JP6106405B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6106405B2
JP6106405B2 JP2012240455A JP2012240455A JP6106405B2 JP 6106405 B2 JP6106405 B2 JP 6106405B2 JP 2012240455 A JP2012240455 A JP 2012240455A JP 2012240455 A JP2012240455 A JP 2012240455A JP 6106405 B2 JP6106405 B2 JP 6106405B2
Authority
JP
Japan
Prior art keywords
heat
substrate
high thermal
semiconductor device
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012240455A
Other languages
Japanese (ja)
Other versions
JP2014090135A (en
Inventor
寛史 高杉
寛史 高杉
慎 寺木
慎 寺木
順 戸島
順 戸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2012240455A priority Critical patent/JP6106405B2/en
Priority to PCT/JP2013/078927 priority patent/WO2014069353A1/en
Priority to CN201380046039.0A priority patent/CN104603935B/en
Priority to KR1020157006588A priority patent/KR102094267B1/en
Priority to TW102139044A priority patent/TWI599634B/en
Publication of JP2014090135A publication Critical patent/JP2014090135A/en
Application granted granted Critical
Publication of JP6106405B2 publication Critical patent/JP6106405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Description

本発明は、半導体装置に関し、特に、放熱性に優れ、信頼性の高い半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a highly reliable semiconductor device with excellent heat dissipation.

近年、モジュールや電子部品の高機能化、高密度化に伴い、モジュールや電子部品などの発熱体から発生する熱量が大きくなってきている。これらの発熱体からの熱は、基板等に伝えられ、放熱されている。この熱伝導を効率よく行うため、発熱体と基板との間の接着剤には、高熱伝導率のものが用いられている。また、ハンドリングのよさから、接着剤の代わりに高熱伝導の接着フィルムが用いられている。   In recent years, the amount of heat generated from a heating element such as a module or electronic component has increased with the increase in functionality and density of the module or electronic component. The heat from these heating elements is transmitted to the substrate or the like and radiated. In order to efficiently perform this heat conduction, an adhesive having a high thermal conductivity is used as an adhesive between the heating element and the substrate. Moreover, the adhesive film of the high heat conductivity is used instead of the adhesive agent from the ease of handling.

ここで、接着フィルムの熱伝導が良好でないと、モジュールや電子部品を組み込んだ半導体装置に熱が蓄積され、半導体装置の故障を誘発してしまう、という問題がある。したがって、高熱伝導率のフィルムの開発が、各社で進められている。   Here, if the heat conduction of the adhesive film is not good, there is a problem that heat is accumulated in a semiconductor device in which a module or an electronic component is incorporated, thereby causing a failure of the semiconductor device. Therefore, development of high thermal conductivity films is being promoted by each company.

この高熱伝導率のフィルムとしては、高熱伝導性のフィラーを大量に使用する放熱性ダイボンドフィルム(特許文献1)や、フィルムに含有されるフィラーの形状を特定のものとすることで、半導体装置の放熱性を向上させる熱伝導性シート(特許文献2)が、報告されている。   As this high thermal conductivity film, a heat-dissipating die-bonding film (Patent Document 1) that uses a large amount of a high thermal conductivity filler or a specific shape of the filler contained in the film can be used. A heat conductive sheet (Patent Document 2) that improves heat dissipation has been reported.

特開2011−023607号公報JP 2011-023607 A 特開2011−142129号公報JP 2011-142129 A

しかしながら、高熱伝導性のフィラーを大量に使用する放熱性ダイボンドフィルムは、エポキシ樹脂、フェノール樹脂及びアクリル樹脂を使用しているため(特許文献1の第0035、0099段落)、熱硬化後の放熱性ダイボンドフィルムの硬度が高くなり過ぎ、高熱伝導率の放熱性ダイボンドフィルムの熱硬化後の冷却時に発生する発熱体と基板との熱膨張率の差に起因する応力により、発熱体と基板との接合強度が低下してしまう、という問題がある。また、この放熱性ダイボンドフィルムでは、耐熱性が充分とはいえず、モジュールや電子部品などの熱量の増加に伴う発熱に対処できない場合があり、熱伝導が十分ではない熱伝導フィルムを用いた半導体装置では、半導体装置そのものの信頼性が損なわれるおそれがある。   However, since the heat-dissipating die-bonding film using a large amount of highly heat-conductive filler uses an epoxy resin, a phenol resin, and an acrylic resin (Patent Document 1, paragraphs 0035 and 0099), heat dissipation after thermosetting Bonding between the heating element and the substrate due to the stress caused by the difference in thermal expansion coefficient between the heating element and the substrate generated when the die bond film becomes too hard and the heat-radiating die-bonding film with high thermal conductivity is cooled after thermosetting. There exists a problem that intensity | strength will fall. In addition, this heat-dissipating die-bonding film does not have sufficient heat resistance, and may not be able to cope with heat generation due to an increase in the amount of heat of modules, electronic components, etc., and a semiconductor using a heat-conducting film with insufficient heat conduction In the device, the reliability of the semiconductor device itself may be impaired.

また、特定形状のフィラーを含有する熱伝導性シートも、熱硬化性樹脂を使用しており(特許文献2の第0029、0037段落)、上述の発熱体と基板との接合強度が低下してしまう、という問題があり、熱伝導性シートの耐熱性が充分とはいえず、半導体装置そのものの信頼性が損なわれるおそれがあるという問題もある。また、熱伝導性シートに特別な形状や加工のされているフィラーを用いると、半導体装置の高コスト化につながってしまう。さらに、熱伝導性シートに接する部材の熱伝導性シート側の面に、凹凸を形成するため、使用可能な半導体装置が限定されてしまう、という問題もある。   Moreover, the heat conductive sheet containing the filler of a specific shape also uses a thermosetting resin (paragraphs 0029 and 0037 of Patent Document 2), and the bonding strength between the heating element and the substrate is reduced. There is also a problem that the heat resistance of the heat conductive sheet is not sufficient and the reliability of the semiconductor device itself may be impaired. Further, if a filler having a special shape or processing is used for the heat conductive sheet, the cost of the semiconductor device is increased. Furthermore, since the unevenness is formed on the surface on the heat conductive sheet side of the member in contact with the heat conductive sheet, there is a problem that usable semiconductor devices are limited.

本発明の課題は、発熱体の放熱性に優れ、高熱伝導率のフィルムの熱硬化後の冷却時及びアッセンブリー後の熱履歴において発生する発熱体と基板との熱膨張率の差に起因する応力により、発熱体と基板との接合強度が低下してしまうという問題、及びフィルムの耐熱性が十分ではないという問題を解決する信頼性の高い半導体装置を提供することである。   The problem of the present invention is that the heat generated by the heating element is excellent in heat dissipation, and the stress caused by the difference in the coefficient of thermal expansion between the heating element and the substrate that occurs in the heat history after cooling of the film with high thermal conductivity and after assembly. Accordingly, it is an object of the present invention to provide a highly reliable semiconductor device that solves the problem that the bonding strength between the heating element and the substrate decreases and the problem that the heat resistance of the film is not sufficient.

本発明は、以下の構成を有することによって上記問題を解決した半導体装置に関する。
〔1〕発熱体と、受熱器と、発熱体と受熱器との間に、発熱体からの熱を受熱器に伝えるための高熱伝導層とを備える半導体装置であって、
高熱伝導層が、(A)少なくとも以下の一般式(1):
The present invention relates to a semiconductor device that has solved the above problems by having the following configuration.
[1] A semiconductor device comprising a heating element, a heat receiver, and a high thermal conductive layer for transferring heat from the heating element to the heat receiver between the heating element and the heat receiver,
The high thermal conductive layer is (A) at least the following general formula (1):

(式中、
、R、R、R、R、R、Rは同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
−(O−X−O)−は構造式(2)で示され、ここで、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
−(Y−O)−は構造式(3)で示される1種類の構造、又は構造式(3)で示される2種類以上の構造がランダムに配列したものであり、ここで、R16、R17は同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R18、R19は同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
Zは炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、
c、dは0又は1の整数を示す)で示されるビニル基が結合したフェニル基を両末端に持つポリエーテル化合物を含む、2種以上の熱硬化性樹脂と、
(B)熱可塑性エラストマーと、
(C)熱伝導性無機フィラーと、
(D)硬化剤と
を含む高熱伝導フィルムの熱硬化体であり、厚さが10〜300μmであることを特徴とする、半導体装置。
〔2〕高熱伝導層の25℃でのせん断接着強度が、13N/mm以上である、上記〔1〕記載の半導体装置。
〔3〕高熱伝導層の厚さが、10μm以上100μm以下である、上記〔1〕又は〔2〕記載の半導体装置。
〔4〕高熱伝導層の体積抵抗率が、1×1010Ω・cm以上であり、かつ、熱伝導率が0.8W/m・K以上である、上記〔1〕〜〔3〕のいずれか記載の半導体装置。
〔5〕(C)成分が、MgO、Al、AlN、BN、ダイヤモンドフィラー、ZnO、およびSiCからなる群より選択される1種以上である上記〔1〕〜〔4〕記載のいずれか記載の半導体装置。
〔6〕(D)成分が、イミダゾール系硬化剤である、上記〔1〕〜〔5〕のいずれか記載の半導体装置。
〔7〕受熱器が、電極が形成された基板であり、
高熱伝導層が、発熱体と、基板上に形成された電極との間に形成される、上記〔1〕〜〔6〕のいずれか記載の半導体装置。
〔8〕発熱体が電極を有し、受熱器が基板であり、
高熱伝導層が、発熱体の電極と、基板との間に形成される、上記〔1〕〜〔6〕のいずれか記載の半導体装置。
〔9〕発熱体が、ICチップ、ベアチップ、LEDチップ、FWD(Free Wheeling Diode)、又はIGBT(Insulated Gate Bipolar Transistor)である、上記〔1〕〜〔7〕のいずれか記載の半導体装置。
〔10〕基板が、メタルベースCCL使用基板、高熱伝導CEM−3使用基板、高熱伝導FR−4使用基板、低熱抵抗FCCL使用基板、メタル基板、又はセラミックス基板である、上記〔7〕〜〔9〕のいずれか記載の半導体装置。
〔11〕発熱体が、半導体モジュールであり、受熱器が放熱板である、上記〔1〕〜〔6〕のいずれか記載の半導体装置。
〔12〕半導体モジュールが、パワー半導体モジュールである、上記〔11〕記載の半導体装置。
(Where
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group,
— (O—X—O) — is represented by the structural formula (2), in which R 8 , R 9 , R 10 , R 14 , and R 15 may be the same or different and are each a halogen atom or a carbon number 6 or less alkyl group or phenyl group, R 11 , R 12 and R 13 may be the same or different, and are a hydrogen atom, a halogen atom or an alkyl group or phenyl group having 6 or less carbon atoms,
-(YO)-is one type of structure represented by the structural formula (3) or two or more types of structures represented by the structural formula (3) arranged at random, where R 16 , R 17 may be the same or different, and is a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and R 18 and R 19 may be the same or different, and may be a hydrogen atom, halogen atom, or 6 or less carbon atoms. An alkyl group or a phenyl group,
Z is an organic group having 1 or more carbon atoms, and may contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom in some cases,
a and b each represents an integer of 0 to 300, at least one of which is not 0;
c and d each represents an integer of 0 or 1), two or more thermosetting resins including a polyether compound having a phenyl group bonded to a vinyl group at both ends;
(B) a thermoplastic elastomer;
(C) a thermally conductive inorganic filler;
(D) A semiconductor device, which is a thermoset of a high thermal conductive film containing a curing agent and has a thickness of 10 to 300 μm.
[2] The semiconductor device according to [1], wherein the high thermal conductive layer has a shear adhesive strength at 25 ° C. of 13 N / mm or more.
[3] The semiconductor device according to [1] or [2], wherein the thickness of the high thermal conductive layer is 10 μm or more and 100 μm or less.
[4] The volume resistivity of the high thermal conductive layer is 1 × 10 10 Ω · cm or more, and the thermal conductivity is 0.8 W / m · K or more, and any one of the above [1] to [3] Or a semiconductor device.
[5] Any of [1] to [4] above, wherein the component (C) is one or more selected from the group consisting of MgO, Al 2 O 3 , AlN, BN, diamond filler, ZnO, and SiC. Or a semiconductor device.
[6] The semiconductor device according to any one of [1] to [5], wherein the component (D) is an imidazole curing agent.
[7] The heat receiver is a substrate on which an electrode is formed,
The semiconductor device according to any one of [1] to [6], wherein the high thermal conductive layer is formed between the heating element and an electrode formed on the substrate.
[8] The heating element has an electrode, the heat receiver is a substrate,
The semiconductor device according to any one of [1] to [6], wherein the high thermal conductive layer is formed between the electrode of the heating element and the substrate.
[9] The semiconductor device according to any one of [1] to [7], wherein the heating element is an IC chip, bare chip, LED chip, FWD (Free Wheeling Diode), or IGBT (Insulated Gate Bipolar Transistor).
[10] The above [7] to [9], wherein the substrate is a substrate using a metal base CCL, a substrate using a high thermal conductivity CEM-3, a substrate using a high thermal conductivity FR-4, a substrate using a low thermal resistance FCCL, a metal substrate, or a ceramic substrate. ] The semiconductor device in any one of.
[11] The semiconductor device according to any one of [1] to [6], wherein the heating element is a semiconductor module and the heat receiver is a heat sink.
[12] The semiconductor device according to [11], wherein the semiconductor module is a power semiconductor module.

本発明によれば、発熱体の放熱性に優れ、発熱体と基板との熱膨張率の差に起因する応力により発熱体と基板との接合強度が低下することなく、さらに耐熱性が付与された高信頼性の半導体装置を提供することができる。   According to the present invention, the heat generating element is excellent in heat dissipation, and further heat resistance is provided without reducing the bonding strength between the heat generating element and the substrate due to the stress caused by the difference in thermal expansion coefficient between the heat generating element and the substrate. In addition, a highly reliable semiconductor device can be provided.

本発明の半導体装置の断面の模式図の一例である。It is an example of the schematic diagram of the cross section of the semiconductor device of this invention. 高熱伝導層の厚さと接着強度(せん断強度)の関係を示す図である。It is a figure which shows the relationship between the thickness of a high heat conductive layer, and adhesive strength (shear strength). 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 半導体装置の断面の具体例を示す図である。It is a figure which shows the specific example of the cross section of a semiconductor device. 高熱伝導層のせん断接着強度の評価方法を説明する模式図である。It is a schematic diagram explaining the evaluation method of the shear bond strength of a high heat conductive layer. 熱抵抗測定装置の模式図である。It is a schematic diagram of a thermal resistance measuring device. 熱抵抗の評価結果を示す図である。It is a figure which shows the evaluation result of thermal resistance.

本発明の半導体装置は、発熱体と、受熱器と、発熱体と受熱器との間に、発熱体からの熱を受熱器に伝えるための高熱伝導層とを備える半導体装置であって、
高熱伝導層が、(A)少なくとも以下の一般式(1):
The semiconductor device of the present invention is a semiconductor device comprising a heating element, a heat receiver, and a high heat conductive layer for transferring heat from the heating element to the heat receiver between the heating element and the heat receiver,
The high thermal conductive layer is (A) at least the following general formula (1):

(式中、
、R、R、R、R、R、Rは同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
−(O−X−O)−は構造式(2)で示され、ここで、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
−(Y−O)−は構造式(3)で示される1種類の構造、又は構造式(3)で示される2種類以上の構造がランダムに配列したものであり、ここで、R16、R17は同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R18、R19は同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
Zは炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、
c、dは0又は1の整数を示す)で示されるビニル基が結合したフェニル基を両末端に持つポリエーテル化合物を含む、2種以上の熱硬化性樹脂と、
(B)熱可塑性エラストマーと、
(C)熱伝導性無機フィラーと、
(D)硬化剤と
を含む高熱伝導フィルムの熱硬化体であり、厚さが10〜300μmであることを特徴とする。この高熱伝導層が、熱伝導性と耐熱性に優れているため、発熱体の放熱性に優れ、信頼性が高い半導体装置となる。図1に、本発明の半導体装置の断面の模式図の一例を示す。図1に示すように、本発明の半導体装置1は、発熱体2と、受熱器3と、発熱体と受熱器との間に、発熱体からの熱を受熱器に伝えるための高熱伝導層4とを備え、高熱伝導層4は、高熱伝導フィルムの熱硬化体である。以下、発熱体、受熱器、高熱伝導層の順に説明する。
(Where
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group,
— (O—X—O) — is represented by the structural formula (2), in which R 8 , R 9 , R 10 , R 14 , and R 15 may be the same or different and are each a halogen atom or a carbon number 6 or less alkyl group or phenyl group, R 11 , R 12 and R 13 may be the same or different, and are a hydrogen atom, a halogen atom or an alkyl group or phenyl group having 6 or less carbon atoms,
-(YO)-is one type of structure represented by the structural formula (3) or two or more types of structures represented by the structural formula (3) arranged at random, where R 16 , R 17 may be the same or different, and is a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and R 18 and R 19 may be the same or different, and may be a hydrogen atom, halogen atom, or 6 or less carbon atoms. An alkyl group or a phenyl group,
Z is an organic group having 1 or more carbon atoms, and may contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom in some cases,
a and b each represents an integer of 0 to 300, at least one of which is not 0;
c and d each represents an integer of 0 or 1), two or more thermosetting resins including a polyether compound having a phenyl group bonded to a vinyl group at both ends;
(B) a thermoplastic elastomer;
(C) a thermally conductive inorganic filler;
(D) A thermoset of a high thermal conductive film containing a curing agent and having a thickness of 10 to 300 μm. Since this high thermal conductive layer is excellent in thermal conductivity and heat resistance, it becomes a highly reliable semiconductor device with excellent heat dissipation of the heating element. FIG. 1 shows an example of a schematic cross-sectional view of a semiconductor device of the present invention. As shown in FIG. 1, a semiconductor device 1 of the present invention includes a heat generating element 2, a heat receiver 3, and a high heat conductive layer for transferring heat from the heat generating element to the heat receiving element between the heat generating element and the heat receiving element. 4 and the high thermal conductive layer 4 is a thermoset of a high thermal conductive film. Hereinafter, the heating element, the heat receiver, and the high thermal conductive layer will be described in this order.

〔発熱体〕
発熱体は、特に限定されるものではなく、種々の半導体や半導体モジュールを用いることができるが、本発明の効果を発揮するためには、発熱量の多い発熱体、すなわち、ベアチップ等のICチップ、LEDチップ、FWD(Free Wheeling Diode)、もしくはIGBT(Insulated Gate Bipolar Transistor)等の半導体、または自動車等の輸送機器に用いられるパワー半導体モジュール等の半導体モジュールが好ましい。また、本発明の効果を発揮するためには、総発熱量が0.5W〜500Wの高出力の半導体または半導体モジュールが、より好ましい。
[Heating element]
The heating element is not particularly limited, and various semiconductors and semiconductor modules can be used. However, in order to exert the effect of the present invention, the heating element having a large amount of heat generated, that is, an IC chip such as a bare chip. A semiconductor module such as a semiconductor such as an LED chip, a FWD (Free Wheeling Diode), or an IGBT (Insulated Gate Bipolar Transistor), or a power semiconductor module used in transportation equipment such as an automobile is preferable. Moreover, in order to exhibit the effect of this invention, the high output semiconductor or semiconductor module whose total calorific value is 0.5 W-500 W is more preferable.

〔受熱器〕
受熱器としては、基板、放熱板等が挙げられる。基板としては、高熱伝導CEM−3使用基板、高熱伝導FR−4使用基板等の樹脂系基板や、メタルベースCCL使用基板、低熱抵抗FCCL使用基板等のメタル基板、Al、AlN、SiC、BN等のセラミックス基板が挙げられ、半導体装置の設計に応じて種々のものを用いることができる。受熱器として樹脂系基板を用いると、低弾性率の高熱伝導層により、発熱体と受熱器との熱膨張差に起因する応力が緩和されるため反りを防止することができ、さらに半導体装置に耐熱性を付与できる。受熱器としてメタル基板やセラミックス基板を用いると、発熱体と受熱器の熱伝導率が近いため、発熱体と受熱器との熱膨張差に起因する応力が緩和され、かつ高熱伝導層が低弾性率であるため、高熱伝導層にクラックが発生することを防止することができ、さらに半導体装置に耐熱性を付与できる。特に、応力の緩和を重視する用途では樹脂系基板の使用が好ましく、低熱抵抗の観点からはメタル基板やセラミックス基板の使用が好ましい。参考までに、表1に、各樹脂系基板の熱膨張係数と熱伝導率の一例を示す。なお、表1には、ICチップ等の材料であるシリコンのデータも記載する。また、放熱板としては、半導体モジュール等からの熱を放熱できるものであればよく、形状等は特に限定されない。
[Receiver]
Examples of the heat receiver include a substrate and a heat sink. As the substrate, a resin substrate such as a substrate using a high thermal conductivity CEM-3, a substrate using a high thermal conductivity FR-4, a metal substrate such as a substrate using a metal base CCL, a substrate using a low thermal resistance FCCL, Al 2 O 3 , AlN, SiC , BN, etc., and various substrates can be used depending on the design of the semiconductor device. When a resin substrate is used as the heat receiver, the high thermal conductive layer having a low elastic modulus can relieve the stress caused by the difference in thermal expansion between the heating element and the heat receiver, thereby preventing warpage. Heat resistance can be imparted. When a metal substrate or ceramic substrate is used as the heat receiver, the heat conductivity between the heat generator and the heat receiver is close, so stress due to the difference in thermal expansion between the heat generator and the heat receiver is relieved, and the high heat conductive layer has low elasticity. Therefore, cracks can be prevented from occurring in the high thermal conductive layer, and heat resistance can be imparted to the semiconductor device. In particular, the use of a resin-based substrate is preferable in applications where stress relaxation is important, and the use of a metal substrate or a ceramic substrate is preferable from the viewpoint of low thermal resistance. For reference, Table 1 shows an example of the thermal expansion coefficient and thermal conductivity of each resin substrate. Table 1 also includes data on silicon, which is a material such as an IC chip. Moreover, as a heat sink, what is necessary is just to be able to radiate the heat from a semiconductor module etc., and a shape etc. are not specifically limited.

〔高熱伝導層〕
まず、高熱伝導層を構成する熱硬化体を形成するための高熱伝導フィルムについて説明する。高熱伝導フィルムに含まれる(A)成分は、少なくとも一般式(1)で示されるビニル基が結合したフェニル基を両末端に持つポリエーテル化合物(以下、変性OPEという)を含む、2種以上の熱硬化性樹脂である。本発明では、熱硬化性樹脂として変性OPEを用いているので、エポキシを主として用いた従来品と比べて、Tgが高く(216℃)、耐熱性が優れており、高熱伝導層の経時変化が生じにくく、半導体装置の長期信頼性を維持できる。さらに、樹脂中の親水基の数が少ないため吸湿性に優れる、という特徴がある。このため、150℃近くの温度がかかる用途であっても、高熱伝導層は、発熱体や受熱器と剥離が生じず、信頼性の高い半導体装置である。さらに、変性OPEとエラストマーによる効果により、高熱伝導層が外部からの応力を緩和できるような適度の柔軟性を有しているため、半導体装置内に生じる応力を緩和することができる。また、変性OPEは、絶縁性に優れており、高熱伝導層の厚さを小さくしても、半導体装置の信頼性を維持することができる。この変性OPEは、特開2004−59644号公報に記載されたとおりである。なお、Tgが高いエポキシ樹脂を使用した組成物は、フィルム状に成形することができず、Tgが低いエポキシ樹脂を使用した組成物は、フィルム状に成形することができるが、得られるフィルムのTgが低くなるため、フィルムの耐熱性が劣ってしまう。
[High thermal conductivity layer]
First, the high heat conductive film for forming the thermosetting body which comprises a high heat conductive layer is demonstrated. The component (A) contained in the high thermal conductive film comprises at least two kinds of polyether compounds (hereinafter referred to as modified OPE) having at least both phenyl groups bonded to vinyl groups represented by the general formula (1). It is a thermosetting resin. In the present invention, since modified OPE is used as a thermosetting resin, Tg is higher (216 ° C.) and heat resistance is superior to conventional products mainly using epoxy. It is difficult to occur and the long-term reliability of the semiconductor device can be maintained. Further, since the number of hydrophilic groups in the resin is small, it has a feature of excellent hygroscopicity. For this reason, even in applications where a temperature close to 150 ° C. is applied, the high thermal conductive layer is a highly reliable semiconductor device that does not peel off the heating element and the heat receiver. Furthermore, due to the effect of the modified OPE and the elastomer, the high thermal conductive layer has an appropriate flexibility that can relieve the external stress, so that the stress generated in the semiconductor device can be relieved. Further, the modified OPE has excellent insulating properties, and the reliability of the semiconductor device can be maintained even if the thickness of the high thermal conductive layer is reduced. This modified OPE is as described in JP-A-2004-59644. A composition using an epoxy resin having a high Tg cannot be formed into a film, and a composition using an epoxy resin having a low Tg can be formed into a film. Since Tg becomes low, the heat resistance of a film will be inferior.

一般式(1)で示される変性OPEの−(O−X−O)−についての構造式(2)において、R、R、R10、R14、R15は、好ましくは、炭素数3以下のアルキル基であり、R11、R12、R13は、好ましくは、水素原子又は炭素数3以下のアルキル基である。具体的には、構造式(4)が挙げられる。 In the structural formula (2) for — (O—X—O) — of the modified OPE represented by the general formula (1), R 8 , R 9 , R 10 , R 14 , and R 15 are preferably carbon atoms. It is an alkyl group having 3 or less, and R 11 , R 12 and R 13 are preferably a hydrogen atom or an alkyl group having 3 or less carbon atoms. Specifically, structural formula (4) is mentioned.

−(Y−O)−についての構造式(3)において、R16、R17は、好ましくは、炭素数3以下のアルキル基であり、R18、R19は、好ましくは、水素原子又は炭素数3以下のアルキル基である。具体的には、構造式(5)又は(6)が挙げられる。 In Structural Formula (3) for — (Y—O) —, R 16 and R 17 are preferably an alkyl group having 3 or less carbon atoms, and R 18 and R 19 are preferably a hydrogen atom or a carbon atom. It is an alkyl group of several or less. Specifically, structural formula (5) or (6) is mentioned.

Zは、炭素数3以下のアルキレン基が挙げられ、具体的には、メチレン基である。   Z includes an alkylene group having 3 or less carbon atoms, specifically a methylene group.

a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、好ましくは0〜30の整数を示す。   a and b each represent an integer of 0 to 300, preferably at least one of which is not 0, and preferably represents an integer of 0 to 30.

数平均分子量1000〜3000である一般式(1)の変性OPEが好ましい。数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。   The modified OPE of the general formula (1) having a number average molecular weight of 1000 to 3000 is preferable. The number average molecular weight is a value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).

上記の変性OPEは、単独でも、2種以上組み合わせて用いてもよい。   Said modified | denatured OPE may be used individually or in combination of 2 or more types.

(A)成分に含有される一般式(1)の変性OPE以外の熱硬化性樹脂としては、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、カルボジイミド樹脂、ビスマレイミド樹脂等が挙げられ、ビフェニル型エポキシ樹脂が、高熱伝導フィルムの成形性の観点から好ましい。エポキシ樹脂は、接着強度を向上させるために用いられる。また、カルボジイミド樹脂は、エポキシ樹脂より接着強度を向上させることができるので、高接着力が要求される用途では、カルボジイミド樹脂が好ましい。ビスマレイミド樹脂は、接着強度向上および高Tg(ガラス転移点)化の観点から好ましい。(A)成分に含有される変性OPE以外の熱硬化性樹脂は、単独でも2種以上を併用してもよい。   As thermosetting resins other than the modified OPE of the general formula (1) contained in the component (A), biphenyl type epoxy resin, naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy Examples thereof include resins, carbodiimide resins, bismaleimide resins, and the like, and biphenyl type epoxy resins are preferable from the viewpoint of moldability of the high thermal conductive film. Epoxy resins are used to improve adhesive strength. Moreover, since carbodiimide resin can improve adhesive strength rather than an epoxy resin, carbodiimide resin is preferable in the use for which high adhesive force is requested | required. The bismaleimide resin is preferable from the viewpoint of improving the adhesive strength and increasing the Tg (glass transition point). The thermosetting resin other than the modified OPE contained in the component (A) may be used alone or in combination of two or more.

(B)成分としては、スチレン−ブタジエンブロック共重合体(SBS)、スチレン−エチレン/ブチレン−スチレンブロック共重合体(SEBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、ポリブタジエン(PB)、スチレン−(エチレン−エチレン/プロピレン)−スチレンブロック共重合体(SEEPS)が挙げられ、スチレン−エチレン/ブチレン−スチレンブロック共重合体が、硬化後の高熱伝導フィルムへの耐熱性付与の観点から、好ましい。(B)成分は、単独でも2種以上を併用してもよい。(B)成分は、重量平均分子量は、30,000〜200,000であるものが好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。   As the component (B), styrene-butadiene block copolymer (SBS), styrene-ethylene / butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), polybutadiene (PB) Styrene- (ethylene-ethylene / propylene) -styrene block copolymer (SEEPS), and styrene-ethylene / butylene-styrene block copolymer is used from the viewpoint of imparting heat resistance to the high thermal conductive film after curing. ,preferable. (B) A component may be individual or may use 2 or more types together. The component (B) preferably has a weight average molecular weight of 30,000 to 200,000. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

(C)成分の熱伝導性無機フィラーとは、熱伝導率が、5W/m・K以上のものをいう。(C)成分は、絶縁性を保持する観点から、一般的な無機フィラーを使用することができ、熱伝導率、絶縁性および熱膨張係数の点から、MgO、Al、AlN、BN、ダイヤモンドフィラー、ZnO、およびSiCからなる群より選択される少なくとも1種以上の無機フィラーであると、好ましい。なお、ZnOおよびSiCには、必要に応じて絶縁処理をしてもよい。各材料の熱伝導率測定結果の一例としては(単位は、W/m・K)、MgOは37、Alは30、AlNは200、BNは30、ダイヤモンドは2000、ZnOは54、SiCは90である。 (C) The heat conductive inorganic filler of a component means a thing with a heat conductivity of 5 W / m * K or more. As the component (C), a general inorganic filler can be used from the viewpoint of maintaining insulating properties, and MgO, Al 2 O 3 , AlN, BN can be used from the viewpoint of thermal conductivity, insulating properties, and thermal expansion coefficient. And at least one inorganic filler selected from the group consisting of diamond filler, ZnO, and SiC. In addition, you may carry out an insulation process to ZnO and SiC as needed. As an example of the thermal conductivity measurement result of each material (unit is W / m · K), MgO is 37, Al 2 O 3 is 30, AlN is 200, BN is 30, diamond is 2000, ZnO is 54, SiC is 90.

(C)成分の平均粒径(粒状でない場合は、その平均最大径)は、特に限定されないが、0.05〜50μmであることが、高熱伝導フィルム中に(C)成分を均一に分散させるうえで好ましい。0.05μm未満だと、高熱伝導フィルムを形成するための組成物の粘度が上昇して、成形性が悪化するおそれがある。50μm超だと、高熱伝導フィルム中に(C)成分を均一に分散させることが困難になるおそれがある。ここで、(C)成分の平均粒径は、動的光散乱式ナノトラック粒度分析計により測定する。(C)成分は、単独でも2種以上を併用してもよい。   The average particle diameter of component (C) (if it is not granular, the average maximum diameter) is not particularly limited, but is 0.05 to 50 μm so that component (C) is uniformly dispersed in the high thermal conductive film. In addition, it is preferable. When it is less than 0.05 μm, the viscosity of the composition for forming the high thermal conductive film increases, and the moldability may be deteriorated. If it exceeds 50 μm, it may be difficult to uniformly disperse the component (C) in the high thermal conductive film. Here, the average particle diameter of the component (C) is measured by a dynamic light scattering nanotrack particle size analyzer. (C) A component may be individual or may use 2 or more types together.

(D)成分としては、フェノール系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤等が挙げられ、(D)成分が、イミダゾール系硬化剤であると、変性OPE以外の熱硬化性樹脂に対する硬化性、接着性の観点から、好ましい。   Examples of component (D) include phenolic curing agents, amine-based curing agents, imidazole-based curing agents, and acid anhydride-based curing agents. When component (D) is an imidazole-based curing agent, other than modified OPE From the viewpoints of curability and adhesion to the thermosetting resin.

(A)成分は、硬化後の高熱伝導フィルムの熱伝導率の観点から、高熱伝導フィルム:100質量部に対して、5〜25質量部であると好ましい。また、変性OPEは、硬化後の高熱伝導フィルムの耐熱性の観点から、(A)成分:100質量部に対して、60〜95質量部であると好ましい。   (A) A component is preferable in it being 5-25 mass parts with respect to 100 mass parts of high heat conductive films from the viewpoint of the heat conductivity of the high heat conductive film after hardening. Moreover, modified | denatured OPE is preferable in it being 60-95 mass parts with respect to (A) component: 100 mass parts from the heat resistant viewpoint of the highly heat-conductive film after hardening.

(B)成分は、高熱伝導フィルムの成形性及び硬化後の高熱伝導フィルムの弾性率の観点から、高熱伝導フィルム:100質量部に対して、5〜25質量部であると好ましい。   (B) A component is preferable in it being 5-25 mass parts with respect to 100 mass parts of high heat conductive films from the viewpoint of the moldability of a high heat conductive film, and the elasticity modulus of the high heat conductive film after hardening.

(C)成分は、絶縁性、接着性、および熱膨張係数の観点から、高熱伝導フィルム:100質量部に対して、50〜90質量部であると好ましい。(C)成分が、90質量部を超えると、高熱伝導フィルム接着力が低下し易い。一方、(C)成分が、50質量部未満であると、無機フィラーの熱伝導率が高くても、高熱伝導層の熱伝導が不十分であるおそれがある。   The component (C) is preferably 50 to 90 parts by mass with respect to 100 parts by mass of the high thermal conductive film from the viewpoints of insulation, adhesiveness, and thermal expansion coefficient. When the component (C) exceeds 90 parts by mass, the high thermal conductive film adhesive force tends to be reduced. On the other hand, if the component (C) is less than 50 parts by mass, the heat conductivity of the high thermal conductivity layer may be insufficient even if the thermal conductivity of the inorganic filler is high.

(D)成分は、高熱伝導フィルムの保存安定性、高熱伝導フィルムの硬化性の観点から、高熱伝導フィルム:100質量部に対して、0.01〜1質量部であると好ましい。   The component (D) is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the high thermal conductive film from the viewpoint of storage stability of the high thermal conductive film and curability of the high thermal conductive film.

なお、高熱伝導フィルムは、本発明の効果を損なわない範囲で、粘着性付与剤、消泡剤、流動調整剤、成膜補助剤、分散助剤等の添加剤を含むことができる。   In addition, the high heat conductive film can contain additives, such as a tackifier, an antifoamer, a flow control agent, a film-forming auxiliary agent, and a dispersion auxiliary agent, as long as the effects of the present invention are not impaired.

高熱伝導フィルムを形成するための組成物(以下、高熱伝導フィルム用組成物という)は、(A)〜(D)成分等を含む原料を、有機溶剤に溶解又は分散等させることにより、高熱伝導フィルム用組成物を得ることができる。これらの原料の溶解又は分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。   A composition for forming a high thermal conductive film (hereinafter referred to as a composition for a high thermal conductive film) has a high thermal conductivity by dissolving or dispersing a raw material containing the components (A) to (D) in an organic solvent. A film composition can be obtained. A device for dissolving or dispersing these raw materials is not particularly limited, and a lykai machine, a three-roll mill, a ball mill, a planetary mixer, a bead mill, etc. equipped with a stirring and heating device can be used. . Moreover, you may use combining these apparatuses suitably.

有機溶剤としては、芳香族系溶剤、例えばトルエン、キシレン等、ケトン系溶剤、例えばメチルエチルケトン、メチルイソブチルケトン等が挙げられる。有機溶剤は、単独でも、2種以上を組み合わせて用いてもよい。また、有機溶剤の使用量は、特に限定されないが、、固形分が20〜50質量%となるように使用することが好ましい。作業性の点から、高熱伝導フィルム用組成物は、200〜3000mPa・sの粘度の範囲であることが好ましい。粘度は、E型粘度計を用いて、回転数10rpm、25℃で測定した値とする。   Examples of the organic solvent include aromatic solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. The organic solvents may be used alone or in combination of two or more. Moreover, although the usage-amount of an organic solvent is not specifically limited, It is preferable to use it so that solid content may be 20-50 mass%. From the viewpoint of workability, the high thermal conductive film composition preferably has a viscosity range of 200 to 3000 mPa · s. The viscosity is a value measured using an E-type viscometer at a rotation speed of 10 rpm and 25 ° C.

高熱伝導フィルムは、高熱伝導フィルム用組成物を、所望の支持体に塗布した後、乾燥することにより得られる。支持体は、特に限定されず、銅、アルミニウム等の金属箔、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂等の有機フィルム等が挙げられる。支持体はシリコーン系化合物等で離型処理されていてもよい。   The high heat conductive film is obtained by applying the composition for high heat conductive film to a desired support and then drying. The support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, organic films such as polyester resins, polyethylene resins, and polyethylene terephthalate resins. The support may be release-treated with a silicone compound or the like.

高熱伝導フィルム用組成物を支持体に塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からはマイクログラビア法、スロットダイ法、ドクターブレード法が好ましい。スロットダイ法により、熱硬化後の厚さが10〜300μmになる高熱伝導フィルムを得ることができる。   The method for applying the composition for a high thermal conductive film to the support is not particularly limited, but the microgravure method, the slot die method, and the doctor blade method are preferable from the viewpoint of thinning and thickness control. By the slot die method, a high thermal conductive film having a thickness after thermosetting of 10 to 300 μm can be obtained.

乾燥条件は、高熱伝導フィルム用組成物に使用される有機溶剤の種類や量、塗布の厚み等に応じて、適宜、設定することができ、例えば、50〜120℃で、1〜30分程度とすることができる。このようにして得られた高熱伝導フィルムは、良好な保存安定性を有する。なお、高熱伝導フィルムは、所望のタイミングで、支持体から剥離することができる。   The drying conditions can be appropriately set according to the type and amount of the organic solvent used in the composition for a high thermal conductive film, the thickness of coating, and the like, for example, at 50 to 120 ° C. for about 1 to 30 minutes. It can be. The high thermal conductive film thus obtained has good storage stability. In addition, a high heat conductive film can be peeled from a support body at a desired timing.

高熱伝導層は、未硬化状態の高熱伝導フィルムを、例えば、発熱体と受熱器との間に配置した後、例えば、130〜200℃で、60〜180分の間、熱硬化させて形成することができる。この高熱伝導層は、発熱体と受熱器と、場合により電極等とを接着すると共に、発熱体からの熱を受熱器側へ逃がし、受熱器側で放熱させる伝熱の役割を果たす。さらに、高熱伝導層は、発熱体と受熱器との間、場合により発熱体または受熱器と電極等との間の熱膨張率の差に起因する応力を緩和する役割を果たす。   The high heat conductive layer is formed by, for example, placing an uncured high heat conductive film between, for example, a heating element and a heat receiver, and then heat curing at 130 to 200 ° C. for 60 to 180 minutes. be able to. The high heat conductive layer serves to transfer heat from the heat generator to the heat receiver while releasing the heat from the heat generator while adhering the heat generator to the heat receiver and, in some cases, an electrode. Furthermore, the high thermal conductive layer plays a role of relieving stress caused by a difference in coefficient of thermal expansion between the heating element and the heat receiver, and in some cases, between the heating element or the heat receiver and the electrode.

高熱伝導層の厚さは、10μm以上300μm以下であり、好ましくは10μm以上100μm以下、より好ましくは10μm以上50μm以下である。10μm未満では所望する絶縁性を得られなくなるおそれがある。300μmを超えると、発熱体の放熱が充分にはできなくなる。高熱伝導層の厚さが薄くなるに従って、発熱体と受熱器との距離が短くなるので、効率的な熱伝導の観点から、高熱伝導層の厚さは薄い方が好ましい。   The thickness of the high thermal conductive layer is 10 μm or more and 300 μm or less, preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less. If it is less than 10 μm, the desired insulating property may not be obtained. If it exceeds 300 μm, the heat generating element cannot sufficiently dissipate heat. Since the distance between the heating element and the heat receiver becomes shorter as the thickness of the high thermal conductive layer becomes thinner, it is preferable that the thickness of the high thermal conductive layer is thinner from the viewpoint of efficient thermal conduction.

さらに、高熱伝導層は、その厚さが薄いほど接着強度が高いという特徴を有している。高熱伝導層の厚さと接着強度(せん断強度)の関係を、表2と図2に示す。図2において、横軸は膜厚、縦軸はせん断強度であり、破線は剪断強度と膜厚の傾向を示す。図2からわかるように、高熱伝導層は、その厚さが薄いほど、接着強度が高い。したがって、高熱伝導層の厚さが、10μm以上300μm以下であると、せん断強度が10N/mm以上になるので好ましく、10μm以上100μm以下であると、せん断強度が14N/mm以上になるので、より好ましく、10μm以上50μm以下であると、せん断強度が15N/mm以上になるので、さらに好ましい。高熱伝導層のせん断強度が高いのは、高熱伝導層が外部からの応力を緩和できるような適度の柔軟性を有するためであるが、高熱伝導層が300μmを超えると、高熱伝導層自体に亀裂が生じ、破壊し易くなる。発熱体が半導体モジュールで、受熱器が放熱板である場合のような放熱用途では、高い接着性が要求されない場合が多いが、発熱体がICチップ等の半導体で、受熱器が基板である場合のような高い接着性が要求される用途では、高熱伝導層を300μmより厚くすることは好ましくない。高熱伝導層の厚さを好ましい範囲にするには、高熱伝導フィルムを上記の好ましい範囲の厚さとすることで実現できる。   Furthermore, the high thermal conductive layer has a feature that the thinner the thickness, the higher the adhesive strength. The relationship between the thickness of the high thermal conductive layer and the adhesive strength (shear strength) is shown in Table 2 and FIG. In FIG. 2, the horizontal axis indicates the film thickness, the vertical axis indicates the shear strength, and the broken line indicates the tendency of the shear strength and the film thickness. As can be seen from FIG. 2, the thinner the thickness of the high thermal conductive layer, the higher the adhesive strength. Therefore, when the thickness of the high thermal conductive layer is 10 μm or more and 300 μm or less, the shear strength is preferably 10 N / mm or more. When the thickness is 10 μm or more and 100 μm or less, the shear strength is 14 N / mm or more. The shear strength is preferably 15 N / mm or more, more preferably 10 μm or more and 50 μm or less. The reason why the high thermal conductive layer has high shear strength is that the high thermal conductive layer has moderate flexibility that can relieve external stress. However, if the high thermal conductive layer exceeds 300 μm, the high thermal conductive layer itself cracks. Will occur and it will be easy to break. In heat dissipation applications where the heating element is a semiconductor module and the heat receiver is a heat sink, high adhesion is often not required, but when the heat generator is a semiconductor such as an IC chip and the heat receiver is a substrate In applications where high adhesion is required, it is not preferable to make the high thermal conductive layer thicker than 300 μm. In order to make the thickness of the high thermal conductive layer into a preferable range, it can be realized by setting the high thermal conductive film to a thickness in the above preferable range.

高熱伝導層の25℃でのせん断接着強度は、13N/mm以上であることが好ましい。13N未満であると、発熱体がICチップ等の半導体で、受熱器が基板である場合のような接着性が要求される用途に用いることが難しくなる。   The shear adhesive strength at 25 ° C. of the high thermal conductive layer is preferably 13 N / mm or more. If it is less than 13N, it becomes difficult to use it in applications requiring adhesion, such as when the heating element is a semiconductor such as an IC chip and the heat receiver is a substrate.

高熱伝導層は、体積抵抗率が1×1010Ω・cm以上であり、かつ、熱伝導率が0.8W/m・K以上であると、好ましい。高熱伝導層は、体積抵抗率が1×1012Ω・cm以上であるとより好ましく、1×1013Ω・cm以上であると更に好ましい。また、高熱伝導層は、熱伝導率が1.0W/m・K以上であるとより好ましい。高熱伝導層の体積抵抗率が1×1010Ω・cm未満の場合には、半導体装置に要求される絶縁性を満足できないおそれがある。また、高熱伝導層の熱伝導率が0.8W/m・K未満の場合には、発熱体からの受熱器への伝熱が不十分となるおそれがある。高熱伝導層の体積抵抗率と熱伝導率は、(C)成分の種類と含有量によって、制御することができる。 The high thermal conductive layer preferably has a volume resistivity of 1 × 10 10 Ω · cm or more and a thermal conductivity of 0.8 W / m · K or more. The high thermal conductivity layer preferably has a volume resistivity of 1 × 10 12 Ω · cm or more, and more preferably 1 × 10 13 Ω · cm or more. Moreover, it is more preferable that the high thermal conductivity layer has a thermal conductivity of 1.0 W / m · K or more. If the volume resistivity of the high thermal conductive layer is less than 1 × 10 10 Ω · cm, the insulation required for the semiconductor device may not be satisfied. Moreover, when the heat conductivity of the high heat conductive layer is less than 0.8 W / m · K, heat transfer from the heating element to the heat receiver may be insufficient. The volume resistivity and thermal conductivity of the high thermal conductive layer can be controlled by the type and content of the component (C).

〔半導体装置〕
以下、本発明の半導体装置の各実施形態について説明するが、本発明はこれらの実施形態に限定されない。本発明の半導体装置は、受熱器が、電極が形成された基板であり、
高熱伝導層が、発熱体と、基板上に形成された電極との間に形成されると、発熱体の熱が、基板上に形成された電極経由で放熱されるため、好ましい。この構造は、後述する図5に存在する。また、本発明の別の半導体装置では、発熱体が電極を有し、受熱器が基板であり、高熱伝導層が、発熱体の電極と、基板との間に形成されると、発熱体の熱が、発熱体の電極経由で放熱されるため、好ましい。この構造は、後述する図4、6に存在する。以下、図3〜8に基づき、このような半導体装置の断面の具体例を説明する。
[Semiconductor device]
Hereinafter, although each embodiment of the semiconductor device of the present invention is described, the present invention is not limited to these embodiments. In the semiconductor device of the present invention, the heat receiver is a substrate on which an electrode is formed,
It is preferable that the high thermal conductive layer is formed between the heating element and the electrode formed on the substrate because the heat of the heating element is dissipated through the electrode formed on the substrate. This structure exists in FIG. 5 described later. In another semiconductor device of the present invention, when the heating element has an electrode, the heat receiver is a substrate, and the high thermal conductive layer is formed between the electrode of the heating element and the substrate, the heating element Since heat is dissipated through the electrode of the heating element, it is preferable. This structure exists in FIGS. 4 and 6 described later. Hereinafter, a specific example of a cross section of such a semiconductor device will be described with reference to FIGS.

図3に示す半導体装置10では、発熱体であるICチップ12と、受熱器である基板13との間に、高熱伝導層14が設けられ、かつICチップ12とワイヤーボンディング16で接続された基板13上の電極15と、基板13との間にも高熱伝導層14が設けられた構造をしている。この構造では、ICチップ12からの熱は、高熱伝導層14を経由して基板13に放熱され、更にワイヤーボンディング16と電極15を介して高熱伝導層14を経由して基板13に放熱される経路で放熱される。図3では、高熱伝導層14は、基板13とICチップ12、および基板13と電極15の接着層としても機能している。また、高熱伝導層14は、基板13とICチップ12、および基板13と電極15の熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 10 shown in FIG. 3, a high thermal conductive layer 14 is provided between an IC chip 12 that is a heating element and a substrate 13 that is a heat receiver, and the substrate is connected to the IC chip 12 by wire bonding 16. The high heat conductive layer 14 is also provided between the electrode 15 on the substrate 13 and the substrate 13. In this structure, heat from the IC chip 12 is radiated to the substrate 13 via the high thermal conductive layer 14 and further radiated to the substrate 13 via the wire bonding 16 and the electrode 15 via the high thermal conductive layer 14. Heat is dissipated in the route. In FIG. 3, the high thermal conductive layer 14 also functions as an adhesive layer between the substrate 13 and the IC chip 12 and between the substrate 13 and the electrode 15. Further, the high thermal conductive layer 14 relieves stress caused by the difference in thermal expansion coefficient between the substrate 13 and the IC chip 12 and between the substrate 13 and the electrode 15.

図4に示す半導体装置20では、発熱体であるICチップ22に形成された電極(バンプ)27と、受熱器である基板23上に形成された電極25とが接合されており、基板23と電極25との間に、ICチップ22からの熱を基板23に伝えるための高熱伝導層24が設けられた構造をしている。この構造では、ICチップ22からの熱は、電極(バンプ)27と電極25を介して高熱伝導層24を経由して基板23に放熱される。図4では、高熱伝導層24は、基板23と電極25の接着層としても機能している。また、高熱伝導層24は、基板23と電極25との熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 20 shown in FIG. 4, the electrodes (bumps) 27 formed on the IC chip 22 that is a heating element and the electrodes 25 formed on the substrate 23 that is a heat receiver are joined. A high heat conductive layer 24 for transferring heat from the IC chip 22 to the substrate 23 is provided between the electrode 25 and the electrode 25. In this structure, heat from the IC chip 22 is radiated to the substrate 23 via the high thermal conductive layer 24 via the electrodes (bumps) 27 and the electrodes 25. In FIG. 4, the high thermal conductive layer 24 also functions as an adhesive layer between the substrate 23 and the electrode 25. Further, the high thermal conductive layer 24 relieves stress caused by the difference in thermal expansion coefficient between the substrate 23 and the electrode 25.

図5に示す半導体装置30では、発熱体であるICチップ32は、上部の高熱伝導層34を介して電極35と接着しており、電極35は、下部の高熱伝導層34を介して基板33と接着している。また、ICチップ32は、ボンディングワイヤー36によっても電極35と接合している。この構造では、ICチップ32からの熱は、上部の高熱伝導層34経由で電極35に放熱され、かつボンディングワイヤー36経由でも電極35に放熱される。電極35に伝わった熱は、下部の高熱伝導層34経由で基板33に放熱される。図5では、高熱伝導層34は、ICチップ32と電極35、および電極35と基板33の接着層としても機能している。また、高熱伝導層34は、ICチップ32と電極35、および電極35と基板33の熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 30 shown in FIG. 5, the IC chip 32 as a heating element is bonded to the electrode 35 via the upper high thermal conductive layer 34, and the electrode 35 is connected to the substrate 33 via the lower high thermal conductive layer 34. It is glued. Further, the IC chip 32 is bonded to the electrode 35 by a bonding wire 36. In this structure, heat from the IC chip 32 is radiated to the electrode 35 via the upper high thermal conductive layer 34 and also radiated to the electrode 35 via the bonding wire 36. The heat transmitted to the electrode 35 is radiated to the substrate 33 via the lower high thermal conductive layer 34. In FIG. 5, the high thermal conductive layer 34 also functions as an adhesive layer between the IC chip 32 and the electrode 35 and between the electrode 35 and the substrate 33. Further, the high thermal conductive layer 34 relieves stress caused by the difference in thermal expansion coefficient between the IC chip 32 and the electrode 35 and between the electrode 35 and the substrate 33.

図6に示す半導体装置40では、ICチップ42は、左部の電極(リードフレーム)48と接合している。また、ICチップ42は、ワイヤーボンディング46により右部の電極(リードフレーム)48と接合している。リードフレーム48は、電極45と接合しており、電極45は、高熱伝導層44を介して基板43と接着している。また、ICチップ42、ワイヤーボンディング46、電極(リードフレーム)48の一部は、モールド樹脂49で封止されている。この構造では、ICチップ42からの熱は、直接左部の電極(リードフレーム)48へ、かつワイヤーボンディング46により右部の電極(リードフレーム)48へ、更にモールド樹脂49を介して左右の電極(リードフレーム)48へ伝わる。電極(リードフレーム)48に伝わった熱は、電極45と高熱伝導層44を介して基板43へ放熱される。図6では、高熱伝導層44は、電極45と基板43の接着層としても機能している。また、高熱伝導層44は、電極45と基板43との熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 40 shown in FIG. 6, the IC chip 42 is bonded to the left electrode (lead frame) 48. The IC chip 42 is bonded to the right electrode (lead frame) 48 by wire bonding 46. The lead frame 48 is bonded to the electrode 45, and the electrode 45 is bonded to the substrate 43 through the high thermal conductive layer 44. Further, a part of the IC chip 42, the wire bonding 46, and the electrode (lead frame) 48 is sealed with a mold resin 49. In this structure, heat from the IC chip 42 is directly applied to the left electrode (lead frame) 48, to the right electrode (lead frame) 48 by wire bonding 46, and further to the left and right electrodes via the mold resin 49. (Lead frame) 48. The heat transmitted to the electrode (lead frame) 48 is radiated to the substrate 43 through the electrode 45 and the high thermal conductive layer 44. In FIG. 6, the high thermal conductive layer 44 also functions as an adhesive layer between the electrode 45 and the substrate 43. Further, the high thermal conductive layer 44 relieves stress caused by the difference in coefficient of thermal expansion between the electrode 45 and the substrate 43.

図7に示す半導体装置50では、半導体モジュール52は、電極55と接合している。電極55は、上部の高熱伝導層54を介して基板53と接着しており、基板53は、下部の高熱伝導層54を介して放熱板56と接着している。この構造では、半導体モジュール52からの熱は、電極55、上部の高熱伝導層54、基板53、下部の高熱伝導層54を介して放熱板56に放熱される。図7では、高熱伝導層54は、電極55と基板53、および基板53と放熱板56の接着層としても機能している。また、高熱伝導層54は、電極55と基板53、および基板53と放熱板56の熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 50 shown in FIG. 7, the semiconductor module 52 is bonded to the electrode 55. The electrode 55 is bonded to the substrate 53 via the upper high thermal conductive layer 54, and the substrate 53 is bonded to the heat dissipation plate 56 via the lower high thermal conductive layer 54. In this structure, heat from the semiconductor module 52 is radiated to the heat radiating plate 56 through the electrode 55, the upper high thermal conductive layer 54, the substrate 53, and the lower high thermal conductive layer 54. In FIG. 7, the high thermal conductive layer 54 also functions as an adhesive layer between the electrode 55 and the substrate 53 and between the substrate 53 and the heat sink 56. Further, the high thermal conductive layer 54 relieves stress caused by the difference in thermal expansion coefficient between the electrode 55 and the substrate 53 and between the substrate 53 and the heat dissipation plate 56.

図8に示す半導体装置60では、半導体モジュール62は、電極65と接合している。電極65は、下部の高熱伝導層64を介して基板63と接着している。また、半導体モジュール62は、上部の高熱伝導層64を介して放熱板66と接着している。この構造では、半導体モジュール62からの熱は、上部の高熱伝導層64を介して放熱板66に放熱され、かつ電極65、下部の高熱伝導層64を介して基板63に放熱される。図8では、高熱伝導層64は、電極65と基板63、および半導体モジュール62と放熱板66の接着層としても機能している。また、高熱伝導層64は、電極65と基板63、および半導体モジュール62と放熱板66の熱膨張率の差に起因する応力を緩和している。   In the semiconductor device 60 shown in FIG. 8, the semiconductor module 62 is bonded to the electrode 65. The electrode 65 is bonded to the substrate 63 via the lower high thermal conductive layer 64. Further, the semiconductor module 62 is bonded to the heat radiating plate 66 through the upper high thermal conductive layer 64. In this structure, heat from the semiconductor module 62 is radiated to the heat radiating plate 66 via the upper high thermal conductive layer 64 and is radiated to the substrate 63 via the electrode 65 and the lower high thermal conductive layer 64. In FIG. 8, the high thermal conductive layer 64 also functions as an adhesive layer between the electrode 65 and the substrate 63, and the semiconductor module 62 and the heat sink 66. Further, the high thermal conductive layer 64 relieves stress caused by the difference in thermal expansion coefficient between the electrode 65 and the substrate 63 and between the semiconductor module 62 and the heat sink 66.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and mass% unless otherwise specified.

〔実施例1〜5、比較例1〜7〕
表3と表4に示す配合で、(A)成分、(B)成分、適量のトルエンを計量配合した後、それらを80℃に加温された反応釜に投入し、回転数150rpmで回転させながら、常圧混合を3時間行い、クリヤーを作製した。作製したクリヤーに、(C)成分、(D)成分、場合によりその他を加え、プラネタリーミキサーにより分散し、高熱伝導フィルム用組成物を作製した。このようにして得られた高熱伝導フィルム用組成物を、支持体である離型処理をほどこしたPETフィルムの片面に塗布し、100℃で乾燥させることにより、支持体付の高熱伝導フィルムを得た。なお、比較例5と比較例7は、フィルムを形成することができなかった。
[Examples 1-5, Comparative Examples 1-7]
After blending (A) component, (B) component, and appropriate amount of toluene in the blending shown in Table 3 and Table 4, they are put into a reaction kettle heated to 80 ° C., and rotated at 150 rpm. Under normal pressure mixing for 3 hours, a clear was prepared. To the prepared clear, component (C), component (D), and others were added, and the mixture was dispersed with a planetary mixer to prepare a composition for a high thermal conductive film. The composition for a high thermal conductive film thus obtained is applied to one side of a PET film which has been subjected to a release treatment as a support, and dried at 100 ° C. to obtain a high thermal conductive film with a support. It was. In Comparative Examples 5 and 7, a film could not be formed.

〔高熱伝導層の評価〕
高熱伝導層を評価するために、下記の評価毎に、高熱伝導フィルムを熱硬化させた。表5、表6に、高熱伝導フィルムを熱硬化させたときの硬化温度、硬化時間を示す。
[Evaluation of high thermal conductivity layer]
In order to evaluate the high thermal conductive layer, the high thermal conductive film was thermally cured for each of the following evaluations. Tables 5 and 6 show the curing temperature and curing time when the high thermal conductive film is thermally cured.

《熱伝導率》
未硬化の高熱伝導フィルムを、200℃のプレス機で60分間加熱硬化させた。硬化させた高熱伝導フィルムの熱伝導率を、NETZSCH社製熱伝導率計(Xeフラッシュアナライザー、型番:LFA447Nanoflash)を用いて測定した。
"Thermal conductivity"
The uncured high thermal conductive film was heat cured for 60 minutes with a 200 ° C. press. The thermal conductivity of the cured high thermal conductive film was measured using a thermal conductivity meter (Xe flash analyzer, model number: LFA447 Nanoflash) manufactured by NETZSCH.

《ピール強度》
接着フィルムの両面に、粗化面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた(180℃、60min、0.1MPa)。この試験片を10mm幅にカットし、オートグラフで引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。
《Peel Strength》
A copper foil was bonded to both surfaces of the adhesive film with the roughened surface inside, and thermocompression bonded with a press (180 ° C., 60 min, 0.1 MPa). This test piece was cut into a width of 10 mm, peeled off by an autograph, and peel strength was measured. For the measurement results, the average value of each N = 5 was calculated.

《ガラス転移点温度(Tg)》
動的粘弾性測定(DMA)にて測定した。高熱伝導フィルムを、200℃、60minで熱硬化させ、支持体から剥離した後、高熱伝導フィルムの熱硬化体から試験片(10±0.5mm×40±1mm)を切り出し、試験片の幅、厚みを測定した。その後、セイコーインスツルメンツ社製DMS(型番:EXSTAR6100)にて測定(引張モード)を行った(3℃/min、10Hz、25−220℃)。tanδのピーク温度を読み取り、Tgとした。
<< Glass transition temperature (Tg) >>
It measured by dynamic viscoelasticity measurement (DMA). The high heat conductive film was thermally cured at 200 ° C. for 60 minutes and peeled off from the support. Then, a test piece (10 ± 0.5 mm × 40 ± 1 mm) was cut out from the heat cured body of the high heat conductive film, the width of the test piece, The thickness was measured. Then, measurement (tensile mode) was performed with DMS (model number: EXSTAR6100) manufactured by Seiko Instruments Inc. (3 ° C./min, 10 Hz, 25-220 ° C.). The peak temperature of tan δ was read and used as Tg.

《弾性率の評価》
上記動的粘弾性測定(DMA)にて測定した25℃での貯蔵弾性率を弾性率とした。表5、表6に、高熱伝導フィルムの弾性率の評価結果を示す。
<Evaluation of elastic modulus>
The storage elastic modulus at 25 ° C. measured by the dynamic viscoelasticity measurement (DMA) was defined as the elastic modulus. Tables 5 and 6 show the evaluation results of the elastic modulus of the high thermal conductive film.

《せん断接着強度の評価》
実施例1、比較例1と2について、高熱伝導層のせん断接着強度の評価を行った。図9に、高熱伝導層のせん断接着強度の評価方法を説明する模式図を示す。基板72として、FR−4基板と、シリコンチップ73として、5mm角のシリコンチップを準備した。Φ2mmの高熱伝導フィルムを、基板72上の高熱伝導層74を形成したい位置に載置して、高熱伝導フィルム上に、シリコンチップ73をマウントした。この後、200℃で60分間、高熱伝導フィルムを熱硬化させ、高熱伝導層74を形成した。アイコ−エンジニアリング製卓上強度試験器(型番:1605HTP)を使用して、25℃、150℃での剪断強度(単位:N)を測定した。表7に、高熱伝導層のせん断接着強度の評価結果を示す。
<< Evaluation of shear bond strength >>
For Example 1 and Comparative Examples 1 and 2, the shear bond strength of the high thermal conductive layer was evaluated. FIG. 9 is a schematic diagram illustrating a method for evaluating the shear bond strength of the high thermal conductive layer. A FR-4 substrate as the substrate 72 and a 5 mm square silicon chip as the silicon chip 73 were prepared. A high heat conductive film with a diameter of 2 mm was placed on the substrate 72 at a position where the high heat conductive layer 74 is to be formed, and a silicon chip 73 was mounted on the high heat conductive film. Thereafter, the high thermal conductive film was thermally cured at 200 ° C. for 60 minutes to form the high thermal conductive layer 74. Shear strength (unit: N) at 25 ° C. and 150 ° C. was measured using an Aiko-Engineering tabletop strength tester (model number: 1605HTP). Table 7 shows the evaluation results of the shear bond strength of the high thermal conductive layer.

《熱抵抗》
図10に、熱抵抗測定装置の模式図を示す。K型熱電対86を埋め込んだ、幅:50mm、長さ:50mm、厚さ:5mmの銅板82の間に、幅:20mm、長さ:20mm、厚さ:20〜390μmの、200℃×60分間で硬化させた高熱伝導フィルム83を設置し、その銅板82の上にヒートシンク84と重さ:660gのおもり85で押さえつけた。下部にヒータ81を置き、下記条件で加熱し、熱抵抗を算出した。
試験条件は、供給電圧:40W(=100V×0.4A)、測定領域:20mm□である。
電力供給開始から5min後のヒータ側温度をTa、ヒートシンク側温度をTb、
供給電力をP として、熱抵抗(単位:℃/W)を、下記式:
Rth =(Ta − Tb)/ P
から算出した。表8と図11に、熱抵抗の評価結果を示す。
"Thermal resistance"
FIG. 10 shows a schematic diagram of a thermal resistance measuring apparatus. K type thermocouple 86 embedded, width: 50 mm, length: 50 mm, thickness: between 5 mm thick copper plates 82, width: 20 mm, length: 20 mm, thickness: 20-390 μm, 200 ° C. × 60 A highly heat-conductive film 83 cured in a minute was installed and pressed onto the copper plate 82 with a heat sink 84 and a weight 85 having a weight of 660 g. A heater 81 was placed at the bottom and heated under the following conditions to calculate the thermal resistance.
The test conditions are: supply voltage: 40 W (= 100 V × 0.4 A), measurement area: 20 mm □.
The heater side temperature 5 min after the start of power supply is Ta, the heat sink side temperature is Tb,
Assuming that the supplied power is P 1, the thermal resistance (unit: ° C / W)
Rth = (Ta−Tb) / P
Calculated from Table 8 and FIG. 11 show the evaluation results of thermal resistance.

表5からわかるように、実施例1〜5のすべてにおいて、熱伝導率、ピール強度、ガラス転移温度のすべてが高く、弾性率は所望の範囲内であった。これに対して、表6からわかるように、変性OPEを使用しない比較例1は、ガラス転移温度と弾性率が低かった。また、変性OPEを使用しない比較例2は、弾性率が高過ぎた。(C)成分の代わりに、無機フィラーとしてシリカ(熱伝導率:約1W/m・K)を使用した比較例3は、熱伝導率が低かった。熱硬化性樹脂が、変性OPEのみである比較例4は、ピール強度が低かった。(B)成分を含まない比較例5、(D)成分を含まない比較例7は、フィルムを形成することができなかった。(C)成分を含まない比較例6は、熱伝導率と弾性率が低かった。   As can be seen from Table 5, in all of Examples 1 to 5, the thermal conductivity, peel strength, and glass transition temperature were all high, and the elastic modulus was within the desired range. On the other hand, as can be seen from Table 6, Comparative Example 1 in which no modified OPE was used had a low glass transition temperature and elastic modulus. Further, Comparative Example 2 in which no modified OPE was used had an excessively high elastic modulus. In Comparative Example 3 in which silica (thermal conductivity: about 1 W / m · K) was used as the inorganic filler instead of the component (C), the thermal conductivity was low. In Comparative Example 4 in which the thermosetting resin was only modified OPE, the peel strength was low. In Comparative Example 5 containing no component (B) and Comparative Example 7 containing no component (D), no film could be formed. (C) The comparative example 6 which does not contain a component had low heat conductivity and an elasticity modulus.

また、表7からわかるように、実施例1は、25℃、150℃ともに、せん断接着強度が高かった。これに対して、比較例1は、25℃のせん断接着強度が低く、150℃のせん断接着強度は著しく低かった。また、比較例2は、実施例1と同等の値を示した。   Further, as can be seen from Table 7, in Example 1, the shear bond strength was high at both 25 ° C. and 150 ° C. On the other hand, in Comparative Example 1, the shear bond strength at 25 ° C. was low, and the shear bond strength at 150 ° C. was remarkably low. Moreover, the comparative example 2 showed the value equivalent to Example 1.

表8、図11の熱抵抗の評価結果からわかるように、高熱伝導層の厚さが300μm以下であれば、熱抵抗が0.4℃/W未満になり、低熱抵抗といえることがわかった。また、高熱伝導層の厚さが100μm以下であれば、熱抵抗が0.3℃/W未満になり、著しく低熱抵抗といえることがわかった。   As can be seen from the thermal resistance evaluation results in Table 8 and FIG. 11, when the thickness of the high thermal conductive layer is 300 μm or less, the thermal resistance is less than 0.4 ° C./W, and it can be said that the thermal resistance is low. . Moreover, when the thickness of the high thermal conductive layer was 100 μm or less, it was found that the thermal resistance was less than 0.3 ° C./W, and it could be said that the thermal resistance was extremely low.

上記のように、本発明の半導体装置は、発熱体の放熱性に優れ、発熱体と受熱器の接着強度が低下することなく、高耐熱性であるので、高信頼性である。   As described above, the semiconductor device of the present invention is highly reliable because it has excellent heat dissipation of the heat generator and high heat resistance without lowering the adhesive strength between the heat generator and the heat receiver.

1 半導体装置
2 発熱体
3 受熱器
4 高熱伝導層
10、20、30、40 半導体装置
12、22、32、42 ICチップ
13、23、33、43 基板
14、24、34、44 高熱伝導層
15、25、35、45 電極
16、36、46 ボンディングワイヤー
27 電極(バンプ)
48 電極(リードフレーム)
49 モールド
50、60 半導体装置
52、62 半導体モジュール
53、63 基板
54、64 高熱伝導層
55、65 電極
56、66 放熱板
71 シェアツール
72 基板
73 シリコンチップ
74 高熱伝導層
81 ヒーター
82 銅板
83 高熱伝導フィルム
84 ヒートシンク
85 重り
86 K型熱電対
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Heat generating body 3 Heat receiver 4 High heat conductive layer 10, 20, 30, 40 Semiconductor device 12, 22, 32, 42 IC chip 13, 23, 33, 43 Substrate 14, 24, 34, 44 High heat conductive layer 15 , 25, 35, 45 Electrode 16, 36, 46 Bonding wire 27 Electrode (bump)
48 electrodes (lead frame)
49 Mold 50, 60 Semiconductor device 52, 62 Semiconductor module 53, 63 Substrate 54, 64 High thermal conduction layer 55, 65 Electrode 56, 66 Heat sink 71 Share tool 72 Substrate 73 Silicon chip 74 High thermal conduction layer 81 Heater 82 Copper plate 83 High thermal conduction Film 84 Heat sink 85 Weight 86 Type K thermocouple

Claims (12)

発熱体と、受熱器と、発熱体と受熱器との間に、発熱体からの熱を受熱器に伝えるための高熱伝導層とを備える半導体装置であって、
高熱伝導層が、(A)少なくとも以下の一般式(1):
(式中、
、R、R、R、R、R、Rは同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
−(O−X−O)−は構造式(2)で示され、ここで、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
−(Y−O)−は構造式(3)で示される1種類の構造、又は構造式(3)で示される2種類以上の構造がランダムに配列したものであり、ここで、R16、R17は同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R18、R19は同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
Zは炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、
c、dは0又は1の整数を示す)で示されるビニル基が結合したフェニル基を両末端に持つポリエーテル化合物を含む、2種以上の熱硬化性樹脂と、
(B)熱可塑性エラストマーと、
(C)熱伝導性無機フィラーと、
(D)フェノール系硬化剤、アミン系硬化剤、イミダゾール系硬化剤又は酸無水物系硬化剤である硬化剤と
を含み、
(A)成分に含まれる一般式(1)で示されるビニル基が結合したフェニル基を両末端に持つポリエーテル化合物が、(A)成分100質量部に対して、60〜95質量部であり、
(A)成分が、高熱伝導フィルム:100質量部に対して、5〜25質量部であり、(B)成分が、高熱伝導フィルム100質量部に対して、5〜25質量部であり、かつ(C)成分が、高熱伝導フィルム100質量部に対して、50〜90質量部である高熱伝導フィルムの熱硬化体であり、厚さが10〜300μmであることを特徴とする、半導体装置。
A semiconductor device comprising a heating element, a heat receiver, and a high thermal conductive layer for transferring heat from the heating element to the heat receiver between the heating element and the heat receiver,
The high thermal conductive layer is (A) at least the following general formula (1):
(Where
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group,
— (O—X—O) — is represented by the structural formula (2), in which R 8 , R 9 , R 10 , R 14 , and R 15 may be the same or different and are each a halogen atom or a carbon number 6 or less alkyl group or phenyl group, R 11 , R 12 and R 13 may be the same or different, and are a hydrogen atom, a halogen atom or an alkyl group or phenyl group having 6 or less carbon atoms,
-(YO)-is one type of structure represented by the structural formula (3) or two or more types of structures represented by the structural formula (3) arranged at random, where R 16 , R 17 may be the same or different, and is a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and R 18 and R 19 may be the same or different, and may be a hydrogen atom, halogen atom, or 6 or less carbon atoms. An alkyl group or a phenyl group,
Z is an organic group having 1 or more carbon atoms, and may contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom in some cases,
a and b each represents an integer of 0 to 300, at least one of which is not 0;
c and d each represents an integer of 0 or 1), two or more thermosetting resins including a polyether compound having a phenyl group bonded to a vinyl group at both ends;
(B) a thermoplastic elastomer;
(C) a thermally conductive inorganic filler;
(D) phenolic curing agent, an amine curing agent, a curing agent is an imidazole type curing agent or an acid anhydride curing agent seen including,
(A) The polyether compound which has the phenyl group which the vinyl group shown by General formula (1) contained in a component couple | bonded with both ends is 60-95 mass parts with respect to 100 mass parts of (A) component. ,
(A) A component is 5-25 mass parts with respect to 100 mass parts of high heat conductive films: (B) A component is 5-25 mass parts with respect to 100 mass parts of high heat conductive films, and (C) The semiconductor device characterized by being a thermosetting body of the high heat conductive film which is 50-90 mass parts with respect to 100 mass parts of high heat conductive films, and thickness is 10-300 micrometers.
高熱伝導層の25℃でのせん断接着強度が、13N/mm以上である、請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the high thermal conductive layer has a shear adhesive strength at 25 ° C. of 13 N / mm or more. 高熱伝導層の厚さが、10μm以上100μm以下である、請求項1又は2記載の半導体装置。   The semiconductor device according to claim 1, wherein the thickness of the high thermal conductive layer is 10 μm or more and 100 μm or less. 高熱伝導層の体積抵抗率が、1×1010Ω・cm以上であり、かつ、熱伝導率が0.8W/m・K以上である、請求項1〜3のいずれか1項記載の半導体装置。 4. The semiconductor according to claim 1, wherein the volume resistivity of the high thermal conductive layer is 1 × 10 10 Ω · cm or more and the thermal conductivity is 0.8 W / m · K or more. apparatus. (C)成分が、MgO、Al、AlN、BN、ダイヤモンドフィラー、ZnO、およびSiCからなる群より選択される1種以上である請求項1〜4記載のいずれか1項記載の半導体装置。 The semiconductor according to claim 1, wherein the component (C) is at least one selected from the group consisting of MgO, Al 2 O 3 , AlN, BN, diamond filler, ZnO, and SiC. apparatus. (D)成分が、イミダゾール系硬化剤である、請求項1〜5のいずれか1項記載の半導体装置。   (D) The semiconductor device of any one of Claims 1-5 whose component is an imidazole series hardening | curing agent. 受熱器が、電極が形成された基板であり、
高熱伝導層が、発熱体と、基板上に形成された電極との間に形成される、請求項1〜6のいずれか1項記載の半導体装置。
The heat receiver is a substrate on which an electrode is formed,
The semiconductor device according to claim 1, wherein the high thermal conductive layer is formed between the heating element and an electrode formed on the substrate.
発熱体が電極を有し、受熱器が基板であり、
高熱伝導層が、発熱体の電極と、基板との間に形成される、請求項1〜6のいずれか1項記載の半導体装置。
The heating element has an electrode, the heat receiver is a substrate,
The semiconductor device according to claim 1, wherein the high thermal conductive layer is formed between the electrode of the heating element and the substrate.
発熱体が、ICチップ、ベアチップ、LEDチップ、FWD(Free Wheeling Diode)、又はIGBT(Insulated Gate Bipolar Transistor)である、請求項1〜7のいずれか1項記載の半導体装置。   The semiconductor device according to claim 1, wherein the heating element is an IC chip, bare chip, LED chip, FWD (Free Wheeling Diode), or IGBT (Insulated Gate Bipolar Transistor). 基板が、メタルベースCCL使用基板、高熱伝導CEM−3使用基板、高熱伝導FR−4使用基板、低熱抵抗FCCL使用基板、メタル基板、又はセラミックス基板である、請求項7〜9のいずれか1項記載の半導体装置。   10. The substrate according to claim 7, wherein the substrate is a substrate using a metal base CCL, a substrate using a high thermal conductivity CEM-3, a substrate using a high thermal conductivity FR-4, a substrate using a low thermal resistance FCCL, a metal substrate, or a ceramic substrate. The semiconductor device described. 発熱体が、半導体モジュールであり、受熱器が放熱板である、請求項1〜6のいずれか1項記載の半導体装置。   The semiconductor device according to claim 1, wherein the heating element is a semiconductor module and the heat receiver is a heat sink. 半導体モジュールが、パワー半導体モジュールである、請求項11記載の半導体装置。   The semiconductor device according to claim 11, wherein the semiconductor module is a power semiconductor module.
JP2012240455A 2012-10-31 2012-10-31 Semiconductor device Active JP6106405B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012240455A JP6106405B2 (en) 2012-10-31 2012-10-31 Semiconductor device
PCT/JP2013/078927 WO2014069353A1 (en) 2012-10-31 2013-10-25 Semiconductor device
CN201380046039.0A CN104603935B (en) 2012-10-31 2013-10-25 Semiconductor device
KR1020157006588A KR102094267B1 (en) 2012-10-31 2013-10-25 Semiconductor device
TW102139044A TWI599634B (en) 2012-10-31 2013-10-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240455A JP6106405B2 (en) 2012-10-31 2012-10-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014090135A JP2014090135A (en) 2014-05-15
JP6106405B2 true JP6106405B2 (en) 2017-03-29

Family

ID=50627261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240455A Active JP6106405B2 (en) 2012-10-31 2012-10-31 Semiconductor device

Country Status (4)

Country Link
JP (1) JP6106405B2 (en)
KR (1) KR102094267B1 (en)
TW (1) TWI599634B (en)
WO (1) WO2014069353A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019051A (en) * 2013-06-14 2015-01-29 株式会社日本触媒 Heat dissipation sheet
DE102015108700A1 (en) 2015-06-02 2016-12-08 Infineon Technologies Austria Ag Semiconductor power package and method of making the same
JP6857895B2 (en) * 2016-03-17 2021-04-14 ナミックス株式会社 Resin composition, thermosetting film, cured product, printed wiring board, semiconductor device
JP6825411B2 (en) * 2017-02-21 2021-02-03 三菱マテリアル株式会社 Insulation circuit board, manufacturing method of insulation circuit board
JP7122528B2 (en) * 2017-08-09 2022-08-22 パナソニックIpマネジメント株式会社 THERMALLY CONDUCTIVE COMPOSITION AND SEMICONDUCTOR DEVICE
JP7087446B2 (en) * 2018-02-28 2022-06-21 三菱マテリアル株式会社 A method for manufacturing an insulated circuit board with a heat radiating plate and an insulated circuit board with a heat radiating plate.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140386A (en) * 1997-11-14 1999-05-25 Hitachi Chem Co Ltd Adhesive film, production thereof, support member with adhesive film, and semiconductor device
JP2002069392A (en) * 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP4038667B2 (en) * 2002-07-25 2008-01-30 三菱瓦斯化学株式会社 Vinyl compounds and cured products thereof
TWI250995B (en) * 2002-07-25 2006-03-11 Mitsubishi Gas Chemical Co Vinyl compound and cured product thereof
JP4867217B2 (en) * 2004-08-19 2012-02-01 三菱瓦斯化学株式会社 Curable resin composition and curable film and film
US20090239992A1 (en) * 2006-08-08 2009-09-24 Toshiaki Yamada Thermosetting resin composition and uncured film comprising the same
JP2010147060A (en) * 2008-12-16 2010-07-01 Sharp Corp Semiconductor device
JP2011023607A (en) 2009-07-16 2011-02-03 Nitto Denko Corp Exoergic die-bonding film
JP5063710B2 (en) 2010-01-05 2012-10-31 三菱電機株式会社 Power module
JP5411174B2 (en) * 2010-08-05 2014-02-12 欣興電子股▲フン▼有限公司 Circuit board and manufacturing method thereof
JPWO2012073972A1 (en) * 2010-12-01 2014-05-19 日立化成株式会社 Semiconductor wafer with adhesive layer, method for manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP2014090135A (en) 2014-05-15
CN104603935A (en) 2015-05-06
KR20150073950A (en) 2015-07-01
TWI599634B (en) 2017-09-21
TW201422760A (en) 2014-06-16
KR102094267B1 (en) 2020-03-30
WO2014069353A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6106405B2 (en) Semiconductor device
JP6477483B2 (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
KR101625264B1 (en) An adhesive film for radiating heat, a semiconductor device comprising the same, and a method for producing the device
JP5562574B2 (en) Thermally conductive adhesive
TW201215583A (en) Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same
TWI694126B (en) Resin composition, adhesive film and semiconductor device
JP2017149910A (en) Heat-conductive adhesive composition, heat-conductive adhesive sheet, and method for producing laminate
WO2014136484A1 (en) Apparatus, composition for adhesive, and adhesive sheet
KR102187491B1 (en) Resin composition for film, insulating film, and semiconductor device
JP2003193016A (en) Highly thermo resistant adhesive film with high heat dissipation
TWI663195B (en) Insulating film and semiconductor device
JP6912030B2 (en) Resin compositions, adhesive films, and semiconductor devices
JP6579886B2 (en) Printed wiring board and semiconductor device
CN104603935B (en) Semiconductor device
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
JP5132122B2 (en) Adhesive heat dissipation sheet
JP2022119196A (en) Thermally conductive sheet laminate and electronic equipment using the same
TW202100358A (en) Heat conduction sheet and manufacture method of thereof
JP2016190963A (en) Adhesive film for semiconductor, dicing tape-integrated adhesive film for semiconductor, and semiconductor device
JP2015207669A (en) Metal base board, metal base circuit board, and electronic device
TW201611209A (en) Metal foil-clad substrate, circuit board and heating-element mounting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250