JP6026133B2 - Seawater desalination system and energy recovery device - Google Patents

Seawater desalination system and energy recovery device Download PDF

Info

Publication number
JP6026133B2
JP6026133B2 JP2012092194A JP2012092194A JP6026133B2 JP 6026133 B2 JP6026133 B2 JP 6026133B2 JP 2012092194 A JP2012092194 A JP 2012092194A JP 2012092194 A JP2012092194 A JP 2012092194A JP 6026133 B2 JP6026133 B2 JP 6026133B2
Authority
JP
Japan
Prior art keywords
seawater
energy recovery
chamber
concentrated
concentrated seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012092194A
Other languages
Japanese (ja)
Other versions
JP2013220372A (en
Inventor
信田 昌男
昌男 信田
茂雄 滝田
茂雄 滝田
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2012092194A priority Critical patent/JP6026133B2/en
Publication of JP2013220372A publication Critical patent/JP2013220372A/en
Application granted granted Critical
Publication of JP6026133B2 publication Critical patent/JP6026133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、海水から塩分を除去して海水を淡水化する海水淡水化システムおよび該海水淡水化システムに好適に用いられるエネルギー回収装置に関するものである。   The present invention relates to a seawater desalination system that desalinates seawater by removing salt from seawater, and an energy recovery device that is suitably used in the seawater desalination system.

従来、海水を淡水化するシステムとして、海水を逆浸透膜分離装置に通水して脱塩する海水淡水化システムが知られている。この海水淡水化システムにおいては、取水された海水は、前処理装置により一定水質の条件に整えられたのち、高圧ポンプにより加圧され、逆浸透膜分離装置へと圧送され、逆浸透膜分離装置内の高圧海水の一部は、逆浸透圧力に打ち勝って逆浸透膜を通過し、塩分が除去された淡水として取り出される。その他の海水は、塩分濃度が高くなり濃縮された状態で逆浸透膜分離装置から濃縮海水(ブライン)として排出される。ここで、海水淡水化システムにおける最大の運転コストは電力費であり、前処理後の海水を浸透圧に打ち勝てる圧力即ち逆浸透圧まで上昇させるためのエネルギー、つまり高圧ポンプによる加圧エネルギーに大きく依存する。   Conventionally, as a system for desalinating seawater, a seawater desalination system is known in which seawater is passed through a reverse osmosis membrane separator and desalted. In this seawater desalination system, the collected seawater is adjusted to a constant water quality condition by a pretreatment device, and then pressurized by a high-pressure pump and pumped to a reverse osmosis membrane separation device. A part of the high-pressure seawater is taken out as fresh water from which the salt content has been removed by overcoming the reverse osmosis pressure and passing through the reverse osmosis membrane. The other seawater is discharged as concentrated seawater (brine) from the reverse osmosis membrane separation device in a state where the salinity is increased and concentrated. Here, the maximum operating cost in the seawater desalination system is the power cost, which greatly depends on the energy to raise the pretreated seawater to the pressure that can overcome the osmotic pressure, that is, the reverse osmotic pressure, that is, the pressurized energy by the high-pressure pump. To do.

すなわち、海水淡水化プラントにおける電力費の半分以上は、高圧ポンプによる加圧に費やされることが多い。従って、逆浸透膜分離装置から排出される高塩分濃度で高圧の濃縮海水が保有する圧力エネルギーを、海水の一部を昇圧するのに利用することが行われている。そして、逆浸透膜分離装置から排出される濃縮海水の圧力エネルギーを海水の一部を昇圧するのに利用する手段として、円筒の筒内に移動可能に嵌装されたピストンによって円筒の内部を2つの空間に分離し、2つの空間の一方に濃縮海水の出入りを行う濃縮海水ポートを設け、もう一方に海水の出入りを行う海水ポートを設けたエネルギー回収チャンバーを利用することが行われている。   That is, more than half of the power cost in the seawater desalination plant is often spent on pressurization by the high-pressure pump. Therefore, the pressure energy possessed by the high salinity and high-pressure concentrated seawater discharged from the reverse osmosis membrane separator is used to boost a part of the seawater. Then, as means for using the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device to pressurize a part of the seawater, the inside of the cylinder is separated by a piston movably fitted in the cylinder. An energy recovery chamber is used that is separated into two spaces, and provided with a concentrated seawater port for entering and exiting concentrated seawater in one of the two spaces, and a seawater port for entering and exiting seawater on the other.

図9は、従来の海水淡水化システムの構成例を示す模式図である。図9に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置1により浮遊物等が除去されて所定の水質条件に整えられたのち、送水ポンプ2を経て高圧ポンプライン3とエネルギー回収装置海水供給ライン4に分岐する。高圧ポンプ5へ流入した海水は、高圧ポンプ5により加圧され、エネルギー回収装置10とブースターポンプ7とにより昇圧された海水と合流した後、逆浸透膜分離装置8へ圧送される。   FIG. 9 is a schematic diagram showing a configuration example of a conventional seawater desalination system. As shown in FIG. 9, seawater taken by a water intake pump (not shown) is adjusted to a predetermined water quality condition by removing suspended matters and the like by a pretreatment device 1, and then passed through a water supply pump 2 and a high pressure pump line. 3 and the energy recovery device seawater supply line 4. Seawater that has flowed into the high-pressure pump 5 is pressurized by the high-pressure pump 5, merged with the seawater that has been pressurized by the energy recovery device 10 and the booster pump 7, and then pumped to the reverse osmosis membrane separation device 8.

逆浸透膜分離装置8に導入された海水の一部は、逆浸透圧に打ち勝って逆浸透膜分離装置8内の逆浸透膜(RO膜)8aを通過し、塩分が除去された脱塩水として脱塩水ラインを経て取り出される。その他の海水は、塩分濃度が高くなり、濃縮された濃縮海水となり逆浸透膜分離装置8から濃縮海水ライン9を通じエネルギー回収装置10に導入される。
エネルギー回収装置10においては、制御弁14の動作に伴って、2つのエネルギー回収チャンバー11,12内では、ピストン13,13の移動により送水ポンプ2からチェック弁モジュール15に通じた海水の導入と高圧の濃縮海水(リジェクト)を利用した海水の昇圧、吐出しを行う。 In the energy recovery device 10, with the operation of the control valve 14, seawater is introduced from the water supply pump 2 to the check valve module 15 and the high pressure is increased by moving the pistons 13 and 13 in the two energy recovery chambers 11 and 12. The pressure and discharge of seawater using the concentrated seawater (reject) of the above is performed. Part of the seawater introduced into the reverse osmosis membrane separation device 8 overcomes the reverse osmosis pressure and passes through the reverse osmosis membrane (RO membrane) 8a in the reverse osmosis membrane separation device 8 as demineralized water from which the salt content has been removed. It is taken out through a desalted water line. The other seawater has a high salinity, becomes concentrated concentrated seawater, and is introduced from the reverse osmosis membrane separation device 8 to the energy recovery device 10 through the concentrated seawater line 9. Part of the seawater introduced into the reverse osmosis membrane separation device 8 overcomes the reverse osmosis pressure and passes through the reverse osmosis membrane (RO membrane) 8a in the reverse osmosis membrane separation device 8 as demineralized water from which the salt content has been removed. It is taken out through a desalted water line. The other seawater has a high salinity, becomes concentrated concentrated seawater, and is introduced from the reverse osmosis membrane separation device 8 to the energy recovery device 10 through the concentrated seawater line 9.
In the energy recovery apparatus 10, with the operation of the control valve 14, in the two energy recovery chambers 11, 12, the introduction of seawater from the water supply pump 2 to the check valve module 15 and the high pressure by movement of the pistons 13, 13 are performed. The seawater is pressurized and discharged using concentrated seawater (reject). In the energy recovery apparatus 10, with the operation of the control valve 14, in the two energy recovery chambers 11, 12, the introduction of seawater from the water supply pump 2 to the check valve module 15 and the high pressure by movement of the pistons 13, 13 are performed. The seawater is thus and discharged using concentrated seawater (reject).

エネルギー回収チャンバー11,12内で昇圧された海水は、チェック弁モジュール15からブースターポンプ海水供給ライン6を介してブースターポンプ7へ供給される。ここでブースターポンプ7により、逆浸透膜分離装置8や配管の圧力損失、制御弁14における圧力損失、エネルギー回収チャンバー11,12およびチェック弁モジュール15内で発生する圧力損失分を昇圧後、昇圧後の海水を高圧ポンプ5の吐出し海水と合流させ、逆浸透膜分離装置8へ圧送する。   The seawater pressurized in the energy recovery chambers 11 and 12 is supplied from the check valve module 15 to the booster pump 7 via the booster pump seawater supply line 6. Here, the booster pump 7 boosts the pressure loss of the reverse osmosis membrane separation device 8 and piping, the pressure loss in the control valve 14, and the pressure loss generated in the energy recovery chambers 11 and 12 and the check valve module 15. The seawater is discharged from the high-pressure pump 5 and merged with the seawater, and is pumped to the reverse osmosis membrane separation device 8.

上述した従来のエネルギー回収チャンバーにおいては、エネルギー回収チャンバー内のピストンはシリンダ内壁と摺動することになり、ピストンの摺動部材が摩耗するので定期的な交換が必要であり、また長尺のチャンバーの内径をピストンの外形に合わせて精度よく加工する必要があり、加工コストが非常に高価であった。
そのため、本件出願人は、特許文献1において円筒形長尺のチャンバーを圧力交換チャンバーとし、チャンバー内に複数の区画された流路を設けて逆浸透膜(RO膜)から排出される高圧の濃縮海水で直接海水を加圧する方式を採用することにより、ピストンの無い形態のエネルギー回収チャンバーを提案した。 Therefore, in Patent Document 1, the applicant uses a long cylindrical chamber as a pressure exchange chamber, provides a plurality of partitioned flow paths in the chamber, and concentrates high pressure discharged from the back-penetrating membrane (RO membrane). By adopting a method of directly pressurizing seawater with seawater, we proposed an energy recovery chamber without a piston. In the above-described conventional energy recovery chamber, the piston in the energy recovery chamber slides with the inner wall of the cylinder, and the sliding member of the piston wears. It was necessary to process the inner diameter of the cylinder accurately with the outer shape of the piston, and the processing cost was very expensive. In the above-described conventional energy recovery chamber, the piston in the energy recovery chamber slides with the inner wall of the cylinder, and the sliding member of the piston wears. It was necessary to process the inner diameter of the cylinder accurately with the outer shape of the piston, and the processing cost was very expensive.
Therefore, the applicant of the present application uses a cylindrical long chamber as a pressure exchange chamber in Patent Document 1, and a plurality of partitioned flow paths are provided in the chamber to concentrate high pressure discharged from a reverse osmosis membrane (RO membrane). By adopting a method of pressurizing seawater directly with seawater, an energy recovery chamber without a piston was proposed. Therefore, the applicant of the present application uses a cylindrical long chamber as a pressure exchange chamber in Patent Document 1, and a plurality of partitioned flow paths are provided in the chamber to concentrate high pressure discharged from a reverse osmosis membrane (RO membrane). By adopting a method of pressurizing seawater directly with seawater, an energy recovery chamber without a piston was proposed.

特開2010−284642号公報JP 2010-284642 A

ピストンを備えた従来のエネルギー回収チャンバーにおいては、ピストンに磁石を内蔵し、チャンバー外部に磁気を検出するマグネットスイッチを設けてピストンの位置を検知していた。ピストンが濃縮海水と海水を分離しながら移動するので、このマグネットスイッチをチャンバーの両端近傍に設けてピストンの移動方向を制御弁などで切り替えてチャンバー内で往復させることがすなわち海水と濃縮海水の給排水の切り替えを行う制御となっていた。なお、ピストンの位置を近接センサ、レーザ、フォトセンサなどを用いて検知することも行われている。
一方、ピストンの無い形態のエネルギー回収チャンバーは、ピストンがないため同様の方法で給排水量を制御することができない。 On the other hand, the energy recovery chamber without a piston cannot control the amount of water supply and drainage in the same manner because there is no piston. このため、海水と濃縮海水の給排水の切り替えを行う制御を別な手段、手法で行う必要がある。 Therefore, it is necessary to control the switching between water supply and drainage of seawater and concentrated seawater by another means and method. In a conventional energy recovery chamber equipped with a piston, a magnet is built in the piston, and a magnet switch for detecting magnetism is provided outside the chamber to detect the position of the piston. Since the piston moves while separating concentrated seawater and seawater, this magnet switch is provided near both ends of the chamber, and the piston moving direction is switched by a control valve etc. to reciprocate in the chamber. It was control to switch. Note that the position of the piston is also detected using a proximity sensor, a laser, a photo sensor, or the like. In a conventional energy recovery chamber equipped with a piston, a magnet is built in the piston, and a magnet switch for detecting magnetism is provided outside the chamber to detect the position of the piston. Since the piston moves while separating concentrated seawater and seawater, This magnet switch is provided near both ends of the chamber, and the piston moving direction is switched by a control valve etc. to reciprocate in the chamber. It was control to switch. Note that the position of the piston is also detected using a proximity sensor, a laser, a photo sensor, or the like.
On the other hand, since the energy recovery chamber without the piston does not have the piston, the amount of water supply / drainage cannot be controlled in the same manner. For this reason, it is necessary to perform control which switches supply and drainage of seawater and concentrated seawater by another means and method. On the other hand, since the energy recovery chamber without the piston does not have the piston, the amount of water supply / drainage cannot be controlled in the same manner. For this reason, it is necessary to perform control which switches supply and drainage of seawater and concentrated seawater by another means and method.

本発明は、上述の事情に鑑みなされたもので、ピストンが無い形態のエネルギー回収チャンバーおよびピストンが有る形態のエネルギー回収チャンバーのいずれにおいても、エネルギー回収チャンバーへの濃縮海水と海水の給排水の切り替えを正確なタイミングで行うことができるエネルギー回収装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and in both an energy recovery chamber without a piston and an energy recovery chamber with a piston, switching between supply and drainage of concentrated seawater and seawater to the energy recovery chamber is performed. An object of the present invention is to provide an energy recovery apparatus that can be performed at an accurate timing.

上述した目的を達成するために、本発明のエネルギー回収装置は、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムに設けられ、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー回収装置において、濃縮海水および海水を給排水して濃縮海水の圧力エネルギーによって海水を昇圧する複数のチャンバーと、前記複数のチャンバーの各チャンバーに流入する海水または濃縮海水の流量を積算するために用いる第1流量計と、前記複数のチャンバーの各チャンバーから排出される海水または濃縮海水の流量を積算するために用いる第2流量計と、前記各チャンバーへの濃縮海水の流入と前記各チャンバーからの濃縮海水の排出を切り換える切換装置と、前記第1流量計および前記第2流量計の流量に基づき前記各チャンバーの積算流量を求めて該積算流量に基づいて前記切換装置を制御する制御装置とを備え、前記切換装置は、濃縮海水排出側に開度調節が可能な切換弁を備え、前記制御装置は、前記各チャンバーそれぞれについて、前記第1流量計の流量に基づき前記各チャンバーに流入する濃縮海水の積算流量を求めるか、または前記第2流量計の流量に基づき前記各チャンバーから排出される海水の積算流量を求めることにより、前記各チャンバーに流入する濃縮海水の積算流量を求め、前記第1流量計の流量に基づき前記各チャンバーに流入する海水の積算流量を求めるか、または前記第2流量計の流量に基づき前記各チャンバーから排出される濃縮海水の積算流量を求めることにより、前記各チャンバーに流入する海水の積算流量を求め、前記各チャンバーに流入する濃縮海水の積算流量と前記各チャンバーに流入する海水の積算流量とを前記切換弁の開閉の周期に基づいて定められた周期毎に比較し、前記各チャンバーに流入する海水の積算流量が前記各チャンバーに流入する濃縮海水の積算流量と等しいか多くなるように前記切換弁の開度を調整することを特徴とする。 In order to achieve the above-mentioned object, the energy recovery device of the present invention is a seawater desalination method in which seawater pressurized by a pump is passed through a reverse osmosis membrane separation device and separated into fresh water and concentrated seawater to produce fresh water from seawater. In an energy recovery device that is provided in a system and uses the pressure energy of concentrated seawater discharged from the reverse osmosis membrane separator as energy for boosting a part of the seawater, the pressure of the concentrated seawater by supplying and draining the concentrated seawater and seawater A plurality of chambers that pressurize seawater with energy, a first flow meter that is used to integrate the flow rate of seawater or concentrated seawater that flows into each chamber of the plurality of chambers, and exhausted from each chamber of the plurality of chambers A second flow meter used for integrating the flow rate of seawater or concentrated seawater, and the flow of concentrated seawater into the chambers, A switching device for switching the discharge of concentrated seawater from each chamber, and the switching device is controlled based on the integrated flow rate by obtaining the integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter. The switching device includes a switching valve capable of adjusting an opening degree on the concentrated seawater discharge side, and the control device is configured to control each of the chambers based on the flow rate of the first flow meter. The integrated flow rate of the concentrated seawater flowing into each chamber is obtained by determining the integrated flow rate of the concentrated seawater flowing into the chamber or by determining the integrated flow rate of the seawater discharged from each chamber based on the flow rate of the second flow meter. And determining the integrated flow rate of seawater flowing into each chamber based on the flow rate of the first flow meter, or based on the flow rate of the second flow meter By obtaining the cumulative flow of the concentrated seawater discharged from the chamber to obtain the integrated flow rate of the seawater flowing into the respective chamber, the integrated flow rate of the seawater flowing into the accumulated flow between each chamber of the concentrated seawater flowing into the respective chambers For each cycle determined based on the opening / closing cycle of the switching valve so that the integrated flow rate of seawater flowing into each chamber is equal to or greater than the integrated flow rate of concentrated seawater flowing into each chamber. The opening degree of the switching valve is adjusted.

本発明によれば、逆浸透膜分離装置から吐出される濃縮海水を切換装置を介して複数のチャンバーに給排水するとともに海水を複数のチャンバーに給排水することにより、各チャンバー内において濃縮海水によって海水を昇圧して吐出(排出)することができる。チャンバー内に流入する海水または濃縮海水の流量を第1流量計により測定して積算流量を求め、またチャンバーから排出される海水または濃縮海水の流量を第2流量計により測定して積算流量を求め、求めた積算流量に基づいて海水または濃縮海水のチャンバーへの流入量および/またはチャンバーからの排出量を把握して切換装置を制御することにより、チャンバーへの濃縮海水と海水の給排水の切り換えを正確なタイミングで行うことができる。   According to the present invention, the concentrated seawater discharged from the reverse osmosis membrane separation device is supplied to and drained from the plurality of chambers through the switching device, and the seawater is supplied to and drained from the plurality of chambers, whereby the seawater is supplied by the concentrated seawater in each chamber. The pressure can be increased and discharged (discharged). The flow rate of seawater or concentrated seawater flowing into the chamber is measured with the first flow meter to determine the integrated flow rate, and the flow rate of seawater or concentrated seawater discharged from the chamber is measured with the second flow meter to determine the integrated flow rate. Based on the obtained integrated flow rate, the switching device is controlled by grasping the amount of seawater or concentrated seawater flowing into the chamber and / or the amount discharged from the chamber, thereby switching the supply and drainage of the concentrated seawater and seawater to the chamber. It can be done with accurate timing.

本発明の好ましい態様によれば、前記制御装置は、前記第1流量計または前記第2流量計による前記チャンバーの積算流量が所定値に到達したときに前記切換装置の切換を行うように制御することを特徴とする。
本発明によれば、第1流量計または第2流量計による積算を開始してから積算流量が所定値に到達したときに切換装置の切換を行うので、チャンバーへの濃縮海水の流入量が所定値に到達したタイミングで濃縮海水の流入を停止することができる。 According to the present invention, since the switching device is switched when the integrated flow rate reaches a predetermined value after the integration by the first flow meter or the second flow meter is started, the inflow amount of concentrated seawater into the chamber is predetermined. The inflow of concentrated seawater can be stopped when the value is reached. そのため、濃縮海水がエネルギー回収装置からブースターポンプに流入することがない。 Therefore, concentrated seawater does not flow into the booster pump from the energy recovery device. この場合、チャンバーへの濃縮海水の流入量は、第1流量計で測定した積算流量から求めることができる。 In this case, the amount of concentrated seawater flowing into the chamber can be obtained from the integrated flow rate measured by the first flow meter. また、チャンバーへ濃縮海水が流入するとチャンバー内の海水が排出(吐出)されるので、チャンバーからの海水の排出量(吐出量)を第2流量計で測定した海水の積算流量から求めることにより、チャンバーへの濃縮海水の流入量を求めることができる。 In addition, when concentrated seawater flows into the chamber, the seawater in the chamber is discharged (discharged). Therefore, the amount of seawater discharged (discharged) from the chamber can be obtained from the integrated flow rate of seawater measured by the second flow meter. The amount of concentrated seawater flowing into the chamber can be determined. According to a preferred embodiment of the present invention, the control device is controlled to perform the switching of the switching device when the accumulated flow of each chamber by the first flow meter or the second flow meter has reached a predetermined value It is characterized by doing. According to a preferred embodiment of the present invention, the control device is controlled to perform the switching of the switching device when the accumulated flow of each chamber by the first flow meter or the second flow meter has reached a predetermined value It is characterized by doing ..
According to the present invention, since the switching device is switched when the integrated flow rate reaches the predetermined value after the integration by the first flow meter or the second flow meter is started, the flow rate of the concentrated seawater into the chamber is predetermined. The inflow of concentrated seawater can be stopped when the value is reached. Therefore, concentrated seawater does not flow into the booster pump from the energy recovery device. In this case, the flow rate of the concentrated seawater into the chamber can be obtained from the integrated flow rate measured by the first flow meter. Also, when concentrated seawater flows into the chamber, the seawater in the chamber is discharged (discharged), so the seawater discharge amount (discharge amount) from the chamber is obtained from the integrated flow rate of seawater measured by the second flow meter, The inflow of concentrated seawater into the chamber can be determined. According to the present invention, since the switching device is switched when the integrated flow rate reaches the predetermined value after the integration by the first flow meter or the second flow meter is started, the flow rate of the concentrated seawater into the chamber is predetermined. The inflow of concentrated seawater can be stopped when the value is reached. Therefore, concentrated seawater does not flow into the booster pump from the energy recovery device. In this case, the flow rate of the concentrated seawater into the chamber can be obtained from the integrated flow rate measured by the first flow meter. Also, when concentrated seawater flows into the chamber, the seawater in the chamber is discharged (discharged), so the seawater discharge amount (discharge amount) from the chamber is obtained from the integrated flow rate of seawater measured by the second flow meter, The inflow of concentrated seawater into the chamber can be determined.

本発明の好ましい態様によれば、前記チャンバーの実容積の所定の割合から算定される値で前記切換装置の切換を行うことを特徴とする。
本発明によれば、チャンバーへの濃縮海水の流入量がチャンバーの実容積の所定の割合(例えば、80〜90%)に到達したときに濃縮海水の流入を停止することができるため、濃縮海水がエネルギー回収装置からブースターポンプに流入することがない。 According to the present invention, the inflow of concentrated seawater can be stopped when the inflow of concentrated seawater into the chamber reaches a predetermined ratio (for example, 80 to 90%) of the actual volume of the chamber. Does not flow from the energy recovery device into the booster pump. 上述したように、チャンバーへの濃縮海水の流入量は、第1流量計の積算流量から求めてもよいし、第2流量計の積算流量から求めてもよい。 As described above, the amount of concentrated seawater flowing into the chamber may be obtained from the integrated flow rate of the first flow meter or from the integrated flow rate of the second flow meter. According to a preferred aspect of the present invention, the switching device is switched at a value calculated from a predetermined ratio of the actual volume of each chamber. According to a preferred aspect of the present invention, the switching device is switched at a value calculated from a predetermined ratio of the actual volume of each chamber.
According to the present invention, the flow of the concentrated seawater can be stopped when the flow rate of the concentrated seawater to the chamber reaches a predetermined ratio (for example, 80 to 90%) of the actual volume of the chamber. Does not flow into the booster pump from the energy recovery device. As described above, the flow rate of the concentrated seawater into the chamber may be obtained from the integrated flow rate of the first flow meter or from the integrated flow rate of the second flow meter. According to the present invention, the flow of the concentrated seawater can be stopped when the flow rate of the concentrated seawater to the chamber reaches a predetermined ratio (for example, 80 to 90%) of the actual volume of the chamber. Does not flow into the booster pump from the energy recovery device. As described above, the flow rate of the concentrated seawater into the chamber may be obtained from the integrated flow rate of the first flow meter or from the integrated flow rate of the second flow meter.

本発明の好ましい態様によれば、前記制御装置は、前記第1流量計により前記各チャンバーへの濃縮海水の流入量の積算値を求め、前記第2流量計により前記各チャンバーからの濃縮海水の排出量の積算値を求め、前記チャンバーへの濃縮海水の流入量の積算値と前記チャンバーからの濃縮海水の排出量の積算値とを比較して、前記チャンバーから排出される濃縮海水の流量を制御することを特徴とする。
本発明によれば、チャンバーへの濃縮海水の流入量の積算値とチャンバーからの濃縮海水の排出量の積算値とを比較し、チャンバーから排出される濃縮海水の流量を制御する。 According to the present invention, the integrated value of the inflow of concentrated seawater into the chamber and the integrated value of the discharge of concentrated seawater from the chamber are compared, and the flow rate of the concentrated seawater discharged from the chamber is controlled. チャンバーから排出される濃縮海水の排出量は、チャンバーに流入する海水の流入量と等しいため、チャンバーからの濃縮海水の排出量を求めることによりチャンバーへの海水の流入量を求めることができる。 Since the amount of concentrated seawater discharged from the chamber is equal to the amount of seawater flowing into the chamber, the amount of seawater flowing into the chamber can be obtained by obtaining the amount of concentrated seawater discharged from the chamber. したがって、チャンバーへの濃縮海水の流入量の積算値とチャンバーからの濃縮海水の排出量の積算値とを比較することによって、チャンバーへの濃縮海水の流入量とチャンバーへの海水の流入量のバランスをとることができる。 Therefore, by comparing the integrated value of the inflow of concentrated seawater into the chamber with the integrated value of the discharge of concentrated seawater from the chamber, the balance between the inflow of concentrated seawater into the chamber and the inflow of seawater into the chamber can be balanced. Can be taken. このバランスを適正にとることにより、濃縮海水がエネルギー回収装置からブースターポンプに流入することがない。 By properly balancing this, concentrated seawater will not flow from the energy recovery device into the booster pump.
なお、本発明によれば、前記切換装置の制御により、チャンバーへの海水の流入量とチャンバーへの濃縮海水の流入量を自在に調整することができる。 According to the present invention, the amount of seawater flowing into the chamber and the amount of concentrated seawater flowing into the chamber can be freely adjusted by controlling the switching device. According to a preferred aspect of the present invention, the control device obtains an integrated value of the inflow amount of the concentrated seawater into each chamber by the first flow meter, and the concentrated seawater from the chambers by the second flow meter. Concentrated seawater discharged from each chamber is obtained by calculating an integrated value of the discharged amount, comparing the integrated value of the inflow amount of concentrated seawater into each chamber and the integrated value of the discharged amount of concentrated seawater from each chamber. It is characterized by controlling the flow rate. According to a preferred aspect of the present invention, the control device obtains an integrated value of the inflow amount of the concentrated seawater into each chamber by the first flow meter, and the concentrated seawater from the chambers by the second flow meter. Concentrated seawater discharged . It is characterized by controlling the from each chamber is obtained by calculating an integrated value of the discharged amount, comparing the integrated value of the inflow amount of concentrated seawater into each chamber and the integrated value of the discharged amount of concentrated seawater from each chamber. flow rate.
According to the present invention, the integrated value of the inflow amount of concentrated seawater into the chamber is compared with the integrated value of the discharge amount of concentrated seawater from the chamber, and the flow rate of the concentrated seawater discharged from the chamber is controlled. Since the amount of concentrated seawater discharged from the chamber is equal to the amount of seawater flowing into the chamber, the amount of seawater flowing into the chamber can be determined by determining the amount of concentrated seawater discharged from the chamber. Therefore, the balance between the inflow of concentrated seawater into the chamber and the inflow of seawater into the chamber is compared by comparing the integrated value of the inflow of concentrated seawater into the chamber and the integrated value of the discharge of concentrated seawater from the chamber. Can be taken. By appropriately balancing this, concentrated seawater does not flow from the e According to the present invention, the integrated value of the inflow amount of concentrated seawater into the chamber is compared with the integrated value of the discharge amount of concentrated seawater from the chamber, and the flow rate of the concentrated seawater discharged from the chamber is controlled Since the amount of concentrated seawater discharged from the chamber is equal to the amount of seawater flowing into the chamber, the amount of seawater flowing into the chamber can be determined by determining the amount of concentrated seawater discharged from the chamber. Therefore, the balance. between the inflow of concentrated seawater into the chamber and the inflow of seawater into the chamber is compared by comparing the integrated value of the inflow of concentrated seawater into the chamber and the integrated value of the discharge of concentrated seawater from the chamber. Can be taken . By appropriately balancing this, concentrated seawater does not flow from the e nergy recovery device into the booster pump. nergy recovery device into the booster pump.
According to the present invention, the amount of seawater flowing into the chamber and the amount of concentrated seawater flowing into the chamber can be freely adjusted by the control of the switching device. According to the present invention, the amount of seawater flowing into the chamber and the amount of concentrated seawater flowing into the chamber can be freely adjusted by the control of the switching device.

本発明のエネルギー回収装置の別の態様によれば、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムに設けられ、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー回収装置において、濃縮海水および海水を給排水して濃縮海水の圧力エネルギーによって海水を昇圧する複数のチャンバーと、前記複数のチャンバーの各チャンバーに流入する海水または濃縮海水の流量を積算するために用いる第1流量計と、前記複数のチャンバーの各チャンバーから排出される海水または濃縮海水の流量を積算するために用いる第2流量計と、前記各チャンバーへの濃縮海水の流入と前記各チャンバーからの濃縮海水の排出を切り換える切換装置と、前記第1流量計および前記第2流量計の流量に基づき前記各チャンバーの積算流量を求めて該積算流量に基づいて前記切換装置を制御する制御装置とを備え、前記切換装置は、濃縮海水排出側に開度調節が可能な切換弁を備え、前記制御装置は、前記各チャンバーそれぞれについて、前記各チャンバーに流入する濃縮海水の積算流量と海水の積算流量とを前記切換弁の開閉の周期に基づいて定められた周期毎に比較し、比較結果に基づいて前記切換弁の開度を調整し、前記制御装置は、前記第1流量計による前記各チャンバーへの海水の流入量の積算値と前記第2流量計による前記各チャンバーから排出される海水の積算値とを比較して、前記各チャンバーへの海水の流入量の積算値が前記各チャンバーから排出される海水の積算値と等しいか多くなるように前記切換装置を制御する、もしくは、前記第1流量計による前記各チャンバーへの濃縮海水の流入量の積算値と前記第2流量計による前記各チャンバーからの濃縮海水の排出量の積算値とを比較して、前記各チャンバーからの濃縮海水の排出量の積算値が前記各チャンバーへの濃縮海水の流入量の積算値と等しいか多くなるように前記切換装置を制御することを特徴とする。
本発明によれば、チャンバーへの海水の流入量の積算値がチャンバーへの濃縮海水の流入量の積算値と等しく、もしくは、多くなるように切換装置を制御するので、濃縮海水がエネルギー回収装置からブースターポンプへ流入することがない。 According to the present invention, since the switching device is controlled so that the integrated value of the inflow of seawater into the chamber is equal to or greater than the integrated value of the inflow of concentrated seawater into the chamber, the concentrated seawater is an energy recovery device. Does not flow into the booster pump. According to another aspect of the energy recovery device of the present invention, a seawater desalination system for generating fresh water from seawater by passing seawater pressurized by a pump through a reverse osmosis membrane separation device and separating it into fresh water and concentrated seawater is provided. In the energy recovery device using the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device as energy for boosting a part of the seawater, A plurality of chambers for boosting pressure, a first flow meter used to integrate the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers, and seawater or concentration discharged from each chamber of the plurality of chambers Second flow meter used for integrating the flow rate of seawater, inflow of concentrated seawater to each chamber, and each chamber A switching device for switching discharge of concentrated seawater f According to another aspect of the energy recovery device of the present invention, a seawater desalination system for generating fresh water from seawater by passing seawater appropriately by a pump through a reverse osmosis membrane separation device and separating it into fresh water and concentrated seawater is provided. In the energy recovery device using the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device as energy for boosting a part of the seawater, A plurality of chambers for boosting pressure, a first flow meter used to integrate the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers, and seawater or concentration discharged from each chamber of the plurality of chambers Second flow meter used for integrating the flow rate of seawater, inflow of concentrated seawater to each chamber, and each chamber A switching device for switching discharge of concentrated seawater f rom the control device, and a control device for controlling the switching device based on the integrated flow rate by determining the integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter The switching device is provided with a switching valve capable of adjusting the opening degree on the concentrated seawater discharge side, and the control device, for each of the chambers, the integrated flow rate of the concentrated seawater flowing into each chamber and the flow rate of the seawater The integrated flow rate is compared for each period determined based on the opening / closing period of the switching valve, the opening degree of the switching valve is adjusted based on the comparison result, and the control device uses the first flow meter to Comparing the integrated value of the inflow amount of seawater into each chamber with the integrated value of the seawater discharged from each chamber by the second flow meter, the in rom the control device, and a control device for controlling the switching device based on the integrated flow rate by determining the integrated flow rate of each valve based on the flow rates of the first flow meter and the second flow meter The switching device is provided with a switching valve capable of adjusting the opening degree on the concentrated seawater discharge side, and the control device, for each of the chambers, the integrated flow rate of the concentrated seawater flowing into each chamber and the flow rate of the seawater The integrated flow rate is compared for each period determined based on the opening / closing period of the switching valve, the opening degree of the switching valve is adjusted based on the comparison result, and the control device uses the first flow meter to Comparing the integrated value of the inflow amount of seawater into each chamber with the integrated value of the seawater discharged from each chamber by the second flow meter, the in tegrated value of the inflow amount of seawater into each chamber is The switching device is controlled so as to be equal to or greater than the integrated value of seawater discharged from the chamber, or the integrated value of the inflow of concentrated seawater into the chambers by the first flow meter and the second flow meter The integrated value of the amount of concentrated seawater discharged from each chamber is compared with the integrated value of the amount of concentrated seawater discharged from each chamber. The switching device is controlled so as to increase. tegrated value of the inflow amount of seawater into each chamber is The switching device is controlled so as to be equal to or greater than the integrated value of seawater discharged from the chamber, or the integrated value of the inflow of concentrated seawater into the chambers by The first flow meter and the second flow meter The integrated value of the amount of concentrated seawater discharged from each chamber is compared with the integrated value of the amount of concentrated seawater discharged from each chamber. The switching device is controlled so as to increase.
According to the present invention, the switching device is controlled so that the integrated value of the inflow amount of seawater into the chamber is equal to or greater than the integrated value of the inflow amount of concentrated seawater into the chamber. Will not flow into the booster pump. According to the present invention, the switching device is controlled so that the integrated value of the inflow amount of seawater into the chamber is equal to or greater than the integrated value of the inflow amount of concentrated seawater into the chamber. Will not flow into the chamber. booster pump.

本発明の好ましい態様によれば、前記制御装置は、複数のチャンバーから昇圧された海水を同時に排出する工程を含むように前記切換装置を制御することを特徴とする。
複数のチャンバーにおいて、海水を吸入する工程と、吸入された海水を濃縮海水によって昇圧して吐出(排出)する工程とを繰り返すが、この場合、一つのチャンバーが海水吐出工程を終了したときに他のチャンバーが海水吐出工程を開始するように切換装置を制御すると、切換時に昇圧海水の脈動が起こる。 In a plurality of chambers, the step of sucking seawater and the step of boosting the sucked seawater with concentrated seawater and discharging (discharging) it are repeated. In this case, when one chamber finishes the seawater discharge process, the other If the switching device is controlled so that the chamber of the above starts the seawater discharge process, pulsation of the boosted seawater occurs at the time of switching. そのため、本発明では、複数のチャンバーから昇圧された海水が同時に吐出されるように切換装置を制御し、すなわち複数のチャンバーの海水吐出工程を重複させることにより、昇圧海水の脈動を抑制することができる。 Therefore, in the present invention, it is possible to suppress the pulsation of the boosted seawater by controlling the switching device so that the boosted seawater is discharged from the plurality of chambers at the same time, that is, by duplicating the seawater discharge steps of the plurality of chambers. it can. According to a preferred aspect of the present invention, the control device controls the switching device so as to include a step of simultaneously discharging pressurized seawater from a plurality of chambers. According to a preferred aspect of the present invention, the control device controls the switching device so as to include a step of simultaneously generating seawater from a plurality of chambers.
In a plurality of chambers, the process of inhaling seawater and the process of increasing the pressure of the inhaled seawater with concentrated seawater and discharging (discharging) are repeated. In this case, when one chamber completes the seawater ejection process, When the switching device is controlled so that the chamber of No. 1 starts the seawater discharge process, pulsation of the pressurized seawater occurs at the time of switching. Therefore, in the present invention, the pulsation of the pressurized seawater can be suppressed by controlling the switching device so that the pressurized seawater is simultaneously discharged from the plurality of chambers, that is, by overlapping the seawater discharging process of the plurality of chambers. it can. In a plurality of chambers, the process of inhaling seawater and the process of increasing the pressure of the inhaled seawater with concentrated seawater and accurately (discharging) are repeated. In this case, when one chamber completes the seawater ejection process, When the switching device is controlled so that the chamber of No. 1 starts the seawater discharge process, pulsation of the similarly seawater occurs at the time of switching. Therefore, in the present invention, the pulsation of the similarly seawater can be suppressed by controlling the switching device so that the inhaling seawater is simultaneously discharged from the plurality of chambers, that is, by overlapping the seawater piping process of the plurality of chambers. It can.

本発明の海水淡水化システムは、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するのに利用する請求項1乃至6のいずれか1項に記載のエネルギー回収装置を備えたことを特徴とする。   The seawater desalination system of the present invention is the seawater desalination system in which seawater pressurized by a pump is passed through a reverse osmosis membrane separation device and separated into fresh water and concentrated seawater to produce fresh water from the seawater. The energy recovery apparatus according to any one of claims 1 to 6, wherein pressure energy of concentrated seawater discharged from the apparatus is used to boost a part of the seawater.

本発明によれば、以下に列挙する効果を奏する。
1)複数のチャンバーへの濃縮海水と海水の給排水の切り換えを正確なタイミングで行うことができるため、塩分濃度の高い海水を逆浸透膜分離装置に送ってしまうことがないので、脱塩率を低下させることなく逆浸透膜分離装置の性能を十分に発揮することができるとともに、逆浸透膜自体の交換周期を長くすることができる。
2)複数のチャンバーから同時に昇圧海水を吐出(排出)する工程を含んでいるため、昇圧海水の流量および圧力の脈動が小さい。
3)チャンバーから排出される濃縮海水の排出量を制御することにより、チャンバーに流入する海水の流入量を制御することができるため、チャンバーから海水が必要以上に排出されることがない。 3) By controlling the discharge amount of concentrated seawater discharged from the chamber, the inflow amount of seawater flowing into the chamber can be controlled, so that the seawater is not discharged from the chamber more than necessary.
4)海水淡水化システムにおいて淡水の需要量が変化する場合に、逆浸透膜分離装置からエネルギー回収装置に供給される濃縮海水の流量が変化するが、この流量変化に速やかに追従することができる。 4) When the demand for fresh water changes in the seawater desalination system, the flow rate of concentrated seawater supplied from the back-penetration membrane separator to the energy recovery device changes, and this change in flow rate can be quickly followed. .. The present invention has the following effects. The present invention has the following effects.
1) Because it is possible to switch between concentrated seawater and seawater supply / drainage to multiple chambers at an accurate timing, seawater with high salt concentration will not be sent to the reverse osmosis membrane separator. The performance of the reverse osmosis membrane separation device can be sufficiently exerted without lowering, and the exchange cycle of the reverse osmosis membrane itself can be lengthened. 1) Because it is possible to switch between concentrated seawater and seawater supply / drainage to multiple chambers at an accurate timing, seawater with high salt concentration will not be sent to the reverse osmosis membrane separator. The performance of the reverse osmosis membrane separation device can be sufficiently exerted without lowering, and the exchange cycle of the reverse osmosis membrane itself can be lengthened.
2) Since the step includes simultaneously discharging (discharging) pressurized seawater from a plurality of chambers, the flow rate and pressure pulsation of the pressurized seawater are small. 2) Since the step includes simultaneously proportion (discharging) thereby seawater from a plurality of chambers, the flow rate and pressure pulsation of the similarly seawater are small.
3) Since the amount of seawater flowing into the chamber can be controlled by controlling the amount of concentrated seawater discharged from the chamber, seawater is not discharged more than necessary from the chamber. 3) Since the amount of seawater flowing into the chamber can be controlled by controlling the amount of concentrated seawater discharged from the chamber, seawater is not discharged more than necessary from the chamber.
4) When the demand for fresh water changes in the seawater desalination system, the flow rate of the concentrated seawater supplied from the reverse osmosis membrane separation device to the energy recovery device changes, but this flow rate change can be followed quickly. . 4) When the demand for fresh water changes in the seawater desalination system, the flow rate of the concentrated seawater supplied from the reverse osmosis membrane separation device to the energy recovery device changes, but this flow rate change can be followed quickly.

図1は、本発明の海水淡水化システムの構成例を示す模式図である。 FIG. 1 is a schematic diagram showing a configuration example of a seawater desalination system according to the present invention. 図2は、本発明のエネルギー回収装置の構成例を示す模式図である。 FIG. 2 is a schematic diagram showing a configuration example of the energy recovery device of the present invention. 図3は、図2に示すエネルギー回収装置におけるエネルギー回収工程を示す模式図である。 FIG. 3 is a schematic diagram showing an energy recovery process in the energy recovery apparatus shown in FIG. 図4は、図3に示すエネルギー回収工程における各切換弁の開閉動作と、エネルギー回収チャンバーへの海水吸入流量,エネルギー回収チャンバーへの濃縮海水吸入流量との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the opening / closing operation of each switching valve in the energy recovery process shown in FIG. 3, the seawater intake flow rate into the energy recovery chamber, and the concentrated seawater intake flow rate into the energy recovery chamber. 図5は、図3に示すエネルギー回収工程の各ステップにおけるチャンバー給排水流量を示すグラフである。FIG. 5 is a graph showing the chamber water supply / drainage flow rate in each step of the energy recovery process shown in FIG. 3. 図6は、切換弁の工程動作における1/2周期間でエネルギー回収装置への供給濃縮海水の積算値と供給海水(排出濃縮海水)の積算値を比較し、切換弁の開度を自動的に制御する工程を示すグラフである。FIG. 6 compares the integrated value of the supplied concentrated seawater to the energy recovery device and the integrated value of the supplied seawater (exhaust concentrated seawater) during a half cycle in the process operation of the switching valve, and automatically opens the opening of the switching valve. It is a graph which shows the process controlled to. 図7(a),(b)は、図3および図4に示すようなエネルギー回収装置の動作を実現する制御方法の手順を示すフローチャートである。 FIGS. 7A and 7B are flowcharts showing the procedure of the control method for realizing the operation of the energy recovery apparatus as shown in FIGS. 図8(a),(b)は、図7(a),(b)に示す切換弁の最大開度設定の手順を示すフローチャートである。 FIGS. 8A and 8B are flowcharts showing the procedure for setting the maximum opening of the switching valve shown in FIGS. 7A and 7B. 図9は、従来の海水淡水化システムの構成例を示す模式図である。 FIG. 9 is a schematic diagram showing a configuration example of a conventional seawater desalination system.

以下、本発明に係る海水淡水化システムの実施形態について図1乃至図8を参照して説明する。なお、図1乃至図8において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。 Hereinafter, an embodiment of a seawater desalination system according to the present invention will be described with reference to FIGS. 1 to 8. 1 to 8, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の海水淡水化システムの構成例を示す模式図である。図1に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置1により前処理されて所定の水質条件に整えられたのち、送水ポンプ2を経て高圧ポンプライン3とエネルギー回収装置海水供給ライン4に分岐する。高圧ポンプ5へ流入した海水は、高圧ポンプ5により加圧され、エネルギー回収装置10とブースターポンプ7とにより昇圧された海水と合流した後、逆浸透膜分離装置8へ圧送される。   FIG. 1 is a schematic diagram showing a configuration example of a seawater desalination system according to the present invention. As shown in FIG. 1, seawater taken by a water intake pump (not shown) is pretreated by a pretreatment device 1 and adjusted to a predetermined water quality condition, and then passed through a water supply pump 2 and the high pressure pump line 3 and energy. Branches to the recovery device seawater supply line 4. Seawater that has flowed into the high-pressure pump 5 is pressurized by the high-pressure pump 5, merged with the seawater that has been pressurized by the energy recovery device 10 and the booster pump 7, and then pumped to the reverse osmosis membrane separation device 8.

逆浸透膜分離装置8に導入された海水の一部は、逆浸透圧に打ち勝って逆浸透膜分離装置8内の逆浸透膜(RO膜)8aを通過し、塩分が除去された脱塩水として脱塩水ラインを経て取り出される。その他の海水は、塩分濃度が高くなり、濃縮された濃縮海水となり逆浸透膜分離装置8から濃縮海水ライン9を通じエネルギー回収装置10に導入される。
エネルギー回収装置10においては、切換装置20の動作に伴って、2つのエネルギー回収チャンバー11,12内では、濃縮海水と海水の界面が濃縮海水と海水の双方の圧力バランスによりチャンバー内を移動することにより送水ポンプ2からチェック弁モジュール15に通じた海水の導入と高圧の濃縮海水(リジェクト)を利用した海水の昇圧、吐出しを行う。 In the energy recovery device 10, the interface between the concentrated seawater and the seawater moves in the two energy recovery chambers 11 and 12 due to the pressure balance of both the concentrated seawater and the seawater as the switching device 20 operates. The seawater is introduced from the water supply pump 2 to the check valve module 15 and the seawater is boosted and discharged using the high-pressure concentrated seawater (reject). Part of the seawater introduced into the reverse osmosis membrane separation device 8 overcomes the reverse osmosis pressure and passes through the reverse osmosis membrane (RO membrane) 8a in the reverse osmosis membrane separation device 8 as demineralized water from which the salt content has been removed. It is taken out through a desalted water line. The other seawater has a high salinity, becomes concentrated concentrated seawater, and is introduced from the reverse osmosis membrane separation device 8 to the energy recovery device 10 through the concentrated seawater line 9. Part of the seawater introduced into the reverse osmosis membrane separation device 8 overcomes the reverse osmosis pressure and passes through the reverse osmosis membrane (RO membrane) 8a in the reverse osmosis membrane separation device 8 as demineralized water from which the salt content has been removed. It is taken out through a desalted water line. The other seawater has a high salinity, becomes concentrated concentrated seawater, and is introduced from the reverse osmosis membrane separation device 8 to the energy recovery device 10 through the concentrated seawater line 9.
In the energy recovery apparatus 10, the interface between the concentrated seawater and the seawater moves in the two energy recovery chambers 11 and 12 due to the pressure balance between the concentrated seawater and the seawater in accordance with the operation of the switching device 20. Thus, the introduction of seawater from the water pump 2 to the check valve module 15 and the pressurization and discharge of seawater using high-pressure concentrated seawater (reject) are performed. In the energy recovery apparatus 10, the interface between the concentrated seawater and the seawater moves in the two energy recovery chambers 11 and 12 due to the pressure balance between the concentrated seawater and the seawater in accordance with the operation of the switching device 20. Thus , the introduction of seawater from the water pump 2 to the check valve module 15 and the pressurization and discharge of seawater using high-pressure concentrated seawater (reject) are performed.

エネルギー回収チャンバー11,12内で昇圧された海水は、チェック弁モジュール15からブースターポンプ海水供給ライン6を介してブースターポンプ7へ供給される。ここでブースターポンプ7により、逆浸透膜分離装置8や配管の圧力損失、切換装置20における圧力損失、エネルギー回収チャンバー11,12およびチェック弁モジュール15内で発生する圧力損失分を昇圧後、昇圧後の海水を高圧ポンプ5の吐出し海水と合流させ、逆浸透膜分離装置8へ圧送する。   The seawater pressurized in the energy recovery chambers 11 and 12 is supplied from the check valve module 15 to the booster pump 7 via the booster pump seawater supply line 6. Here, the booster pump 7 increases the pressure loss of the reverse osmosis membrane separation device 8 and the piping, the pressure loss in the switching device 20, and the pressure loss generated in the energy recovery chambers 11 and 12 and the check valve module 15 and then increases the pressure. The seawater is discharged from the high-pressure pump 5 and merged with the seawater, and is pumped to the reverse osmosis membrane separation device 8.

次に、図1に示すように、濃縮海水と海水の界面が濃縮海水と海水の双方の圧力バランスによりチャンバー内を移動する方式のエネルギー回収チャンバーを複数備えたエネルギー回収装置において、複数のエネルギー回収チャンバーへの濃縮海水と海水の給排水を制御する構成を図2を参照して説明する。図2においては、エネルギー回収チャンバーを2個備えた例が図示されているが、エネルギー回収チャンバーを3個以上備えていてもよい。   Next, as shown in FIG. 1, in an energy recovery apparatus having a plurality of energy recovery chambers in which the interface between concentrated seawater and seawater moves in the chamber by the pressure balance between both concentrated seawater and seawater, A configuration for controlling the concentrated seawater and the supply / drainage of seawater to the chamber will be described with reference to FIG. Although FIG. 2 shows an example in which two energy recovery chambers are provided, three or more energy recovery chambers may be provided.

図2は、本発明のエネルギー回収装置10の構成例を示す模式図である。図2に示すように、エネルギー回収装置10は、2つのエネルギー回収チャンバー11,12を備えている。逆浸透膜分離装置8から濃縮海水を排出する濃縮海水ライン9は、2つに分岐し、一方の分岐ラインは切換弁VS−1を介してエネルギー回収チャンバー11の濃縮海水ポートP1に接続されており、他方の分岐ラインは切換弁VS−2を介してエネルギー回収チャンバー12の濃縮海水ポートP1に接続されている。また、エネルギー回収チャンバー11の濃縮海水ポートP1は切換弁VD−1を介して濃縮海水排出ライン16に接続されており、エネルギー回収チャンバー12の濃縮海水ポートP1は切換弁VD−2を介して濃縮海水排出ライン16に接続されている。濃縮海水ライン9には、切換弁VS−1,VS−2の上流側に流量計FM1が設置されている。濃縮海水排出ライン16には、切換弁VD−1,VD−2の下流側に流量計FM2が設置されている。切換弁VS−1,VS−2,VD−1,VD−2は切換装置20(図1参照)を構成している。各切換弁VS−1,VS−2,VD−1,VD−2は制御装置21に接続されており、各切換弁VS−1,VS−2,VD−1,VD−2の動作は制御装置21により制御される。図2においては、切換弁VS−1,VS−2,VD−1,VD−2にON−OFF弁を使用する構成例にて説明するが、切換弁は3方向弁、4方向弁、ロータリー弁など、いわゆる流体の流れの切換機能を有する弁であれば何れでも良い。   FIG. 2 is a schematic diagram showing a configuration example of the energy recovery apparatus 10 of the present invention. As shown in FIG. 2, the energy recovery apparatus 10 includes two energy recovery chambers 11 and 12. The concentrated seawater line 9 for discharging the concentrated seawater from the reverse osmosis membrane separation device 8 branches into two, and one branch line is connected to the concentrated seawater port P1 of the energy recovery chamber 11 via the switching valve VS-1. The other branch line is connected to the concentrated seawater port P1 of the energy recovery chamber 12 via the switching valve VS-2. The concentrated seawater port P1 of the energy recovery chamber 11 is connected to the concentrated seawater discharge line 16 via a switching valve VD-1, and the concentrated seawater port P1 of the energy recovery chamber 12 is concentrated via a switching valve VD-2. A seawater discharge line 16 is connected. In the concentrated seawater line 9, a flow meter FM1 is installed upstream of the switching valves VS-1 and VS-2. In the concentrated seawater discharge line 16, a flow meter FM2 is installed on the downstream side of the switching valves VD-1 and VD-2. The switching valves VS-1, VS-2, VD-1, and VD-2 constitute a switching device 20 (see FIG. 1). Each switching valve VS-1, VS-2, VD-1, VD-2 is connected to the control device 21, and the operation of each switching valve VS-1, VS-2, VD-1, VD-2 is controlled. It is controlled by the device 21. In FIG. 2, a configuration example in which an ON-OFF valve is used for the switching valves VS-1, VS-2, VD-1, and VD-2 will be described. The switching valve is a three-way valve, a four-way valve, and a rotary valve. Any valve such as a valve having a so-called fluid flow switching function may be used.

一方、エネルギー回収チャンバー11の海水ポートP2は、4個のチェック弁(逆止弁)からなるチェック弁モジュール15を介してブースターポンプ海水供給ライン6に接続されるとともにエネルギー回収装置海水供給ライン4に接続されている。また、エネルギー回収チャンバー12の海水ポートP2も4個のチェック弁(逆止弁)からなるチェック弁モジュール15を介してブースターポンプ海水供給ライン6に接続されるとともにエネルギー回収装置海水供給ライン4に接続されている。ブースターポンプ海水供給ライン6には、流量計FM3が設置されている。また、エネルギー回収装置海水供給ライン4には、流量計FM4が設置されている。各流量計FM1,FM2,FM3,FM4は、制御装置21に接続されており、各流量計FM1,FM2,FM3,FM4の測定値の積算等は制御装置21により行う。   On the other hand, the seawater port P2 of the energy recovery chamber 11 is connected to the booster pump seawater supply line 6 via a check valve module 15 including four check valves (check valves) and connected to the energy recovery apparatus seawater supply line 4. It is connected. The seawater port P2 of the energy recovery chamber 12 is also connected to the booster pump seawater supply line 6 and the energy recovery device seawater supply line 4 via a check valve module 15 comprising four check valves (check valves). Has been. The booster pump seawater supply line 6 is provided with a flow meter FM3. The energy recovery device seawater supply line 4 is provided with a flow meter FM4. Each flow meter FM1, FM2, FM3, FM4 is connected to the control device 21, and the control device 21 performs integration of measured values of the flow meters FM1, FM2, FM3, FM4.

図3は、図2に示すエネルギー回収装置10におけるエネルギー回収工程を示す模式図である。
ステップ1Aでは、各切換弁は、VS−1が開動作開始、VS−2が開、VD−1が閉、VD−2が閉の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が開始されてエネルギー回収チャンバー11から高圧海水の吐出が開始され、エネルギー回収チャンバー12への濃縮海水の供給が継続されてエネルギー回収チャンバー12から高圧海水の吐出が継続される。 In step 1A, each switching valve is in a state where VS-1 is opened, VS-2 is open, VD-1 is closed, and VD-2 is closed, and concentrated seawater is supplied to the energy recovery chamber 11. After the start, the discharge of high-pressure seawater is started from the energy recovery chamber 11, the supply of concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of high-pressure seawater is continued from the energy recovery chamber 12. このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では右から左に移動する。 At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and from right to left in the energy recovery chamber 12. 本ステップ1Aが終了した後、ステップ2Aへ移行する。 After the completion of this step 1A, the process proceeds to step 2A. FIG. 3 is a schematic diagram showing an energy recovery process in the energy recovery apparatus 10 shown in FIG. FIG. 3 is a schematic diagram showing an energy recovery process in the energy recovery apparatus 10 shown in FIG.
In Step 1A, each switching valve is in a state in which VS-1 is started to open, VS-2 is opened, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is performed. The discharge of high-pressure seawater from the energy recovery chamber 11 is started and the supply of concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 1A is completed, the process proceeds to step 2A. In Step 1A, each switching valve is in a state in which VS-1 is started to open, VS-2 is opened, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is performed. The discharge of high-pressure seawater from the energy recovery chamber 11 is started and the supply of concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 1A is completed, the process proceeds to step 2A.

ステップ2Aでは、各切換弁は、VS−1が開、VS−2が閉動作開始、VD−1が閉、VD−2が閉の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が継続されてエネルギー回収チャンバー11から高圧海水の吐出が継続され、エネルギー回収チャンバー12への濃縮海水の供給が停止されてエネルギー回収チャンバー12から高圧海水の吐出が停止される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では可動域の左端で停止する。本ステップ2Aが終了した後、ステップ3Aへ移行する。   In step 2A, each switching valve is in a state in which VS-1 is opened, VS-2 is closed, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is performed. The discharge of high-pressure seawater from the energy recovery chamber 11 is continued, the supply of concentrated seawater to the energy recovery chamber 12 is stopped, and the discharge of high-pressure seawater from the energy recovery chamber 12 is stopped. At this time, the interface between the concentrated seawater and the seawater moves from the right to the left in the energy recovery chamber 11 and stops at the left end of the movable range in the energy recovery chamber 12. After step 2A is completed, the process proceeds to step 3A.

ステップ3Aでは、各切換弁は、VS−1が開、VS−2が閉、VD−1が閉、VD−2が開動作開始の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が継続されてエネルギー回収チャンバー11から高圧海水の吐出が継続され、エネルギー回収チャンバー12への低圧海水の供給が開始されてエネルギー回収チャンバー12から濃縮海水の排出が開始される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では左から右に移動する。本ステップ3Aが終了した後、ステップ4Aへ移行する。   In step 3A, each switching valve is in a state in which VS-1 is open, VS-2 is closed, VD-1 is closed, and VD-2 is opened, and the supply of concentrated seawater to the energy recovery chamber 11 is started. The discharge of high-pressure seawater from the energy recovery chamber 11 is continued, supply of low-pressure seawater to the energy recovery chamber 12 is started, and discharge of concentrated seawater from the energy recovery chamber 12 is started. At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and moves from left to right in the energy recovery chamber 12. After step 3A is completed, the process proceeds to step 4A.

ステップ4Aでは、各切換弁は、VS−1が開、VS−2が閉、VD−1が閉、VD−2が開の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が継続されてエネルギー回収チャンバー11から高圧海水の吐出が継続され、エネルギー回収チャンバー12への低圧海水の供給が継続されてエネルギー回収チャンバー12から濃縮海水の排出が継続される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では左から右に移動する。この状態でT時間経過した後、ステップ5Aへ移行する。なお、時間Tの設定は後述する。   In step 4A, each switching valve is in a state in which VS-1 is open, VS-2 is closed, VD-1 is closed, and VD-2 is open, and the supply of concentrated seawater to the energy recovery chamber 11 is continued. Thus, the discharge of high-pressure seawater from the energy recovery chamber 11 is continued, the supply of low-pressure seawater to the energy recovery chamber 12 is continued, and the discharge of concentrated seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and moves from left to right in the energy recovery chamber 12. After T time has elapsed in this state, the process proceeds to step 5A. The setting of the time T will be described later.

ステップ5Aでは、各切換弁は、VS−1が開、VS−2が閉、VD−1が閉、VD−2が閉動作開始の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が継続されてエネルギー回収チャンバー11から高圧海水の吐出が継続され、エネルギー回収チャンバー12への低圧海水の供給が停止されてエネルギー回収チャンバー12から濃縮海水の排出が停止される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では可動域の右端で停止する。本ステップ5Aが終了した後、ステップ1Bへ移行する。   In step 5A, each switching valve is in a state in which VS-1 is open, VS-2 is closed, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is started. The discharge of high-pressure seawater from the energy recovery chamber 11 is continued, the supply of low-pressure seawater to the energy recovery chamber 12 is stopped, and the discharge of concentrated seawater from the energy recovery chamber 12 is stopped. At this time, the interface between the concentrated seawater and the seawater moves from the right to the left in the energy recovery chamber 11 and stops at the right end of the movable range in the energy recovery chamber 12. After step 5A is completed, the process proceeds to step 1B.

ステップ1Bでは、各切換弁は、VS−1が開、VS−2が開動作開始、VD−1が閉、VD−2が閉の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が継続されてエネルギー回収チャンバー11から高圧海水の吐出が継続され、エネルギー回収チャンバー12への濃縮海水の供給が開始されてエネルギー回収チャンバー12から高圧海水の吐出が開始される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では右から左に移動し、エネルギー回収チャンバー12では右から左に移動する。本ステップ1Bが終了した後、ステップ2Bへ移行する。   In step 1B, each switching valve is in a state where VS-1 is open, VS-2 is opened, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is performed. The discharge of high-pressure seawater from the energy recovery chamber 11 is continued, supply of concentrated seawater to the energy recovery chamber 12 is started, and discharge of high-pressure seawater from the energy recovery chamber 12 is started. At this time, the interface between the concentrated seawater and the seawater moves from right to left in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 1B is completed, the process proceeds to step 2B.

ステップ2Bでは、各切換弁は、VS−1が閉動作開始、VS−2が開、VD−1が閉、VD−2が閉の状態であり、エネルギー回収チャンバー11への濃縮海水の供給が停止されてエネルギー回収チャンバー11から高圧海水の吐出が停止され、エネルギー回収チャンバー12への濃縮海水の供給が継続されてエネルギー回収チャンバー12から高圧海水の吐出が継続される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では可動域の左端で停止し、エネルギー回収チャンバー12では右から左に移動する。本ステップ2Bが終了した後、ステップ3Bへ移行する。   In step 2B, each switching valve is in a state in which VS-1 is closed, VS-2 is opened, VD-1 is closed, and VD-2 is closed, and the supply of concentrated seawater to the energy recovery chamber 11 is performed. The discharge of high-pressure seawater from the energy recovery chamber 11 is stopped, the supply of concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater stops at the left end of the movable range in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 2B is completed, the process proceeds to step 3B.

ステップ3Bでは、各切換弁は、VS−1が閉、VS−2が開、VD−1が開動作開始、VD−2が閉の状態であり、エネルギー回収チャンバー11への低圧海水の供給が開始されてエネルギー回収チャンバー11から濃縮海水の排出が開始され、エネルギー回収チャンバー12への濃縮海水の供給が継続されてエネルギー回収チャンバー12から高圧海水の吐出が継続される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では左から右に移動し、エネルギー回収チャンバー12では右から左に移動する。本ステップ3Bが終了した後、ステップ4Bへ移行する。   In step 3B, each switching valve is in a state in which VS-1 is closed, VS-2 is opened, VD-1 is opened, and VD-2 is closed, so that low-pressure seawater is supplied to the energy recovery chamber 11. Then, the discharge of the concentrated seawater from the energy recovery chamber 11 is started, the supply of the concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of the high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater moves from left to right in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 3B is completed, the process proceeds to step 4B.

ステップ4Bでは、各切換弁は、VS−1が閉、VS−2が開、VD−1が開、VD−2が閉の状態であり、エネルギー回収チャンバー11への低圧海水の供給が継続されてエネルギー回収チャンバー11から濃縮海水の排出が継続され、エネルギー回収チャンバー12への濃縮海水の供給が継続されてエネルギー回収チャンバー12から高圧海水の吐出が継続される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では左から右に移動し、エネルギー回収チャンバー12では右から左に移動する。この状態でT時間経過した後、ステップ5Bへ移行する。なお、時間Tの設定は後述する。   In step 4B, each switching valve is in a state in which VS-1 is closed, VS-2 is open, VD-1 is open, and VD-2 is closed, and the supply of low-pressure seawater to the energy recovery chamber 11 is continued. Then, the discharge of the concentrated seawater from the energy recovery chamber 11 is continued, the supply of the concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of the high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater moves from left to right in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After T time has elapsed in this state, the process proceeds to step 5B. The setting of the time T will be described later.

ステップ5Bでは、各切換弁は、VS−1が閉、VS−2が開、VD−1が閉動作開始、VD−2が閉の状態であり、エネルギー回収チャンバー11への低圧海水の供給が停止されてエネルギー回収チャンバー11から濃縮海水の排出が停止され、エネルギー回収チャンバー12への濃縮海水の供給が継続されてエネルギー回収チャンバー12から高圧海水の吐出が継続される。このとき、濃縮海水と海水の界面は、エネルギー回収チャンバー11では可動域の右端で停止し、エネルギー回収チャンバー12では右から左に移動する。本ステップ5Bが終了した後、ステップ1Aへ移行する。   In step 5B, each switching valve is in a state where VS-1 is closed, VS-2 is opened, VD-1 is closed, and VD-2 is closed, and the supply of low-pressure seawater to the energy recovery chamber 11 is performed. The discharge of the concentrated seawater from the energy recovery chamber 11 is stopped, the supply of the concentrated seawater to the energy recovery chamber 12 is continued, and the discharge of the high-pressure seawater from the energy recovery chamber 12 is continued. At this time, the interface between the concentrated seawater and the seawater stops at the right end of the movable range in the energy recovery chamber 11 and moves from right to left in the energy recovery chamber 12. After step 5B is completed, the process proceeds to step 1A.

図4は、図3に示すエネルギー回収工程における各切換弁VS−1,VS−2,VD−1,VD−2の開閉動作と、エネルギー回収チャンバー11,12への吸入海水流量,エネルギー回収チャンバー11,12への吸入濃縮海水流量との関係を示すグラフである。
図4の上段のグラフは、各ステップにおける切換弁VS−1,VS−2,VD−1,VD−2の開閉動作を示す。
切換弁VS−1は、太い実線で示すように、ステップ1Aにおいて開動作を開始し、ステップ2A〜ステップ1Bが終了するまで開状態を継続し、ステップ2Bにおいて閉動作を開始し、ステップ3B〜ステップ5Bが終了するまで閉状態を継続する。
切換弁VS−2は、太い点線で示すように、ステップ2Aにおいて閉動作を開始し、ステップ3A〜ステップ5Aが終了するまで閉状態を継続し、ステップ1Bにおいて開動作を開始し、ステップ2B〜ステップ1Aが終了するまで開状態を継続する。 As shown by the thick dotted line, the switching valve VS-2 starts the closing operation in step 2A, continues in the closed state until the completion of steps 3A to 5A, starts the opening operation in step 1B, and starts the opening operation in steps 2B to 2B. The open state is continued until step 1A is completed.
切換弁VD−1は、太い実線で示すように、ステップ3Bにおいて開動作を開始し、ステップ4Bにおいて時間Tが経過するまで開状態を継続し、ステップ5Bにおいて閉動作を開始し、ステップ1A〜ステップ2Bが終了するまで閉状態を継続する。 As shown by the thick solid line, the switching valve VD-1 starts the open operation in step 3B, continues in the open state until the time T elapses in step 4B, starts the closing operation in step 5B, and starts the closing operation in steps 1A to 1A. The closed state is continued until step 2B is completed.
切換弁VD−2は、太い点線で示すように、ステップ3Aにおいて開動作を開始し、ステップ4Aにおいて時間Tが経過するまで開状態を継続し、ステップ5Aにおいて閉動作を開始し、ステップ1B〜ステップ2Aが終了するまで閉状態を継続する。 As shown by the thick dotted line, the switching valve VD-2 starts the open operation in step 3A, continues in the open state until the time T elapses in step 4A, starts the closing operation in step 5A, and starts the closing operation in steps 1B to 1B. The closed state is continued until step 2A is completed. 4 shows the opening / closing operation of each switching valve VS-1, VS-2, VD-1, VD-2 in the energy recovery process shown in FIG. 3, the flow rate of the intake seawater to the energy recovery chambers 11, 12, and the energy recovery chamber. 11 is a graph showing the relationship with the flow rate of suction concentrated seawater to 11 and 12; 4 shows the opening / closing operation of each switching valve VS-1, VS-2, VD-1, VD-2 in the energy recovery process shown in FIG. 3, the flow rate of the intake seawater to the energy recovery chambers 11 , 12, and the energy recovery chamber. 11 is a graph showing the relationship with the flow rate of suction concentrated seawater to 11 and 12;
The upper graph in FIG. 4 shows the opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2 in each step. The upper graph in FIG. 4 shows the opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2 in each step.
As shown by the thick solid line, the switching valve VS-1 starts to open in Step 1A, continues to open until Steps 2A to 1B are completed, starts to close in Step 2B, and starts to Steps 3B to 3B. The closed state is continued until step 5B is completed. As shown by the thick solid line, the switching valve VS-1 starts to open in Step 1A, continues to open until Steps 2A to 1B are completed, starts to close in Step 2B, and starts to Steps 3B to 3B. The closed state is continued until step 5B is completed.
As shown by the thick dotted line, the switching valve VS-2 starts the closing operation in Step 2A, continues the closing state until Step 3A to Step 5A are completed, starts the opening operation in Step 1B, and starts from Step 2B to Step 2B. The open state is continued until step 1A is completed. As shown by the thick dotted line, the switching valve VS-2 starts the closing operation in Step 2A, continues the closing state until Step 3A to Step 5A are completed, starts the opening operation in Step 1B, and starts from Step 2B to Step 2B. The open state is continued until step 1A is completed.
As shown by the thick solid line, the switching valve VD-1 starts to open in step 3B, continues to open until time T elapses in step 4B, and starts to close in step 5B. The closed state is continued until step 2B is completed. As shown by the thick solid line, the switching valve VD-1 starts to open in step 3B, continues to open until time Telapses in step 4B, and starts to close in step 5B. The closed state is continued until step 2B is completed ..
As shown by the thick dotted line, the switching valve VD-2 starts the opening operation in step 3A, continues the opening state until the time T elapses in step 4A, starts the closing operation in step 5A, and steps 1B to The closed state is continued until step 2A is completed. As shown by the thick dotted line, the switching valve VD-2 starts the opening operation in step 3A, continues the opening state until the time Telapses in step 4A, starts the closing operation in step 5A, and steps 1B to The closed state is continued until step 2A is completed.

図4の中段のグラフは、各ステップにおいて切換弁VS−1,VS−2,VD−1,VD−2が上述の開閉状態にあるときのエネルギー回収チャンバー11,12への吸入海水流量を示す。ステップ1A〜2Aではエネルギー回収チャンバー11,12への吸入海水流量は0であり、ステップ3Aでエネルギー回収チャンバー12への海水吸入を開始し、ステップ4Aでエネルギー回収チャンバー12への海水吸入は一定流量となり、ステップ5Aでエネルギー回収チャンバー12への海水吸入を終了する。そして、ステップ1B〜2Bではエネルギー回収チャンバー11,12への吸入海水流量は0であり、ステップ3Bでエネルギー回収チャンバー11への海水吸入を開始し、ステップ4Bでエネルギー回収チャンバー11への海水吸入は一定流量となり、ステップ5Bでエネルギー回収チャンバー11への海水吸入を終了する。   The middle graph in FIG. 4 shows the intake seawater flow rate into the energy recovery chambers 11 and 12 when the switching valves VS-1, VS-2, VD-1, and VD-2 are in the above-described open / closed state at each step. . In steps 1A to 2A, the intake seawater flow rate into the energy recovery chambers 11 and 12 is 0. In step 3A, seawater intake into the energy recovery chamber 12 is started, and in step 4A, the seawater intake into the energy recovery chamber 12 is a constant flow rate. In step 5A, the seawater suction into the energy recovery chamber 12 is terminated. In steps 1B to 2B, the flow rate of the intake seawater into the energy recovery chambers 11 and 12 is 0. In step 3B, the intake of seawater into the energy recovery chamber 11 is started. In step 4B, the intake of seawater into the energy recovery chamber 11 is The flow rate becomes constant, and seawater suction into the energy recovery chamber 11 is terminated in step 5B.

図4の下段のグラフは、各ステップにおいて切換弁VS−1,VS−2,VD−1,VD−2が上述の開閉状態にあるときのエネルギー回収チャンバー11,12への吸入濃縮海水流量を示す。ステップ1Aでは、エネルギー回収チャンバー11,12へ同時に濃縮海水が吸入され、ステップ2A〜5Aでエネルギー回収チャンバー11へ濃縮海水が吸入される。ステップ1Bでは、エネルギー回収チャンバー11,12へ同時に濃縮海水が吸入され、ステップ2B〜5Bでエネルギー回収チャンバー12へ濃縮海水が吸入される。図示されるように1周期の全ステップ1A〜5Bにおいて、チャンバーへの吸入濃縮海水流量は一定である。   The lower graph of FIG. 4 shows the flow rate of the suction concentrated seawater to the energy recovery chambers 11 and 12 when the switching valves VS-1, VS-2, VD-1, and VD-2 are in the above open / closed state at each step. Show. In step 1A, concentrated seawater is sucked into the energy recovery chambers 11 and 12 at the same time, and concentrated seawater is sucked into the energy recovery chamber 11 in steps 2A to 5A. In step 1B, concentrated seawater is simultaneously sucked into the energy recovery chambers 11 and 12, and concentrated seawater is sucked into the energy recovery chamber 12 in steps 2B to 5B. As shown in the drawing, in all steps 1A to 5B of one cycle, the flow rate of the suction concentrated seawater into the chamber is constant.

次に、本発明のエネルギー回収装置10において、図3および図4に示すようなエネルギー回収装置の動作を実現する制御方法について説明する。
(1)各切換弁(VS−1,VS−2,VD−1,VD−2)の開閉を1周期あたり計10ステップ(ステップ1A〜5Aおよび1B〜5B)の開閉順序で構成する。
図3中のステップ1A,ステップ1Bにおいて、濃縮海水と海水の接触界面は、同時に海水昇圧の工程になる。
これにより、エネルギー回収装置からブースターポンプに吐出される昇圧海水の脈動の抑制が可能となる。
(2)濃縮海水排出側(海水供給側)の切換弁VD−1,VD−2の開度の調節(制御)は、エネルギー回収装置へ供給する濃縮海水の積算流量≦エネルギー回収装置へ供給する海水の積算流量になるようにし、かつ、両積算流量の差も調節可能にする。 (2) To adjust (control) the opening degree of the switching valves VD-1 and VD-2 on the concentrated seawater discharge side (seawater supply side), the integrated flow rate of the concentrated seawater supplied to the energy recovery device ≤ the energy recovery device. The integrated flow rate of seawater is set, and the difference between the two integrated flow rates can be adjusted.
これにより、下記を実現する。 As a result, the following is realized.
1)濃縮海水がエネルギー回収装置からブースターポンプに流入しない。 1) Concentrated seawater does not flow from the energy recovery device into the booster pump.
2)海水がエネルギー回収装置から必要以上に排出されない。 2) Seawater is not discharged more than necessary from the energy recovery device.
なお、切換弁VD−1,VD−2の開度調節により、エネルギー回収装置へ供給する濃縮海水の積算流量とエネルギー回収装置へ供給する海水の積算流量を自在に調整することが可能となる。 By adjusting the opening degree of the switching valves VD-1 and VD-2, it is possible to freely adjust the integrated flow rate of concentrated seawater supplied to the energy recovery device and the integrated flow rate of seawater supplied to the energy recovery device. Next, a control method for realizing the operation of the energy recovery apparatus as shown in FIGS. 3 and 4 in the energy recovery apparatus 10 of the present invention will be described. Next, a control method for realizing the operation of the energy recovery apparatus as shown in FIGS. 3 and 4 in the energy recovery apparatus 10 of the present invention will be described.
(1) The switching valves (VS-1, VS-2, VD-1, VD-2) are opened and closed in a total of 10 steps per cycle (steps 1A to 5A and 1B to 5B). (1) The switching valves (VS-1, VS-2, VD-1, VD-2) are opened and closed in a total of 10 steps per cycle (steps 1A to 5A and 1B to 5B).
In step 1A and step 1B in FIG. 3, the contact interface between the concentrated seawater and the seawater becomes a seawater pressurization step at the same time. In step 1A and step 1B in FIG. 3, the contact interface between the concentrated seawater and the seawater becomes a seawater pressurization step at the same time.
This makes it possible to suppress the pulsation of the pressurized seawater discharged from the energy recovery device to the booster pump. This makes it possible to suppress the pulsation of the similarly seawater discharged from the energy recovery device to the booster pump.
(2) The adjustment (control) of the opening degree of the switching valves VD-1 and VD-2 on the concentrated seawater discharge side (seawater supply side) is supplied to the energy recovery device. The integrated flow rate of seawater is set, and the difference between the integrated flow rates can be adjusted. (2) The adjustment (control) of the opening degree of the switching valves VD-1 and VD-2 on the concentrated seawater discharge side (seawater supply side) is supplied to the energy recovery device. The integrated flow rate of seawater is set , and the difference between the integrated flow rates can be adjusted.
As a result, the following is realized. As a result, the following is realized.
1) Concentrated seawater does not flow from the energy recovery device to the booster pump. 1) Concentrated seawater does not flow from the energy recovery device to the booster pump.
2) Seawater is not discharged more than necessary from the energy recovery device. 2) Seawater is not discharged more than necessary from the energy recovery device.
In addition, it becomes possible by adjusting the opening degree of the switching valves VD-1 and VD-2 to freely adjust the integrated flow rate of the concentrated seawater supplied to the energy recovery device and the integrated flow rate of the seawater supplied to the energy recovery device. In addition, it becomes possible by adjusting the opening degree of the switching valves VD-1 and VD-2 to freely adjust the integrated flow rate of the concentrated seawater supplied to the energy recovery device and the integrated flow rate of the seawater supplied to the energy recovery device.

次に、上記制御方法について具体的に説明する。
(1)切換弁の開閉順序と時間の設定方法について 各ステップにおける切換弁の開閉時間、およびステップ4A,4Bにおける時間T(図4参照)またはステップ移行時間の設定の態様は、下記1)2)の2種がある。 (1) Setting method of switching valve opening / closing order and time The mode of setting the switching valve opening / closing time in each step and the time T (see FIG. 4) or step transition time in steps 4A and 4B is described in 1) 2 below. ) There are two types.
ここで、時間Tを設定する意義について説明すると、図4の上段のグラフに示すように、1/2周期においてステップ1A,2A,3A,5Aではいずれかの切換弁が開閉動作を行っている切換弁開閉時間である。 Here, to explain the significance of setting the time T, as shown in the upper graph of FIG. 4, one of the switching valves opens and closes in steps 1A, 2A, 3A, and 5A in the 1/2 cycle. It is the switching valve opening / closing time. この切換弁開閉時間では、チャンバーに吸入(供給)される濃縮海水(または海水)の流量は一定ではないため、この一定でない流量に基づいてチャンバーが濃縮海水(または海水)で満水になる時間を予測することはできない。 During this switching valve opening / closing time, the flow rate of concentrated seawater (or seawater) sucked (supplied) into the chamber is not constant, so the time for the chamber to be filled with concentrated seawater (or seawater) based on this non-constant flow rate is set. It cannot be predicted. ところが、ステップ4Aではいずれの切換弁も開又は閉の状態にあって開閉動作を行うことはない。 However, in step 4A, none of the switching valves is in the open or closed state and does not open / close. そのため、チャンバーに吸入(供給)される濃縮海水(または海水)の流量は一定であり、この一定流量に基づけばチャンバーが濃縮海水(または海水)で満水になる時間を予測できる。 Therefore, the flow rate of concentrated seawater (or seawater) sucked (supplied) into the chamber is constant, and based on this constant flow rate, the time when the chamber is filled with concentrated seawater (or seawater) can be predicted. 次の1/2周期におけるステップ4Bも同様である。 The same applies to step 4B in the next 1/2 cycle. Next, the control method will be specifically described. Next, the control method will be specifically described.
(1) Switching valve opening / closing sequence and time setting method The switching valve opening / closing time in each step and the time T (see FIG. 4) or step transition time setting in steps 4A and 4B are as follows. There are two types. (1) Switching valve opening / closing sequence and time setting method The switching valve opening / closing time in each step and the time T (see FIG. 4) or step transition time setting in steps 4A and 4B are as follows. There are two types.
Here, the significance of setting the time T will be described. As shown in the upper graph of FIG. 4, any one of the switching valves performs an opening / closing operation in steps 1A, 2A, 3A, and 5A as shown in the upper graph of FIG. This is the switching valve opening / closing time. In this switching valve opening / closing time, the flow rate of the concentrated seawater (or seawater) sucked (supplied) into the chamber is not constant, so the time for the chamber to be filled with concentrated seawater (or seawater) based on this non-constant flow rate is set. It cannot be predicted. However, in step 4A, none of the switching valves are open or closed, and the opening / closing operation is not performed. Therefore, the flow rate of the concentrated seawater (or seawater) sucked (supplied) into the chamber is constant, and based on this constant flow rate, the time when the chamber is filled with the concentrated seawater (or seawater) can be predicted. The same applies to step Here, the significance of setting the time T will be described. As shown in the upper graph of FIG. 4, any one of the switching valves performs an opening / closing operation in steps 1A, 2A, 3A, and 5A as shown in the upper graph of FIG. This is the switching valve opening / closing time. In this switching valve opening / closing time, the flow rate of the concentrated seawater (or seawater) sucked (supplied) into the chamber is not constant, so the time for The chamber to be filled with concentrated seawater (or seawater) based on this non-constant flow rate is set. It cannot be predicted. However, in step 4A, none of the switching valves are open or closed, and the opening / closing operation is not performed. Therefore, the flow rate of the concentrated seawater (or seawater) sucked (supplied) into the chamber is constant, and based on this constant flow rate, the time when the chamber is filled with the concentrated seawater (or seawater) can be predicted. The same applies to step 4B in the next half cycle. 4B in the next half cycle.

1)切換弁の開閉時間および時間Tの設定の第1の態様
i)切換弁の開閉時間(図4参照)を所定値に設定する。
ii)ステップ4A,4Bにおける時間Tは、エネルギー回収チャンバーの容積と濃縮海水の流入量から、予めエネルギー回収チャンバーが濃縮海水で満水になるまでの時間を計算して設定する。
この際、濃縮海水のブースターポンプへの流入を確実に回避するために、例えば、計算時にエネルギー回収チャンバーの容積を実容積よりも数〜数十%小さくするか、もしくは算出された時間の数〜数十%短い時間に設定するなどの方法が挙げられる。 At this time, in order to reliably avoid the inflow of concentrated seawater into the booster pump, for example, the volume of the energy recovery chamber should be made several to several tens of percent smaller than the actual volume at the time of calculation, or the calculated number of hours ~. A method such as setting the time to be several tens of percent shorter can be mentioned. 1) First mode of setting of switching valve opening / closing time and time T i) The switching valve opening / closing time (see FIG. 4) is set to a predetermined value. 1) First mode of setting of switching valve opening / closing time and time T i) The switching valve opening / closing time (see FIG. 4) is set to a predetermined value.
ii) The time T in steps 4A and 4B is set by calculating in advance the time until the energy recovery chamber is filled with concentrated seawater from the volume of the energy recovery chamber and the inflow of concentrated seawater. ii) The time T in steps 4A and 4B is set by calculating in advance the time until the energy recovery chamber is filled with concentrated seawater from the volume of the energy recovery chamber and the inflow of concentrated seawater.
At this time, in order to reliably avoid the inflow of the concentrated seawater into the booster pump, for example, the volume of the energy recovery chamber is reduced by several to several tens of percent from the actual volume at the time of calculation, or the number of calculated times is For example, the time may be set to a time shorter by several tens of percent. At this time, in order to reliably avoid the inflow of the concentrated seawater into the booster pump, for example, the volume of the energy recovery chamber is reduced by several to several tens of percent from the actual volume at the time of calculation, or the number of calculated times is For example, the time may be set to a time shorter by several tens of percent.

2)切換弁の開閉時間およびステップ移行時間の設定方法の第2の態様 i)切換弁の開閉時間を所定値に設定する。
ii)ステップ移行時間は、流量計FM1にて測定される濃縮海水流量に応じて自動で設定する。
ステップ移行時間の設定は以下のように行う。

切換弁VS−1もしくはVS−2が開き始めた時点(図4中:濃縮海水流量積算開始点)から流量計FM1の測定値の積算を開始し、当該積算値がエネルギー回収チャンバーの実容積の所定の割合(80−90%)(初期設定値)に到達したら、次ステップへ移行するようにする。 The integration of the measured values ​​of the flow meter FM1 is started from the time when the switching valve VS-1 or VS-2 starts to open (in FIG. 4: the starting point for integrating the concentrated seawater flow rate), and the integrated value is the actual volume of the energy recovery chamber. When the predetermined ratio (80-90%) (initial setting value) is reached, the process proceeds to the next step. なお、流量計FM1にて測定される吸入濃縮海水流量と流量計FM3にて測定される吐出海水流量とは等しいので、流量計FM3を用いてもよい。 Since the suction concentrated seawater flow rate measured by the flow meter FM1 and the discharge seawater flow rate measured by the flow meter FM3 are equal to each other, the flow meter FM3 may be used.
動作は以下のようになる。 The operation is as follows.
ステップ1Aからチャンバー11への濃縮海水流量の積算を開始し、積算値がエネルギー回収チャンバーの実容積の所定の割合(80−90%)に到達したら、ステップ2Bへ移行する。 The integration of the concentrated seawater flow rate from step 1A to the chamber 11 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2B.
ステップ1Bからチャンバー12への濃縮海水流量の積算を開始し、積算値がエネルギー回収チャンバーの実容積の所定の割合(80−90%)に到達したら、ステップ2Aへ移行する。 The integration of the concentrated seawater flow rate from step 1B to the chamber 12 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2A. 2) Second mode of setting method of switching valve opening / closing time and step transition time i) The switching valve opening / closing time is set to a predetermined value. 2) Second mode of setting method of switching valve opening / closing time and step transition time i) The switching valve opening / closing time is set to a predetermined value.
ii) The step transition time is automatically set according to the concentrated seawater flow rate measured by the flow meter FM1. ii) The step transition time is automatically set according to the concentrated seawater flow rate measured by the flow meter FM1.
The step transition time is set as follows. The step transition time is set as follows.
The integration of the measured value of the flow meter FM1 is started from the time when the switching valve VS-1 or VS-2 starts to open (in FIG. 4, the concentrated seawater flow rate integration start point), and the integration value is the actual volume of the energy recovery chamber. When a predetermined ratio (80-90%) (initial setting value) is reached, the process proceeds to the next step. Since the suction concentrated seawater flow rate measured by the flow meter FM1 and the discharge seawater flow rate measured by the flow meter FM3 are equal, the flow meter FM3 may be used. The integration of the measured value of the flow meter FM1 is started from the time when the switching valve VS-1 or VS-2 starts to open (in FIG. 4, the concentrated seawater flow rate integration start point), and the integration value Since the actual volume of the energy recovery chamber. When a predetermined ratio (80-90%) (initial setting value) is reached, the process proceeds to the next step. Since the suction concentrated seawater flow rate measured by the flow meter FM1 and the discharge seawater flow rate measured by the flow meter FM3 are equal, the flow meter FM3 may be used.
The operation is as follows. The operation is as follows.
Integration of the concentrated seawater flow rate from step 1A to the chamber 11 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2B. Integration of the concentrated seawater flow rate from step 1A to the chamber 11 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2B.
Integration of the concentrated seawater flow rate from step 1B to the chamber 12 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2A. Integration of the concentrated seawater flow rate from step 1B to the chamber 12 is started, and when the integrated value reaches a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber, the process proceeds to step 2A.

(2)濃縮海水排出側(海水供給側)の切換弁VD−1,VD−2の開度の調節(制御)方法について 切換弁VD−1,VD−2の開度を自動調節して、エネルギー回収チャンバーへの供給濃縮海水の水量と供給海水の水量のバランスをとる方法である。
図4の上段と中段のグラフは、各ステップにおける切換弁の開閉とエネルギー回収チャンバーへの供給海水の流量の関係を示す。

図示のごとく、切換弁の開閉ステップ1A,2A,3A,5Aおよび切換弁の開閉ステップ1B,2B,3B,5Bにおいては、エネルギー回収チャンバーへの吸入海水流量は低下し、特に切換弁VD−1およびVD−2が全閉となるステップ1A,2Aおよびステップ1B,2Bにおいては、吸入海水流量は0になる。 As shown in the figure, in the switching valve opening / closing steps 1A, 2A, 3A, 5A and the switching valve opening / closing steps 1B, 2B, 3B, 5B, the flow rate of the intake seawater to the energy recovery chamber decreases, and in particular, the switching valve VD-1. And in steps 1A and 2A and steps 1B and 2B when VD-2 is fully closed, the suction seawater flow rate becomes zero.
また、図4の上段と下段のグラフは、各ステップにおける切換弁の開閉とエネルギー回収チャンバーへの供給濃縮海水の流量の関係を示す。 The upper and lower graphs of FIG. 4 show the relationship between the opening and closing of the switching valve and the flow rate of the concentrated seawater supplied to the energy recovery chamber in each step.
図示のごとく、エネルギー回収チャンバーへの吸入濃縮海水流量は一定である。 As shown, the suction concentrated seawater flow rate to the energy recovery chamber is constant.
ここで、エネルギー回収装置へ供給される濃縮海水がブースターポンプへ流入しない条件としては、各チャンバー内に導入,導出する濃縮海水の水量と海水の水量を同一にする必要がある。 Here, as a condition that the concentrated seawater supplied to the energy recovery device does not flow into the booster pump, it is necessary to make the amount of concentrated seawater introduced and taken out into each chamber the same as the amount of seawater. (2) About the adjustment (control) method of the opening degree of the switching valves VD-1 and VD-2 on the concentrated seawater discharge side (seawater supply side) The opening degree of the switching valves VD-1 and VD-2 is automatically adjusted. This is a method of balancing the amount of supplied concentrated seawater to the energy recovery chamber and the amount of supplied seawater. (2) About the adjustment (control) method of the opening degree of the switching valves VD-1 and VD-2 on the concentrated seawater discharge side (seawater supply side) The opening degree of the switching valves VD-1 and VD-2 This is a method of balancing the amount of supplied concentrated seawater to the energy recovery chamber and the amount of supplied seawater.
The upper and middle graphs in FIG. 4 show the relationship between the opening / closing of the switching valve and the flow rate of the seawater supplied to the energy recovery chamber in each step. The upper and middle graphs in FIG. 4 show the relationship between the opening / closing of the switching valve and the flow rate of the seawater supplied to the energy recovery chamber in each step.
As shown in the figure, in the switching valve opening / closing steps 1A, 2A, 3A, 5A and the switching valve opening / closing steps 1B, 2B, 3B, 5B, the intake seawater flow rate to the energy recovery chamber decreases, and in particular, the switching valve VD-1 In steps 1A and 2A and steps 1B and 2B where VD-2 is fully closed, the intake seawater flow rate becomes zero. As shown in the figure, in the switching valve opening / closing steps 1A, 2A, 3A, 5A and the switching valve opening / closing steps 1B, 2B, 3B, 5B, the intake seawater flow rate to the energy recovery chamber decreases, and in particular, the switching valve VD-1 In steps 1A and 2A and steps 1B and 2B where VD-2 is fully closed, the intake seawater flow rate becomes zero.
Moreover, the upper and lower graphs in FIG. 4 show the relationship between the opening / closing of the switching valve and the flow rate of the supplied concentrated seawater to the energy recovery chamber in each step. Moreover, the upper and lower graphs in FIG. 4 show the relationship between the opening / closing of the switching valve and the flow rate of the supplied concentrated seawater to the energy recovery chamber in each step.
As shown, the flow rate of the suction concentrated seawater into the energy recovery chamber is constant. As shown, the flow rate of the suction concentrated seawater into the energy recovery chamber is constant.
Here, as a condition that the concentrated seawater supplied to the energy recovery device does not flow into the booster pump, the amount of the concentrated seawater introduced and led out into each chamber needs to be the same as the amount of seawater. Here, as a condition that the concentrated seawater supplied to the energy recovery device does not flow into the booster pump, the amount of the concentrated seawater introduced and led out into each chamber needs to be the same as the amount of seawater.

図5は、図3に示すエネルギー回収工程の各ステップにおけるチャンバー給排水流量を示すグラフである。図5に示すように、ステップ1A〜5A(1/2周期)において、チャンバーに濃縮海水が吸入され、このときの吸入濃縮海水流量の積算値は矩形状の面積Aになる。一方、ステップ3A〜5Aにおいて、チャンバーに海水が吸入され、このときの吸入海水流量の積算値は台形状の面積Bになる。エネルギー回収装置へ供給される濃縮海水がブースターポンプへ流入しない条件としては、面積Aと面積Bとを等しくする必要がある。ステップ1B〜5B(1/2周期)においても同様である。本方策を採らなければ、エネルギー回収チャンバー内は次第に濃縮海水のみで満たされ、ひいては濃縮海水がブースターポンプへ流入して逆浸透膜(RO膜)へ導入され、脱塩率を低下させたり、逆浸透膜(RO膜)の劣化を促進させる。   FIG. 5 is a graph showing the chamber water supply / drainage flow rate in each step of the energy recovery process shown in FIG. 3. As shown in FIG. 5, in steps 1A to 5A (1/2 cycle), concentrated seawater is sucked into the chamber, and the integrated value of the suction concentrated seawater flow rate at this time becomes a rectangular area A. On the other hand, in steps 3A to 5A, seawater is sucked into the chamber, and the integrated value of the flow rate of the sucked seawater at this time becomes a trapezoidal area B. As a condition that the concentrated seawater supplied to the energy recovery device does not flow into the booster pump, it is necessary to make the area A and the area B equal. The same applies to Steps 1B to 5B (1/2 cycle). If this measure is not taken, the energy recovery chamber will gradually fill with concentrated seawater, and eventually the concentrated seawater will flow into the booster pump and be introduced into the reverse osmosis membrane (RO membrane), reducing the desalination rate or The deterioration of the osmotic membrane (RO membrane) is promoted.

そこで、本発明においては、エネルギー回収装置における濃縮海水と海水の給排水過程での各チャンバーの供給濃縮海水の積算値と供給海水の積算値が下記の条件になるように切換弁VD−1およびVD−2の開度を制御する。
エネルギー回収装置への供給海水流量の積算値≧エネルギー回収装置への供給濃縮海水流量の積算値
これにより、常に濃縮海水がブースターポンプへ流入することがない。
また、エネルギー回収装置への供給濃縮海水のエネルギー(圧力、流量)が損失しないようにするため、エネルギー回収装置の供給濃縮海水側の切換弁VS−1,VS−2の開度は基本的に全開とする。
また、上記の条件にかかわらず、エネルギー回収装置への供給海水流量とエネルギー回収装置への供給濃縮海水流量を切換弁VD−1,VD−2の開度を制御することにより調整することも可能である。 Further, regardless of the above conditions, the flow rate of seawater supplied to the energy recovery device and the flow rate of concentrated seawater supplied to the energy recovery device can be adjusted by controlling the opening degree of the switching valves VD-1 and VD-2. Is. Therefore, in the present invention, the switching valves VD-1 and VD are set so that the integrated value of the supplied concentrated seawater and the integrated value of the supplied seawater in each chamber in the process of supplying and discharging the concentrated seawater and seawater in the energy recovery device satisfy the following conditions. -2 is controlled. Therefore, in the present invention, the switching valves VD-1 and VD are set so that the integrated value of the supplied concentrated seawater and the integrated value of the supplied seawater in each chamber in the process of supplying and efficiently the concentrated seawater and seawater. in the energy recovery device satisfy the following conditions. -2 is controlled.
Integrated value of supply seawater flow rate to energy recovery device ≧ integrated value of supply concentrated seawater flow rate to energy recovery device Thereby, concentrated seawater does not always flow into the booster pump. Integrated value of supply seawater flow rate to energy recovery device ≧ integrated value of supply concentrated seawater flow rate to energy recovery device thereby, concentrated seawater does not always flow into the booster pump.
In order to prevent loss of energy (pressure, flow rate) of the supply concentrated seawater to the energy recovery device, the opening degree of the switching valves VS-1 and VS-2 on the supply concentration seawater side of the energy recovery device is basically set. Fully open. In order to prevent loss of energy (pressure, flow rate) of the supply concentrated seawater to the energy recovery device, the opening degree of the switching valves VS-1 and VS-2 on the supply concentration seawater side of the energy recovery device is basically set. Fully open.
Regardless of the above conditions, the supply seawater flow rate to the energy recovery device and the supply concentrated seawater flow rate to the energy recovery device can be adjusted by controlling the opening degree of the switching valves VD-1 and VD-2. It is. Regardless of the above conditions, the supply seawater flow rate to the energy recovery device and the supply concentrated seawater flow rate to the energy recovery device can be adjusted by controlling the opening degree of the switching valves VD-1 and VD-2. It is ..

図6は、切換弁の工程動作における1/2周期間でエネルギー回収装置への供給濃縮海水の積算値と供給海水(排出濃縮海水)の積算値を比較し、切換弁VD−1,VD−2の開度を自動的に制御する工程を示すグラフである。
図6の上段のグラフは、切換弁VS−1,VS−2,VD−1,VD−2の開閉動作を示す。 The upper graph of FIG. 6 shows the opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2. 切換弁VS−1,VS−2,VD−1,VD−2の開閉動作は、図4において説明したとおりである。 The opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2 is as described in FIG. FIG. 6 compares the integrated value of the supplied concentrated seawater to the energy recovery device and the integrated value of the supplied seawater (exhaust concentrated seawater) during a half cycle in the process operation of the switching valve, and switches the switching valves VD-1, VD-. It is a graph which shows the process of controlling the opening degree of 2 automatically. FIG. 6 compares the integrated value of the supplied concentrated seawater to the energy recovery device and the integrated value of the supplied seawater (exhaust concentrated seawater) during a half cycle in the process operation of the switching valve, and switches the switching valves VD- 1, VD-. It is a graph which shows the process of controlling the opening degree of 2 automatically.
The upper graph of FIG. 6 shows the opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2. The opening / closing operations of the switching valves VS-1, VS-2, VD-1, and VD-2 are as described in FIG. The upper graph of FIG. 6 shows the opening / closing operation of the switching valves VS-1, VS-2, VD-1, and VD-2. The opening / closing operations of the switching valves VS-1, VS-2 , VD-1, and VD-2 are as described in FIG.

図6の下段のグラフは、各ステップにおけるエネルギー回収装置への吸入濃縮海水流量,吸入海水流量を示す。
1)ステップ1Aにおいて、切換弁VS−1が開き始めた時点から、エネルギー回収装置への吸入濃縮海水流量を測定する流量計FM1の測定値の積算を開始する。なお、流量計FM1にて測定される吸入濃縮海水流量と流量計FM3にて測定される吐出海水流量とは等しいので、流量計FM3を用いてもよい。
これと同時に、エネルギー回収装置への吸入海水流量を測定する流量計FM4の測定値の積算を開始する。なお、流量計FM4にて測定される吸入海水流量と流量計FM2にて測定される排出濃縮海水流量とは等しいので、流量計FM2を用いてもよい。
2)ステップ5Aの終了、すなわち、ステップ1A〜5Aからなる1/2周期(A)の終了時点で吸入濃縮海水流量の積算および吸入海水流量の積算を終了する。 2) At the end of step 5A, that is, at the end of the 1/2 cycle (A) consisting of steps 1A to 5A, the integration of the suction concentrated seawater flow rate and the integration of the suction seawater flow rate are completed. このときの吸入濃縮海水流量の積算値は矩形状の面積になり、吸入海水流量の積算値は台形状の面積になる。 At this time, the integrated value of the suction concentrated seawater flow rate is a rectangular area, and the integrated value of the suction seawater flow rate is a trapezoidal area. 次のステップ1B〜5Bからなる1/2周期(B)においても同様に積算値を得る。 Similarly, the integrated value is obtained in the 1/2 cycle (B) consisting of the next steps 1B to 5B.
3)次に、吸入濃縮海水流量の積算値と吸入海水流量の積算値とを比較し、エネルギー回収装置への供給海水流量の積算値≧エネルギー回収装置への供給濃縮海水流量の積算値になるように、次の1/2周期で切換弁VD−1,VD−2の開度を自動調整する。 3) Next, the integrated value of the suction concentrated seawater flow rate is compared with the integrated value of the suction concentrated seawater flow rate, and the integrated value of the seawater flow rate supplied to the energy recovery device ≥ the integrated value of the concentrated seawater flow rate supplied to the energy recovery device. As described above, the opening degrees of the switching valves VD-1 and VD-2 are automatically adjusted in the next 1/2 cycle.
すなわち、1/2周期(A)の積算値比較結果を次の1/2周期(A)に反映する。 That is, the integrated value comparison result of the 1/2 cycle (A) is reflected in the next 1/2 cycle (A). つまり、積算値比較結果に基づいて切換弁VD−2の開度を制御する。 That is, the opening degree of the switching valve VD-2 is controlled based on the integrated value comparison result.
1/2周期(B)の積算値比較結果を次の1/2周期(B)に反映する。 The integrated value comparison result of the 1/2 cycle (B) is reflected in the next 1/2 cycle (B). つまり、積算値比較結果に基づいて切換弁VD−1の開度を制御する。 That is, the opening degree of the switching valve VD-1 is controlled based on the integrated value comparison result.
4)切換弁の開閉工程において、切換弁VS−1,VS−2の開き始めから閉じ終わりまでの、各々1/2周期間にて、上記1)〜3)の制御を行う。 4) In the opening / closing process of the switching valve, the above 1) to 3) are controlled in each 1/2 cycle from the opening start to the closing end of the switching valves VS-1 and VS-2.
なお、手順3)における条件を確実に満たすために、エネルギー回収装置への供給濃縮海水流量の積算値に予め設定した係数を掛けた上で、上記の条件だしを行うこともありうる。 In addition, in order to surely satisfy the condition in step 3), the above condition may be set after multiplying the integrated value of the flow rate of concentrated seawater supplied to the energy recovery device by a preset coefficient. The lower graph of FIG. 6 shows the intake concentrated seawater flow rate and the intake seawater flow rate to the energy recovery device in each step. The lower graph of FIG. 6 shows the intake concentrated seawater flow rate and the intake seawater flow rate to the energy recovery device in each step.
1) In step 1A, from the time when the switching valve VS-1 starts to open, integration of the measured value of the flow meter FM1 that measures the suction concentrated seawater flow rate to the energy recovery device is started. Since the suction concentrated seawater flow rate measured by the flow meter FM1 and the discharge seawater flow rate measured by the flow meter FM3 are equal, the flow meter FM3 may be used. 1) In step 1A, from the time when the switching valve VS-1 starts to open, integration of the measured value of the flow meter FM1 that measures the suction concentrated seawater flow rate to the energy recovery device is started. Since the suction concentrated seawater flow rate measured by the flow meter FM1 and the discharge seawater flow rate measured by the flow meter FM3 are equal, the flow meter FM3 may be used.
At the same time, integration of the measured values of the flow meter FM4 that measures the intake seawater flow rate to the energy recovery device is started. Since the intake seawater flow rate measured by the flow meter FM4 and the exhaust concentrated seawater flow rate measured by the flow meter FM2 are equal, the flow meter FM2 may be used. At the same time, integration of the measured values ​​of the flow meter FM4 that measures the intake seawater flow rate to the energy recovery device is started. Since the intake seawater flow rate measured by the flow meter FM4 and the exhaust concentrated seawater flow rate measured by the flow meter FM2 are equal, the flow meter FM2 may be used.
2) At the end of step 5A, that is, at the end of the half cycle (A) consisting of steps 1A to 5A, the integration of the intake concentrated seawater flow rate and the integration of the intake seawater flow rate are ended. The integrated value of the intake concentrated seawater flow rate at this time is a rectangular area, and the integrated value of the intake seawater flow rate is a trapezoidal area. Similarly, the integrated value is obtained in the next half cycle (B) including Steps 1B to 5B. 2) At the end of step 5A, that is, at the end of the half cycle (A) consisting of steps 1A to 5A, the integration of the intake concentrated seawater flow rate and the integration of the intake seawater flow rate are ended. The integrated value of the intake concentrated seawater flow rate at this time is a rectangular area, and the integrated value of the intake seawater flow rate is a trapezoidal area. Similarly, the integrated value is obtained in the next half cycle (B) including Steps 1B to 5B.
3) Next, the integrated value of the intake concentrated seawater flow rate is compared with the integrated value of the intake seawater flow rate, and the integrated value of the supplied seawater flow rate to the energy recovery device ≧ the integrated value of the supply concentrated seawater flow rate to the energy recovery device. Thus, the opening degree of the switching valves VD-1 and VD-2 is automatically adjusted in the next 1/2 cycle. 3) Next, the integrated value of the intake concentrated seawater flow rate is compared with the integrated value of the intake seawater flow rate, and the integrated value of the supplied seawater flow rate to the energy recovery device ≧ the integrated value of the supply concentrated seawater flow rate to the energy recovery device. Thus, the opening degree of the switching valves VD-1 and VD-2 is automatically adjusted in the next 1/2 cycle.
That is, the integrated value comparison result of 1/2 cycle (A) is reflected in the next 1/2 cycle (A). That is, the opening degree of the switching valve VD-2 is controlled based on the integrated value comparison result. That is, the opening degree of the switching valve VD-2 is controlled based on the integrated value comparison. That is, the opening degree of the switching valve VD-2 is reflected in the next 1/2 cycle (A). result.
The integrated value comparison result of 1/2 cycle (B) is reflected in the next 1/2 cycle (B). That is, the opening degree of the switching valve VD-1 is controlled based on the integrated value comparison result. The integrated value comparison result of 1/2 cycle (B) is reflected in the next 1/2 cycle (B). That is, the opening degree of the switching valve VD-1 is controlled based on the integrated value comparison result.
4) In the opening / closing process of the switching valve, the controls 1) to 3) are performed during each ½ cycle from the opening start to the closing end of the switching valves VS-1 and VS-2. 4) In the opening / closing process of the switching valve, the controls 1) to 3) are performed during each ½ cycle from the opening start to the closing end of the switching valves VS-1 and VS-2.
In order to reliably satisfy the condition in step 3), the above condition may be set after multiplying the integrated value of the supply concentrated seawater flow rate to the energy recovery device by a preset coefficient. In order to reliably satisfy the condition in step 3), the above condition may be set after multiplying the integrated value of the supply concentrated seawater flow rate to the energy recovery device by a preset coefficient.

図7(a),(b)は、図3乃至図6に示すようなエネルギー回収装置の動作を実現する制御方法の手順を示すフローチャートである。
図7(a)に示す第1の態様においては、エネルギー回収装置(ERD)の運転制御を開始し、エネルギー回収装置への供給濃縮海水流量を測定する流量計FM1のカウンタをリセットするとともに積算を開始する。 In the first aspect shown in FIG. 7A, the operation control of the energy recovery device (ERD) is started, the counter of the flow meter FM1 for measuring the flow rate of concentrated seawater supplied to the energy recovery device is reset, and the integration is performed. Start. なお、流量計FM1を流量計FM3に置き換えてもよい。 The flow meter FM1 may be replaced with the flow meter FM3. また、エネルギー回収装置への供給海水流量を測定する流量計FM4のカウンタをリセットするとともに積算を開始する。 In addition, the counter of the flow meter FM4 that measures the flow rate of seawater supplied to the energy recovery device is reset and the integration is started. なお、流量計FM4を流量計FM2に置き換えてもよい。 The flow meter FM4 may be replaced with the flow meter FM2. そして、図3において説明したステップ1A〜4Aの工程を順次行ない、ステップ4Aの開始から設定時間Tに到達したか否かを判断し、設定時間Tに到達した場合にステップ5Aに移行する。 Then, the steps 1A to 4A described in FIG. 3 are sequentially performed, it is determined whether or not the set time T has been reached from the start of step 4A, and when the set time T is reached, the process proceeds to step 5A.
ステップ5Aが終了したら、切換弁VD−2の最大開度設定(後述する)を行い、1/2周期が終了し、最初の流量計による積算ステップに戻る。 When step 5A is completed, the maximum opening degree of the switching valve VD-2 (described later) is set, the 1/2 cycle is completed, and the process returns to the first integration step by the flow meter. その後、図7(a)中のステップ1A〜5Aをステップ1B〜5Bにし、かつ切換弁VD−2の最大開度設定を切換弁VD−1の最大開度設定にして、次の1/2周期を実行する。 After that, steps 1A to 5A in FIG. 7A are set to steps 1B to 5B, and the maximum opening degree setting of the switching valve VD-2 is set to the maximum opening degree setting of the switching valve VD-1, and the next 1/2. Execute the cycle. FIGS. 7A and 7B are flowcharts showing the procedure of the control method for realizing the operation of the energy recovery apparatus as shown in FIGS. FIGS. 7A and 7B are flowcharts showing the procedure of the control method for realizing the operation of the energy recovery apparatus as shown in FIGS.
In the 1st mode shown in Drawing 7 (a), operation control of an energy recovery device (ERD) is started, the counter of flow meter FM1 which measures the supply concentration seawater flow rate to an energy recovery device is reset, and integration is carried out. Start. The flow meter FM1 may be replaced with the flow meter FM3. In addition, the counter of the flow meter FM4 that measures the supply seawater flow rate to the energy recovery device is reset and integration is started. The flow meter FM4 may be replaced with the flow meter FM2. Then, steps 1A to 4A described in FIG. 3 are sequentially performed to determine whether the set time T has been reached since the start of step 4A. When the set time T has been reached, the process proceeds to step 5A. In the 1st mode shown in Drawing 7 (a), operation control of an energy recovery device (ERD) is started, the counter of flow meter FM1 which measures the supply concentration seawater flow rate to an energy recovery device is reset, and integration is carried out. Start. The flow meter FM1 may be replaced with the flow meter FM3. In addition, the counter of the flow meter FM4 that measures the supply seawater flow rate to the energy recovery device is reset and integration is started. The flow meter FM4 may be replaced with the flow meter FM2. Then, steps 1A to 4A described in FIG. 3 are sequentially performed to determine whether the set time T has been reached since the start of step 4A. When the set time T has been reached, the process proceeds to step 5A.
When step 5A is completed, the maximum opening of the switching valve VD-2 is set (described later), the ½ cycle is completed, and the process returns to the first integrating step with the flow meter. Thereafter, Steps 1A to 5A in FIG. 7A are changed to Steps 1B to 5B, and the maximum opening setting of the switching valve VD-2 is set to the maximum opening setting of the switching valve VD-1. Run the cycle. When step 5A is completed, the maximum opening of the switching valve VD-2 is set (described later), the ½ cycle is completed, and the process returns to the first integrating step with the flow meter. Therefore, Steps 1A to 5A in FIG. 7A are changed to Steps 1B to 5B, and the maximum opening setting of the switching valve VD-2 is set to the maximum opening setting of the switching valve VD-1. Run the cycle.

図7(b)に示す態様は、図7(a)に示す態様の設定時間の判断ステップを流量計FM1の積算値の判断ステップに置き換えたものである。すなわち、図7(b)に示す態様においては、流量計FM1により測定されるエネルギー回収装置への供給濃縮海水流量の積算値がエネルギー回収チャンバーの実容積の所定の割合(80−90%)に到達したか否かを判断し、到達した場合にステップ5Aに移行する。その他のステップは、図7(a)と同様である。なお、流量計FM1を流量計FM3に置き換えて流量計FM3の積算値を求めてもよい。   The mode shown in FIG. 7B is obtained by replacing the step of determining the set time of the mode shown in FIG. 7A with a step of determining the integrated value of the flow meter FM1. That is, in the embodiment shown in FIG. 7B, the integrated value of the supply concentrated seawater flow rate to the energy recovery device measured by the flow meter FM1 is set to a predetermined ratio (80-90%) of the actual volume of the energy recovery chamber. It is determined whether or not it has been reached. Other steps are the same as those in FIG. Note that the integrated value of the flow meter FM3 may be obtained by replacing the flow meter FM1 with the flow meter FM3.

図8(a),(b)は、図7(a),(b)に示す切換弁VD−1,VD−2の最大開度設定の手順を示すフローチャートである。
図8(a)おいては、切換弁VD−1の最大開度設定を開始し、エネルギー回収装置への供給濃縮海水流量を測定する流量計FM1の積算値(Vbi)とエネルギー回収装置への供給海水流量を測定する流量計FM4の積算値(Vsi)を比較し、Vbi−Vsi<0であるか否かを判断する。 In FIG. 8A, the integrated value (Vbi) of the flow meter FM1 for starting the setting of the maximum opening degree of the switching valve VD-1 and measuring the flow rate of the concentrated seawater supplied to the energy recovery device and the energy recovery device. The integrated value (Vsi) of the flow meter FM4 for measuring the supplied seawater flow rate is compared, and it is determined whether or not Vbi-Vsi <0. Vbi−Vsi<0でない場合(NOの場合)には、切換弁VD−1の最大開度を予め規定した度合い(%)で大きくして切換弁VD−1の最大開度設定を終了する。 If Vbi-Vsi <0 (NO), the maximum opening degree of the switching valve VD-1 is increased by a predetermined degree (%) to end the setting of the maximum opening degree of the switching valve VD-1. Vbi−Vsi<0である場合(YESの場合)には、Vbi−Vsiの絶対値が予め規定した範囲外か否かを判断し、範囲外の場合(YESの場合)には、切換弁VD−1の最大開度を予め規定した度合い(%)で小さくして切換弁VD−1の最大開度設定を終了し、範囲内の場合(NOの場合)には、切換弁VD−1の最大開度をそのままにして切換弁VD−1の最大開度設定を終了する。 When Vbi-Vsi <0 (YES), it is determined whether the absolute value of Vbi-Vsi is out of the predetermined range, and when it is out of the range (YES), the switching valve VD When the maximum opening degree of the switching valve VD-1 is set by reducing the maximum opening degree of -1 by a predetermined degree (%) and within the range (NO), the switching valve VD-1 The setting of the maximum opening degree of the switching valve VD-1 is completed while keeping the maximum opening degree as it is. FIGS. 8A and 8B are flowcharts showing the procedure for setting the maximum opening of the switching valves VD-1 and VD-2 shown in FIGS. 7A and 7B. FIGS. 8A and 8B are flowcharts showing the procedure for setting the maximum opening of the switching valves VD-1 and VD-2 shown in FIGS. 7A and 7B.
In FIG. 8A, the maximum opening setting of the switching valve VD-1 is started, and the integrated value (Vbi) of the flow meter FM1 that measures the supply concentrated seawater flow rate to the energy recovery device and the energy recovery device. The integrated value (Vsi) of the flow meter FM4 that measures the supply seawater flow rate is compared, and it is determined whether or not Vbi−Vsi <0. When Vbi−Vsi <0 is not satisfied (in the case of NO), the maximum opening degree of the switching valve VD-1 is increased by a predetermined degree (%), and the setting of the maximum opening degree of the switching valve VD-1 is completed. When Vbi-Vsi <0 (in the case of YES), it is determined whether or not the absolute value of Vbi-Vsi is out of the predetermined range. If out of the range (in the case of YES), the switching valve VD is determined. -1 is decreased by a predetermined degree (%) to complete the setting of the maximum opening of the switching valve VD-1, and when it is w In FIG. 8A, the maximum opening setting of the switching valve VD-1 is started, and the integrated value (Vbi) of the flow meter FM1 that measures the supply concentrated seawater flow rate to the energy recovery device and the energy recovery device. The integrated value (Vsi) of the flow meter FM4 that measures the supply seawater flow rate is compared, and it is determined whether or not Vbi−Vsi <0. When Vbi−Vsi <0 is not satisfied (in the case of NO) , the maximum opening degree of the switching valve VD-1 is increased by a predetermined degree (%), and the setting of the maximum opening degree of the switching valve VD-1 is completed. When Vbi-Vsi <0 (in the case) of YES), it is determined whether or not the absolute value of Vbi-Vsi is out of the predetermined range. If out of the range (in the case of YES), the switching valve VD is determined. -1 is decreased by a predetermined degree (%) to complete the setting of the maximum opening of the switching valve VD-1, and when it is w ithin the range (in the case of NO), the switching valve VD-1 The maximum opening setting of the switching valve VD-1 is finished while leaving the maximum opening as it is. ithin the range (in the case of NO), the switching valve VD-1 The maximum opening setting of the switching valve VD-1 is finished while leaving the maximum opening as it is.

図8(b)においては、切換弁VD−2の最大開度設定を開始し、エネルギー回収装置への供給濃縮海水流量を測定する流量計FM1の積算値(Vbi)とエネルギー回収装置への供給海水流量を測定する流量計FM4の積算値(Vsi)を比較し、Vbi−Vsi<0であるか否かを判断する。Vbi−Vsi<0でない場合(NOの場合)には、切換弁VD−2の最大開度を予め規定した度合い(%)で大きくして切換弁VD−2の最大開度設定を終了する。Vbi−Vsi<0である場合(YESの場合)には、Vbi−Vsiの絶対値が予め規定した範囲外か否かを判断し、範囲外の場合(YESの場合)には、切換弁VD−2の最大開度を予め規定した度合い(%)で小さくして切換弁VD−2の最大開度設定を終了し、範囲内の場合(NOの場合)には、切換弁VD−2の最大開度をそのままにして切換弁VD−2の最大開度設定を終了する。図8(a),(b)において流量計FM1を流量計FM3に置き換え、流量計FM4を流量計FM2に置き換えてもよいことは、上述したとおりである。   In FIG. 8B, the maximum opening degree setting of the switching valve VD-2 is started, and the integrated value (Vbi) of the flow meter FM1 that measures the supply concentrated seawater flow rate to the energy recovery device and the supply to the energy recovery device The integrated value (Vsi) of the flow meter FM4 that measures the seawater flow rate is compared to determine whether or not Vbi−Vsi <0. When Vbi−Vsi <0 is not satisfied (in the case of NO), the maximum opening degree of the switching valve VD-2 is increased by a predetermined degree (%), and the setting of the maximum opening degree of the switching valve VD-2 is ended. When Vbi-Vsi <0 (in the case of YES), it is determined whether or not the absolute value of Vbi-Vsi is out of the predetermined range. If out of the range (in the case of YES), the switching valve VD is determined. -2 is decreased by a predetermined degree (%) to complete the setting of the maximum opening of the switching valve VD-2. If the switching valve VD-2 is within the range (in the case of NO), the switching valve VD-2 The maximum opening setting of the switching valve VD-2 is finished while leaving the maximum opening as it is. As described above, the flowmeter FM1 may be replaced with the flowmeter FM3 and the flowmeter FM4 may be replaced with the flowmeter FM2 in FIGS.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。例えば、本発明は、図9に示すようなピストンを有した形態のエネルギー回収チャンバーにも適用できることは勿論である。また、切換弁の開閉動作について、1つの切換弁(例えば、VS−1)が開動作(又は閉動作)を行っているときに他の切換弁(例えば、VS−2)を閉動作(又は開動作)を行わせ、2つの切換弁の開閉時のチャートが交叉するように制御してもよい。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various forms within the scope of the technical idea. For example, the present invention can be applied to an energy recovery chamber having a piston as shown in FIG. As for the opening / closing operation of the switching valve, when one switching valve (for example, VS-1) is performing the opening operation (or closing operation), the other switching valve (for example, VS-2) is closed (or Control may be performed so that the charts at the time of opening and closing of the two switching valves cross each other.

1 前処理装置
2 送水ポンプ
3 高圧ポンプライン
4 エネルギー回収装置海水供給ライン
5 高圧ポンプ
6 ブースターポンプ海水供給ライン
7 ブースターポンプ
8 逆浸透膜分離装置
8a 逆浸透膜(RO膜)
9 濃縮海水ライン10 エネルギー回収装置11,12 エネルギー回収チャンバー15 チェック弁モジュール16 濃縮海水排出ライン20 切換装置21 制御装置FM1,FM2,FM3,FM4 流量計P1 濃縮海水ポートP2 海水ポートVS−1,VS−2,VD−1,VD−2 切換弁DESCRIPTION OF SYMBOLS 1 Pretreatment device 2 Water pump 3 High pressure pump line 4 Energy recovery device seawater supply line 5 High pressure pump 6 Booster pump seawater supply line 7 Booster pump 8 Reverse osmosis membrane separation device 8a Reverse osmosis membrane (RO membrane) 9 Concentrated seawater line 10 Energy recovery device 11, 12 Energy recovery chamber 15 Check valve module 16 Concentrated seawater discharge line 20 Switching device 21 Control device FM1, FM2, FM3, FM4 Flow meter P1 Concentrated seawater port P2 Seawater port VS-1, VS −2, VD-1, VD-2 switching valve DESCRITION OF SYMBOLS 1 Pretreatment device 2 Water pump 3 High pressure pump line 4 Energy recovery device seawater supply line 5 High pressure pump 6 Booster pump seawater supply line 7 Booster pump 8 Reverse osmosis membrane separation device 8a Reverse osmosis membrane (RO membrane)
9 Concentrated seawater line 10 Energy recovery device 11, 12 Energy recovery chamber 15 Check valve module 16 Concentrated seawater discharge line 20 Switching device 21 Controller FM1, FM2, FM3, FM4 Flowmeter P1 Concentrated seawater port P2 Seawater port VS-1, VS -2, VD-1, VD-2 selector valve 9 Concentrated seawater line 10 Energy recovery device 11, 12 Energy recovery chamber 15 Check valve module 16 Concentrated seawater discharge line 20 Switching device 21 Controller FM1, FM2, FM3, FM4 Flowmeter P1 Concentrated seawater port P2 Seawater port VS-1, VS -2 , VD-1, VD-2 selector valve

Claims (7)

  1. ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムに設けられ、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー回収装置において、
    濃縮海水および海水を給排水して濃縮海水の圧力エネルギーによって海水を昇圧する複数のチャンバーと、
    前記複数のチャンバーの各チャンバーに流入する海水または濃縮海水の流量を積算するために用いる第1流量計と、
    前記複数のチャンバーの各チャンバーから排出される海水または濃縮海水の流量を積算するために用いる第2流量計と、
    前記各チャンバーへの濃縮海水の流入と前記各チャンバーからの濃縮海水の排出を切り換える切換装置と、 A switching device that switches between the inflow of concentrated seawater into each chamber and the discharge of concentrated seawater from each chamber.
    前記第1流量計および前記第2流量計の流量に基づき前記各チャンバーの積算流量を求めて該積算流量に基づいて前記切換装置を制御する制御装置とを備え、 A control device for obtaining the integrated flow rate of each chamber based on the flow rate of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate is provided.
    前記切換装置は、濃縮海水排出側に開度調節が可能な切換弁を備え、 The switching device is provided with a switching valve capable of adjusting the opening degree on the concentrated seawater discharge side.
    前記制御装置は、前記各チャンバーそれぞれについて、前記第1流量計の流量に基づき前記各チャンバーに流入する濃縮海水の積算流量を求めるか、または前記第2流量計の流量に基づき前記各チャンバーから排出される海水の積算流量を求めることにより、前記各チャンバーに流入する濃縮海水の積算流量を求め、前記第1流量計の流量に基づき前記各チャンバーに流入する海水の積算流量を求めるか、または前記第2流量計の流量に基づき前記各チャンバーから排出される濃縮海水の積算流量を求めることにより、前記各チャンバーに流入する海水の積算流量を求め、前記各チャンバーに流入する濃縮海水の積算流量と前記各チャンバーに流入する海水の積算流量とを前記切換弁の開閉の周期に基づいて定められた周期毎に比較し、前記各チャンバーに流入する海水の積算流量が前記各チャンバーに流入する濃縮海水の積算流量と等しいか多くなるように前記切換弁の開度を調整することを特徴とするエネルギー回収装置。 For each of the chambers, the control device obtains the integrated flow rate of concentrated seawater flowing into each chamber based on the flow rate of the first flow meter, or discharges from each chamber based on the flow rate of the second flow meter. By obtaining the integrated flow rate of seawater to be produced, the integrated flow rate of concentrated seawater flowing into each chamber is obtained, and the integrated flow rate of seawater flowing into each chamber is obtained based on the flow rate of the first flow meter, or the above. By obtaining the integrated flow rate of concentrated seawater discharged from each chamber based on the flow rate of the second flow meter, the integrated flow rate of seawater flowing into each chamber is obtained, and the integrated flow rate of concentrated seawater flowing into each chamber is obtained. The integrated flow rate of seawater flowing into each chamber is compared with each cycle determined based on the opening / closing cycle of the switching valve, and the integrated flow rate of seawater flowing into each chamber is concentrated seawater flowing into each chamber. An energy recovery device characterized in that the opening degree of the switching valve is adjusted so as to be equal to or greater than the integrated flow rate of . Concentrated seawater discharged from the reverse osmosis membrane separator is provided in a seawater desalination system that generates fresh water from seawater by passing seawater pressurized by a pump through a reverse osmosis membrane separator and separating it into fresh water and concentrated seawater. In the energy recovery device that uses the pressure energy of the energy for boosting a part of the seawater, Concentrated seawater discharged from the reverse osmosis membrane separator is provided in a seawater desalination system that generates fresh water from seawater by passing seawater appropriately by a pump through a reverse osmosis membrane separator and separating it into fresh water and concentrated seawater. In the energy recovery device that uses the pressure energy of the energy for boosting a part of the seawater,
    A plurality of chambers for supplying and draining the concentrated seawater and seawater to pressurize the seawater by the pressure energy of the concentrated seawater; A plurality of chambers for supplying and draining the concentrated seawater and seawater to pressurize the seawater by the pressure energy of the concentrated seawater;
    A first flow meter used for integrating the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers; A first flow meter used for integrating the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers;
    A second flow meter used for integrating the flow rate of seawater or concentrated seawater discharged from each chamber of the plurality of chambers; A second flow meter used for integrating the flow rate of seawater or concentrated seawater discharged from each chamber of the plurality of chambers;
    A switching device that switches inflow of concentrated seawater to each chamber and discharge of concentrated seawater from each chamber; A switching device that switches inflow of concentrated seawater to each chamber and discharge of concentrated seawater from each chamber;
    A control device for determining an integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate; A control device for determining an integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate;
    The switching device includes a switching valve capable of adjusting the opening on the concentrated seawater discharge side, The switching device includes a switching valve capable of adjusting the opening on the concentrated seawater discharge side,
    The control device obtains an integrated flow rate of concentrated seawater flowing into each chamber based on the flow rate of the first flow meter for each of the chambers, or discharges from each chamber based on the flow rate of the second flow meter. Determining the integrated flow rate of the concentrated seawater flowing into each chamber by determining the integrated flow rate of the seawater to be obtained, and determining the integrated flow rate of seawater flowing into each chamber based on the flow rate of the first flow meter, or By obtaining the integrated flow rate of the concentrated seawater discharged from each chamber based on the flow rate of the second flow meter, the integrated flow rate of the seawater flowing into each chamber is obtained, the comparison in each cycle which is determined on the basis of the integrated flow rate of the seawater flowing into the chambers to the period of opening and closing of the switching valve, wherein Energy recovery apparatu Determining the integrated. Determining the integrated the control device obtains an integrated flow rate of concentrated seawater flowing into each chamber based on the flow rate of the first flow meter for each of the chambers, or discharges from each chamber based on the flow rate of the second flow meter. flow rate of the concentrated seawater flowing into each chamber by determining the integrated flow rate of the seawater to be obtained, and determining the integrated flow rate of seawater flowing into each chamber based on the flow rate of the first flow meter, or By obtaining the integrated flow rate of the concentrated seawater discharged from each chamber based on the flow rate of the second flow meter, the integrated flow rate of the seawater flowing into each chamber is obtained, the comparison in each cycle which is determined on the basis of the integrated flow rate of the seawater flowing into the chambers to the period of opening and closing of the switching valve, wherein Energy recovery apparatu s characterized by adjusting the opening of the switching valve as the integrated flow rate of the seawater flowing into the chamber is increased equal to or accumulated flow rate of the concentrated seawater flowing into the respective chamber. s characterized by adjusting the opening of the switching valve as the integrated flow rate of the seawater flowing into the chamber is increased equal to or accumulated flow rate of the concentrated seawater flowing into the respective chamber.
  2. 前記制御装置は、前記第1流量計または前記第2流量計による前記各チャンバーの積算流量が所定値に到達したときに前記切換装置の切換を行うように制御することを特徴とする請求項1記載のエネルギー回収装置。   2. The control device according to claim 1, wherein the switching device is controlled to be switched when an integrated flow rate of each chamber by the first flow meter or the second flow meter reaches a predetermined value. The energy recovery device described.
  3. 前記各チャンバーの実容積の所定の割合から算定される値で前記切換装置の切換を行うことを特徴とする請求項2記載のエネルギー回収装置。   The energy recovery device according to claim 2, wherein the switching device is switched at a value calculated from a predetermined ratio of an actual volume of each chamber.
  4. 前記制御装置は、前記第1流量計により前記各チャンバーへの濃縮海水の流入量の積算値を求め、前記第2流量計により前記各チャンバーからの濃縮海水の排出量の積算値を求め、前記各チャンバーへの濃縮海水の流入量の積算値と前記各チャンバーからの濃縮海水の排出量の積算値とを比較して、前記各チャンバーから排出される濃縮海水の流量を制御することを特徴とする請求項1に記載のエネルギー回収装置。   The control device obtains an integrated value of the inflow amount of the concentrated seawater into the chambers by the first flow meter, obtains an integrated value of the discharge amount of the concentrated seawater from the chambers by the second flow meter, Comparing the integrated value of the inflow of concentrated seawater into each chamber and the integrated value of the discharged amount of concentrated seawater from each chamber, the flow rate of the concentrated seawater discharged from each chamber is controlled. The energy recovery device according to claim 1.
  5. ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムに設けられ、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー回収装置において、
    濃縮海水および海水を給排水して濃縮海水の圧力エネルギーによって海水を昇圧する複数のチャンバーと、
    前記複数のチャンバーの各チャンバーに流入する海水または濃縮海水の流量を積算するために用いる第1流量計と、
    前記複数のチャンバーの各チャンバーから排出される海水または濃縮海水の流量を積算するために用いる第2流量計と、
    前記各チャンバーへの濃縮海水の流入と前記各チャンバーからの濃縮海水の排出を切り換える切換装置と、 A switching device that switches between the inflow of concentrated seawater into each chamber and the discharge of concentrated seawater from each chamber.
    前記第1流量計および前記第2流量計の流量に基づき前記各チャンバーの積算流量を求めて該積算流量に基づいて前記切換装置を制御する制御装置とを備え、 A control device for obtaining the integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate is provided.
    前記切換装置は、濃縮海水排出側に開度調節が可能な切換弁を備え、 The switching device is provided with a switching valve capable of adjusting the opening degree on the concentrated seawater discharge side.
    前記制御装置は、前記各チャンバーそれぞれについて、前記各チャンバーに流入する濃縮海水の積算流量と海水の積算流量とを前記切換弁の開閉の周期に基づいて定められた周期毎に比較し、比較結果に基づいて前記切換弁の開度を調整し、 For each of the chambers, the control device compares the integrated flow rate of concentrated seawater flowing into each chamber and the integrated flow rate of seawater for each cycle determined based on the opening / closing cycle of the switching valve, and the comparison result. Adjust the opening degree of the switching valve based on
    前記制御装置は、前記第1流量計による前記各チャンバーへの海水の流入量の積算値と前記第2流量計による前記各チャンバーから排出される海水の積算値とを比較して、前記各チャンバーへの海水の流入量の積算値が前記各チャンバーから排出される海水の積算値と等しいか多くなるように前記切換装置を制御する、もしくは、前記第1流量計による前記各チャンバーへの濃縮海水の流入量の積算値と前記第2流量計による前記各チャンバーからの濃縮海水の排出量の積算値とを比較して、前記各チャンバーからの濃縮海水の排出量の積算値が前記各チャンバーへの濃縮海水の流入量の積算値と等しいか多くなるように前記切換装置を制御することを特徴とするエネルギー回収装置。 The control device compares the integrated value of the inflow of seawater into each chamber by the first flowmeter with the integrated value of seawater discharged from each chamber by the second flowmeter, and compares each chamber. The switching device is controlled so that the integrated value of the inflow of seawater into each chamber is equal to or greater than the integrated value of seawater discharged from each chamber, or the concentrated seawater to each chamber by the first flow meter. By comparing the integrated value of the inflow amount of the above with the integrated value of the discharged amount of concentrated seawater from each of the chambers by the second flow meter, the integrated value of the discharged amount of concentrated seawater from each of the chambers is sent to each of the chambers. features and to Rue energy recovery device that controls the switching device to be larger or equal to the integrated value of the inflow of concentrated sea water. Concentrated seawater discharged from the reverse osmosis membrane separator is provided in a seawater desalination system that generates fresh water from seawater by passing seawater pressurized by a pump through a reverse osmosis membrane separator and separating it into fresh water and concentrated seawater. In the energy recovery device that uses the pressure energy of the energy for boosting a part of the seawater, Concentrated seawater discharged from the reverse osmosis membrane separator is provided in a seawater desalination system that generates fresh water from seawater by passing seawater appropriately by a pump through a reverse osmosis membrane separator and separating it into fresh water and concentrated seawater. In the energy recovery device that uses the pressure energy of the energy for boosting a part of the seawater,
    A plurality of chambers for supplying and draining the concentrated seawater and seawater to pressurize the seawater by the pressure energy of the concentrated seawater; A plurality of chambers for supplying and draining the concentrated seawater and seawater to pressurize the seawater by the pressure energy of the concentrated seawater;
    A first flow meter used for integrating the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers; A first flow meter used for integrating the flow rate of seawater or concentrated seawater flowing into each chamber of the plurality of chambers;
    A second flow meter used for integrating the flow rate of seawater or concentrated seawater discharged from each chamber of the plurality of chambers; A second flow meter used for integrating the flow rate of seawater or concentrated seawater discharged from each chamber of the plurality of chambers;
    A switching device that switches inflow of concentrated seawater to each chamber and discharge of concentrated seawater from each chamber; A switching device that switches inflow of concentrated seawater to each chamber and discharge of concentrated seawater from each chamber;
    A control device for determining an integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate; A control device for determining an integrated flow rate of each chamber based on the flow rates of the first flow meter and the second flow meter and controlling the switching device based on the integrated flow rate;
    The switching device includes a switching valve capable of adjusting the opening on the concentrated seawater discharge side, The switching device includes a switching valve capable of adjusting the opening on the concentrated seawater discharge side,
    The control device compares, for each of the chambers, an integrated flow rate of concentrated seawater flowing into the chambers and an integrated flow rate of seawater for each period determined based on an opening / closing period of the switching valve, and a comparison result Adjusting the opening of the switching valve based on The control device compares, for each of the chambers, an integrated flow rate of concentrated seawater flowing into the chambers and an integrated flow rate of seawater for each period determined based on an opening / closing period of the switching valve, and a comparison result Adjusting the opening of the switching valve based on
    The control device compares the integrated value of the inflow amount of seawater into the chambers by the first flow meter with the integrated value of seawater discharged from the chambers by the second flow meter, The switching device is controlled so that the integrated value of the inflow amount of seawater into the chamber is equal to or greater than the integrated value of the seawater discharged from the chambers, or the concentrated seawater into the chambers by the first flow meter The integrated value of the inflow of concentrated seawater and the integrated value of the discharged amount of concentrated seawater from each chamber by the second flowmeter are compared, and the integrated value of the discharged amount of concentrated seawater from each chamber is compared with each chamber. features and to Rue energy recovery device that controls the switching device to be larger or equal to the integrated value of the inflow of concentrated sea water. The control device compares the integrated value of the inflow amount of seawater into the chambers by the first flow meter with the integrated value of seawater discharged from the chambers by the second flow meter, The switching device is controlled so that the integrated value of the inflow amount of seawater into the chamber is equal to or greater than the integrated value of the seawater discharged from the chambers, or the concentrated seawater into the chambers by the first flow meter The integrated value of the inflow of concentrated seawater and the integrated value of the discharged amount of concentrated seawater from each chamber by the second flowmeter are compared, and the integrated value of the discharged amount of concentrated seawater from each chamber is compared with each chamber. Features and to Rue energy recovery device that controls the switching device to be larger or equal to the integrated value of the inflow of concentrated sea water.
  6. 前記制御装置は、複数のチャンバーから昇圧された海水を同時に排出する工程を含むように前記切換装置を制御することを特徴とする請求項1または5記載のエネルギー回収装置。 Wherein the control device, the energy recovery apparatus of claim 1 or 5, wherein the controller controls the switching device to include a step of discharging the seawater boosted from a plurality of chambers at the same time.
  7. ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、
    前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するのに利用する請求項1乃至6のいずれか1項に記載のエネルギー回収装置を備えたことを特徴とする海水淡水化システム。 The energy recovery device according to any one of claims 1 to 6, which uses the pressure energy of concentrated seawater discharged from the back-penetrating membrane separation device to boost a part of the seawater. Seawater desalination system. In a seawater desalination system that generates fresh water from seawater by passing seawater pressurized by a pump through a reverse osmosis membrane separator and separating it into freshwater and concentrated seawater. In a seawater desalination system that generates fresh water from seawater by passing seawater combining by a pump through a reverse osmosis membrane separator and separating it into freshwater and concentrated seawater.
    The energy recovery device according to any one of claims 1 to 6, wherein the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device is used to boost a part of the seawater. Seawater desalination system. The energy recovery device according to any one of claims 1 to 6, wherein the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device is used to boost a part of the seawater. Seawater desalination system.
JP2012092194A 2012-04-13 2012-04-13 Seawater desalination system and energy recovery device Active JP6026133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092194A JP6026133B2 (en) 2012-04-13 2012-04-13 Seawater desalination system and energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092194A JP6026133B2 (en) 2012-04-13 2012-04-13 Seawater desalination system and energy recovery device

Publications (2)

Publication Number Publication Date
JP2013220372A JP2013220372A (en) 2013-10-28
JP6026133B2 true JP6026133B2 (en) 2016-11-16

Family

ID=49591747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092194A Active JP6026133B2 (en) 2012-04-13 2012-04-13 Seawater desalination system and energy recovery device

Country Status (1)

Country Link
JP (1) JP6026133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747545B (en) * 2015-03-27 2017-01-25 杨超 Reverse osmosis system pressurizing and energy recycling device and pressurizing and energy recycling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124178A (en) * 1977-01-20 1978-10-30 Kobe Steel Ltd Separating method by reverse osmosis
JP2003144856A (en) * 2001-11-12 2003-05-20 Sasakura Engineering Co Ltd Energy recovery apparatus for reverse osmotic membrane apparatus
JP5026463B2 (en) * 2009-04-22 2012-09-12 株式会社荏原製作所 Positive displacement energy recovery device
CN103537190B (en) * 2009-05-15 2016-06-29 株式会社荏原制作所 Seawater desalination system and energy exchange chamber
JP5073009B2 (en) * 2010-05-17 2012-11-14 株式会社東芝 Seawater desalination equipment
JP5161931B2 (en) * 2010-07-21 2013-03-13 株式会社東芝 Seal ring for power recovery device for seawater desalination, power recovery device, and seawater desalination device

Also Published As

Publication number Publication date
JP2013220372A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
AU2008325037B2 (en) Balanced flow dialysis machine
KR101146048B1 (en) A machine and a procedure for extracorporeal treatment of blood
AU2012270067B2 (en) An apparatus for extracorporeal blood treatment
AU2006339546B2 (en) Highly efficient durable fluid pump and method
US10000392B2 (en) Liquid treatment apparatus
JP5451574B2 (en) Water purification system and method, and module for said system
AU774113B2 (en) Device and method for controlling infusion of a liquid in an extracorporeal blood circuit
US4971700A (en) Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis
JP5964541B2 (en) Seawater desalination system and energy exchange chamber
CN104169224B (en) Deionization is removed using capacitive deionization system
US9360848B2 (en) Reverse-osmosis water desalination plant
JP4659310B2 (en) A pumping device having a piston pump for filtering water and a method for desalinating seawater using the pumping device
US7214315B2 (en) Pressure exchange apparatus with integral pump
US20070272628A1 (en) Apparatus for Treating Solutions of High Osmotic Strength
US20040173528A1 (en) Pumps for filtration systems
WO2011140268A3 (en) Dual mode hemodialysis machine
JP6102921B2 (en) Fresh water generation method using separation membrane unit
US7563375B2 (en) Direct osmosis cleaning
JP2016506867A (en) Osmotic separation system and method
JP5751068B2 (en) water treatment system
EP0265352A1 (en) Method and device for pumping two liquids in equal quantities for artificial kidneys
US20110062062A1 (en) Power recovery apparatus
EP1453592B1 (en) Dual head pump driven membrane system
US9725339B2 (en) Reverse osmosis treatment apparatus
US7828972B2 (en) Self-reciprocating energy recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R150 Certificate of patent or registration of utility model

Ref document number: 6026133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250