来の門形カルバートの右側壁部材
4 従来の門形カルバートの隅部
5 従来の門形カルバートの接合手段
10 水平部材
12 縦リブ
14 フランジの当接部
15 フランジ
20 左側壁部材
21 左側壁部材の版
22 左側壁部材の縦リブ
24 左側壁部材の当接部
25 左側壁部材のフランジ
26 左側壁部材の上端部
30 右側壁部材
31 右側壁部材の版
32 右側壁部材の縦リブ
34 右側壁部材の当接部
35 右側壁部材のフランジ
36 右側壁部材の上端部
40 隅部
50 インサート
51 インサート
52 貫通孔
54 欠切部
55 定着鉄筋
56 接合用リブ
57 接合用リブ当接部
58 接合用ボックス
59 支持用定着鉄筋
60 接合材
61 デッキプレート
62 ボルト
63 螺杆材
64 台座
65 定着補助鉄筋
66 定着補助鉄筋
67 受けアングル
68 軸方向鉄筋
69 スターラップ鉄筋
70 間詰めコンクリート
72 間詰めモルタル
F 基礎
H1 鉛直高さ(左側壁内面の)
H2 鉛直高さ(右側壁内面の)
M1 接合方法
M2 接合方法
M3 接合方法
M4 間詰め方法
M5 間詰め方法
M6 間詰め方法
n ナット
pb PC鋼棒
py PC鋼線
R 道路
sp スペース
W 水路
WL 左護岸
WR 右護岸
DESCRIPTION OF SYMBOLS 1 Horizontal member of conventional portal culvert 2 Left wall member of conventional portal culvert 3 Right wall member of conventional portal culvert 4 Corner portion of conventional portal culvert 5 Joining means of conventional portal culvert 10 Horizontal member DESCRIPTION OF SYMBOLS 12 Vertical rib 14 Flange contact part 15 Flange 20 Left side wall member 21 Plate of left side wall member 22 Vertical rib of left side wall member 24 Contact part of left side wall member 25 Flange of left side wall member 26 Upper end part of left side wall member 30 Right side wall member 31 Plate of right side wall member 32 Vertical rib of right side wall member 34 Abutting part of right side wall member 35 Flange of right side wall member 36 Upper end part of right side wall member 40 Corner 50 Insert 51 Insert 52 Through hole 54 Notched 55 Fixing rebar 56 Joining rib 57 Joining rib abutment 58 Joining box 59 Supporting rebar 60 Joining material 61 Deck play 62 bolt 63 threadedly 杆材 64 pedestal 65 fixing auxiliary reinforcing bar 66 the auxiliary fixing reinforcement 67 receives angle 68 longitudinal bar 69 stirrup between reinforcing bars 70 filling concrete 72 between the filling mortar F basis H1 vertical height (the left side wall inner surface)
H2 vertical height (inside of right side wall)
M1 joining method M2 joining method M3 joining method M4 spacing method M5 spacing method M6 spacing method n Nut pb PC steel bar py PC steel wire R road sp space W waterway WL left revetment WR right revetment

Claims (3)

水路或いは道路を立体交差する目的で該路両端外側近傍に設けた基礎上に嵌合する左右鉛直側壁部材と水平部材とが隅部を成して一体成型されるプレキャストコンクリート製の門形カルバートであって、
水平部材は平面視する左右側壁の前後端部以内に位置して縦リブ或いはフランジ付縦リブが単独で外側に立設する部材断面とし、左右側壁部材は前記水平部材と内側で隅部を介して該縦リブ幅より突設する版による長方形部材断面または内側が版で外側に前記水平部材の縦リブと出隅で連なり立設する部材断面とし、門形カルバートを軽量化して前記左右側壁の内幅を拡幅して一体成型した、ことを特徴とする門形カルバート構造。
A portal culvert made of precast concrete in which left and right vertical side wall members and horizontal members that fit on a foundation provided near the outside of both ends of the road for the purpose of three-dimensionally intersecting a waterway or road are formed integrally with each other at a corner. There,
The horizontal member is located within the front and rear ends of the left and right side walls in plan view, and has a vertical section or a section with a flanged vertical rib alone standing outside. A rectangular member cross-section by a plate protruding from the vertical rib width or a member cross-section in which the inside is a plate and the outside is connected to the vertical rib of the horizontal member at the outer corner, and the portal culvert is reduced in weight, and the left and right side walls A portal-type culvert structure, characterized in that the inner width of the door is expanded and integrally molded.
前記水平部材には連設施工時に少なくとも前記左右側壁部材の当接面を介して離間する縦リブ間を横架或いは横通する接合材を介して容易に接合する手段を備えた、ことを特徴とする請求項1記載の門形カルバート構造。 The horizontal member is provided with means for easily joining via a joining material that crosses or crosses at least between vertical ribs separated through the contact surfaces of the left and right side wall members during continuous construction. The portal culvert structure according to claim 1 . 前記水平部材には連設施工後に左右側壁部材の当接面を介して離間する縦リブ間で交互する空間内を間詰めコンクリートを介在して打設することで外力を一様に負担する手段を備えた、ことを特徴とする請求項1乃至のうち何れか1項記載の門形カルバート構造。 Bear uniformly the external force by pouring interposed between filling concrete in space alternating vertical between ribs spaced above the horizontal member via the abutment surface of the left and right side wall members after continuously provided construction portal Calvert structure of any one of claims 1 to 2, characterized comprising means, that.
JP2012191277A 2012-08-31 2012-08-31 Portal culvert structure Active JP6116086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191277A JP6116086B2 (en) 2012-08-31 2012-08-31 Portal culvert structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191277A JP6116086B2 (en) 2012-08-31 2012-08-31 Portal culvert structure

Publications (2)

Publication Number Publication Date
JP2014047537A JP2014047537A (en) 2014-03-17
JP6116086B2 true JP6116086B2 (en) 2017-04-19

Family

ID=50607503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191277A Active JP6116086B2 (en) 2012-08-31 2012-08-31 Portal culvert structure

Country Status (1)

Country Link
JP (1) JP6116086B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427237Y2 (en) * 1976-03-13 1979-09-05
JPS60199105A (en) * 1984-03-21 1985-10-08 日本高圧コンクリ−ト株式会社 Load transmission method in precast concrete member
JPS626005A (en) * 1985-07-02 1987-01-13 日本鋼弦コンクリ−ト株式会社 Introduction of prestress into bridge girdle
DE19519068C1 (en) * 1995-05-19 1996-09-26 Mannesmann Ag Metallic composite material mfr.
JP2002070135A (en) * 2000-09-04 2002-03-08 Daiwa-Cres Co Ltd Hybridization construction method for large box culvert
JP4098581B2 (en) * 2002-08-22 2008-06-11 株式会社間組 Overpass bridge construction method
JP4292780B2 (en) * 2002-10-22 2009-07-08 隆 岩佐 Formwork for manufacturing variable angle walls and portal blocks made with variable angle manufacturing forms
JP3720025B2 (en) * 2003-01-17 2005-11-24 隆昭 遠藤 How to build a large box culvert
JP3981345B2 (en) * 2003-06-13 2007-09-26 隆昭 遠藤 Precast assembly underdrain block method
JP3959416B2 (en) * 2004-08-13 2007-08-15 隆 岩佐 Gate block formwork
JP2007231600A (en) * 2006-02-28 2007-09-13 Showa Concrete Ind Co Ltd Portal culvert

Also Published As

Publication number Publication date
JP2014047537A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5406563B2 (en) Composite beam, building, and composite beam construction method
KR101067001B1 (en) Slave constructing method of steel box girder bridge using steel reinforcement
KR101544803B1 (en) Joint System of Steel Concrete Composite Beams and Columns and Construction Method thereof
KR101432260B1 (en) Steel-exposed type steel framed reinforced concrete pillar
KR101937680B1 (en) Prefabricated Precast Structure and Construction Method Thereof
KR101228012B1 (en) Precast concrete column connecting structure
JP6108595B2 (en) Ribbed precast concrete plate and method of placing concrete floor slab and beam using it
KR101327388B1 (en) The pc wall for water-storage tank of assembly type and method for constructing thereof
KR101129502B1 (en) Synthetic girder of i type
KR20080093261A (en) Composite bridge construction method
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP6116086B2 (en) Portal culvert structure
KR101954387B1 (en) Grid precast concrete structure and constructing method thereof
KR101311207B1 (en) Column of steel framed reinforced precast concrete structure, manufacturing methods for the same, and construction methods for the same
JP2016205051A (en) Construction method for structure
KR200469319Y1 (en) Construction structure for joining steel or reinforced steel concrete column and beam with reinforcing end part
JP2011089390A (en) Rigid connection structure of corner section
JP5750246B2 (en) Composite beam, building, and composite beam construction method
JP6174984B2 (en) Steel beam
KR20190001483A (en) Sandwich precast concrete wall and construction method using the same
KR101346671B1 (en) The pin connection structure using the spacer in the junction of pc beam and vertical member
KR101688440B1 (en) Reinforcement Member for Beam, Beam Equipped with the Reinforcement Member, Construction Structure Using the Beam
JP2018031235A (en) Connection structure for steel girder bridge and connection method for existing steel girder bridge
KR20180022255A (en) Rigid joint structures using end face of beam as mold support and, construction methods using the same
JP5872332B2 (en) Seismic reinforcement method for buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170319

R150 Certificate of patent or registration of utility model

Ref document number: 6116086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250