JP6036308B2 - Infrared sensor and temperature compensation method - Google Patents

Infrared sensor and temperature compensation method Download PDF

Info

Publication number
JP6036308B2
JP6036308B2 JP2013001382A JP2013001382A JP6036308B2 JP 6036308 B2 JP6036308 B2 JP 6036308B2 JP 2013001382 A JP2013001382 A JP 2013001382A JP 2013001382 A JP2013001382 A JP 2013001382A JP 6036308 B2 JP6036308 B2 JP 6036308B2
Authority
JP
Japan
Prior art keywords
infrared
wavelength
optical system
light
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013001382A
Other languages
Japanese (ja)
Other versions
JP2014134402A (en
Inventor
康夫 松宮
康夫 松宮
澤田 亮
亮 澤田
真一郎 川上
真一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013001382A priority Critical patent/JP6036308B2/en
Publication of JP2014134402A publication Critical patent/JP2014134402A/en
Application granted granted Critical
Publication of JP6036308B2 publication Critical patent/JP6036308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は赤外線センサ及び温度補償方法に関するものであり、例えば、光学系に温度分布が生じるような場合における温度補償機能を有する赤外線センサ及び温度補償方法に関する。   The present invention relates to an infrared sensor and a temperature compensation method. For example, the present invention relates to an infrared sensor and a temperature compensation method having a temperature compensation function when a temperature distribution occurs in an optical system.

赤外線イメージセンサ、特に、室温付近の放射を感知する用途のセンサの場合、イメージセンサの光学系内部からもその温度に応じた赤外線が放射されているため撮像する画像に影響を与えるのでこれを補償する必要がある。   In the case of infrared image sensors, especially sensors that detect radiation near room temperature, infrared rays corresponding to the temperature are also emitted from the inside of the optical system of the image sensor. There is a need to.

一般には、一定の温度板をセンサに見せることでその応答からこの補償を行うことが知られている(例えば、特許文献1或いは特許文献2参照)。この補償方式では温度板を見せている時間は観察対象を撮像できないという問題が有る。   In general, it is known to perform this compensation from the response by making a sensor show a constant temperature plate (for example, refer to Patent Document 1 or Patent Document 2). This compensation method has a problem that the observation target cannot be imaged during the time when the temperature plate is shown.

これに代わる方法としては、光学系内の温度を温度センサなどで別途測定し、予め温度板を用いて測定した補償係数を光学系内の温度に応じて変化させる方法も提案されている(例えば、特許文献3参照)。この場合は、撮像中に温度板を見せる必要がないので常に観察対象を撮像することができる。   As an alternative method, a method has been proposed in which the temperature in the optical system is separately measured with a temperature sensor or the like, and the compensation coefficient measured in advance using a temperature plate is changed according to the temperature in the optical system (for example, And Patent Document 3). In this case, since it is not necessary to show the temperature plate during imaging, the observation object can always be imaged.

特開平03−179977号公報Japanese Patent Laid-Open No. 03-179977 特開2004−241818号公報Japanese Patent Laid-Open No. 2004-241818 特開平10−197343号公報JP-A-10-197343

Proc.of SPIE,Vol.6940,69400U,(2008)Proc. Of SPIE, Vol. 6940, 69400U, (2008)

ところで、近年の赤外線イメージセンサの応用分野の拡大に伴って、大規模な光学系を採用したり或いは環境温度が頻繁に大きく変化するような場合がある。その際には、光学系内部の温度が均一ではなくなる場合が多く、光学系内に設置した温度センサの表示だけでは正確な補償が難しくなっている。   By the way, with the recent expansion of application fields of infrared image sensors, there are cases where a large-scale optical system is employed or the environmental temperature frequently changes greatly. In that case, the temperature inside the optical system is often not uniform, and accurate compensation is difficult only by the display of the temperature sensor installed in the optical system.

したがって、赤外線センサ及び温度補償方法において、光学系内部の温度分布が変化した場合でも、温度板を見ずに補償量を決定できる仕組みを提供することを目的とする。   Accordingly, it is an object of the present invention to provide a mechanism capable of determining the compensation amount without looking at the temperature plate even when the temperature distribution inside the optical system changes in the infrared sensor and the temperature compensation method.

開示する一観点からは、検出対象波長の第1の波長の赤外線と、前記第1の波長と異なった第2の波長の赤外線の少なくとも2つの波長の赤外線のそれぞれに対する検出出力を出力する赤外線検出素子と、前記第1の波長の赤外線を透過し且つ前記第2の波長の赤外線を遮断するフィルタと、前記第1の波長の赤外線を前記赤外線検出素子上に投影する光学系と、前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する補正手段とを有することを特徴とする赤外線センサが提供される。   From one aspect to be disclosed, infrared detection that outputs detection outputs for each of at least two infrared wavelengths, that is, an infrared ray having a first wavelength as a detection target wavelength and an infrared ray having a second wavelength different from the first wavelength. An element, a filter that transmits infrared light of the first wavelength and blocks infrared light of the second wavelength, an optical system that projects the infrared light of the first wavelength onto the infrared detection element, and the second There is provided an infrared sensor comprising correction means for correcting the infrared detection output of the first wavelength according to the infrared detection output of the first wavelength.

開示する別の観点からは、検出対象波長の第1の波長の赤外線を前記第1の波長の赤外線を透過し且つ前記第1の波長と異なった第2の波長の赤外線を遮断するフィルタと、非冷却状態の光学系とを介して所定温度に冷却した赤外線検出素子で前記第1の波長の赤外線及び前記第2の波長の赤外線を検出する工程と、冷却した低温温度板を前記光学系を介して撮影して前記第1の波長の赤外線と前記第2の波長の赤外線の検出出力の相関関係のデータを事前に取得する工程と、前記取得した相関関係のデータに基づいて、前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する工程とを有することを特徴とする温度補償方法が提供される。   From another aspect to be disclosed, a filter that transmits infrared light of a first wavelength of a detection target wavelength and blocks infrared light of a second wavelength different from the first wavelength; A step of detecting infrared light of the first wavelength and infrared light of the second wavelength with an infrared detecting element cooled to a predetermined temperature via an uncooled optical system; And acquiring in advance the correlation data of the infrared detection output of the first wavelength and the infrared detection of the second wavelength based on the acquired correlation data, And a step of correcting the infrared detection output of the first wavelength according to the infrared detection output of the first wavelength.

開示の赤外線センサ及び温度補償方法によれば、光学系内部の温度分布が変化した場合でも、温度板を見ずに補償量を決定できる仕組みを提供することが可能になる。   According to the disclosed infrared sensor and temperature compensation method, it is possible to provide a mechanism capable of determining the compensation amount without looking at the temperature plate even when the temperature distribution inside the optical system changes.

本発明の実施の形態の赤外線センサの説明図である。It is explanatory drawing of the infrared sensor of embodiment of this invention. 本発明の実施の形態の光学系に利用可能なレンズ材料の説明図である。It is explanatory drawing of the lens material which can be utilized for the optical system of embodiment of this invention. 本発明の実施例1の赤外線イメージセンサの概念的構成図である。It is a notional block diagram of the infrared image sensor of Example 1 of this invention. 2波長多重量子井戸赤外線検出器の概略的断面図である。It is a schematic sectional drawing of a 2 wavelength multiple quantum well infrared detector. 投影レンズ系の一例を示す構成説明図である。It is a configuration explanatory view showing an example of a projection lens system. 補正情報データベースの取得方法の説明図である。It is explanatory drawing of the acquisition method of a correction information database. 補正方法の説明図である。It is explanatory drawing of the correction method. 本発明の実施例2の赤外線イメージセンサの概念的構成図である。It is a notional block diagram of the infrared image sensor of Example 2 of this invention. 3波長多重量子井戸赤外線検出器の概略的断面図である。It is a schematic sectional drawing of a 3 wavelength multiple quantum well infrared detector. 投影レンズ系の一例を示す構成説明図である。It is a configuration explanatory view showing an example of a projection lens system.

ここで、図1及び図2を参照して、本発明の実施の形態の赤外線センサを説明する。図1は本発明の実施の形態の赤外線センサの説明図であり、図1(a)は、本発明の赤外線センサの概念的構成図であり、図1(b)は、温度補償方法の説明図である。ここでは、赤外線センサを複数の赤外線検出素子を1次元マトリクス状或いは2次元マトリクス状に配置した赤外線センサアレイとして説明するが、一個の赤外線検出素子でも良いし、少数個の赤外線検出素子でも良い。   Here, with reference to FIG.1 and FIG.2, the infrared sensor of embodiment of this invention is demonstrated. FIG. 1 is an explanatory diagram of an infrared sensor according to an embodiment of the present invention, FIG. 1 (a) is a conceptual configuration diagram of the infrared sensor of the present invention, and FIG. 1 (b) is a description of a temperature compensation method. FIG. Here, the infrared sensor is described as an infrared sensor array in which a plurality of infrared detection elements are arranged in a one-dimensional matrix or a two-dimensional matrix. However, one infrared detection element or a small number of infrared detection elements may be used.

図1(a)に示すように、本発明の実施の形態の赤外線センサは、波長選択フィルタ1と、光学系2と、赤外線検出素子3とを備えており、赤外線検出素子3は真空容器4の内部に収容されて、冷却手段5により所定の温度、典型的には液体窒素温度に冷却される。   As shown in FIG. 1A, the infrared sensor according to the embodiment of the present invention includes a wavelength selection filter 1, an optical system 2, and an infrared detection element 3, and the infrared detection element 3 is a vacuum container 4. And cooled to a predetermined temperature, typically liquid nitrogen temperature, by the cooling means 5.

波長選択フィルタ1は測定対象となる第1の波長の赤外線6のみを透過するバンドパスフィルタか、或いは、第1の波長の赤外線6は透過するが、第1の波長の赤外線6とは異なる第2の波長の赤外線7を遮断するローパスフィルタ或いはハイパスフィルタを用いる。なお、光学系2の内部で発生する第2の波長の赤外線7は通常は第1の波長の赤外線6より短波長であるので、通常はローパスフィルタを用いる。   The wavelength selection filter 1 is a band-pass filter that transmits only the first wavelength infrared ray 6 to be measured, or the first wavelength infrared ray 6 is transmitted but is different from the first wavelength infrared ray 6. A low-pass filter or a high-pass filter that cuts off infrared rays 7 having a wavelength of 2 is used. Since the second wavelength infrared ray 7 generated inside the optical system 2 is usually shorter than the first wavelength infrared ray 6, a low-pass filter is usually used.

光学系2は、波長選択フィルタ1を透過した第1の波長の赤外線6を赤外線検出素子3に結像するためのものであり、広角投影レンズ系(WFOV)を用いても良いし、狭視野角投影レンズ系(XFOV)を用いても良い。但し、光学系2の特定の位置で熱的に発生した第1の波長の赤外線6と第2の波長の赤外線7が同じ画素に入射するように、第1の波長の赤外線6と第2の波長の赤外線7とに対してほぼ同じ屈折率を持つようにする。   The optical system 2 is for imaging the infrared ray 6 having the first wavelength transmitted through the wavelength selection filter 1 on the infrared detection element 3, and may use a wide-angle projection lens system (WFOV) or a narrow field of view. An angular projection lens system (XFOV) may be used. However, the first wavelength infrared ray 6 and the second wavelength infrared ray 6 and the second wavelength infrared ray 7 that are thermally generated at a specific position of the optical system 2 are incident on the same pixel. It has almost the same refractive index with respect to the infrared ray 7 of the wavelength.

図2は、光学系2に利用可能なレンズ材料の説明図(非特許文献1参照)であり、検出対象となる赤外線の波長に応じてレンズ材料を選択すれば良い。なお、図における、AMTIRはアモルファス赤外線透過ガラスを表し、GASIRはカルコゲナイドガラスを表す。   FIG. 2 is an explanatory diagram of a lens material that can be used in the optical system 2 (see Non-Patent Document 1), and the lens material may be selected according to the wavelength of infrared rays to be detected. In the figure, AMTIR represents amorphous infrared transmitting glass, and GASIR represents chalcogenide glass.

赤外線検出素子3は、少なくとも検出対象となる第1の波長の赤外線6とそれとは波長の異なる第2の波長の赤外線7をそれぞれ別個に検出する機能を有しており、典型的には、互いに異なった組成の多層量子井戸構造の光吸収層を用いて形成する。なお、3つの互いに組成の異なった多重量子井戸構造を積層して3波長赤外線検出素子としても良い。或いは、量子ドットを光吸収層とする量子ドット赤外線検出素子を用いても良いし、さらには、HgCdTe系のバルク型赤外線検出素子を用いても良い。   The infrared detecting element 3 has a function of separately detecting at least a first wavelength infrared ray 6 to be detected and a second wavelength infrared ray 7 having a different wavelength from each other. It is formed using a light absorption layer having a multilayer quantum well structure having different compositions. In addition, it is good also as a 3 wavelength infrared rays detection element by laminating | stacking three multiple quantum well structures from which a composition mutually differs. Alternatively, a quantum dot infrared detection element having a quantum dot as a light absorption layer may be used, and further, a HgCdTe-based bulk infrared detection element may be used.

被写体から来た第1の波長の赤外線6は、波長選択フィルタ1及び光学系2を順次通過して、各画素が第1の波長の赤外線6と第2の波長の赤外線7にそれぞれ感度を持つ赤外線検出素子3上に結像する。この時、光学系3もそれ自身の温度に相当する赤外線を発するので、赤外線検出素子3に到達する第1の波長の赤外線6には被写体からの赤外線の他に光学系2の内で発生する赤外線の成分が含まれる。光学系3の内に温度分布などが有る場合、その温度分布に相当した強度分布を有する赤外線が赤外線検出素子3上に投影されるので、これが固定パターンノイズの原因となる。   The first wavelength infrared ray 6 coming from the subject passes through the wavelength selection filter 1 and the optical system 2 in order, and each pixel has sensitivity to the first wavelength infrared ray 6 and the second wavelength infrared ray 7 respectively. An image is formed on the infrared detection element 3. At this time, since the optical system 3 also emits an infrared ray corresponding to its own temperature, the first wavelength infrared ray 6 reaching the infrared detecting element 3 is generated in the optical system 2 in addition to the infrared ray from the subject. Infrared component is included. When there is a temperature distribution or the like in the optical system 3, infrared light having an intensity distribution corresponding to the temperature distribution is projected onto the infrared detection element 3, which causes fixed pattern noise.

ここで、第2の波長の赤外線7に注目すると、第2の波長の赤外線7は波長選択フィルタ1により外界からの入射が遮断されているので、赤外線検出素子3上に到達する第2の波長の赤外線7は赤外線センサ内の温度により発生した赤外線のみとなる。第1の波長の赤外線6と第2の波長の赤外線7の波長が比較的近い場合、同一の場所から発生した両者の赤外線は赤外線検出素子3上のほぼ同じ位置の画素に結像すると予想され、またその強度は一定の比例関係にあると仮定できる。したがって、各画素で検出した第2の波長の赤外線7の強度から第1の波長の赤外線6の強度の内の赤外線イメージセンサ内で発生した成分を見積もることが可能になる。   Here, paying attention to the infrared ray 7 having the second wavelength, since the infrared ray 7 having the second wavelength is blocked from being incident from the outside by the wavelength selection filter 1, the second wavelength reaching the infrared detection element 3. The infrared ray 7 becomes only the infrared ray generated by the temperature in the infrared sensor. When the first wavelength infrared ray 6 and the second wavelength infrared ray 7 are relatively close in wavelength, both infrared rays generated from the same place are expected to form an image on pixels at substantially the same position on the infrared detection element 3. It can be assumed that the intensity is in a certain proportional relationship. Therefore, it is possible to estimate a component generated in the infrared image sensor within the intensity of the infrared light 6 having the first wavelength from the intensity of the infrared light 7 having the second wavelength detected by each pixel.

即ち、第2の波長の赤外線7から得られた2次元イメージと第1の波長の赤外線6から得られた2次元イメージとの演算処理により、被写体からの第1の波長の赤外線6だけの情報を取り出すことができる。これにより光学系内部の温度分布が変化した場合でも、温度板を見ずに常時補償を行うことが可能になる。   That is, information of only the first wavelength infrared ray 6 from the subject is obtained by calculating the two-dimensional image obtained from the second wavelength infrared ray 7 and the two-dimensional image obtained from the first wavelength infrared ray 6. Can be taken out. As a result, even when the temperature distribution inside the optical system changes, it is possible to always perform compensation without looking at the temperature plate.

そのためには、赤外線センサに温度補償を行うための補正手段8を設けることが望ましく、この補正手段8には、光学系3の内部で発生した第1の波長の赤外線6と第2の波長の赤外線7の検出出力の相関関係のデータを格納させれば良い。   For this purpose, it is desirable to provide correction means 8 for performing temperature compensation in the infrared sensor. In this correction means 8, the infrared rays 6 of the first wavelength and the second wavelength generated inside the optical system 3 are included. The correlation data of the detection output of the infrared ray 7 may be stored.

このような、相関関係のデータを取得するためには、事前に所定の温度に冷却した低温温度板を光学系2を介して撮影して第1の波長の赤外線6と第2の波長の赤外線7の検出出力の相関関係を求めれば良い。   In order to acquire such correlation data, a low-temperature plate that has been cooled to a predetermined temperature in advance is photographed through the optical system 2 and the first wavelength infrared rays 6 and the second wavelength infrared rays are obtained. What is necessary is just to obtain | require the correlation of 7 detection outputs.

図1(b)は、補正方法の概念的説明図であり、光学系2の内部で発生した第1の波長の赤外線6の光強度分布B、即ち、固定ノイズパターンを相関関係のデータに基づいて取得する。そして、被写体を撮像した第1の波長の赤外線6の光強度分布Aからこの光強度分布Bを引くと被写体からのみの第1の波長の赤外線6の光強度分布Cが得られることになる。   FIG. 1B is a conceptual explanatory diagram of the correction method, and the light intensity distribution B of the first wavelength infrared ray 6 generated inside the optical system 2, that is, the fixed noise pattern is based on the correlation data. Get. Then, when the light intensity distribution B is subtracted from the light intensity distribution A of the first wavelength infrared ray 6 obtained by imaging the subject, the light intensity distribution C of the first wavelength infrared ray 6 only from the subject is obtained.

以上説明したように、本発明の実施の形態によれば光学系内部などでそれ自身の温度による輻射が発生し、撮像画像に影響を与える様な条件下においても、撮像を中断することなく固定パターンノイズを除去した赤外線像を得ることが可能になる。また、光学系などを均一な温度に保持する必要がなくなるので、システム全体の小型化や低価格化を実現することが可能になる。   As described above, according to the embodiment of the present invention, radiation due to its own temperature occurs inside the optical system or the like, and it is fixed without interruption even under conditions that affect the captured image. An infrared image from which pattern noise has been removed can be obtained. In addition, since it is not necessary to maintain the optical system at a uniform temperature, it is possible to reduce the size and cost of the entire system.

次に、図3乃至図7を参照して、本発明の実施例1の赤外線イメージセンサを説明する。図3は、本発明の実施例1の赤外線イメージセンサの概念的構成図であり、光学系部20と赤外線検出素子部30を備えるとともに、演算回路51及び補正情報データベース52を備えている。   Next, an infrared image sensor according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a conceptual configuration diagram of the infrared image sensor according to the first embodiment of the present invention. The infrared image sensor includes an optical system unit 20 and an infrared detection element unit 30, and includes an arithmetic circuit 51 and a correction information database 52.

光学系部20は、筐体21の入射部に7μmの赤外線を透過せず、9μmの赤外線を透過するローパスフィルタ22を設け、その内部に投影レンズ系23を収容している。ローパスフィルタ22としては、LP-8045(株式会社スペクトラ・コープ製商品型番)を用いる。   The optical system unit 20 is provided with a low-pass filter 22 that does not transmit 7 μm infrared light but transmits 9 μm infrared light at the incident part of the housing 21, and houses a projection lens system 23 therein. As the low-pass filter 22, LP-8045 (a product model number manufactured by Spectra Corp.) is used.

一方、赤外線検出素子部30は、窓32を備えた真空容器31に2波長多重量子井戸赤外線検出器40が収容され、この2波長多重量子井戸赤外線検出器40は冷凍機33により液体窒素温度に冷却される。また、2波長多重量子井戸赤外線検出器40は、迷光を遮断するコールドシールド34で囲われている。   On the other hand, in the infrared detection element section 30, a two-wavelength multiple quantum well infrared detector 40 is accommodated in a vacuum vessel 31 having a window 32. The two-wavelength multiple quantum well infrared detector 40 is brought to a liquid nitrogen temperature by a refrigerator 33. To be cooled. The two-wavelength multiple quantum well infrared detector 40 is surrounded by a cold shield 34 that blocks stray light.

図4は、2波長多重量子井戸赤外線検出器の概略的断面図である。i型GaAsベース層41上にn型GaAsコンタクト層42、n型MQW第1光吸収層43、n型GaAsコンタクト層44、n型MQW第2光吸収層45及びn型GaAsコンタクト層46を順次積層した構造とし、表面に回折格子47を形成する。また、画素ピッチは30μmで有効画素面積は28μm×28μmとする。   FIG. 4 is a schematic cross-sectional view of a two-wavelength multiple quantum well infrared detector. On the i-type GaAs base layer 41, an n-type GaAs contact layer 42, an n-type MQW first light absorption layer 43, an n-type GaAs contact layer 44, an n-type MQW second light absorption layer 45, and an n-type GaAs contact layer 46 are sequentially formed. A laminated structure is formed, and a diffraction grating 47 is formed on the surface. The pixel pitch is 30 μm and the effective pixel area is 28 μm × 28 μm.

ここでは、n型MQW第1光吸収層43は、ピーク感度が9μmになるように、50nmのアンドープAl0.26Ga0.74As障壁層と5nmで4×1017cm-3のn型GaAs井戸層を交互に積層し、62層の井戸層と63層の障壁層で構成する。一方、n型MQW第2光吸収層45は、ピーク感度が7μmになるように、50nmのアンドープAl0.34Ga0.66As障壁層と5nmで4×1017cm-3のn型GaAs井戸層を交互に積層し、62層の井戸層と63層の障壁層で構成する。 Here, the n-type MQW first light absorption layer 43 has an undoped Al 0.26 Ga 0.74 As barrier layer of 50 nm and an n-type of 4 × 10 17 cm −3 at 5 nm so that the peak sensitivity is 9 μm. GaAs well layers are alternately stacked to form 62 well layers and 63 barrier layers. On the other hand, the n-type MQW second light absorption layer 45 has an undoped Al 0.34 Ga 0.66 As barrier layer of 50 nm and an n-type GaAs of 4 × 10 17 cm −3 at 5 nm so that the peak sensitivity becomes 7 μm. The well layers are alternately stacked to form 62 well layers and 63 barrier layers.

i型GaAsベース層41側から入射した赤外線は、回折格子47で回折されて多重量子井戸構造に対して傾斜して入射することで、7μmの赤外線はn型MQW第2光吸収層45で吸収され、9μmの赤外線はn型MQW第1光吸収層43で吸収される。   Infrared light incident from the i-type GaAs base layer 41 side is diffracted by the diffraction grating 47 and incident on the multiple quantum well structure at an angle, so that 7 μm infrared light is absorbed by the n-type MQW second light absorption layer 45. The 9 μm infrared light is absorbed by the n-type MQW first light absorption layer 43.

図5は、投影レンズ系の一例を示す構成説明図であり、ここでは、広角投影レンズ系(WFOV)を用いる。   FIG. 5 is an explanatory diagram showing an example of a projection lens system. Here, a wide-angle projection lens system (WFOV) is used.

図6は、補正情報データベース取得方法の説明図であり、図6(a)は測定系の説明図であり、図6(b)は測定結果の説明図である。図3に示した赤外線イメージセンサ全体を窓61を備えた恒温容器60内に収容し、真空装置62内に収容した液体窒素温度に冷却した低温温度板63を2波長多重量子井戸赤外線検出器40で撮影する。この時、低温温度板63は液体窒素温度になっているので赤外線の輻射はなく、したがって、2波長多重量子井戸赤外線検出器40で検出された赤外線は光学系由来の赤外線となる。   6 is an explanatory diagram of a correction information database acquisition method, FIG. 6A is an explanatory diagram of a measurement system, and FIG. 6B is an explanatory diagram of a measurement result. The entire infrared image sensor shown in FIG. 3 is housed in a thermostatic container 60 having a window 61, and a low-temperature plate 63 cooled to liquid nitrogen temperature housed in a vacuum device 62 is replaced with a two-wavelength multiple quantum well infrared detector 40. Shoot with. At this time, since the low temperature plate 63 is at the liquid nitrogen temperature, there is no infrared radiation, and therefore the infrared detected by the two-wavelength multiple quantum well infrared detector 40 is infrared derived from the optical system.

このような測定を、実際の測定環境における環境温度近傍の温度範囲において、温度をずらしながら一定にした状態で繰り返して測定を行い、9μmの赤外線の強度と7μmの赤外線の強度の相関関係を取得する。図6(b)は測定結果を概念的に示した図であり、各測定点は異なった温度における測定結果をしている。   This measurement is repeated in the temperature range near the ambient temperature in the actual measurement environment, with the temperature kept constant, and the correlation between the 9 μm infrared intensity and the 7 μm infrared intensity is obtained. To do. FIG. 6B is a diagram conceptually showing the measurement results, and each measurement point shows the measurement results at different temperatures.

図7は、補正方法の説明図であり、実際の測定においては、9μmの測定画像と7μmの測定画像を演算回路51へ入力するとともに、補正情報データベースも入力する。図7(b)に示すように、7μmの測定画像の画素毎の光強度L7μmを図6(b)に示した補正情報データベースと対比して当該強度に対応する9μmの赤外線の光強度L9μmを求める。この求めた画素毎に求めた光強度L9μmを、9μmの測定画像の画素毎に減算することによって、被写体由来の画像が得られる。 FIG. 7 is an explanatory diagram of a correction method. In actual measurement, a 9 μm measurement image and a 7 μm measurement image are input to the arithmetic circuit 51 and a correction information database is also input. As shown in FIG. 7B, the light intensity L 7 μm for each pixel of the 7 μm measurement image is compared with the correction information database shown in FIG. 6B, and the infrared light intensity L of 9 μm corresponding to the intensity is obtained. Obtain 9 μm . By subtracting the light intensity L 9 μm obtained for each obtained pixel for each pixel of the 9 μm measurement image, an image derived from the subject is obtained.

このように、本発明の実施例1においては、特定の波長の赤外線で被写体を撮像する際に、2波長多重量子井戸赤外線検知器を用いて光学系で発生する赤外線による固定パターンノイズを除去しているので、小型の装置構成で連続撮像が可能なる。   As described above, in the first embodiment of the present invention, when a subject is imaged with infrared rays having a specific wavelength, fixed pattern noise due to infrared rays generated in the optical system is removed using a two-wavelength multiple quantum well infrared detector. Therefore, continuous imaging is possible with a small device configuration.

次に、図8乃至図10を参照して、本発明の実施例2の赤外線イメージセンサを説明する。図8は、本発明の実施例2の赤外線イメージセンサの概念的構成図であり、光学系部20と赤外線検出素子部30を備えるとともに、演算回路51及び補正情報データベース52を備えている。   Next, an infrared image sensor according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a conceptual configuration diagram of the infrared image sensor according to the second embodiment of the present invention. The infrared image sensor includes an optical system unit 20 and an infrared detection element unit 30, and includes an arithmetic circuit 51 and a correction information database 52.

光学系部20は、筐体21の入射部に6μmの赤外線を透過せず、5μmの赤外線と9μmの赤外線を透過するバンドパスフィルタ24を設け、その内部に投影レンズ系25を収容している。   The optical system unit 20 is provided with a band pass filter 24 that does not transmit 6 μm infrared light at the incident part of the housing 21 but transmits 5 μm infrared light and 9 μm infrared light, and houses a projection lens system 25 therein. .

一方、赤外線検出素子部30は、窓32を備えた真空容器31に3波長多重量子井戸赤外線検出器70が収容され、この3波長多重量子井戸赤外線検出器70は冷凍機33により液体窒素温度に冷却される。また、3波長多重量子井戸赤外線検出器70は、迷光を遮断するコールドシールド34で囲われている。   On the other hand, in the infrared detection element section 30, a three-wavelength multiple quantum well infrared detector 70 is accommodated in a vacuum vessel 31 having a window 32. The three-wavelength multiple quantum well infrared detector 70 is adjusted to a liquid nitrogen temperature by a refrigerator 33. To be cooled. The three-wavelength multiple quantum well infrared detector 70 is surrounded by a cold shield 34 that blocks stray light.

図9は、3波長多重量子井戸赤外線検出器の概略的断面図である。i型GaAsベース層71上にn型GaAsコンタクト層72、n型MQW第1光吸収層73、n型GaAsコンタクト層74、n型MQW第2光吸収層75、n型GaAsコンタクト層76、n型MQW第3光吸収層77及びn型GaAsコンタクト層78を順次積層した構造とする。 また、表面に回折格子79を形成するとともに、画素ピッチは30μmで有効画素面積は28μm×28μmとする。   FIG. 9 is a schematic cross-sectional view of a three-wavelength multiple quantum well infrared detector. On the i-type GaAs base layer 71, an n-type GaAs contact layer 72, an n-type MQW first light absorption layer 73, an n-type GaAs contact layer 74, an n-type MQW second light absorption layer 75, an n-type GaAs contact layer 76, n A type MQW third light absorption layer 77 and an n-type GaAs contact layer 78 are sequentially stacked. Further, a diffraction grating 79 is formed on the surface, the pixel pitch is 30 μm, and the effective pixel area is 28 μm × 28 μm.

ここでは、n型MQW第1光吸収層73、n型MQW第2光吸収層75及びn型MQW第3光吸収層77は、ピーク波長がそれぞれ9μm、6μm及び5μmになるように、障壁層と井戸層の厚さ及び組成を調整する。   Here, the n-type MQW first light absorption layer 73, the n-type MQW second light absorption layer 75, and the n-type MQW third light absorption layer 77 have barrier layers such that their peak wavelengths are 9 μm, 6 μm, and 5 μm, respectively. And adjusting the thickness and composition of the well layer.

i型GaAsベース層71側から入射した赤外線は、回折格子79で回折されて多重量子井戸構造に対して傾斜して入射する。その結果、5μmの赤外線はn型MQW第3光吸収層77で吸収され、6μmの赤外線はn型MQW第2光吸収層75で吸収され、9μmの赤外線はn型MQW第1光吸収層73で吸収される。   Infrared light incident from the i-type GaAs base layer 71 side is diffracted by the diffraction grating 79 and is incident on the multiple quantum well structure at an angle. As a result, 5 μm infrared light is absorbed by the n-type MQW third light absorption layer 77, 6 μm infrared light is absorbed by the n-type MQW second light absorption layer 75, and 9 μm infrared light is absorbed by the n-type MQW first light absorption layer 73. Absorbed in.

図10は、投影レンズ系の一例を示す構成説明図であり、ここでは、狭視野角投影レンズ系(XFOV)を用いる。   FIG. 10 is an explanatory diagram showing an example of a projection lens system. Here, a narrow viewing angle projection lens system (XFOV) is used.

本発明の実施例2においては、6μmの赤外線の信号はバンドパスフィルタ24により遮断されているので、3波長多重量子井戸赤外線検出器70で検出された6μmの赤外線は、主に光学系から発生した赤外線に相当する。この6μmの赤外線の情報を基に5μmの赤外線と9μmの赤外線について、光学系内で発生した赤外線成分の補正を行うことで、2波長を測定対象とする赤外線イメージセンサにおいても、固定パターンノイズの低減が可能になる。   In Example 2 of the present invention, since the 6 μm infrared signal is blocked by the bandpass filter 24, the 6 μm infrared detected by the three-wavelength multiple quantum well infrared detector 70 is mainly generated from the optical system. It corresponds to infrared rays. By correcting the infrared component generated in the optical system for the 5 μm infrared ray and the 9 μm infrared ray based on this 6 μm infrared information, even in the infrared image sensor measuring two wavelengths, the fixed pattern noise Reduction is possible.

ここで、実施例1及び実施例2を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)検出対象波長の第1の波長の赤外線と、前記第1の波長と異なった第2の波長の赤外線の少なくとも2つの波長の赤外線のそれぞれに対する検出出力を出力する赤外線検出素子と、前記第1の波長の赤外線を透過し且つ前記第2の波長の赤外線を遮断するフィルタと、前記第1の波長の赤外線を前記赤外線検出素子上に投影する光学系と、前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する補正手段とを有することを特徴とする赤外線センサ。
(付記2)前記赤外線検出素子が、前記第1の波長の赤外線に対して前記第2の波長の赤外線と反対側の波長変動側の第3の波長の赤外線に対する検出出力を検出する機能を有し、
前記補正手段は、前記第3の波長の赤外線の出力に応じて前記第1の波長の赤外線の出力をさらに補正する機能を有することを特徴とする付記1に記載の赤外線センサ。
(付記3)前記赤外線検出素子が、1次元状或いは2次元状にモノリシックに多数個配置されていることを特徴とする付記1または付記2に記載の赤外線センサ。
(付記4)前記赤外線検出素子が真空容器内に配置されて冷却手段により所定の温度に冷却されるとともに、前記フィルタが前記フィルタと前記赤外線検出素子との間に配置された前記光学系とともに非冷却状態で配置されていることを特徴とする付記3に記載の赤外線センサ。
(付記5)前記光学系が複数のレンズを有し、前記複数のレンズの前記第1の波長の赤外線及び前記第2の波長の赤外線に対する各屈折率が、前記光学系の特定の位置において発生した前記第1の波長の赤外線と前記第2の波長の赤外線が、前記複数の赤外線検出素子の内の同一の赤外線検出素子に入射する程度にほぼ同一の屈折率を有することを特徴とする付記4に記載の赤外線センサ。
(付記6)前記補正手段が、冷却した低温温度板を前記光学系を介して撮影して事前に取得した前記第1の波長の赤外線と前記第2の波長の赤外線の検出出力の相関関係のデータを格納していることを特徴とする付記5に記載の赤外線センサ。
(付記7)検出対象波長の第1の波長の赤外線を前記第1の波長の赤外線を透過し且つ前記第1の波長と異なった第2の波長の赤外線を遮断するフィルタと、非冷却状態の光学系とを介して所定温度に冷却した赤外線検出素子で前記第1の波長の赤外線と前記第2の波長の赤外線を検出する工程と、冷却した低温温度板を前記光学系を介して撮影して前記第1の波長の赤外線と前記第2の波長の赤外線の検出出力の相関関係のデータを事前に取得する工程と、前記取得した相関関係のデータに基づいて、前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する工程とを有することを特徴とする温度補償方法。
Here, the following supplementary notes are attached to the embodiments of the present invention including Example 1 and Example 2.
(Appendix 1) An infrared detection element that outputs a detection output for each of at least two infrared rays of an infrared of a first wavelength of the detection target wavelength and an infrared of a second wavelength different from the first wavelength; A filter that transmits infrared light of the first wavelength and blocks infrared light of the second wavelength; an optical system that projects the infrared light of the first wavelength onto the infrared detection element; and An infrared sensor comprising correction means for correcting the infrared detection output of the first wavelength in accordance with the infrared detection output.
(Supplementary Note 2) The infrared detection element has a function of detecting a detection output for the infrared of the third wavelength on the wavelength variation side opposite to the infrared of the second wavelength with respect to the infrared of the first wavelength. And
The infrared sensor according to appendix 1, wherein the correction unit has a function of further correcting the output of the infrared light of the first wavelength according to the output of the infrared light of the third wavelength.
(Appendix 3) The infrared sensor according to appendix 1 or appendix 2, wherein a large number of the infrared detection elements are monolithically arranged one-dimensionally or two-dimensionally.
(Supplementary Note 4) The infrared detection element is disposed in a vacuum vessel and cooled to a predetermined temperature by a cooling unit, and the filter is not coupled with the optical system disposed between the filter and the infrared detection element. The infrared sensor according to appendix 3, wherein the infrared sensor is disposed in a cooled state.
(Supplementary Note 5) The optical system has a plurality of lenses, and the respective refractive indexes of the plurality of lenses with respect to the first wavelength infrared light and the second wavelength infrared light are generated at specific positions of the optical system. The infrared light having the first wavelength and the infrared light having the second wavelength have substantially the same refractive index to the extent that they are incident on the same infrared detection element of the plurality of infrared detection elements. 4. The infrared sensor according to 4.
(Additional remark 6) The said correction | amendment means image | photographs the cooled low temperature board via the said optical system, and the correlation of the detection output of the infrared rays of the said 1st wavelength acquired in advance and the infrared rays of the said 2nd wavelength The infrared sensor according to appendix 5, wherein data is stored.
(Supplementary note 7) A filter that transmits infrared light of the first wavelength of the detection target wavelength and blocks infrared light of the second wavelength different from the first wavelength, and an uncooled state A step of detecting infrared light of the first wavelength and infrared light of the second wavelength with an infrared detecting element cooled to a predetermined temperature via the optical system, and photographing the cooled low-temperature plate through the optical system. Acquiring in advance correlation data between the infrared detection output of the first wavelength and the infrared detection of the second wavelength, and the infrared of the second wavelength based on the acquired correlation data And a step of correcting the detection output of the infrared light having the first wavelength according to the detection output of the first wavelength.

1 波長選択フィルタ
2 光学系
3 赤外線検出素子
4 真空容器
5 冷却手段
6 第1の波長の赤外線
7 第2の波長の赤外線
8 補正手段
20 光学系部
21 筐体
22 ローパスフィルタ
23,25 投影レンズ系
24 バンドパスフィルタ
30 赤外線検出素子部
31 真空容器
32 窓
33 冷凍機
34 コールドシールド
40 2波長多重量子井戸赤外線検出器
41,71 i型GaAsベース層
42,72 n型GaAsコンタクト層
43,73 n型MQW第1光吸収層
44,74 n型GaAsコンタクト層
45,75 n型MQW第2光吸収層
46,76 n型GaAsコンタクト層
47,79 回折格子
51 演算回路
52 補正情報データベース
60 恒温容器
61 窓
62 真空装置
63 低温温度板
70 3波長多重量子井戸赤外線検出器
77 n型MQW第3光吸収層
78 n型GaAsコンタクト層
DESCRIPTION OF SYMBOLS 1 Wavelength selection filter 2 Optical system 3 Infrared detection element 4 Vacuum container 5 Cooling means 6 1st wavelength infrared 7 2nd wavelength infrared 8 Correction means 20 Optical system part 21 Case 22 Low pass filter 23, 25 Projection lens system 24 Band pass filter 30 Infrared detector element 31 Vacuum vessel 32 Window 33 Refrigerator 34 Cold shield 40 Two-wavelength multiple quantum well infrared detector 41, 71 i-type GaAs base layer 42, 72 n-type GaAs contact layer 43, 73 n-type MQW first light absorption layer 44, 74 n-type GaAs contact layer 45, 75 n-type MQW second light absorption layer 46, 76 n-type GaAs contact layer 47, 79 Diffraction grating 51 Operation circuit 52 Correction information database 60 Constant temperature vessel 61 Window 62 Vacuum device 63 Low-temperature plate 70 Three-wavelength multiple quantum well infrared detector 77 n-type MQW third Light absorption layer 78 n-type GaAs contact layer

Claims (5)

検出対象波長の第1の波長の赤外線と、前記第1の波長と異なった第2の波長の赤外線の少なくとも2つの波長の赤外線のそれぞれに対する検出出力を出力する赤外線検出素子と、
前記第1の波長の赤外線を透過し且つ前記第2の波長の赤外線を遮断するフィルタと
前記第1の波長の赤外線を前記赤外線検出素子上に投影する光学系と、
前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する補正手段と
を有することを特徴とする赤外線センサ。
An infrared detection element that outputs a detection output for each of infrared rays of at least two wavelengths, an infrared ray having a first wavelength of a detection target wavelength and an infrared ray having a second wavelength different from the first wavelength;
A filter that transmits infrared light of the first wavelength and blocks infrared light of the second wavelength; and an optical system that projects the infrared light of the first wavelength onto the infrared detection element;
An infrared sensor comprising: correction means for correcting the detection output of the infrared light of the first wavelength in accordance with the detection output of the infrared light of the second wavelength.
前記赤外線検出素子が、1次元状或いは2次元状にモノリシックに多数個配置されていることを特徴とする請求項1に記載の赤外線センサ。   The infrared sensor according to claim 1, wherein a large number of the infrared detection elements are monolithically arranged in a one-dimensional or two-dimensional manner. 前記赤外線検出素子が真空容器内に配置されて冷却手段により所定の温度に冷却されるとともに、
前記フィルタが前記フィルタと前記赤外線検出素子との間に配置された前記光学系とともに非冷却状態で配置されていることを特徴とする請求項2に記載の赤外線センサ。
The infrared detection element is disposed in a vacuum vessel and cooled to a predetermined temperature by cooling means,
The infrared sensor according to claim 2, wherein the filter is disposed in an uncooled state together with the optical system disposed between the filter and the infrared detection element.
前記光学系が複数のレンズを有し、前記複数のレンズの前記第1の波長の赤外線及び前記第2の波長の赤外線に対する各屈折率が、前記光学系の特定の位置において発生した前記第1の波長の赤外線と前記第2の波長の赤外線が、前記複数の赤外線検出素子の内の同一の赤外線検出素子に入射する程度にほぼ同一の屈折率を有することを特徴とする請求項3に記載の赤外線センサ。   The optical system has a plurality of lenses, and the respective refractive indexes of the plurality of lenses with respect to the infrared rays having the first wavelength and the infrared rays having the second wavelength are generated at specific positions of the optical system. 4. The infrared light having the same wavelength and the infrared light having the second wavelength have substantially the same refractive index to such an extent that they are incident on the same infrared detection element of the plurality of infrared detection elements. Infrared sensor. 検出対象波長の第1の波長の赤外線を前記第1の波長の赤外線を透過し且つ前記第1の波長と異なった第2の波長の赤外線を遮断するフィルタと、非冷却状態の光学系とを介して所定温度に冷却した赤外線検出素子で前記第1の波長の赤外線と前記第2の波長の赤外線を検出する工程と、
冷却した低温温度板を前記光学系を介して撮影して前記第1の波長の赤外線と前記第2の波長の赤外線の検出出力の相関関係のデータを事前に取得する工程と、
前記取得した相関関係のデータに基づいて、前記第2の波長の赤外線の検出出力に応じて前記第1の波長の赤外線の検出出力を補正する工程と
を有することを特徴とする温度補償方法。
A filter that transmits infrared light of a first wavelength of a detection target wavelength and blocks infrared light of a second wavelength different from the first wavelength; and an uncooled optical system Detecting infrared rays of the first wavelength and infrared rays of the second wavelength with an infrared detecting element cooled to a predetermined temperature via,
Photographing a cooled low-temperature plate through the optical system and acquiring in advance correlation data between the infrared rays of the first wavelength and the infrared rays of the second wavelength; and
And correcting the infrared detection output of the first wavelength according to the infrared detection output of the second wavelength based on the acquired correlation data.
JP2013001382A 2013-01-08 2013-01-08 Infrared sensor and temperature compensation method Expired - Fee Related JP6036308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001382A JP6036308B2 (en) 2013-01-08 2013-01-08 Infrared sensor and temperature compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001382A JP6036308B2 (en) 2013-01-08 2013-01-08 Infrared sensor and temperature compensation method

Publications (2)

Publication Number Publication Date
JP2014134402A JP2014134402A (en) 2014-07-24
JP6036308B2 true JP6036308B2 (en) 2016-11-30

Family

ID=51412803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001382A Expired - Fee Related JP6036308B2 (en) 2013-01-08 2013-01-08 Infrared sensor and temperature compensation method

Country Status (1)

Country Link
JP (1) JP6036308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137167B1 (en) * 2012-10-06 2020-07-24 바브코 게엠베하 Method for producing a piston for a reciprocating piston working machine, piston produced according to the method and reciprocating piston working machine with at least one piston produced according to the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030788B1 (en) * 2014-12-22 2017-02-10 Office Nat D'etudes Et De Rech Aerospatiales (Onera) INFRARED GRAND FIELD IMAGING SYSTEM
KR102526997B1 (en) * 2015-07-31 2023-05-02 서울바이오시스 주식회사 Light detecting device and electric appartus using the same
KR20200102728A (en) * 2019-02-22 2020-09-01 엘지전자 주식회사 Calibration Equipment of Infrared Thermal Image Sensor with Multi-Window for Improving Accuracy of Calibration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375820U (en) * 1986-11-04 1988-05-20
JPH02179426A (en) * 1988-12-28 1990-07-12 Nippon Ceramic Co Ltd Flame sensor
JPH03179977A (en) * 1989-12-08 1991-08-05 Mitsubishi Electric Corp Image pickup device
JP2550882B2 (en) * 1993-09-28 1996-11-06 日本電気株式会社 Infrared imaging device
JPH1172389A (en) * 1997-08-28 1999-03-16 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring radiation-temperature with temperature compensation
JPH11297973A (en) * 1998-04-07 1999-10-29 Mitsubishi Electric Corp Infrared imaging device
JP2001264179A (en) * 2000-03-21 2001-09-26 Toshiba Corp Infrared filter and imaging device using the same
JP5109079B2 (en) * 2007-05-24 2012-12-26 ニッタン株式会社 Flame detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137167B1 (en) * 2012-10-06 2020-07-24 바브코 게엠베하 Method for producing a piston for a reciprocating piston working machine, piston produced according to the method and reciprocating piston working machine with at least one piston produced according to the method

Also Published As

Publication number Publication date
JP2014134402A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US20230003640A1 (en) Gas leak emission quantification with a gas cloud imager
US11415460B2 (en) Fabry-Perot Fourier transform spectrometer
US20210250525A1 (en) Mobile gas and chemical imaging camera
US9880094B2 (en) Infrared detection and imaging device with no moving parts
JP5572916B2 (en) Optical system and infrared imaging system
JP6036308B2 (en) Infrared sensor and temperature compensation method
KR20170131526A (en) An imaging device having an image distribution unit for generating a spatially coded image
US10319764B2 (en) Image sensor and electronic device
US10788372B2 (en) Infrared imaging detector
JP2011179828A (en) Multi-wavelength infrared array sensor
JP2016105113A (en) Infrared detection device
Spooren et al. RGB-NIR active gated imaging
EP3874245A1 (en) A method and system for detection of electromagnetic radiation
AU2017219008A1 (en) Fabry-Perot Fourier transform spectrometer
Dittrich et al. Extended characterization of multispectral resolving filter-on-chip snapshot-mosaic CMOS cameras
JP6750672B2 (en) Gas observation method
Karni et al. Spatial and spectral filtering on focal plane arrays
JP5900085B2 (en) Infrared detector
Naranjo et al. Experimental demonstration of multi-spectral imaging of vegetation with a diffractive plenoptic camera
US20240094118A1 (en) Gas leak emission quantification with a gas cloud imager
WO2017137972A1 (en) Infrared detection and imaging device with no moving parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees