JP6079134B2 - 測位装置、移動局、及び測位方法 - Google Patents

測位装置、移動局、及び測位方法 Download PDF

Info

Publication number
JP6079134B2
JP6079134B2 JP2012237107A JP2012237107A JP6079134B2 JP 6079134 B2 JP6079134 B2 JP 6079134B2 JP 2012237107 A JP2012237107 A JP 2012237107A JP 2012237107 A JP2012237107 A JP 2012237107A JP 6079134 B2 JP6079134 B2 JP 6079134B2
Authority
JP
Japan
Prior art keywords
mobile station
quality information
wireless
unit
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012237107A
Other languages
English (en)
Other versions
JP2014087017A (ja
Inventor
大介 新田
大介 新田
山本 智
智 山本
正則 橋本
正則 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012237107A priority Critical patent/JP6079134B2/ja
Priority to US14/011,302 priority patent/US9229091B2/en
Publication of JP2014087017A publication Critical patent/JP2014087017A/ja
Application granted granted Critical
Publication of JP6079134B2 publication Critical patent/JP6079134B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map

Description

本発明は、測位装置、移動局、及び測位方法に関する。
従来、屋内における無線通信の品質向上や高速化が重視されることに伴い、商業施設やオフィスビル等の屋内に設置される小型基地局として、フェムト基地局が普及しつつある。特に近年では、W−CDMA(Wideband-Code Division Multiple Access)に代わる新たな無線通信方式であるLTE(Long Term Evolution)の導入と相俟って、LTEフェムト基地局の普及が見込まれている。一方、スマートフォン等、多機能かつ高性能な移動局の普及に伴い、移動局の現在位置情報を用いた様々なサービスが提供されている。この様なサービスをユーザが屋内で受けるには、GPS(Global Positioning System)では、圏外となり地磁気センサの感度も低くなる為、移動局は、フェムト基地局からの無線信号を用いて位置測定(測位)を行うことが有効である。この様な測位技術の内、代表的なものとして、例えば、RF(Radio Frequency)パターンマッチング(別名、RFフィンガープリント)や、三点測位等の多点測位が存在する。
特開平10−84571号公報 特開2001−128222号公報 特開2005−147747号公報
しかしながら、上述した測位技術は何れも、移動局の位置の測定に際し、主として移動局とフェムト基地局間の無線品質情報を使用するものであるため、以下の様な問題があった。すなわち、従来の測位技術は、測位対象の移動局から取得された無線品質情報(例えば、RSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)の値)を主に使用するため、位置測定に際し、移動局の設置状況(例えば、方向、接触物の有無)や周辺環境(例えば、無線伝搬損失の程度)が考慮されることがない。このことが、移動局の精確な測位の実現を阻害する要因となることがあった。かかる問題点は、移動局が他の物体と接触している場合(例えば、ユーザが音声通話等で移動局を耳に当てている場合)、あるいは、移動局の近傍に遮蔽物が存在する場合(例えば、ユーザが移動局をバッグに入れて持ち歩いている場合)等に特に顕著となる。
開示の技術は、上記に鑑みてなされたものであって、移動局の位置を高精度に測定することのできる測位装置、移動局、及び測位方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本願の開示する測位装置は、一つの態様において、受信部と決定部と測定部とを有する。前記受信部は、移動局と基地局との間の無線品質情報と、前記移動局の方向及び方角を示す情報とを受信する。前記決定部は、前記移動局の位置の候補となる領域が前記無線品質情報と対応付けて設定されたデータの中から、前記方向及び方角に基づき、前記移動局の位置の測定に用いるデータを決定する。前記測定部は、前記決定部により決定された前記データを参照し、前記無線品質情報に基づき、前記移動局の位置を測定する。
本願の開示する測位装置の一つの態様によれば、移動局の位置を高精度に測定することができる。
図1は、測位システムの機能的構成を示す図である。 図2は、測位装置のハードウェア構成を示す図である。 図3は、移動局のハードウェア構成を示す図である。 図4は、RFパターンマッチングDBを作成する動作を説明するためのシーケンス図である。 図5Aは、移動局の方向を説明するための図である。 図5Bは、移動局の方向と角加速度センサの値との対応関係を示す図である。 図6は、移動局の方向及び方角と地磁気センサの値との対応関係を示す図である。 図7は、対象エリアに付与されるメッシュIDの一例を示す図である。 図8は、対象エリアに配置されるセルの一例を示す図である。 図9は、移動局から測位装置に提供されるデータのフォーマットを示す図である。 図10は、移動局から測位装置に提供されるデータの無線品質情報の平均値及び無線安定度を示す図である。 図11は、測位装置のRFパターンマッチングDBに格納されるRFパターンを示す図である。 図12は、移動局の位置を測定する動作を説明するためのシーケンス図である。 図13は、測位の開始に伴い移動局により収集されるデータのフォーマットを示す図である。 図14は、移動局の方向及び方角の判定後における収集データのフォーマットを示す図である。 図15は、測位装置により実行される無線安定度使用要否判定処理を説明するためのフローチャートである。 図16は、無線安定度使用要否判定処理の実行後における収集データのフォーマットを示す図である。 図17は、シチュエーションの判定に際して参照されるテーブルにおけるデータ格納例を示す図である。 図18は、シチュエーション判定後における収集データのフォーマットを示す図である。 図19は、移動局の無線品質情報とのマッチング対象となるRFパターンを示す図である。 図20は、移動局のディスプレイ上に測位結果が表示された様子を示す図である。
以下に、本願の開示する測位装置、移動局、及び測位方法の実施例を、図面を参照しながら詳細に説明する。なお、以下の実施例により本願の開示する測位装置、移動局、及び測位方法が限定されるものではない。
以下、本願の開示する一実施例に係る測位システムの構成を説明する。図1は、測位システム1の機能的構成を示す図である。図1に示す様に、測位システム1は、測位装置10と基地局20と移動局30とを有する。測位装置10は、モバイルオペレータの局舎内に設置され、固定通信網Nを介して、基地局20と有線接続されている。固定通信網Nは、測位装置10と基地局20とを接続するネットワークであり、例えば、広域イーサネット(登録商標)網、光ファイバ網である。また、基地局20は、移動局30と無線接続されている。
測位装置10は、測位部11とCN(Core Network)部12と固定回線IF(Inter Face)部13とを有する。測位部11は、移動局30から収集した位置関連情報を基に、移動局30の位置を測定し、測定結果を移動局30にフィードバックする。また、測位部11は、測位の際に参照される後述のRFパターンマッチングDB(Data Base)117を作成する。更に、測位部11は、位置関連情報送受信部111と方向方角判定部112と無線安定度判定部113とシチュエーション判定部114と測位実行部115とRFパターンデータ入力部116とRFパターンマッチングDB117とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能な様に接続されている。
位置関連情報送受信部111は、移動局30により収集された位置関連情報を受信し、方向方角判定部112と無線安定度判定部113とシチュエーション判定部114と測位実行部115とへ出力すると共に、測位実行部115による移動局30の測位結果を、移動局30に対して送信する。方向方角判定部112は、移動局30により取得された、角加速度センサ及び地磁気センサの情報を基に、移動局30の現在の方向及び方角を判定する。また、方向方角判定部112は、該判定結果に基づき、RFパターンマッチングDB117に格納されているRFパターンの中から、測位に使用すべきRFパターンを特定する。
無線安定度判定部113は、移動局30により取得された、角加速度センサの情報と所定時間における無線品質情報の変動量とを基に、移動局30の周辺における無線回線の安定度(無線安定度)を、移動局30の測位に使用するか否かを判定する。シチュエーション判定部114は、移動局30により取得された、角加速度センサ、近接センサ、及び照度センサの各情報を基に、移動局30の現在置かれているシチュエーションを判定する。また、シチュエーション判定部114は、該シチュエーションに対応する無線伝搬損失値を、RFパターンマッチングDB117に登録されている無線品質情報の平均値から減算する。これにより、RFパターンマッチングDB117内のRFパターンが、移動局30と基地局20間の無線伝搬損失を考慮した値に補正される。
測位実行部115は、位置関連情報送受信部111により受信されたデータの送信元である移動局30の無線品質情報と、RFパターンマッチングDB117に事前に登録されている無線品質情報との差が最小となるメッシュIDを、最小二乗法により特定することで、移動局30の現在位置を測定する。RFパターンデータ入力部116は、位置関連情報送受信部111により受信されたデータの送信元である移動局30の無線品質情報と、角加速度センサの取得した情報とを用いて、無線安定度を算出する。また、RFパターンデータ入力部116は、移動局30の無線品質情報と上記無線安定度を示す値とを、メッシュIDと対応付けて、RFパターンマッチングDB117に保持させる。
RFパターンマッチングDB117は、RFパターンデータ入力部116から入力された情報を保持する。また、RFパターンマッチングDB117は、方向方角判定部112と無線安定度判定部113とシチュエーション判定部114とからの要求に応じて、RFパターンマッチングDB117に格納されているRFパターンの更新処理やマスク処理を実行する。更に、RFパターンマッチングDB117は、測位実行部115からの測位要求が入力されると、測位実行部115に対し、移動局30へ通知するための位置情報(例えば、メッシュID)を提供する。
CN部12は、LTEにおけるEPC(Evolved Packet Core)ノードに相当する。CN部12は、無線通信ネットワークの終端部であり、モバイル関連プロトコルの終端機能や認証機能を有する。固定回線IF部13は、測位装置10と基地局20とを接続するための回線IFとして機能する。
次に、基地局20の構成を説明する。基地局20は、例えば、屋内での測位が容易なフェムト基地局であるが、マイクロ基地局やマクロ基地局等であってもよい。基地局20は、固定回線IF部21と無線制御部22と無線処理部23とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能な様に接続されている。固定回線IF部21は、基地局20と測位装置10とを、イーサネット(登録商標)や光ファイバにより接続するための回線IFとして機能する。無線制御部22は、移動局30と基地局20との間の無線通信を制御する。また、無線制御部22は、3GPP(3rd Generation Partnership Project)のRRC(Radio Resource Control)プロトコルに則り、通信コネクション(セッション)、通信チャネル(トランスポートチャネル)等を制御する。無線処理部23は、3GPPの通信制御規約に従い、移動局30との間で、物理チャネルを用いた無線信号の送受信を行う。
次に、移動局30の構成を説明する。移動局30は、ユーザが、インターネット網を介したデータ通信、公衆回線網や移動体通信網を介した音声通信等の各種通信を行う際に用いる端末である。移動局30は、無線処理部31と無線制御部32とアプリケーション実行部33とOS(Operating System)部34とGUI(Graphical User Interface)部35とセンサ部36とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能な様に接続されている。
無線処理部31は、基地局20と移動局30間の無線通信を行う。無線処理部31は、3GPPにより規定された通信規約に基づく物理チャネルを用いて、無線信号の送受信を行う。移動局30は、安定した通信経路を確保するため、基地局20以外の基地局を含む複数の基地局から、無線品質情報を収集する。無線制御部32は、移動局30と基地局20間の無線通信を制御する。無線制御部32は、3GPPにより規定された通信規約に基づき、通信コネクション(セッション)、通信チャネル(トランスポートチャネル)等を制御する。また、無線制御部32は、無線処理部31により取得された各基地局からの無線品質情報を、OS部34へ提供する。
アプリケーション実行部33は、主に、無線品質情報の事前登録機能、測位機能、及び測位結果の表示機能の3つの機能を有する。事前登録機能では、アプリケーション実行部33は、上述したRFパターンマッチングDB117を作成するため、GUI部35による操作に応じて、OS部34の標準API(Application Program Interface)により、センサ部36の取得した各種センサ情報と無線制御部32の取得した無線品質情報とを収集する。これらの情報は、例えば、方向(6パターン)×方角(東西南北)の計24パターン分、1メッシュ毎に収集され、収集された情報は、無線処理部31により、測位装置10宛に送信される。測位機能では、アプリケーション実行部33は、移動局30の現在位置を測定するため、OS部34の標準APIにより、センサ部36の取得した各種センサ情報と無線制御部32の取得した無線品質情報とを収集する。これらの情報は、測位のための情報として、無線処理部31により、測位装置10宛に送信される。表示機能では、アプリケーション実行部33は、測位実行部115により特定されたメッシュIDを、測位結果として、GUI部35に表示させる。
OS部34は、例えば、センサ部36の取得したセンサ情報、無線制御部32の取得した無線品質情報等の各種情報を、アプリケーション実行部33へ提供する。また、OS部34は、アプリケーション実行部33がGUI部35を動作させるための機能を有する。OS部34は、例えば、Android(登録商標)、iOS(登録商標)、Windows Phone(登録商標)等のスマートフォン向けOSにより実現される。GUI部35は、移動局30のユーザとアプリケーション実行部33とを繋ぐインタフェースであり、ディスプレイ等の表示手段や、キーボード、タッチパネル等の入力手段を提供する。
センサ部36は、例えば、角加速度センサ、地磁気センサ、近接センサ、照度センサ等のセンサを有し、測定結果をOS部34に提供する。角加速度センサは、例えば、移動局30の動きの有無や移動局30の方向を検出する。地磁気センサは、例えば、移動局30の向いている方角が東西南北の内、何れであるかを検出する。近接センサは、例えば、移動局30の周辺に物体(人を含む)が存在するか否かを検知する。近接センサは、物体の存否のみならず、物体の位置や物体との距離を検知するものとしてもよい。照度センサは、例えば、移動局30の周辺における照度を検出可能であり、該照度と所定の閾値との比較により、移動局30の周辺が明るいか否かの判定を行う。
続いて、測位装置10、及び移動局30のハードウェア構成を説明する。図2は、測位装置10のハードウェア構成を示す図である。図2に示す様に、測位装置10においては、CPU(Central Processing Unit)10bと、SDRAM(Synchronous Dynamic Random Access Memory)等のメモリ10cと、HDD(Hard Disk Drive)10dと、NIC(Network Interface Card)10eとが、スイッチ10aを介して各種信号やデータの入出力が可能な様に接続されている。位置関連情報送受信部111は、例えば、NIC10e、CPU10b、及びメモリ10cにより実現される。方向方角判定部112と無線安定度判定部113とシチュエーション判定部114と測位実行部115とRFパターンデータ入力部116とは、例えば、CPU10b及びメモリ10cにより実現される。RFパターンマッチングDB117は、例えば、HDD10dまたはメモリ10cにより実現される。CN部12と固定回線IF部13とは、例えば、NIC10eにより実現される。
図3は、移動局30のハードウェア構成を示す図である。図3に示す様に、移動局30においては、CPU30bと、メモリ30cと、ディスプレイ30dと、DSP(Digital Signal Processor)30eと、RF(Radio Frequency)回路30fと、センサチップ30hとが、スイッチ30aを介して各種信号やデータの入出力が可能な様に接続されている。RF回路30fは、アンテナ30gを有する。移動局30の無線処理部31は、例えば、RF回路30fにより実現される。無線制御部32は、例えば、DSP30eにより実現される。アプリケーション実行部33とOS部34とは、例えば、CPU30b、及びフラッシュメモリやSDRAM等のメモリ30cにより実現される。GUI部35は、例えば、LCD(Liquid Crystal Display)、EL(Electro Luminescence)等のディスプレイ30dにより実現される。センサ部36は、例えば、センサチップ30hにより実現される。センサチップ30hは、例えば、移動局30の角加速度、地磁気方向、あるいは、近接物の有無、位置、距離等や、照度等を検出可能なIC(Integrated Circuit)を含む。
次に、本実施例における測位システム1の動作を説明する。以下の動作説明では、測位システム1が、事前処理として、RFパターンマッチングDB117を作成する動作と、実際の測位処理として、移動局30の現在位置を測定する動作とに分類して、説明する。
図4は、RFパターンマッチングDB117を作成する動作を説明するためのシーケンス図である。まず、移動局30のユーザが、GUI部35により、無線品質情報の提供を指示すると(S11)、アプリケーション実行部33は、測位の対象となるエリア(以下、単に「対象エリア」と記す。)の測位最小単位である1メッシュ単位で、移動局30の方向及び方角毎の無線品質情報を取得する(S12)。これにより、1メッシュ当たり、例えば、方向(6パターン)×方角(東西南北)の計24パターン分の無線品質情報が取得される。
S13では、アプリケーション実行部33は、S12で取得された無線品質情報を、無線制御部32及び無線処理部31により、測位装置10宛に送信させる。上記無線品質情報は、基地局20と固定通信網Nとを経由して測位装置10に到達し、固定回線IF部13及びCN部12を介して、RFパターンデータ入力部116に入力される。RFパターンデータ入力部116は、入力された無線品質情報から、移動局30周辺の無線安定度を算出する(S14)。更に、RFパターンデータ入力部116は、S13で入力された無線品質情報と、S14で算出された無線安定度の値とを、メッシュIDと対応付けて、RFパターンマッチングDB117に格納させる(S15)。
上記S12〜S15の一連の処理は、対象エリアに属する全てのメッシュについて実行される(S16)。その結果、RFパターンマッチングDB117には、対象エリア内のメッシュ数(例えば、25個)分のメッシュID毎に、例えば24個ずつのRFパターンが登録されることとなる。
図5Aは、移動局30の方向を説明するための図である。図5Aに示す様に、本実施例では、移動局30のディスプレイ30dを正面とした場合の横軸方向にX軸を規定し、縦軸方向(長手方向)にY軸を規定する。更に、移動局30の奥行き方向(厚さ方向)にZ軸を規定する。また、移動局30をユーザが使用する際、図5Aに示す様に縦長で使用することをポートレイト(Portrait)と記し、横長で使用することをランドスケープ(Landscape)と記す。
図5Bは、移動局30の方向と角加速度センサの値との対応関係を示す図である。図5Bに示す様に、移動局30の方向は、角加速度センサの値によって定まる。例えば、移動局30が、ディスプレイ側を天に向けて机上等に置かれている場合、角加速度センサの値は、Z軸方向の値のみ約“−1.00(重力加速度)”を示し、他の値は約“0.00”となる。このため、上記場合の方向番号は、「1」に特定される。反対に、移動局30が、ディスプレイ側を地に向けて机上等に置かれている場合、角加速度センサの値は、Z軸方向の値のみ約“+1.00”を示し、他の値は約“0.00”となる。このため、上記場合の方向番号は、「2」に特定される。同様に、例えば、移動局30が、ランドスケープの状態で右側を天に向けて、映画の視聴等に使用されている場合、角加速度センサの値は、X軸方向の値のみ約“−1.00”を示し、他の値は約“0.00”となる。このため、上記場合の方向番号は、「3」に特定される。更に、移動局30が、ポートレイトの状態で上側を天に向けて、インターネットの閲覧等に使用されている場合、角加速度センサの値は、Y軸方向の値のみ約“−1.00”を示し、他の値は約“0.00”となる。このため、上記場合の方向番号は、「5」に特定される。
図6は、移動局30の方向及び方角と地磁気センサの値との対応関係を示す図である。図6に示す様に、地磁気センサの取得した値に応じて、移動局30の方向毎に、方角が特定される。例えば、方向番号が“1”であり、地磁気センサの値が−Y方向に“0度”である場合、移動局30は、ディスプレイ側を天に向け、かつ、上側(トップ側)を北側に向けて机上等に置かれていることとなる。また、方向番号が“3”であり、地磁気センサの値が−Z方向に“90度”である場合には、移動局30は、Landscapeの状態で右側を天に向け、かつ、上側を東側に向けて使用されていることとなる。更に、方向番号が“5”であり、地磁気センサの値が−Z方向に“180度”である場合には、ユーザは、Portraitの状態で上側を天に向け、かつ、南側を向いて、移動局30を使用していることとなる。この様に、移動局30の方向と方角との組合せにより、1メッシュ当たり計24個のRFパターンが存在することとなる。なお、図6において、ドット部分は、方角の決定要素ではないため、測位に使用されるRFパターンの特定に際し、考慮されないことを示す。
図7は、対象エリアA1に付与されるメッシュIDの一例を示す図である。図7に示す様に、店舗内等に形成された測位の対象エリアA1は、所定間隔でメッシュ状に区切られ、各メッシュ(区画)には、メッシュIDとして、“a1”〜“e5”が付与される。各メッシュの一辺は、対象エリアA1の面積、要求される測位の精度、移動局30が屋内に有るか否か等に応じて、オペレータが適宜設定及び変更可能であるが、より高精度な測位を実現する観点から、1〜10m程度(例えば、5m)であることが望ましい。例えば、オペレータは、対象エリアA1が広場等の広い領域である場合には、メッシュの一辺を10m程度とし、展示会場等の狭い領域である場合には、1m程度とするといった調整が可能である。また、図7では、各メッシュの形状及び面積が均一である場合を例示したが、形状や面積は、メッシュ間で異なってもよい。また、メッシュIDを付与する方法に関しても、図7に示した例に限らず、放射状、あるいは、対象エリアの形成されたフロア毎に三次元状に付与するものとしてもよい。
図8は、対象エリアA1に配置されるセルの一例を示す図である。各LTEフェムト基地局は、対象エリアA1内に約5m間隔で設置され、半径約10mのセルC1〜C17を形成する。図8に示す様に、各メッシュa1〜e5は、対象エリアA1内に、5m間隔で均等に配置されている。これに対し、各LTEフェムト基地局の送信電力は、数十m程度まで到達可能であるため、各セルC1〜C17は、無線通信品質を高めるため、対象エリアA1内に多重的に形成されている。
次に、図9を参照しながら、図4のS12において、移動局30のアプリケーション実行部33が取得する無線品質情報について説明する。図9は、移動局30から測位装置10に提供されるデータのフォーマットF1を示す図である。なお、各基地局は、セルC1〜C17と1対1に対応するため、図9では、説明の便宜上、セルID(例えば、C1〜C3)を、基地局の識別情報(基地局ID)に流用する。図9に示す様に、移動局30から測位装置10に提供されるデータのフォーマットF1には、図5B及び図6を参照して説明した方向及び方角毎に、移動局30の通信する基地局20の無線品質情報が格納される。無線品質情報は、移動局30に近い基地局20の情報が優先的に格納されるが、必ずしも、各方向及び方角につき1つの情報が格納されるとは限らず、n(nは自然数)個分の基地局の無線品質情報が格納可能である。また、フォーマットF1に格納される無線品質情報の測定された時間に関しても、必ずしも、各方向及び方角につき1つの時間t1の情報が格納されるとは限らず、複数の時間分(例えば、時間t1〜t3)の無線品質情報が格納可能である。これにより、移動局30と基地局20間における無線品質の経時的または突発的変動の影響が抑制された精度の良い無線品質情報の提供が可能となる。
図9において、例えば、移動局30が、メッシュa1内において、ディスプレイを天に向けて北向きに置かれている場合、少なくとも、セルC1を形成する基地局20と通信を行うこととなる。従って、移動局30は、該基地局20の無線品質情報を所定時間毎に取得する。具体的には、移動局30は、時間t1におけるセルC1の無線品質情報として“−105dBm”を取得した後、各時間t2、t3におけるセルC1の無線品質情報として、それぞれ“−110dBm”、“−115dBm”を取得する。これらの無線品質情報は、基地局情報B1として、纏めてフォーマットF1に格納された後、他の基地局情報B2〜Bnと共に、基地局20及び固定通信網Nを経由して、測位装置10宛に送信される。以上、方向番号“1”かつ方角“北”の場合の無線品質情報について代表的に説明したが、他の方向及び方角に関しても同様に、無線品質情報が格納される。また、メッシュa1について代表的に図示したが、他のメッシュIDa2〜e5に関しても同様のフォーマットのデータが生成及び提供される。
次に、図10を参照しながら、図4のS14において、測位装置10のRFパターンデータ入力部116が算出する無線安定度について説明する。測位装置10は、RFパターンデータ入力部116により、移動局30から提供された無線品質情報を基に、無線安定度を算出する。例えば、各時間t1〜t3における無線品質情報の標準偏差が大きい程、無線安定度が低いといえることから、測位装置10は、標準偏差の値を、無線安定度の指標として用いることができる。図10は、移動局30から測位装置10に提供されるデータの無線品質情報の平均値及び無線安定度を示す図である。具体的には、方向番号“1”かつ方角“北”の場合、各時間t1〜t3におけるセルC1の無線品質情報は、それぞれ“−105dBm”、“−110dBm”、“−115dBm”である(図9参照)。従って、無線品質情報の平均値は、図10に示す様に、“−110(=(−105−110−115)/3)dBm”と算出される。また、無線安定度としての標準偏差は、例えば、“5”と算出される。
次に、図11を参照しながら、図4のS15において、測位装置10のRFパターンマッチングDB117に格納されるRFパターンR1について説明する。図11は、測位装置10のRFパターンマッチングDB117に格納されるRFパターンR1を示す図である。図11に示す様に、RFパターンマッチングDB117には、移動局30から提供された無線品質情報の平均値及び無線安定度が、メッシュIDと対応付けられ、更新可能に格納される。図11では、便宜上、メッシュID“a1”かつ方向番号“1”の無線品質情報のみ図示するが、RFパターンマッチングDB117には、対象エリアA1を構成する全てのメッシュのIDa1〜e5の全ての方向番号1〜6と対応付けて、無線品質情報が格納される。これにより、移動局30が、対象エリアA1内の何れの位置に存在する場合でも、測位装置10は、移動局30の方向及び方角に基づき、使用すべきRFパターンを特定し、該RFパターンの無線品質情報を用いて、移動局30の現在位置を推定することが可能となる。
続いて、RFパターンマッチングDB117の作成が完了した後に実行される実際の測位処理を説明する。
図12は、移動局30の位置を測定する動作を説明するためのシーケンス図である。まず、移動局30のユーザが、GUI部35により、自局の現在位置の測定開始を指示すると(S21)、アプリケーション実行部33は、測位プログラムを起動する。アプリケーション実行部33は、該測位プログラムに従い、OS部34の標準APIを用いて、移動局30の方向及び方角に応じた無線品質情報と、角加速度センサ、地磁気センサ、近接センサ、照度センサの各センサから検出されたセンサ情報とを収集する(S22)。
図13は、測位の開始に伴い移動局30により収集されるデータのフォーマットF3を示す図である。図13に示す様に、フォーマットF3には、移動局ID“001”を有する移動局30の無線品質情報とセンサ情報とが、各時間t1〜t3毎に格納されている。具体的には、無線品質情報として、セルC1における時間t1のRSRP値である“−105dBm”と、時間t2のRSRP値である“−110dBm”と、時間t3のRSRP値である“−115dBm”とが格納される。また、移動局30が在圏する他のセルC2、C3に関しても同様に、各時間t1〜t3毎のRSRP値がそれぞれ格納されている。更に、角加速度センサの値として3軸(Z、X、Y軸)方向の値が、地磁気センサの値として3軸(Y、X、Z軸)方向の値が、各時間t1〜t3毎に格納されている。また、近接センサの値として、移動局30に近接物が存在しない状態を示す“無し”が、照度センサの値として、照度が所定値以上である状態を示す“明るい”が、各時間t1〜t3毎に設定されている。
所定時間の収集後、収集されたデータは、測位装置10に提供される(S23)。すなわち、無線制御部32は、S22で取得された上記無線品質情報を、上記センサ情報と併せて、無線処理部31により、測位装置10宛に送信させる。上記無線品質情報及び上記センサ情報は、基地局20と固定通信網Nとを経由して測位装置10に到達し、固定回線IF部13及びCN部12を介して、位置関連情報送受信部111に入力される。
位置関連情報送受信部111は、上記無線品質情報及び上記センサ情報を、方向方角判定部112に出力すると(S24)、方向方角判定部112は、上記センサ情報の内、角加速度センサと地磁気センサとの各値を基に、移動局30の方向及び方角を判定する(S25)。図14は、移動局30の方向及び方角の判定後における収集データのフォーマットF4を示す図である。図14に示す様に、フォーマットF4には、フォーマットF3の角加速度センサの値に対応する「方向」として、“1:ディスプレイを天に向ける”が追加的に設定される。また、フォーマットF4には、フォーマットF3の地磁気センサの値に対応する「方角」として、“北”が追加される。S26では、方向方角判定部112は、該判定結果に基づき、RFパターンマッチングDB117に格納されているRFパターンの中から、移動局30の測位に使用するためのRFパターンを特定する。
S27では、位置関連情報送受信部111は、上記無線品質情報と上記角加速度センサの値とを無線安定度判定部113に出力する。無線安定度判定部113は、上記無線品質情報の変動量と上記角加速度センサの値とを基に、移動局30の測位に無線安定度を使用するか否かを決定する(S28)。図15は、測位装置10により実行される無線安定度使用要否判定処理を説明するためのフローチャートである。図15に示す様に、無線安定度判定部113は、S27で入力された角加速度センサの値が各時間t1〜t3で変動しているか否かを判定する(S281)。該判定の結果、角加速度が変動していない場合(S281;No)、無線安定度判定部113は、無線安定度の使用を決定し、各時間t1〜t3における無線品質情報の平均値と標準偏差とを算出する(S282)。一方、上記判定の結果、角加速度が変動している場合(S281;Yes)、無線安定度判定部113は、無線安定度を測位に使用しないことを決定し、各時間t1〜t3における無線品質情報の平均値を算出する(S283)。
図16は、無線安定度使用要否判定処理の実行後における収集データのフォーマットF5を示す図である。フォーマットF5では、角加速度センサの値に時間変動が無い(何れの時間t1〜t3においても“−1.00”)にも拘らず、無線品質情報が時間t1〜t3毎に変動していることから、図16に示す様に、「無線安定度」として“5(使用)”が追加的に設定される。更に、フォーマットF5には、「無線品質情報の平均値」として、“−110dBm”が追加される。
S29では、位置関連情報送受信部111は、方向方角判定部112によりS25で判定された方向と、角加速度センサ、近接センサ、照度センサの各値とをシチュエーション判定部114に出力する。シチュエーション判定部114は、上記方向と各センサの値とを基に、移動局30の置かれているシチュエーションを判定する(S30)。S31では、シチュエーション判定部114は、S30で判定されたシチュエーションに設定されている無線伝搬損失値を、無線品質情報の平均値から差し引く。
図17は、シチュエーションの判定に際して参照されるテーブルT3におけるデータ格納例を示す図である。図17に示す様に、テーブルT3には、シチュエーション番号に応じて、移動局30の方向番号と、角加速度センサ、近接センサ、照度センサの各値と、無線伝搬損失値とが、対応付けられている。図17において、角加速度センサの値が“0以外”である場合、移動局30に動きがあることを示し、“0”である場合、移動局30に動きがない(静止状態)ことを示す。従って、例えば、ユーザが通話中である場合には、通常、移動局30は、Portraitの状態で使用され、かつ、ユーザの動作に伴う動きがあり、ユーザの手指や口、耳等の近接物が存在する。このため、“ユーザが通話中”を示すシチュエーション番号“1”には、「方向番号」として“5”が、「角加速度センサ」の値として“0以外”が、「近接センサ」の値として“有り”が、「照度センサ」の値として“明るいor暗い”が、それぞれ対応付けられている。そして、ユーザの通話中には、移動局30と基地局20との間の無線回線に、遮蔽物(例えば、ユーザの手や顔)や揺らぎが存在する可能性が高いことから、無線伝搬損失も比較的高くなることが予想される。従って、テーブルT3には、シチュエーション番号“1”の「無線伝搬損失値」として、“10dB”が設定されている。
同様に、例えば、ユーザが移動局30を上向きに机上に置いている場合には、通常、移動局30に動きは無く、周囲に近接物も存在しない可能性が高い。このため、シチュエーション番号“3”には、「方向番号」として“1”が、「角加速度センサ」の値として“0”が、「近接センサ」の値として“無し”が、「照度センサ」の値として“明るい”が、それぞれ対応付けられている。また、移動局30が机上に置かれている場合には、机や他の物体が、無線回線の障害物となることがあるものの、総じて、無線伝搬損失が発生する可能性は低いことが推測される。従って、テーブルT3には、シチュエーション番号“3”の「無線伝搬損失値」として、“0dB”が設定されている。
同様に、例えば、ユーザが移動局30をバッグの中に入れている場合には、通常、移動局30は、Landscapeの状態(横向きに倒れた状態)で収納され、かつ、バッグの動作に伴う動きがあり、バッグが近接物となる。このため、“バッグの中”を示すシチュエーション番号“5”には、「方向番号」として“3or4”が、「角加速度センサ」の値として“0以外”が、「近接センサ」の値として“有り”が、「照度センサ」の値として“暗い”が、それぞれ対応付けられている。そして、移動局30がバッグの中にある場合には、バッグが、移動局30を覆い、移動局30と基地局20との間の無線回線を略完全に遮断する可能性が高いことから、無線伝搬損失も高くなることが予想される。従って、テーブルT3には、シチュエーション番号“5”の「無線伝搬損失値」として、最大の“15dB”が設定されている。
図18は、シチュエーション判定後における収集データのフォーマットF6を示す図である。図18に示す様に、フォーマットF6では、「方向番号」として“1”が格納され、かつ、角加速度センサの値が、何れの時間t1〜t3も、重力加速度を示すZ軸方向の“−1.00”であることから、移動局30に動きは無いものと推測される。このため、移動局30のシチュエーション番号は、テーブルT3の格納するシチュエーション番号“1”〜“6”の内、方向番号として“1”を、角加速度センサの値として“0”を有する“3”と判定される。従って、フォーマットF6においては、追加された「シチュエーション番号」の格納領域に“3”が設定されることとなる。
ここで、本実施例では、シチュエーション番号“3”に対応する無線伝搬損失値は“0dB”であるため、無線品質情報の平均値である“−110dBm”は、減算されることなく、そのまま使用される(図18参照)。これに対し、例えば、無線伝搬損失値が“10dB”である場合、無線品質情報の平均値から“10dB”が差し引かれることとなる。その結果、無線品質情報の平均値は、フォーマットF6において、“−110dBm”から“−120dBm”に更新される。
図12に戻り、S32では、測位装置10の位置関連情報送受信部111は、S31でシチュエーション判定部114から入力された移動局30の無線品質情報を、測位実行部115に出力する。無線品質情報の入力を受けた測位実行部115は、測位処理を実行する(S33)。すなわち、測位実行部115は、RFパターンマッチングDB117に事前に登録された無線品質情報と、S32で入力された無線品質情報とを照合し、誤差が最小となるメッシュIDを特定する。
図19は、移動局30の無線品質情報とのマッチング対象となるRFパターンM1を示す図である。図19に示す様に、図12のS33の時点では、メッシュID毎に24個ずつ存在するRFパターンは、S24〜S32の処理により、方向番号“1”かつ方角“北”のRFパターンにフィルタリングされている。このため、測位実行部115は、移動局30の測位に際し、フィルタリング後の上記RFパターンに該当する無線品質情報のみを、マッチング対象として探索すればよい。
図12に戻り、上述のS33では、測位実行部115は、RFパターンをマッチングする方法として、例えば、最小二乗法を用いることができる。最小二乗法は、測定値に近似する曲線を求める手法として周知慣用であることから、詳細な説明は省略するが、二乗誤差E(φ)は、RFパターンマッチングDB117における無線品質情報の値をSn,x,y、移動局30による無線品質情報の測定値をRとすると、以下の数式(1)により表される。但し、nは、上記基地局情報の識別番号を示す“1”〜“N”の自然数である。また、x、yは、メッシュIDに対応する。例えば、メッシュIDが“a1”であれば、x=1、y=1であり、“a2”であれば、x=1、y=2である。また、メッシュIDが“b1”であれば、x=2、y=1であり、“b2”であれば、x=2、y=2である。
Figure 0006079134
本実施例では、メッシュIDが“a1”の場合の無線品質情報が、移動局30の測定値である無線品質情報と同一である。このため、x=y=1の場合における二乗誤差E(φ)の値が“0”すなわち最小となる。その結果、測位実行部115は、測位結果として、メッシュID“a1”を取得する。
S34では、測位実行部115は、位置関連情報送受信部111に対し、上記測位結果の送信を指示する。位置関連情報送受信部111は、CN部12と固定回線IF部13とにより、固定通信網N及び基地局20を介して、上記測位結果を移動局30宛に送信する。移動局30の無線制御部32は、受信された上記測位結果をアプリケーション実行部33に出力する。アプリケーション実行部33は、該測位結果の表示を、GUI部35に指示する(S35)。GUI部35は、該測位結果をディスプレイ30dに表示する(S36)。図20は、移動局30のディスプレイ30d上に測位結果が表示された様子を示す図である。本実施例では、移動局30は、対象エリアA1内のメッシュID“a1”の位置に存在する。従って、図20に示す様に、ディスプレイ30dでは、上記位置を示す“a1”が強調表示されている。
ここで、例えば、最小二乗法による二乗誤差が同一の値であった場合の様に、測位結果が複数存在し、測位装置10が、移動局30の位置を1つに絞ることができない場合が想定される。かかる場合には、測位実行部115は、複数のメッシュIDの内、無線安定度(標準偏差)が“0”以外の値のメッシュIDへの絞込みを行う。再び図19を参照すると、例えば、メッシュID“a1”と“e5”とが、移動局30に通知される測位結果の候補として選定された場合、メッシュID“a1”に対応する無線安定度の値は、“0”以外の値“5”である。これに対し、メッシュID“e5”に対応する無線安定度の値は、方向及び方角はメッシュID“a1”と同一であるにも拘らず、“0”である。このため、測位結果の候補であるメッシュID“a1”、“e5”の中から、フィルタリングにより、メッシュID“a1”のみが、移動局30への通知対象として選定される。位置関連情報送受信部111は、選定されたメッシュID“a1”を、現在位置の測位結果として、移動局30に返信する。
なお、測位装置10は、上述の絞込みを行ってもなお、無線安定度が“0”以外の値のメッシュIDが複数存在する場合には、複数のメッシュIDを移動局30に返信するものとしてもよい。この場合、移動局30のディスプレイ30dには、測位結果として、複数のメッシュID(例えば、a1、b2)が強調表示されることとなる。
以上説明した様に、本実施例に係る測位装置10は、位置関連情報送受信部111と方向方角判定部112と測位実行部115とを有する。位置関連情報送受信部111は、移動局30と基地局20との間の無線品質情報と、移動局30の方向及び方角を示す情報とを受信する。方向方角判定部112は、移動局30の位置の候補となる領域(例えば、メッシュ)が上記無線品質情報と対応付けて設定されたデータ(例えば、RFパターン)の中から、上記方向及び方角に基づき、移動局30の位置の測定に用いるデータを決定する。測位実行部115は、方向方角判定部112により決定された上記データを参照し、上記無線品質情報に基づき、移動局30の位置を測定する。
また、測位装置10において、測位実行部115は、上記データにおいて上記領域と対応付けて設定された複数の無線品質情報の内、移動局30から送信された上記無線品質情報に最も近似する無線品質情報に対応する位置を、移動局30の現在位置と推定するものとしてもよい。これにより、測位装置10により測定される移動局30の位置は、移動局30の方向及び方角による無線品質情報の変化が考慮されたものとなる。その結果、正確な位置の測定が可能となる。
更に、測位装置10において、位置関連情報送受信部111は、上記無線品質情報と、移動局30の近接物の有無を示す情報とを受信し、測位実行部115は、上記無線品質情報と上記近接物の有無とに基づき、移動局30の位置を測定するものとしてもよい。また、測位装置10において、位置関連情報送受信部111は、複数の時点における上記無線品質情報を受信するものとしてもよい。測位実行部115は、上記複数の時点における上記無線品質情報を用いて、移動局30と基地局20との間の無線品質の安定度(例えば、揺らぎ)を算出し、上記無線品質情報と上記安定度とに基づき、移動局30の位置を測定するものとしてもよい。これにより、移動局30の測位結果に、移動局30周辺の状況や電波状態の反映された、より高精度な位置測定が可能となる。
なお、上記実施例では、測位装置10は、シチュエーション番号の判定に際し(図17参照)、近接物の有無または近接物への接触の有無に基づき、シチュエーション番号を判定するものとした。しかしながら、かかる態様に限らず、測位装置10は、移動局30と近接物との距離を考慮に入れて、シチュエーション番号を判定するものとしてもよい。例えば、他の条件(方向番号、角加速度センサ値等)が同一であっても、移動局30と近接物との距離が近い程、無線伝搬損失値が高くなり、反対に、距離が遠い程、無線伝搬損失値が低くなることが推測される。従って、測位装置10は、上記距離に応じて、シチュエーション判定用テーブルT3に設定される無線伝搬損失値を適宜変更することで、より細やかにシチュエーションを設定することができる。その結果、移動局30の周辺環境が考慮された、より正確な位置の測定が可能となる。
照度についても同様に、上記実施例では、測位装置10は、シチュエーション番号の判定に際し(図17参照)、移動局30周辺が明るいか暗いかに基づき、シチュエーション番号を判定するものとした。しかしながら、かかる態様に限らず、測位装置10は、明るさの指標となる照度や輝度を考慮に入れて、シチュエーション番号を判定するものとしてもよい。例えば、他の条件(方向番号、角加速度センサ値等)が同一であっても、移動局30の周辺が明るい程、バッグやポケット等の遮蔽物が少ないため、無線伝搬損失値が低くなることが推測される。反対に、移動局30の周辺が暗い程、移動局30に対する遮蔽性が高いため、無線伝搬損失値が高くなることが推測される。従って、測位装置10は、上記照度や輝度に応じて、シチュエーション判定用テーブルT3に設定される無線伝搬損失値を適宜変更することで、細分化された多様なシチュエーションに対応することができる。その結果、移動局30の置かれた環境が考慮された、より正確な位置の測定が可能となる。
上記実施例では、無線通信方式として、3GPPのLTEを想定して説明したが、測位システム1は、W−CDMAにも適用可能である。W−CDMAでは、測位システム1は、RSRPに代わる無線品質情報として、RSCP(Received Signal Code Power)を用い、RSRQに代わる無線品質情報として、CPICH_Ec/No(Common PIlot CHannel Energy per chip to Noise ratio)を用いることで、上述した測位技術に対応することができる。また、上記実施例では、移動局30として、各種センサを搭載したスマートフォンを想定して説明したが、本発明は、スマートフォンに限らず、携帯電話、Personal Digital Assistant(PDA)等、無線品質情報を測定可能な様々な通信機器に対して適用可能である。
更に、図1に示した測定装置10の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的態様は、図示のものに限らず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、無線安定度判定部113とシチュエーション判定部114、あるいは、RFパターンデータ入力部116とRFパターンマッチングDB117をそれぞれ1つの構成要素として統合してもよい。反対に、位置関連情報送受信部111に関し、無線品質情報等の測位に用いる情報を受信する部分と、測位結果を移動局30に送信する部分とに分散してもよい。RFパターンデータ入力部116に関し、無線安定度を算出する部分と、該無線安定度をメッシュIDと対応付けてデータベースに登録する部分とに分散してもよい。また、メモリ10c、30cを、それぞれ測定装置10、移動局30の外部装置として、ネットワークやケーブル経由で接続する様にしてもよい。
1 測位システム
10 測位装置
10a スイッチ
10b CPU(Central Processing Unit)
10c メモリ
10d HDD(Hard Disk Drive)
10e NIC(Network Interface Card)
11 測位部
12 CN(Core Network)部
13 固定回線IF(Inter Face)部
20 基地局
21 固定回線IF部
22 無線制御部
23 無線処理部
30 移動局
30a スイッチ
30b CPU
30c メモリ
30d ディスプレイ
30e DSP(Digital Signal Processor)
30f RF(Radio Frequency)回路
30g アンテナ
30h センサチップ
31 無線処理部
32 無線制御部
33 アプリケーション実行部
34 OS(Operating System)部
35 GUI(Graphical User Interface)部
36 センサ部
111 位置関連情報送受信部
112 方向方角判定部
113 無線安定度判定部
114 シチュエーション判定部
115 測位実行部
116 RFパターンデータ入力部
117 RFパターンマッチングDB
a1〜a5、b1〜b5、c1〜c5、d1〜d5、e1〜e5 メッシュID
A1 測位対象エリア
C1〜C17 セル
F1 データフォーマット(初期状態)
F2 無線安定度を含むデータフォーマット
F3 測位開始後のデータフォーマット
F4 方向及び方角判定後のデータフォーマット
F5 無線安定度使用要否判定後のデータフォーマット
F6 シチュエーション判定後のデータフォーマット
M1 マッチング対象RFパターン
N 固定通信網
R1 RFパターン
T1 方向判定用テーブル
T2 方角判定用テーブル
T3 シチュエーション判定用テーブル

Claims (6)

  1. 移動局と基地局との間の無線品質情報と、前記移動局の方向及び方角を示す情報とを受信する受信部と、
    前記移動局の位置の候補となる領域が前記無線品質情報と対応付けて設定されたデータの中から、前記方向及び方角に基づき、前記移動局の位置の測定に用いるデータを決定する決定部と、
    前記決定部により決定された前記データを参照し、前記無線品質情報に基づき、前記移動局の位置を測定する測定部とを有し、
    前記決定部は、前記移動局の角加速度が変動していない場合、前記移動局の位置の測定に際しての無線安定度の使用を決定する一方、前記角加速度が変動している場合、前記無線安定度の不使用を決定することを特徴とする測位装置。
  2. 前記測定部は、前記データにおいて前記領域と対応付けて設定された複数の無線品質情報の内、前記移動局から送信された前記無線品質情報に最も近似する無線品質情報に対応する位置を、前記移動局の現在位置と推定することを特徴とする請求項1に記載の測位装置。
  3. 前記受信部は、前記無線品質情報と、前記移動局の近接物の有無を示す情報とを受信し、
    前記測定部は、前記無線品質情報と前記近接物の有無とに基づき、前記移動局の位置を測定することを特徴とする請求項1に記載の測位装置。
  4. 前記受信部は、複数の時点における前記無線品質情報を受信し、
    前記測定部は、前記複数の時点における前記無線品質情報を用いて、前記移動局と前記基地局との間の無線品質の安定度を算出し、前記無線品質情報と前記安定度とに基づき、前記移動局の位置を測定することを特徴とする請求項1に記載の測位装置。
  5. 移動局と基地局との間の無線品質情報と、前記移動局の方向及び方角を示す情報とを、測位装置宛に送信する送信部と、
    前記測位装置により、前記方向及び方角と前記無線品質情報とを用いて測定された前記移動局の位置を示す位置情報を受信する受信部と、
    前記受信部により受信された前記位置情報を表示する表示部とを有し、
    前記測位装置は、前記移動局の角加速度が変動していない場合、前記移動局の位置の測定に際しての無線安定度の使用を決定する一方、前記角加速度が変動している場合、前記無線安定度の不使用を決定することを特徴とする移動局。
  6. 測位装置が、
    移動局と基地局との間の無線品質情報と、前記移動局の方向及び方角を示す情報とを受信し、
    前記移動局の位置の候補となる領域が前記無線品質情報と対応付けて設定されたデータの中から、前記方向及び方角に基づき、前記移動局の位置の測定に用いるデータを決定し、
    決定された前記データを参照し、前記無線品質情報に基づき、前記移動局の位置を測定し、
    前記移動局の角加速度が変動していない場合、前記移動局の位置の測定に際しての無線安定度の使用を決定する一方、前記角加速度が変動している場合、前記無線安定度の不使用を決定する
    ことを特徴とする測位方法。
JP2012237107A 2012-10-26 2012-10-26 測位装置、移動局、及び測位方法 Expired - Fee Related JP6079134B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012237107A JP6079134B2 (ja) 2012-10-26 2012-10-26 測位装置、移動局、及び測位方法
US14/011,302 US9229091B2 (en) 2012-10-26 2013-08-27 Positioning device, mobile station and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237107A JP6079134B2 (ja) 2012-10-26 2012-10-26 測位装置、移動局、及び測位方法

Publications (2)

Publication Number Publication Date
JP2014087017A JP2014087017A (ja) 2014-05-12
JP6079134B2 true JP6079134B2 (ja) 2017-02-15

Family

ID=50547739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237107A Expired - Fee Related JP6079134B2 (ja) 2012-10-26 2012-10-26 測位装置、移動局、及び測位方法

Country Status (2)

Country Link
US (1) US9229091B2 (ja)
JP (1) JP6079134B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011529B3 (de) * 2013-07-10 2014-10-16 Audi Ag Rundfunkempfangsgerät
US9807724B2 (en) 2013-10-08 2017-10-31 Gozio Inc. Use of RF-based fingerprinting for indoor positioning by mobile technology platforms
US10244362B2 (en) 2013-10-08 2019-03-26 Gozio Inc. Use of RF-based fingerprinting for indoor positioning by mobile technology platforms
JP6378562B2 (ja) * 2014-07-10 2018-08-22 株式会社Nttドコモ 情報処理装置及び情報処理方法
TWI641808B (zh) * 2016-11-28 2018-11-21 財團法人資訊工業策進會 行動裝置、操作方法及非揮發性電腦可讀取記錄媒體
WO2022191901A1 (en) * 2021-03-09 2022-09-15 Nokia Technologies Oy Obtaining machine learning (ml) models for secondary method of orientation detection in user equipment (ue)
WO2023224542A1 (en) * 2022-05-19 2023-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Determining ue orientation to support next generation application

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084571A (ja) 1996-09-06 1998-03-31 Star Kikaku Kk 構内無線通信システム
JP2001128222A (ja) 1999-10-25 2001-05-11 Matsushita Electric Ind Co Ltd 無線移動局の位置検出方法及び装置
JP2005147747A (ja) 2003-11-12 2005-06-09 Seiko Epson Corp 移動端末および測位システム
JP2005294931A (ja) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd 無線携帯端末及び位置情報システム
DE112005001761T5 (de) * 2004-07-23 2007-05-24 Wireless Valley Communications, Inc., Austin System, Verfahren und Vorrichtung zum Bestimmen und Verwenden einer Position von drahtlosen Vorrichtungen oder einer Infrastruktur zur Verbesserung eines drahtlosen Netzes
US8150421B2 (en) * 2005-12-30 2012-04-03 Trueposition, Inc. User plane uplink time difference of arrival (U-TDOA)
JP2008042628A (ja) * 2006-08-08 2008-02-21 Sharp Corp 携帯型受信装置及び、携帯型受信装置の動作方法
JP4934441B2 (ja) * 2007-01-22 2012-05-16 株式会社日立製作所 無線ノード位置推定方法、システム、及びその処理装置
US20090023462A1 (en) * 2007-07-17 2009-01-22 Telefonaktiebolaget Lm Ericsson (Publ) Signal Waveform Construction for Position Determination by Scrambled Conical
JP2010078528A (ja) * 2008-09-26 2010-04-08 Brother Ind Ltd 移動局測位システム
DE102008053176B4 (de) * 2008-10-24 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Schätzen einer Orientierung eines mobilen Endgeräts
EP2419753B1 (en) * 2009-04-17 2015-04-08 Nokia Technologies OY Determining a position of a terminal
US8660540B2 (en) * 2009-04-21 2014-02-25 Qualcomm Incorporated Supporting version negotiation for positioning for terminals in a wireless network
US20110163917A1 (en) * 2010-01-05 2011-07-07 David Lundgren Method and system for antenna orientation compensation for power ranging
US20110201357A1 (en) * 2010-02-12 2011-08-18 David Garrett Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
WO2011156549A2 (en) * 2010-06-11 2011-12-15 Skyhook Wireless, Inc. Methods of and systems for measuring beacon stability of wireless access points
EP2604079A2 (en) * 2010-08-11 2013-06-19 Telefonaktiebolaget LM Ericsson (publ) Methods of providing cell grouping for positioning and related networks and devices
CN103238344A (zh) * 2010-09-10 2013-08-07 维法尔公司 关于内容位置的射频指纹
WO2012066562A2 (en) * 2010-11-16 2012-05-24 Muthukumar Prasad Smart radiation protection system for mobile device to reduce sar by forming actively tunable electromagnetic shadow on user facing direction works by sensing device proximity environment with property, position, orientation, signal quality and operating modes

Also Published As

Publication number Publication date
JP2014087017A (ja) 2014-05-12
US9229091B2 (en) 2016-01-05
US20140120958A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP6079134B2 (ja) 測位装置、移動局、及び測位方法
KR20160046340A (ko) 장치 검색 방법 및 이를 지원하는 전자 장치
US11483080B2 (en) Path loss determination method and apparatus
US9143413B1 (en) Presenting wireless-spectrum usage information
KR102280610B1 (ko) 전자 장치의 위치 추정 방법 및 장치
US20170215093A1 (en) Method, Apparatus, and Terminal for Position Guidance Based on Radio Signal Quality
US9883447B2 (en) Communication method and apparatus supporting selective communication services
US20080161011A1 (en) Method enabling indoor local positioning and movement tracking in wifi capable mobile terminals
US20150373503A1 (en) Method and apparatus for positioning system enhancement with visible light communication
KR101910936B1 (ko) Wi-fi 액세스 포인트 맵을 전개하는 시스템 및 방법
US20170064577A1 (en) Information Display Method and Apparatus, and Storage Medium
US11057736B2 (en) Radio signal quality pattern mapping in geo space to provide guided location alignment indication to user equipment
US9752881B2 (en) Locating services
EP3829137A1 (en) Method and apparatus for video communication
CN108450060B (zh) 基于wi-fi接入点的定位方法、设备
KR20160028321A (ko) 거리 측정 방법 및 그 전자 장치
EP3749008A1 (en) Mdt configuration method and apparatus
JP2011158459A (ja) パターン分類を使用した、無線端末が屋内にあるかどうかの推定
US20170180935A1 (en) Approaching user detection, user authentication and location registration method and apparatus based on rf fingerprint
EP3780707A1 (en) Method and device for configuring and reporting measurement, base station, and user equipment
KR20150025208A (ko) 네트워크 연결 방법 및 그 방법을 처리하는 전자 장치
KR20220127282A (ko) 측위 방법 및 통신 장치
US10194329B2 (en) Site position priority determination device and method
US10462015B1 (en) Detecting physical topology changes affecting cells and cell edge determination
CN112055976A (zh) 定位测量方法、定位测量装置及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees