JP6058148B2 - 電力変換装置及び空気調和装置 - Google Patents

電力変換装置及び空気調和装置 Download PDF

Info

Publication number
JP6058148B2
JP6058148B2 JP2015538717A JP2015538717A JP6058148B2 JP 6058148 B2 JP6058148 B2 JP 6058148B2 JP 2015538717 A JP2015538717 A JP 2015538717A JP 2015538717 A JP2015538717 A JP 2015538717A JP 6058148 B2 JP6058148 B2 JP 6058148B2
Authority
JP
Japan
Prior art keywords
temperature
unit
switching element
converter
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015538717A
Other languages
English (en)
Other versions
JPWO2015045076A1 (ja
Inventor
健太 湯淺
健太 湯淺
真作 楠部
真作 楠部
晃弘 津村
晃弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6058148B2 publication Critical patent/JP6058148B2/ja
Publication of JPWO2015045076A1 publication Critical patent/JPWO2015045076A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、昇圧機能を備えた電力変換装置及びその電力変換装置を用いた空気調和装置に関する。
空気調和装置において、省エネを目的として、圧縮機及びファン等に使用されているモータを、インバータで駆動する方式が主流となっている。この方式によれば、先ず、交流をコンバータによって一旦直流に変換し、この直流をインバータによって任意の電圧及び周波数を有する交流に変換する。そして、この任意の電圧及び周波数を有する交流を用いてモータを駆動することによって、モータを高効率で運転させることができる。近年、更なる省エネ性を追求して、インバータの入力側に昇圧回路を設け、この昇圧回路を用いてコンバータが整流した整流出力を昇圧し、この昇圧した整流出力をインバータに入力するようにした空気調和装置が提案されている。
一般的に、コンバータにおいては、サーミスタといった温度検出部を、スイッチング素子として用いられる半導体素子の近傍に設置し、この温度検出部における検出結果を監視して、半導体素子の異常過熱を抑制している。更に、温度検出部における検出結果に加えて、運転パターン等の情報を監視し半導体素子の異常過熱を抑制しようとする技術も提案されている。
特許文献1には、コンバータ回路の入力電圧を検出する電圧検出回路と、コンバータ回路の近傍の温度を検出する温度検出器とを備えたインバータ装置が開示されている。この特許文献1は、電圧検出回路で検出された入力電圧と、温度検出器で検出された温度との関係に基づいて、インバータ回路を制御して、コンバータ回路のスイッチング素子の温度上昇を抑制しようとするものである。
また、特許文献2には、インバータの動作状況に関する情報に基づいて、インバータの温度を推定する温度推定部を備える制御装置が開示されている。この特許文献2は、温度推定部によって推定されたインバータの温度に基づいて、インバータの動作電圧に上限を設け、インバータのスイッチング素子の耐圧を超える電圧が、インバータに印加されることを抑制しようとするものである。
特開2004−180466号公報(請求項1、第5頁) 特許第4678374号公報(第11頁〜第14頁)
しかしながら、特許文献1に開示されたインバータ装置は、入力電圧を検出する電圧検出回路が必要となるため、その分コストがかかる。また、この電圧検出回路を実装する場所を確保する必要もあるため、更にコストアップにつながる。更に、コンバータの発熱は、入力電圧だけではなく、コンバータ部における昇圧量にも依存する。このため、入力電圧に基づいたインバータ回路の制御では、コンバータ部のスイッチング素子における温度上昇の抑制には不十分である。また、特許文献2に開示された制御装置は、インバータ部の動作状況に基づいてインバータ部の温度を推定するものであり、コンバータ部については何ら配慮されていない。
コンバータ部は、インバータ部よりも高速でスイッチングさせる必要があるため、コンバータ部の発熱量は、インバータ部の発熱量よりも大きい。このため、コンバータ部の温度を適切に把握する必要がある。ここで、コンバータ部の温度を正確に検出するためには、温度検出部をコンバータ部にできるだけ近づけて設置すればよい。しかし、整流器、コンバータ部及びインバータ部が1個のパッケージに収納されたモジュールに、温度検出部を設置しようとすると、モジュール内部の実装密度が高く、コンバータ部に近づけて温度検出部を配置することが困難になる場合がある。その上、仮にコンバータ部に近づけて温度検出部を配置することができたとしても、コンバータ部のスイッチング素子は高速でスイッチングしているため、このスイッチングによるノイズ等の影響を受けやすく、その結果、誤検出する虞がある。
本発明は、上記のような課題を背景としてなされたもので、コンバータ部のスイッチング素子から離れた位置に温度検出部が設置されても、コンバータ部のスイッチング素子の温度を適切に把握し、信頼性が向上する電力変換装置及びその電力変換装置を用いた空気調和装置を提供するものである。
本発明に係る電力変換装置は、交流電源から供給された入力電圧を整流する整流器と、整流器の出力端に接続されたリアクタと、リアクタに直列接続された逆流防止素子と、リアクタと逆流防止素子との間に接続されたスイッチング素子とを備え、整流器で整流された直流電圧を昇圧するコンバータ部と、コンバータ部から出力される母線電圧を平滑化する平滑コンデンサと、リアクタに流れるリアクタ電流を検出するリアクタ電流検出部と、母線電圧を検出する母線電圧検出部と、スイッチング素子の温度を検出する温度検出部と、目標とする母線電圧である目標指令電圧、母線電圧検出部で検出された母線電圧、及びリアクタ電流検出部で検出されたリアクタ電流に基づいて、スイッチング素子を駆動するためのスイッチング指令値を算出するコンバータ制御手段と、コンバータ制御手段で算出されたスイッチング指令値に基づいて、温度検出部で検出されたスイッチング素子の温度を補正する温度補正手段と、を有する
本発明によれば、コンバータ制御手段で算出されたスイッチング指令値に基づいて、温度補正手段が、温度検出部で検出されたコンバータ部のスイッチング素子の温度を補正する。このため、スイッチング素子から離れた位置に温度検出部が設置されても、スイッチング素子の温度を適確に把握することができる。また、電圧検出部が不要であるため、コストアップを抑制することができる。
実施の形態1に係る電力変換装置1を示す回路図である。 実施の形態1におけるコンバータ制御手段22を示すブロック図である。 実施の形態1におけるスイッチング指令値を示すグラフ図である。 実施の形態1における温度検出部13の設置位置を示す模式図である。 実施の形態1におけるスイッチング指令値と温度との関係を示すグラフ図である。 実施の形態1における温度補正手段25で補正される温度の補正量を示すグラフ図である。
以下、本発明に係る電力変換装置及びその電力変換装置を用いた空気調和装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
図1は、実施の形態1に係る電力変換装置1を示す回路図である。この図1に基づいて、電力変換装置1について説明する。図1に示すように、電力変換装置1は、整流器3と、コンバータ部4と、平滑コンデンサ5と、インバータ部6と、リアクタ電流検出部11と、母線電圧検出部12と、温度検出部13と、制御部21とを備えている。
(整流器3)
整流器3は、交流電源2、例えば三相交流電源から供給された入力電圧である交流電圧を、直流電圧に変換するものである。そして、この整流器3は、例えば6個のダイオードがブリッジ接続された三相全波整流器であり、交流電源2から供給される交流電圧は、例えばAC200Vとすることができる。
(コンバータ部4)
コンバータ部4は、整流器3で整流された直流電圧をチョッピングして可変するものであり、例えば、直流電圧を昇圧する昇圧コンバータ回路(昇圧チョッパ回路)である。このコンバータ部4は、整流器3で整流された直流電圧を、例えばDC365V等の任意の電圧に昇圧することができる。また、コンバータ部4は、昇圧用のリアクタ4a、スイッチング素子4b、及び逆流防止素子4cを備えており、このうち、逆流防止素子4cは、例えば逆流防止ダイオードとすることができる。リアクタ4aは、整流器3の出力端に接続されており、逆流防止素子4cは、リアクタ4aに直列接続されている。そして、スイッチング素子4bは、リアクタ4aと逆流防止素子4cとの間に接続されている。
スイッチング素子4bは、予め設定されたデューティ比の駆動信号が入力されるものであり、そのスイッチング動作は、制御部21に備わるコンバータ制御手段22によって制御されている。なお、スイッチング素子4bは、例えばMOSFET又はIGBT等の半導体素子を用いることができるが、例えば、シリコン(Si)素子よりもバンドギャップが大きい炭化ケイ素(SiC)素子、窒化ガリウム(GaN)素子又はダイヤモンド素子等のワイドバンドギャップ半導体で構成することも可能である。
このスイッチング素子4bがオン状態である場合、整流器3によって整流された直流電圧はリアクタ4aに印加され、また、逆流防止素子4cへの導通が阻止される。一方、スイッチング素子4bがオフ状態である場合、逆流防止素子4cは導通し、リアクタ4aには、スイッチング素子4bがオン状態である場合に印加される電圧と逆向きの電圧が誘導される。そして、スイッチング素子4bがオン状態であったときにリアクタ4aに蓄積されたエネルギが、スイッチング素子4bがオフされたときに、平滑コンデンサ5に移送される。このとき、スイッチング素子4bのオンデューティ(ONとOFFとの比率)を制御することによって、コンバータ部4から出力される母線電圧を制御することができる。
(平滑コンデンサ5)
平滑コンデンサ5は、コンバータ部4から出力される母線電圧、即ち、コンバータ部4によって昇圧された母線電圧を平滑化するものである。
(インバータ部6)
インバータ部6は、平滑コンデンサ5で平滑化されると共に平滑コンデンサ5に充電された母線電圧を交流電圧に変換するものであり、例えば、複数のインバータ用スイッチング素子6aで構成されている。インバータ部6は、例えば、空気調和装置の圧縮機に使用されるモータ7等の負荷に接続されており、負荷に対して、所定の周波数の交流電流を供給する。インバータ部6の動作は、制御部21に備わるインバータ制御手段23によって制御されている。なお、負荷であるモータ7には、回転速度を検出するためのモータ電流検出部14が、入力側と出力側とに夫々1個設けられている。
(モジュール8)
以上説明した構成のうち、整流器3、コンバータ部4のスイッチング素子4b及び逆流防止素子4c、及びインバータ部6は、例えば、1個のモジュール8に内蔵されている。
(リアクタ電流検出部11)
リアクタ電流検出部11は、例えばリアクタ4aに対し直列に接続されており、リアクタ4aに流れるリアクタ電流を検出するものである。
(母線電圧検出部12)
母線電圧検出部12は、例えば平滑コンデンサ5に対し並列に接続されており、平滑コンデンサ5間の母線電圧を検出するものである。
(温度検出部13)
温度検出部13は、例えばモジュール8の任意の位置に設置することができ、モジュール8の内部、特にスイッチング素子4bの温度を検出するものである。この温度検出部13から出力された信号を温度検出回路13aが受信し、スイッチング素子4bの温度に関する信号を、制御部21におけるコンバータ制御手段22に送信する。
(制御部21)
制御部21は、例えばマイコンで構成されており、コンバータ制御手段22、温度補正手段25、記憶手段24、閾値判定手段26、故障抑制制御手段27及びインバータ制御手段23を備えている。
(コンバータ制御手段22)
コンバータ制御手段22は、前述の如く、コンバータ部4のスイッチング素子4bのスイッチング動作を制御するものである。図2は、実施の形態1におけるコンバータ制御手段22を示すブロック図である。図2に示すように、コンバータ制御手段22は、電圧指令値演算手段22a及び電流指令値演算手段22bを備えており、目標とする母線電圧である目標指令電圧、母線電圧検出部12で検出された母線電圧、及びリアクタ電流検出部11で検出されたリアクタ電流に基づいて、スイッチング素子4bを駆動するためのスイッチング指令値(オンデューティ指令値)を算出する。
具体的には、先ず、目標指令電圧と、母線電圧用フィルタ12aでノイズが除去された母線電圧とに基づいて、電圧指令値演算手段22aが電圧指令値を演算する。この電圧指令値演算手段22aは、比例制御又は積分制御等を用いることができる。次に、この電圧指令値と、リアクタ電流用フィルタ11aでノイズが除去されたリアクタ電流とに基づいて、電流指令値演算手段22bがスイッチング指令値を演算する。この電流指令値演算手段22bは、比例制御、積分制御又は微分制御等を用いることができる。
図3は、実施の形態1におけるスイッチング指令値を示すグラフ図である。コンバータ制御手段22は、電流指令値演算手段22bによって求められたスイッチング指令値によって、スイッチング素子4bを駆動する。具体的には、所定の周波数の三角波に対し、算出されたスイッチング指令値を適用することによって、三角波において、スイッチング指令値よりも大きい期間がスイッチング素子駆動信号のオン状態、スイッチング指令値よりも小さい期間がスイッチング素子駆動信号のオフ状態となる。このスイッチング指令値が変動することによって、スイッチング素子駆動信号のオンオフの時間が変わり、オンデューティ比が変動する。そして、コンバータ制御手段22は、スイッチング指令値から得られたスイッチング素子駆動信号によって、スイッチング素子4bを駆動する。
一般的に、コンバータ部4で直流電圧を昇圧する場合、整流器3によって整流された昇圧前の直流電圧をEdとし、目標指令電圧をEoとすると、スイッチング指令値Dは、下記式(1)から求められる。
[数1]
D=(Eo−Ed)/Eo・・・・・(1)
また、整流器3によって整流された直流電圧Edは、交流電源2の電圧をVsとすると、その最大値Edmaxは、下記式(2)のようになる。
[数2]
Edmax=21/2・Vs・・・・・(2)
また、直流電圧Edの最小値Edminは、下記式(3)のようになる。
[数3]
Edmin=(61/2・Vs)/2・・・・・(3)
即ち、交流電源2の電圧及び目標指令電圧が決まれば、スイッチング指令値の最大値及び最小値が決定し、この最大値と最小値との和の半分が平均値となる。なお、スイッチング指令値は、交流電源2の周波数の6倍の周期で脈動する。このため、このスイッチング指令値を、充分大きなフィルタを用いてフィルタリングして平均化し、交流電源2の周波数の6倍の周期で脈動することを抑制するようにしてもよい。
(温度補正手段25)
温度補正手段25は、コンバータ制御手段22で算出されたスイッチング指令値に基づいて、温度検出部13で検出されたスイッチング素子4bの温度を補正するものである。スイッチング指令値は、コンバータ部4が行った仕事量に相当するものであり、コンバータ部4が行った仕事量が多ければ多いほど、スイッチング素子4bの温度は上昇する。なお、温度補正手段25は、温度検出部13から出力された信号を受信した温度検出回路13aから、スイッチング素子4bの温度に関する信号を受信する。
ここで、温度検出部13で検出されるスイッチング素子4bの温度と、温度検出部13の設置位置との関係について説明する。図4は、実施の形態1における温度検出部13の設置位置を示す模式図である。図4に示すように、モジュール8は、例えばヒートシンク9に接着されており、モジュール8のうち、コンバータ部4におけるスイッチング素子4bがもっとも発熱する部品の1つであるため、このスイッチング素子4bがヒートシンク9に直接接触されている。
この図4においては、温度検出部13が位置α、位置β又は位置γに設置されている例を示している。スイッチング素子4bと温度検出部13との距離は、位置α<位置β<位置γとなっている。
ここで、熱抵抗率をρ、熱が伝わる距離をL、熱が伝わる面積をSとすると、熱抵抗Rは、下記式(4)から求められる。
[数4]
R=ρ×L/S・・・・・・・・・(4)
更に、熱流をQとすると、熱を授受する物体間の温度差ΔTは、下記式(5)から求められる。
[数5]
ΔT=R×Q=(ρ×L/S)×Q・・(5)
この式(5)からわかるとおり、同一の物質(熱抵抗率ρ)内において、熱が伝わる距離Lが大きいほど、物体間の温度差ΔTが大きくなる。即ち、スイッチング素子4bと温度検出部13との間の距離が離れているほど、両者の温度差ΔTが大きくなる。
図5は、実施の形態1におけるスイッチング指令値と温度との関係を示すグラフ図である。図5において、横軸は、コンバータ部4の仕事量(スイッチング指令値)であり、縦軸は、温度である。図5に示すように、スイッチング素子4bの温度は、前述の如く、コンバータ部4が行った仕事量(スイッチング指令値)が多ければ多いほど、上昇する。
そして、位置αのように、温度検出部13とスイッチング素子4bとの間の距離が近くなるほど、温度検出部13で検出されたスイッチング素子4bの温度は、実際のスイッチング素子4bの温度(実線)とほぼ同等の値を示す。即ち、温度検出部13が位置αに配置されれば、スイッチング素子4bの温度を正確に計測することができる。それとは逆に、位置β、位置γのように、温度検出部13とスイッチング素子4bとの間の距離が遠くなるほど、温度検出部13で検出されたスイッチング素子4bの温度は、実際のスイッチング素子4bの温度よりも低い値を示す。
このように、位置β又は位置γに温度検出部13が配置されている場合、スイッチング素子4bと温度検出部13との間には、位置αにおける熱抵抗Rαよりも大きい熱抵抗Rβ又は熱抵抗Rγが存在(Rα<Rβ<Rγ)する。このため、スイッチング素子4bで発生した熱は、その一部だけしか温度検出部13に伝達されない。従って、温度検出部13で検出された温度と、実際のスイッチング素子4bの温度とに差異が生じる。
なお、一般的に、コンバータ部4は、インバータ部6が運転を開始した後に動作する。即ち、コンバータ部4が停止していても、インバータ部6は動作しているため、モジュール8内の温度は高い状態にある。図5に示すように、コンバータ部4が停止し、コンバータ部4の仕事量が零となる各グラフの切片においても、グラフの最下部は通過しない。
次に、温度補正手段25で補正される温度の補正量について説明する。図6は、実施の形態1における温度補正手段25で補正される温度の補正量を示すグラフ図である。図6に示すように、温度検出部13で検出されたスイッチング素子4bの温度をTd、スイッチング指令値をS、比例係数をKとすると、実際のスイッチング素子4bの温度Taは、下記式(6)から求められる。
[数6]
Ta=Td+S×K・・・・・・・・(6)
式(6)において、Kは、熱抵抗R等から決定されるものであり、熱抵抗Rの算出に必要な熱抵抗率ρは、モジュール8の構成が決定された時点で定まるものである。なお、モジュール8の構成が複雑であるため、熱抵抗Rを解析して算出することができないこともある。この場合、実際のスイッチング素子4bの温度と、温度検出部13で検出される温度とを、実機を使用して実測し、これらの実測値を用いて温度を補正してもよい。
(記憶手段24)
記憶手段24は、スイッチング指令値と、温度補正手段25で補正される温度の補正量との関係を記憶するものである。具体的には、先ず、図5に示すような温度とコンバータ部4の仕事量(スイッチング指令値)との関数を予め求めておく。そして、補正量、即ち実際のスイッチング素子4bの温度と温度検出部13で検出される温度との差分を、スイッチング指令値毎にテーブル化、又は関数化してまとめておき、記憶手段24がこれを記憶する。
即ち、記憶手段24は、スイッチング指令値と、温度補正手段25で補正される温度の補正量との関係を示す補正テーブル又は補正関数を記憶するものである。このうち、補正テーブルは、上記式(6)におけるS×Kに相当し、補正関数は、上記式(6)そのものである。そして、温度補正手段25は、この記憶手段24に記憶された補正テーブル又は補正関数と、スイッチング指令値とに基づいて、温度検出部13で検出されたスイッチング素子4bの温度を補正する。なお、その際、スイッチング指令値として、実際の運転時に算出されるスイッチング指令値が用いられる。
(閾値判定手段26)
閾値判定手段26は、温度補正手段25で補正された温度が、予め設定された第1の閾値を超えたか否かを判定し、且つ、温度補正手段25で補正された温度が、予め設定された第2の閾値を超えたか否かを判定するものである。このうち、第1の閾値は、電力変換装置1の出力を弱めれば、電力変換装置1又は電力変換装置1を備える空気調和装置を停止せずに済む程度の温度に設定される。
また、第2の閾値は、電力変換装置1の出力を弱めても、モジュール8の過熱により、電力変換装置1又は電力変換装置1を備える空気調和装置が故障する程度の温度に設定される。そして、第2の閾値は、第1の閾値よりも大きい。このため、第2の閾値は、第1の閾値よりもモジュール8が故障するリスクが高い。なお、第2の閾値は、モジュール8の故障に直結する温度に対しマージンを取った値に設定することによって、モジュール8の故障を適切に抑止することができる。この第2の閾値は、例えば、スイッチング素子4bの耐熱温度よりも低い温度に設定されている
(故障抑制制御手段27)
故障抑制制御手段27は、温度補正手段25で補正された温度に基づいて、各部品に対し故障を抑制する動作を指示するものである。具体的には、温度補正手段25で補正された温度が、第1の閾値を超えたことが閾値判定手段26で判定された場合、コンバータ部4の出力(即ち、昇圧量)の低下をコンバータ制御手段22に指示する。又は、温度補正手段25で補正された温度が、第1の閾値を超えたことが閾値判定手段26で判定された場合、インバータ部6の出力(即ち、周波数)の低下をインバータ制御手段23に指示する。更に、温度補正手段25で補正された温度が、第2の閾値を超えたことが閾値判定手段26で判定された場合、コンバータ部4及びインバータ部6等の異常停止を指示する。
(インバータ制御手段23)
インバータ制御手段23は、前述の如く、インバータ部6のインバータ用スイッチング素子6aのスイッチング動作を制御するものである。また、そのほかに、故障抑制制御手段27からインバータ部6の出力の低下又は異常停止を指示する信号を受信したときにも、その指示に従ってインバータ部6を制御する。
次に、本実施の形態1に係る電力変換装置1の動作について説明する。先ず、交流電源2から供給された入力電圧が、整流器3によって直流電圧に変換される。次に、この整流器3で整流された直流電圧が、コンバータ部4によって昇圧される。そして、コンバータ部4によって昇圧された母線電圧が、平滑コンデンサ5によって平滑化されて、その後、インバータ部6によって交流電圧に変換される。このインバータ部6によって変換された交流電圧を用いて、モータ7等の負荷の運転が行われる。
次に、この電力変換装置1を制御する制御部21の動作について説明する。制御部21に備わるコンバータ制御手段22は、電力変換装置1の運転中に、目標指令電圧、母線電圧検出部12で検出された母線電圧、及びリアクタ電流検出部11で検出されたリアクタ電流に基づいて、スイッチング指令値を算出する。そして、コンバータ制御手段22は、この算出されたスイッチング指令値を、温度補正手段25に出力する。
一方、温度補正手段25は、温度検出部13から出力された信号を受信した温度検出回路13aから、スイッチング素子4bの温度に関する信号を受信し、且つ、記憶手段24に記憶された補正テーブル又は補正関数を読み出す。そして、温度補正手段25は、コンバータ制御手段22から受信したスイッチング指令値と、温度検出部13で検出されたスイッチング素子4bの温度と、補正テーブル又は補正関数とから、温度の補正量を決定する。温度補正手段25は、この温度の補正量を、温度検出部13で検出されたスイッチング素子4bの温度に加算することによって、温度検出部13で検出されたスイッチング素子4bの温度を補正する。
その後、この温度補正手段25で補正されたスイッチング素子4bの温度が、第1の閾値を超えたか否かを閾値判定手段26が判定する。第1の閾値は、電力変換装置1の出力を弱めれば、電力変換装置1又は電力変換装置1を備える空気調和装置を停止せずに済む程度の温度に設定されている。閾値判定手段26によって、スイッチング素子4bの温度が第1の閾値以下であると判定されれば、電力変換装置1の運転は継続される。一方、閾値判定手段26によって、スイッチング素子4bの温度が第1の閾値を超えていると判定されれば、故障抑制制御手段27が、コンバータ部4の出力、即ち昇圧量の低下をコンバータ制御手段22に指示するか、又は、インバータ部6の出力、即ち周波数の低下をインバータ制御手段23に指示する。
そして、更に、温度補正手段25で補正されたスイッチング素子4bの温度が、第2の閾値を超えたか否かを閾値判定手段26が判定する。第2の閾値は、電力変換装置1の出力を弱めても、モジュール8の過熱により、電力変換装置1又は電力変換装置1を備える空気調和装置が故障する程度の温度に設定されている。その際、これらの処理が行われても、スイッチング素子4bの温度が低下せず、更に上昇し、閾値判定手段26によって、スイッチング素子4bの温度が第2の閾値を超えていると判定されると、故障抑制制御手段27が、コンバータ部4及びインバータ部6等の異常停止を、コンバータ制御手段22及びインバータ制御手段23等に指示する。
以上説明したように、本実施の形態1に係る電力変換装置1は、温度補正手段25によって、スイッチング指令値に基づいて、温度検出部13で検出されたスイッチング素子4bの温度を補正している。このため、補正された後のスイッチング素子4bの温度は、実際のスイッチング素子4bの温度に極めて近い。例えば、図5に示す位置αに温度検出部13が配置されれば、温度検出部13で検出されたスイッチング素子4bの温度は、実際のスイッチング素子4bの温度に近くなる。しかし、この場合、温度検出部13をスイッチング素子4bに近づけて配置する必要があるため、モジュール8の設計が困難になる虞があり、また、仮に、温度検出部13をスイッチング素子4bに近接して配置すると、スイッチングによるノイズ等の影響を受けやすく、温度検出部13で検出される温度にノイズが発生する虞がある。
これに対し、本実施の形態1に係る電力変換装置1は、温度補正手段25によって、スイッチング素子4bの温度を補正している。このため、例えば、図5に示す位置β又は位置γといったスイッチング素子4bから離れた位置に温度検出部13が配置されても、実際のスイッチング素子4bの温度に近い値を把握することができる。従って、モジュール8内のスイッチング素子4bの配置規制が緩和され、モジュール8を設計する際の自由度が増す。また、ノイズ源となるスイッチング素子4bから離れた位置に温度検出部13を配置することができ、従って、温度検出部13で検出される温度がノイズの影響を受け難くすることもできる。
また、実際のスイッチング素子4bの温度と、温度検出部13で検出されたスイッチング素子4bの温度との間の検出誤差が大きく、これが補正されずにそのままである場合、故障を抑制する動作を行うために設定される温度の閾値を、検出誤差の分だけ低めに設定して、より安全性を高める必要がある。この場合、閾値を検出誤差の分だけ低めに設定していることによって、電力変換装置1の動作範囲が狭まる。
これに対し、本実施の形態1に係る電力変換装置1は、コンバータ部4の発熱に影響を及ぼすスイッチング指令値を用いて、検出誤差を補正している。このため、故障を抑制する動作を行うために設定される温度の閾値を、低めに設定する必要はなく、最適な閾値に設定することができる。従って、モジュール8の発熱における保護信頼性が向上し、また、この電力変換装置1が、モータ駆動システムに適用される場合、そのモータ駆動システムの能力を最大限発揮することができる。
また、スイッチング素子4bとしてSiCを用いる場合、SiC自体は高温での動作が可能ではあるが、その周囲の部品がSiCよりも許容温度が低く、その結果、SiCの能力を充分に発揮できない虞がある。しかしながら、本実施の形態1に係る電力変換装置1においては、温度検出部13等の部品を、スイッチング素子4bから遠ざけることができる。このため、SiCの能力を最大限に発揮することができる。
なお、以上の説明においては、温度の補正量を求め、これを用いて、温度検出部13で検出されたスイッチング素子4bの温度を、実際のスイッチング素子4bの温度に近づける場合を例示したが、そのほかに、例えば、温度の補正量を求めた後、これを用いて、第1の閾値又は第2の閾値を変更してもよい。この場合も、スイッチング素子4bの温度を補正する場合と同様に、モジュール8の故障抑制における信頼性を向上させることができるという効果を奏する。また、記憶手段24は、温度の補正量を記憶しているが、補正済の温度を記憶するようにしてもよい。
なお、空気調和装置は、本発明の電力変換装置1に加えて、この電力変換装置1によって駆動されているモータ7を備えているように構成することができる。このモータ7は、コンバータ部4のスイッチング素子4bの温度を適切に把握することができる電力変換装置1によって駆動されている。このため、このモータ7を備えた空気調和装置は、耐熱性における信頼性が極めて高い。
1 電力変換装置、2 交流電源、3 整流器、4 コンバータ部、4a リアクタ、4b スイッチング素子、4c 逆流防止素子、5 平滑コンデンサ、6 インバータ部、6a インバータ用スイッチング素子、7 モータ、8 モジュール、9 ヒートシンク、11 リアクタ電流検出部、11a リアクタ電流用フィルタ、12 母線電圧検出部、12a 母線電圧用フィルタ、13 温度検出部、13a 温度検出回路、14 モータ電流検出部、21 制御部、22 コンバータ制御手段、22a 電圧指令値演算手段、22b 電流指令値演算手段、23 インバータ制御手段、24 記憶手段、25 温度補正手段、26 閾値判定手段、27 故障抑制制御手段。

Claims (13)

  1. 交流電源から供給された入力電圧を整流する整流器と、
    前記整流器の出力端に接続されたリアクタと、前記リアクタに直列接続された逆流防止素子と、前記リアクタと逆流防止素子との間に接続されたスイッチング素子とを備え、前記整流器で整流された直流電圧を昇圧するコンバータ部と、
    前記コンバータ部から出力される母線電圧を平滑化する平滑コンデンサと、
    前記リアクタに流れるリアクタ電流を検出するリアクタ電流検出部と、
    前記母線電圧を検出する母線電圧検出部と、
    前記スイッチング素子の温度を検出する温度検出部と
    標とする前記母線電圧である目標指令電圧、前記母線電圧検出部で検出された母線電圧、及び前記リアクタ電流検出部で検出されたリアクタ電流に基づいて、前記スイッチング素子を駆動するためのスイッチング指令値を算出するコンバータ制御手段と、
    前記コンバータ制御手段で算出されたスイッチング指令値に基づいて、前記温度検出部で検出された前記スイッチング素子の温度を補正する温度補正手段と、を有する
    ことを特徴とする電力変換装置。
  2. 記スイッチング指令値と、前記温度補正手段で補正される温度の補正量との関係を示す補正テーブル又は補正関数を記憶する記憶手段を更に有し、
    前記温度補正手段は、
    前記スイッチング指令値として、実際の運転時に算出されるスイッチング指令値を用いて、このスイッチング指令値と、前記記憶手段に記憶された前記補正テーブル又は前記補正関数とに基づいて、前記温度検出部で検出された前記スイッチング素子の温度を補正する
    ことを特徴とする請求項1記載の電力変換装置。
  3. 前記整流器、前記スイッチング素子及び前記逆流防止素子は、モジュールに内蔵されており、
    前記補正テーブル又は前記補正関数は、
    前記モジュールの内部における前記スイッチング素子と前記温度検出部との距離に基づいて設定されている
    ことを特徴とする請求項2記載の電力変換装置。
  4. 前記コンバータ制御手段は、
    前記交流電源の6倍の周期で脈動する前記スイッチング指令値を、平均化する
    ことを特徴とする請求項1〜3のいずれか1項に記載の電力変換装置。
  5. 記温度補正手段で補正された温度に基づいて、各部品に対し故障を抑制する動作を指示する故障抑制制御手段を更に有する
    ことを特徴とする請求項1〜4のいずれか1項に記載の電力変換装置。
  6. 記温度補正手段で補正された温度が、予め設定された第1の閾値を超えたか否かを判定し、且つ前記温度補正手段で補正された温度が、予め設定された第2の閾値を超えたか否かを判定する閾値判定手段を更に有する
    ことを特徴とする請求項5記載の電力変換装置。
  7. 前記故障抑制制御手段は、
    前記温度補正手段で補正された温度が、前記第1の閾値を超えたことが前記閾値判定手段で判定された場合、前記コンバータ制御手段に前記コンバータ部の出力の低下を指示する
    ことを特徴とする請求項6記載の電力変換装置。
  8. 前記平滑コンデンサで平滑化された前記母線電圧を交流電圧に変換するインバータ部と、
    前記インバータ部の動作を制御するインバータ制御手段と、を更に有し、
    前記故障抑制制御手段は、
    前記温度補正手段で補正された温度が、前記第1の閾値を超えたことが前記閾値判定手段で判定された場合、前記インバータ制御手段に前記インバータ部の出力の低下を指示する
    ことを特徴とする請求項6又は請求項7記載の電力変換装置。
  9. 前記故障抑制制御手段は、
    前記温度補正手段で補正された温度が、前記第2の閾値を超えたことが前記閾値判定手段で判定された場合、異常停止を指示する
    ことを特徴とする請求項6〜8のいずれか1項に記載の電力変換装置。
  10. 前記第1の閾値は、前記第2の閾値よりも小さい
    ことを特徴とする請求項6〜9のいずれか1項に記載の電力変換装置。
  11. 前記第2の閾値は、前記スイッチング素子の耐熱温度よりも低い温度に設定されている
    ことを特徴とする請求項6〜10のいずれか1項に記載の電力変換装置。
  12. 前記スイッチング素子及び前記逆流防止素子のうち、少なくとも一方は、ワイドバンドギャップ半導体で構成されている
    ことを特徴とする請求項1〜11のいずれか1項に記載の電力変換装置。
  13. 請求項1〜12のいずれか1項に記載の電力変換装置と、
    この電力変換装置で駆動されるモータと、を有する
    ことを特徴とする空気調和装置。
JP2015538717A 2013-09-26 2013-09-26 電力変換装置及び空気調和装置 Active JP6058148B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076146 WO2015045076A1 (ja) 2013-09-26 2013-09-26 電力変換装置及び空気調和装置

Publications (2)

Publication Number Publication Date
JP6058148B2 true JP6058148B2 (ja) 2017-01-11
JPWO2015045076A1 JPWO2015045076A1 (ja) 2017-03-02

Family

ID=52742280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015538717A Active JP6058148B2 (ja) 2013-09-26 2013-09-26 電力変換装置及び空気調和装置

Country Status (5)

Country Link
US (1) US9712071B2 (ja)
EP (1) EP3051683B1 (ja)
JP (1) JP6058148B2 (ja)
CN (1) CN105453402B (ja)
WO (1) WO2015045076A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511345B2 (ja) * 2015-06-18 2019-05-15 高周波熱錬株式会社 熱処理用電力変換装置及び方法
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10320322B2 (en) 2016-04-15 2019-06-11 Emerson Climate Technologies, Inc. Switch actuation measurement circuit for voltage converter
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
CN105896586B (zh) * 2016-05-05 2018-08-17 南京南瑞继保电气有限公司 一种电压源换流站的故障定位及恢复方法和系统
JP6245484B1 (ja) * 2016-07-07 2017-12-13 株式会社安川電機 モータ制御システム、初期充電装置、及び故障検出方法
WO2018078835A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 空気調和機および空気調和機の制御方法
CN108572689B (zh) * 2017-03-10 2020-09-22 台达电子企业管理(上海)有限公司 开关电源、过温控制保护方法及功率控制方法
CN107070364B (zh) * 2017-03-31 2019-08-30 广东美的制冷设备有限公司 空调器、电机驱动器及其的防过热控制方法和装置
JP6750549B2 (ja) * 2017-03-31 2020-09-02 株式会社豊田自動織機 電動圧縮機
JP6538109B2 (ja) * 2017-05-24 2019-07-03 三菱電機株式会社 スイッチング装置
DE112017008012T5 (de) * 2017-09-08 2020-07-09 Mitsubishi Electric Corporation Leistungswandler, Verdichter, Luftsendeeinrichtung und Klimaanlage
WO2019123627A1 (ja) * 2017-12-22 2019-06-27 東芝三菱電機産業システム株式会社 電動機駆動装置
JP6711859B2 (ja) * 2018-04-04 2020-06-17 ファナック株式会社 モータ駆動装置およびモータ駆動装置の異常発熱検出方法
CN108809131B (zh) * 2018-09-29 2019-02-22 上海颛芯企业管理咨询合伙企业(有限合伙) 逆变器系统
WO2020241659A1 (ja) * 2019-05-28 2020-12-03 住友重機械工業株式会社 コンバータ装置、産業機械
JP6824342B1 (ja) * 2019-08-26 2021-02-03 三菱電機株式会社 電力変換装置の制御装置
WO2021038881A1 (ja) * 2019-08-30 2021-03-04 三菱電機株式会社 空気調和機
JP6873293B1 (ja) * 2020-03-23 2021-05-19 三菱電機株式会社 交流回転電機の制御装置
DE102021209514A1 (de) 2021-08-31 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Vorrichtung und Vorrichtung
CN116317816B (zh) * 2023-03-23 2024-01-16 蜂巢传动科技邳州有限公司 电机控制器内部电路的控制系统、方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970178A (ja) * 1995-08-30 1997-03-11 Sharp Corp 空気調和機
JP2002262580A (ja) * 2001-03-02 2002-09-13 Sanken Electric Co Ltd インバ−タ装置
JP2009130967A (ja) * 2007-11-20 2009-06-11 Aisin Aw Co Ltd モータの制御装置
JP2011217463A (ja) * 2010-03-31 2011-10-27 Toyota Industries Corp インバータ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676762B2 (ja) 1988-02-25 1997-11-17 株式会社デンソー 電力用半導体装置
JP2004180466A (ja) 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc インバータ装置
JP3933627B2 (ja) 2003-12-19 2007-06-20 株式会社日立製作所 インバータ装置およびこれを用いた車両
JP4473156B2 (ja) 2005-02-16 2010-06-02 トヨタ自動車株式会社 電圧変換装置および車両
JP2006271136A (ja) 2005-03-24 2006-10-05 Denso Corp Dc−dcコンバータ装置
JP2007049810A (ja) 2005-08-09 2007-02-22 Toshiba Corp 電力変換装置用半導体装置及び同半導体装置を有する温度保護機能付き電力変換装置
JP4678374B2 (ja) 2007-01-04 2011-04-27 トヨタ自動車株式会社 負荷装置の制御装置、および車両
US7528590B2 (en) * 2007-10-01 2009-05-05 Silicon Laboratories Inc. DC/DC boost converter with pulse skipping circuitry
US7768242B2 (en) * 2007-10-01 2010-08-03 Silicon Laboratories Inc. DC/DC boost converter with resistorless current sensing
JP2011258623A (ja) 2010-06-07 2011-12-22 Toshiba Corp パワー半導体システム
TWI444806B (zh) 2011-01-31 2014-07-11 Richtek Technology Corp 適應性溫度補償電路及方法
JP2013048513A (ja) 2011-08-29 2013-03-07 Toyota Motor Corp 電気自動車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970178A (ja) * 1995-08-30 1997-03-11 Sharp Corp 空気調和機
JP2002262580A (ja) * 2001-03-02 2002-09-13 Sanken Electric Co Ltd インバ−タ装置
JP2009130967A (ja) * 2007-11-20 2009-06-11 Aisin Aw Co Ltd モータの制御装置
JP2011217463A (ja) * 2010-03-31 2011-10-27 Toyota Industries Corp インバータ装置

Also Published As

Publication number Publication date
WO2015045076A1 (ja) 2015-04-02
EP3051683A1 (en) 2016-08-03
EP3051683A4 (en) 2017-05-10
JPWO2015045076A1 (ja) 2017-03-02
CN105453402A (zh) 2016-03-30
CN105453402B (zh) 2018-04-13
US9712071B2 (en) 2017-07-18
US20160172993A1 (en) 2016-06-16
EP3051683B1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6058148B2 (ja) 電力変換装置及び空気調和装置
JP6109408B2 (ja) モータ駆動制御装置、圧縮機、送風機、及び空気調和機
JP6095788B2 (ja) 電力変換装置及びこれを用いた空気調和装置
JP4349465B1 (ja) 電力変換装置
JP5933038B2 (ja) 電力変換装置及びこれを用いた空気調和装置
US10812009B2 (en) Motor driving device and abnormal heat generation detecting method for motor driving device
JP5984470B2 (ja) 電力変換装置、圧縮機、送風機、空気調和装置、及び冷蔵庫
US20200021102A1 (en) Power converting device, compressor including the same, and control method thereof
RU2615492C1 (ru) Устройство преобразования мощности
JP6041726B2 (ja) 電力変換装置及び空気調和装置
JP5380845B2 (ja) モータ駆動制御装置、ハイブリッドシステムおよびモータ駆動制御装置の駆動制御方法
JPWO2019082246A1 (ja) 直流電源装置および空気調和機
JP6957383B2 (ja) 電力変換装置
KR101925035B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR20180106436A (ko) 인버터의 냉각 운영장치
JP5577220B2 (ja) 溶接用電源装置の保護装置
JP2011112334A (ja) 空気調和システム
JP2013021882A (ja) 直流電源装置
JP2007014075A (ja) 電動機駆動装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6058148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250