JP6010674B1 - フィルム製造方法及びフィルム製造装置 - Google Patents

フィルム製造方法及びフィルム製造装置 Download PDF

Info

Publication number
JP6010674B1
JP6010674B1 JP2015185646A JP2015185646A JP6010674B1 JP 6010674 B1 JP6010674 B1 JP 6010674B1 JP 2015185646 A JP2015185646 A JP 2015185646A JP 2015185646 A JP2015185646 A JP 2015185646A JP 6010674 B1 JP6010674 B1 JP 6010674B1
Authority
JP
Japan
Prior art keywords
film
defect
width
original
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015185646A
Other languages
English (en)
Other versions
JP2017058336A (ja
Inventor
剣 王
剣 王
佑介 今
佑介 今
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015185646A priority Critical patent/JP6010674B1/ja
Application granted granted Critical
Publication of JP6010674B1 publication Critical patent/JP6010674B1/ja
Publication of JP2017058336A publication Critical patent/JP2017058336A/ja
Active legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/007Control means comprising cameras, vision or image processing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • B26D7/2628Means for adjusting the position of the cutting member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N2021/8909Scan signal processing specially adapted for inspection of running sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N2021/8909Scan signal processing specially adapted for inspection of running sheets
    • G01N2021/8911Setting scan-width signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】フィルム原反におけるある位置とスリットされたフィルムとの対応を正確に特定することができるフィルム製造方法及びフィルム製造装置を提供する。【解決手段】長手方向に沿って搬送されている電池用のセパレータ原反12bを、長手方向に沿ってスリットして複数の耐熱セパレータ12aを形成するスリット工程を含んでおり、スリット工程は、搬送されているセパレータ原反12bの幅方向の寸法又は幅方向の位置を測定する測定工程を含んでいる。【選択図】図11

Description

本発明は、フィルム製造方法及びフィルム製造装置に関する。
光学フィルムを有するシート状製品の欠点検査装置が知られている(特許文献1)。この欠点検査装置は、保護フィルム検査部から得られた欠点の情報をその位置情報、製造識別情報と共にコードデータ(2次元コード、QRコード(登録商標))として、PVAフィルム原反の片端面に所定ピッチで形成する。
特開2008−116437号公報(2008年5月22日公開)
例えば、リチウムイオン二次電池に使用されるセパレータの製造において、セパレータ原反に欠陥が発生し、セパレータ原反に発生した当該欠陥の位置を特定するために多大の労力が投入されている。
従来の製造工程では、欠陥検出工程において、セパレータ原反を搬送しながら欠陥検出装置を用いてセパレータ原反の欠陥を検出して欠陥の位置を記録した後、スリット工程において、セパレータ原反を切断装置に搬送し、切断装置によりセパレータ原反を製品幅に切断(スリット)することによって、1枚のセパレータ原反から複数のセパレータを得ていた。
しかしながら、セパレータ原反を搬送装置で搬送しながら切断する場合、セパレータ原反の幅方向の位置は、搬送装置におけるセパレータ原反の配置位置、搬送されるセパレータ原反の蛇行又は変形、及び搬送装置によってセパレータ原反に加えられる張力に応じて変化する。その結果、セパレータ原反の切断位置が、本来の切断位置からずれる可能性がある。
その結果、スリットされた複数のセパレータのうち当該欠陥が存在するセパレータの特定が困難になる。特に、当該欠陥の位置が本来のスリットラインに近い程、当該欠陥が存在するセパレータが誤って特定される可能性は高まる。
本発明の目的は、フィルム原反をスリットして複数のフィルムを得る際、フィルム原反におけるある位置とフィルムとの対応を正確に特定することができるフィルム製造方法及びフィルム製造装置を提供することにある。
上記の課題を解決するために、本発明に係るフィルム製造方法は、長手方向に沿って搬送されているフィルム原反を、長手方向に沿ってスリットすることにより複数のフィルムを形成するスリット工程を含んでいるフィルム製造方法であって、前記スリット工程は、搬送されている前記フィルム原反の幅方向の寸法又は幅方向の位置を測定する測定工程を含んでいることを特徴とする。
上記の製造方法によれば、スリット工程において搬送されているフィルム原反の幅方向の寸法又は幅方向の位置を測定することができる。これにより、フィルム原反におけるある位置とフィルムとを正確に対応付けることができる。
本発明に係るフィルム製造方法は、前記フィルム原反に存在する欠陥の位置を特定する欠陥検出工程と、前記欠陥検出工程で検出された前記欠陥の位置と、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する特定工程と、を含む構成であってもよい。
上記の製造方法によれば、欠陥検出工程で検出された欠陥の位置と、スリット工程中の測定工程で測定されたフィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、欠陥が存在するフィルムを特定することができる。
これにより、スリット工程において搬送されるフィルム原反に作用する張力が本来の張力とは異なってしまい、又は、スリット工程において搬送されるフィルム原反の蛇行、変形により、フィルム原反の位置が本来の位置とは異なってしまい、フィルム原反のスリットラインが予め設定されたスリットラインからずれた場合であっても、欠陥が存在するフィルムを正確に特定することができる。
本発明に係るフィルム製造方法は、前記特定工程では、前記フィルム原反をスリットする位置に基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する構成であってもよい。
フィルム原反において検出された欠陥の位置が、本来のフィルム原反をスリットする位置に近い程、当該欠陥が存在するフィルムが誤って特定される可能性は高まる。
これに対して、上記の製造方法によれば、フィルム原反をスリットする位置に基づいて欠陥が存在するフィルムを特定するため、欠陥が存在するフィルムをより正確に特定することができる。
本発明に係るフィルム製造方法は、前記欠陥検出工程では、第1搬送機構により搬送されている前記フィルム原反に存在する欠陥の位置を特定し、前記測定工程では、前記第1搬送機構とは異なる第2搬送機構により搬送されている前記フィルム原反の幅方向の寸法又は幅方向の位置を測定する構成であってもよい。
搬送機構が異なれば、フィルム原反に加わる張力が異なり得る。上記の製造方法によれば、欠陥検出工程と測定工程とで張力が異なる場合であっても、張力の違いによる幅方向の寸法又は幅方向の位置の変化を知ることができる。
本発明に係るフィルム製造方法は、前記測定工程では、前記欠陥検出工程におけるフィルム原反の幅方向の位置に対する前記フィルム原反の幅方向の位置ずれを測定する構成であってもよい。
上記の製造方法によれば、欠陥検出工程におけるフィルム原反の幅方向の位置に対して、測定工程におけるフィルム原反の幅方向の位置ずれが生じた場合であっても、欠陥が存在するフィルムを正確に特定することができる。
本発明に係るフィルム製造方法は、前記測定工程では、前記欠陥検出工程におけるフィルム原反の幅方向の寸法に対する前記フィルム原反の幅方向の伸縮を測定する構成であってもよい。
上記の製造方法によれば、欠陥検出工程におけるフィルム原反の幅方向の寸法に対して、測定工程におけるフィルム原反の寸法の変化が生じた場合であっても、欠陥が存在するフィルムを正確に特定することができる。
本発明に係るフィルム製造方法は、前記スリット工程では、カッター位置を通り搬送方向に沿うスリットラインで前記フィルム原反をスリットし、前記スリット工程は、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置に基づいて、前記カッター位置を調整するカッター調整工程を含む構成であってもよい。
上記の製造方法によれば、測定工程で測定されたフィルム原反の幅方向の寸法又は幅方向の位置に基づいてカッター位置を調整して、フィルム原反をスリットすることができる。
これにより、適切に調整されたカッター位置でフィルム原反をスリットすることができ、複数のフィルムのうち欠陥が存在するフィルムを特定することが容易になる。
本発明に係るフィルム製造方法は、前記スリット工程では、カッター位置を通り搬送方向に沿うスリットラインで前記フィルム原反をスリットし、前記スリット工程は、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置に基づいて、搬送される前記フィルム原反の幅方向の位置又は搬送張力を調整する搬送調整工程を含む構成であってもよい。
上記の製造方法によれば、測定工程で測定されたフィルム原反の幅方向の寸法又は幅方向の位置に基づいてフィルム原反の幅方向の位置又は搬送張力を調整して、フィルム原反をスリットすることができる。
これにより、適切に設定されたスリットラインでフィルム原反をスリットすることができ、複数のフィルムのうち欠陥が存在するフィルムを特定することが容易になる。
本発明に係るフィルム製造方法は、前記欠陥検出工程が、前記検出された欠陥の位置情報を含む欠陥コードを前記フィルム原反に付与し、前記スリット工程が、前記欠陥検出工程において付与された欠陥コードを読み取る欠陥コード読み取り工程を含み、前記特定工程が、前記欠陥コード読み取り工程により読み取られた欠陥コードにより表される前記欠陥の位置と、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定してもよい。
上記の製造方法によれば、フィルム原反の幅方向の寸法又は幅方向の位置を測定する測定工程と、欠陥コードを読み取る欠陥コード読み取り工程とを2つに分けるため、両者を同一工程で実施するよりも、測定の信頼性及び読み取りの信頼性が向上する。
本発明に係るフィルム製造方法は、前記測定工程では、前記フィルム原反の幅方向の端の位置を検出するとともに、前記フィルム原反に形成された、前記フィルム原反に存在する欠陥の位置の情報を含んだ欠陥コードを読み取る構成であってもよい。
上記の製造方法によれば、測定工程において、フィルム原反の幅方向の端の位置の検出と、欠陥コードの読み取りを行うことができるため、製造工程を簡略化することができる。
上記の課題を解決するために、本発明に係るフィルム製造装置は、長手方向に沿って搬送されているフィルム原反を、長手方向に沿ってスリットすることにより複数のフィルムを形成する切断部を備えているフィルム製造装置であって、前記切断部は、前記切断部に搬送されてくる前記フィルム原反の幅方向の寸法又は幅方向の位置を測定する測定部を備えていることを特徴とする。
上記の製造装置によれば、搬送されるフィルム原反の幅方向の寸法又は幅方向の位置を測定することができる。これにより、フィルム原反におけるある位置とフィルムとを正確に対応付けることができる。
本発明に係るフィルム製造装置は、前記フィルム原反に存在する欠陥の位置を特定する欠陥検出部と、前記欠陥検出部で検出された前記欠陥の位置と、前記測定部で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する特定部とをさらに備え、前記欠陥検出部が、前記検出された欠陥の位置情報を含む欠陥コードを前記フィルム原反に付与し、前記切断部が、前記欠陥検出部において付与された欠陥コードを読み取る欠陥コード読み取り部を含み、前記特定部が、前記欠陥コード読み取り部により読み取られた欠陥コードにより表される前記欠陥の位置と、前記測定部で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定してもよい。
上記の製造装置によれば、フィルム原反の幅方向の寸法又は幅方向の位置を測定する測定部と、欠陥コードを読み取る欠陥コード読み取り部とを2つに分けるため、両者を同一の部材で実施するよりも、測定の信頼性及び読み取りの信頼性が向上する。
本発明に係るフィルム製造装置は、前記測定部は、前記フィルム原反の幅方向の端の位置を検出すると共に、前記フィルム原反に形成された、前記フィルム原反に存在する欠陥の位置の情報を含んだ欠陥コードを読み取る構成であってもよい。
上記の製造装置によれば、測定部が、欠陥コードの読み取りを兼ねるため、製造工程に必要な設備を簡略化することができる。
本発明に係るフィルム製造装置は、前記フィルム原反に存在する欠陥の位置を特定する欠陥検出部を備えており、前記欠陥検出部は、第1搬送機構により搬送されている前記フィルム原反に存在する欠陥の位置を特定し、前記測定部は、前記第1搬送機構とは異なる第2搬送機構により搬送されている前記フィルム原反の幅方向の寸法又は幅方向の位置を測定する構成であってもよい。
上記の製造装置によれば、欠陥検出工程とスリット工程とで異なる搬送機構を用いてフィルム原反を搬送した場合であっても、フィルム原反に存在する欠陥の位置を特定し、かつ、フィルム原反の幅方向の寸法又は幅方向の位置を測定することができる。
本発明によれば、フィルム原反をスリットして複数のフィルムを得る際、フィルム原反におけるある位置とフィルムとを正確に対応付けることができる。
実施形態1に係るリチウムイオン二次電池の断面構成を示す模式図である。 図1に示されるリチウムイオン二次電池の詳細構成を示す模式図である。 図1に示されるリチウムイオン二次電池の他の構成を示す模式図である。 上記セパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記欠陥検出工程における基材欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程における塗工欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程におけるピンホール欠陥検査装置の構成を説明するための図である。 上記セパレータ原反に形成される欠陥コードの位置の一例を説明するための図である。 上記セパレータ原反をスリットするスリット装置の構成を示す模式図である。 図9に示されるスリット装置の切断装置の構成を示す拡大図・側面図・正面図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 上記セパレータ原反の幅方向の寸法又は幅方向の位置を測定する測定工程を説明するための模式図である。 上記セパレータ原反の幅方向の位置ずれ及び幅方向の伸縮を説明するための模式図である。 上記セパレータの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図である。 実施形態2に係るセパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。
以下、本発明の実施の形態について、詳細に説明する。
〔実施形態1〕
以下、実施形態1に係るリチウムイオン二次電池、電池用のセパレータ、耐熱セパレータ、耐熱セパレータ製造方法、スリット装置、切断装置について順に説明する。
<リチウムイオン二次電池>
リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が高く、それゆえ、現在、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器、自動車、航空機等の移動体に用いる電池として、また、電力の安定供給に資する定置用電池として広く使用されている。
図1は、リチウムイオン二次電池1の断面構成を示す模式図である。図1に示されるように、リチウムイオン二次電池1は、カソード11と、セパレータ12と、アノード13とを備える。リチウムイオン二次電池1の外部において、カソード11とアノード13との間に、外部機器2が接続される。そして、リチウムイオン二次電池1の充電時には方向Aへ、放電時には方向Bへ、電子が移動する。
<セパレータ>
セパレータ12は、リチウムイオン二次電池1の正極であるカソード11と、その負極であるアノード13との間に、これらに挟持されるように配置される。セパレータ12は、カソード11とアノード13との間を分離しつつ、これらの間におけるリチウムイオンの移動を可能にする多孔質フィルムである。セパレータ12は、その材料として、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを含む。
図2は、図1に示されるリチウムイオン二次電池1の詳細構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が昇温したときの様子を示し、(c)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
図2の(a)に示されるように、セパレータ12には、多数の孔Pが設けられている。通常、リチウムイオン二次電池1のリチウムイオン3は、孔Pを介し往来できる。
ここで、例えば、リチウムイオン二次電池1の過充電、又は、外部機器の短絡に起因する大電流等により、リチウムイオン二次電池1は、昇温することがある。この場合、図2の(b)に示されるように、セパレータ12が融解又は柔軟化し、孔Pが閉塞する。そして、セパレータ12は収縮する。これにより、リチウムイオン3の往来が停止するため、上述の昇温も停止する。
しかし、リチウムイオン二次電池1が急激に昇温する場合、セパレータ12は、急激に収縮する。この場合、図2の(c)に示されるように、セパレータ12は、破壊されることがある。そして、リチウムイオン3が、破壊されたセパレータ12から漏れ出すため、リチウムイオン3の往来は停止しない。ゆえに、昇温は継続する。
<耐熱セパレータ>
図3は、図1に示されるリチウムイオン二次電池1の他の構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
図3の(a)に示されるように、リチウムイオン二次電池1は、耐熱層4をさらに備えてよい。耐熱層4と、セパレータ12とは、耐熱セパレータ12a(セパレータ)を形成している。耐熱層4は、セパレータ12のカソード11側の片面に積層されている。なお、耐熱層4は、セパレータ12のアノード13側の片面に積層されてもよいし、セパレータ12の両面に積層されてもよい。そして、耐熱層4にも、孔Pと同様の孔が設けられている。通常、リチウムイオン3は、孔Pと耐熱層4の孔とを介し往来する。耐熱層4は、その材料として、例えば全芳香族ポリアミド(アラミド樹脂)を含む。
図3の(b)に示されるように、リチウムイオン二次電池1が急激に昇温し、セパレータ12が融解又は柔軟化しても、耐熱層4がセパレータ12を補助しているため、セパレータ12の形状は維持される。ゆえに、セパレータ12が融解又は柔軟化し、孔Pが閉塞するにとどまる。これにより、リチウムイオン3の往来が停止するため、上述の過放電又は過充電も停止する。このように、セパレータ12の破壊が抑制される。
<耐熱セパレータ原反(セパレータ原反)の製造工程>
リチウムイオン二次電池1の耐熱セパレータ12aの製造は特に限定されるものではなく、公知の方法を利用して行うことができる。以下では、セパレータ12がその材料として主にポリエチレンを含む場合を仮定して説明する。しかし、セパレータ12が他の材料を含む場合でも、同様の製造工程により、耐熱セパレータ12aを製造できる。
例えば、熱可塑性樹脂に無機充填剤又は可塑剤を加えてフィルム成形した後、該無機充填剤及び該可塑剤を適当な溶媒で除去する方法が挙げられる。例えば、セパレータ12が、超高分子量ポリエチレンを含むポリエチレン樹脂から形成されてなるポリオレフィンセパレータである場合には、以下に示すような方法により製造することができる。
この方法は、(1)超高分子量ポリエチレンと、無機充填剤(例えば、炭酸カルシウム、シリカ)、又は可塑剤(例えば、低分子量ポリオレフィン、流動パラフィン)とを混練してポリエチレン樹脂組成物を得る混練工程、(2)ポリエチレン樹脂組成物を用いてフィルムを成形する圧延工程、(3)工程(2)で得られたフィルム中から無機充填剤又は可塑剤を除去する除去工程、及び、(4)工程(3)で得られたフィルムを延伸してセパレータ12を得る延伸工程を含む。なお、前記工程(4)を、前記工程(2)と(3)との間で行なうこともできる。
除去工程によって、フィルム中に多数の微細孔が設けられる。延伸工程によって延伸されたフィルムの微細孔は、上述の孔Pとなる。これにより、所定の厚さと透気度とを有するポリエチレン微多孔膜であるセパレータ12が形成される。
なお、混練工程において、超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、無機充填剤100〜400重量部とを混練してもよい。
その後、塗工工程において、セパレータ12の表面に耐熱層4を形成する。例えば、セパレータ12に、アラミド/NMP(N−メチル−ピロリドン)溶液(塗工液)を塗布し、アラミド耐熱層である耐熱層4を形成する。耐熱層4は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。また、耐熱層4として、アルミナ/カルボキシメチルセルロース等のフィラーを含む混合液を塗工してもよい。
また、塗工工程において、セパレータ12の表面に、ポリフッ化ビニリデン/ジメチルアセトアミド溶液(塗工液)を塗布(塗布工程)し、それを凝固(凝固工程)させることによりセパレータ12の表面に接着層を形成することもできる。接着層は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。
塗工液をセパレータ12に塗工する方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。耐熱層4の厚さは塗工ウェット膜の厚み、塗工液中のバインダー濃度とフィラー濃度の和で示される固形分濃度、フィラーのバインダーに対する比を調節することによって制御することができる。
なお、塗工する際にセパレータ12を固定あるいは搬送する支持体としては、樹脂製のフィルム、金属製のベルト、ドラム等を用いることができる。
以上のように、耐熱層4が積層されたセパレータ原反12cである耐熱セパレータ原反12bを製造できる(図4)。製造された耐熱セパレータ原反12bは、円筒形状のコア53に巻き取られる(図4)。なお、以上の製造方法で製造される対象は、耐熱セパレータ原反12bに限定されない。この製造方法は、塗工工程を含まなくてもよい。この場合、製造される対象は、セパレータ原反12cである。以下では、主に機能層として耐熱層を有する耐熱セパレータ(フィルム)を例に挙げて説明するが、機能層を有しないセパレータ(フィルム)およびセパレータ原反(フィルム原反)についても、同様の処理(工程)を行うことができる。
<欠陥検出工程>
リチウムイオン二次電池に使用される耐熱セパレータの製造においては、セパレータ原反に耐熱層を塗工した耐熱セパレータ原反を形成する塗工工程において、検査装置により欠陥を検出すると、当該欠陥を有する原反にマーカにより線を描いて耐熱セパレータ原反を巻き取る。そして、次のスリット工程において耐熱セパレータ原反を巻出す。その後、巻き出された耐熱セパレータ原反に上記マーカによる線を作業員が視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止する。次に、作業員は、上記マーカによる線に対応する欠陥の耐熱セパレータ原反の幅方向の位置を目視確認する。次に、上記マーカによる線に対応する耐熱セパレータ原反の部分が、切断装置により長手方向に沿ってスリットされて複数の耐熱セパレータが形成される。その後、作業員は、上記マーカによる線に対応する欠陥の幅方向の位置に対応する耐熱セパレータの欠陥に対応する位置に、テープを当該耐熱セパレータからはみ出すように貼る。そして、上記テープをはみ出すように貼られた耐熱セパレータは巻き取りローラーに巻き取られる。
次に、巻き取りローラーに巻き取られた上記耐熱セパレータは、巻替工程において、巻き取りローラーから巻替ローラーに巻き替えられる。その後、当該耐熱セパレータからはみ出すように貼られたテープを巻き替える途中で作業員が発見すると、巻き替え動作を停止する。そして、当該テープに対応する欠陥が存在する耐熱セパレータの個所を幅方向に沿って作業員が切断して除去する。次に、巻き取りローラー側の耐熱セパレータと巻替ローラー側の耐熱セパレータとをつなぎ合わせる。その後、巻き替え動作を再開し、耐熱セパレータをすべて巻替ローラーに巻き替える。
しかしながら、耐熱セパレータ原反に欠陥を検出すると上記マーカによる線を描くだけなので、次のスリット工程で、作業員が上記マーカを視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止させて、上記欠陥の幅方向の位置を目視確認する必要がある。このため、耐熱セパレータ原反をスリットした複数の耐熱セパレータでの欠陥位置を特定するために非常に手間がかかる。
図4は、上記耐熱セパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図であり、図4の(a)は両工程の正面図であり、図4の(b)は両工程の平面図である。図5は欠陥検出工程における基材欠陥検査装置55の構成を説明するための図である。図6は欠陥検出工程における塗工欠陥検査装置57の構成を説明するための図である。図7は欠陥検出工程におけるピンホール欠陥検査装置58の構成を説明するための図である。
図4の(a)に示されるように、セパレータ原反12cに塗工部54で耐熱層が塗布された耐熱セパレータ原反12bが搬送機構76a(第1搬送機構)により搬送されてコア53に巻き取られる。セパレータ原反12cの欠陥Dを検査する基材検査工程(欠陥検出工程)は、セパレータ原反12cの繰り出し工程と塗工工程との間に配置された基材欠陥検査装置55(欠陥検出部、セパレータ製造装置)により実施される。基材欠陥検査装置55は、光源55aと検出器55bとが搬送中のセパレータ原反12cを挟むように配置され、光源55aからセパレータ原反12cの表面、裏面に垂直な方向に出射されてセパレータ原反12cを透過した透過光を検出器55bが検出することにより、セパレータ原反12cに存在する欠陥Dを検査する(欠陥Dの位置を特定する)(欠陥検出工程)。上記セパレータ原反12cに存在する欠陥Dは、貫通孔(ピンホール)に係る欠陥、膜厚不正に係る欠陥、及び、異物に係る欠陥を含む。
搬送中のセパレータ原反12cに塗布された耐熱層4の欠陥Dを検査する塗工検査工程(欠陥検出工程)は、塗工工程と、コア53による巻き取り工程との間に配置された塗工欠陥検査装置57(欠陥検出部、セパレータ製造装置)により実施される。塗工欠陥検査装置57は、耐熱セパレータ原反12bの耐熱層4側に配置された光源57a及び検出器57bを有する。塗工欠陥検査装置57は、光源57aから出射されて耐熱層4により反射された反射光を検出器57bで検出することにより、耐熱層4に存在する欠陥Dを検出する(欠陥Dの位置を特定する)。上記耐熱層4に存在する欠陥Dは、スジに係る欠陥、剥がれに係る欠陥、弾きに係る欠陥、及び、表面不良に係る欠陥を含む。上記弾きに係る欠陥とは、異物、油分等で塗工液がセパレータ原反12cの表面から弾かれて局所的に耐熱層4が形成されないか、もしくは、形成されても、ごく薄い耐熱層4になる欠陥を意味する。上記表面不良に係る欠陥とは、耐熱層4の膜厚不良に係る欠陥を意味する。
搬送中の耐熱セパレータ原反12bに生じるピンホールによる欠陥Dを検査するピンホール検査工程(欠陥検出工程)は、塗工欠陥検査装置57と欠陥情報記録装置56との間に配置されたピンホール欠陥検査装置58(欠陥検出部、セパレータ製造装置)により実施される。ピンホール欠陥検査装置58は、耐熱セパレータ原反12bのセパレータ原反12c側に配置された光源58aと、光源58aから耐熱セパレータ原反12bの表面、裏面に垂直な方向に向かって出射した光を通過させるスリット58cと、スリット58cを通過して耐熱セパレータ原反12bを透過した光に基づいて欠陥Dを検出する(欠陥Dの位置を特定する)検出器58bとを有している。上記ピンホールによる欠陥Dは、数百μmから数mmの直径を有する。
ピンホール欠陥検査装置58とコア53との間に欠陥情報記録装置56が配置されている。欠陥情報記録装置56は、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出された欠陥Dの位置情報を表す欠陥コードDCを、2次元コード、QRコード(登録商標)等のコードデータにより、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。上記位置情報は、耐熱セパレータ原反12bの長手方向及び幅方向における欠陥Dの位置を表す。上記位置情報は、欠陥Dの種類を区別できる情報を含んでもよい。欠陥Dの種類は、例えば、基材欠陥検査装置55により検査される基材の構造的欠陥、塗工欠陥検査装置57により検査される塗布に関する欠陥、ピンホール欠陥検査装置58により検査される孔あきに関する欠陥である。
セパレータ原反12c、耐熱セパレータ原反12bのフィルム張力は、通常200N/m以下であり、好ましくは、120N/m以下である。ここで、「フィルム張力」とは、走行するフィルムの幅方向の単位長さ当たりに加わる走行方向の張力を意味する。例えばフィルム張力が200N/mなら、フィルムの幅1mに対して200Nの力が加えられる。フィルム張力が200N/mよりも高いとフィルムの走行方向にシワが入り、欠陥検査の精度が低下する虞がある。また、フィルム張力は通常10N/m以上であり、好ましくは30N/m以上である。フィルム張力が10N/mよりも低いとフィルムの弛みや蛇行が発生する虞がある。セパレータ原反12c、耐熱セパレータ原反12bには、孔Pが形成されており、そのフィルム張力は、光学フィルム等の孔が無いフィルムのフィルム張力よりも小さい。従って、セパレータ原反12c、耐熱セパレータ原反12bは、光学フィルム等の孔が無いフィルムよりも伸びやすい物性を有する。このため、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に欠陥コードDCを記録すると、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置と欠陥コードDCの長手方向の位置とが実質的にずれない。従って、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置を容易に特定することができる。
欠陥コードDCが端部に記録された耐熱セパレータ原反12bは、コア53に巻き取られる。耐熱セパレータ原反12bを巻き取ったコア53は、次のスリット工程に運ばれる。搬送機構76aと搬送部76bとは、互いに独立しており、互いに異なる巻取ローラーによる張力によってセパレータ原反12bを搬送する。欠陥検出工程を通過したセパレータ原反12bは、搬送機構76aによって一旦巻き取られる。巻き取られたセパレータ原反12bは、再び搬送部76bによって巻き出され、スリット工程を通過する。
図8は、セパレータ原反12bに形成される欠陥コードDCの位置の一例を説明するための図である。欠陥情報記録装置56(図4)は、欠陥Dの位置情報を表す欠陥コードDCを耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。欠陥Dと欠陥コードDCとの間の長手方向に沿った距離LMDは、例えば、好ましくは100mm以下であり、より好ましくは30mm以下である。欠陥コードDCと耐熱セパレータ原反12bの幅方向の端との間の距離LTDは、例えば、好ましくは50mm以下であり、より好ましくは20mm以下である。また、耐熱セパレータ原反12bにおいて幅方向の端部は波打ちやすいため、距離LTDは、3mm以上であることが好ましい。
<スリット装置>
耐熱セパレータ原反12b(以下「セパレータ原反」)から形成される耐熱セパレータ12a(以下「セパレータ」)、又は、セパレータ原反12cから形成されるセパレータ12は、リチウムイオン二次電池1などの応用製品に適した幅(以下「製品幅」)であることが好ましい。しかし、生産性を上げるために、セパレータ原反は、その幅が製品幅以上となるように製造される。そして、一旦製造された後に、セパレータ原反は、製品幅に切断(スリット)されてセパレータとなる。
なお、「セパレータの幅」とは、セパレータが延びる平面に対し平行であり、かつ、セパレータの長手方向に対し垂直である方向の、セパレータの長さを意味する。また、スリットとは、セパレータ原反を長手方向(製造におけるフィルムの流れ方向、MD:Machine direction)に沿って切断することを意味する。カットとは、セパレータ原反又はセパレータを横断方向(TD:transverse direction)に沿って切断することを意味する。横断方向(TD)とは、セパレータの長手方向(MD)と厚み方向とに対し略垂直である方向(幅方向)を意味する。
図9は、セパレータ原反12bをスリットするスリット装置6の構成を示す模式図であって、(a)は全体の構成を示し、(b)はセパレータ原反12bをスリットする前後の構成を示す。
図9の(a)に示されるように、スリット装置6は、回転可能に支持された円柱形状の、巻出ローラー61と、ローラー62〜65と、複数の巻取ローラー69とを備える。スリット装置6には、後述する切断装置7(図10)がさらに設けられている。ローラー62〜64は、セパレータ原反12b、耐熱セパレータ12aを搬送する搬送部76b(第2搬送機構)を構成する。
<スリット前>
スリット装置6では、セパレータ原反12bを巻きつけた円筒形状のコア53が、巻出ローラー61に嵌められている。図9の(a)に示されるように、セパレータ原反12bは、コア53から経路U又はLへ巻き出される。巻き出されたセパレータ原反12bは、ローラー63を経由し、ローラー64へ例えば速度100m/分で搬送される。搬送される工程においてセパレータ原反12bは、複数の耐熱セパレータ12aに長手方向に沿ってスリットされる。
<スリット後>
図9の(a)に示されるように、複数の耐熱セパレータ12aの一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。また、複数の耐熱セパレータ12aの他の一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。なお、ロール状に巻き取られたセパレータを「セパレータ捲回体」と称する。
<切断装置>
図10は、図9の(a)に示されるスリット装置6の切断装置7(切断部)の構成を示す図であって、(a)は切断装置7の側面図であり、(b)は切断装置7の正面図である。
図10の(a)(b)に示されるように、切断装置7は、ホルダー71と、刃72とを備える。ホルダー71は、スリット装置6に備えられている筐体などに固定されている。そして、ホルダー71は、刃72と搬送されるセパレータ原反12bとの位置関係が固定されるように、刃72を保持している。刃72は、鋭く研がれたエッジによってセパレータの原反をスリットする。
図11は、耐熱セパレータ12aの欠陥位置特定方法の測定工程、読み取り工程、切断工程、特定工程、目印付与工程、及び巻き取り工程を説明するための模式図である。セパレータ原反12bは、コア53(図9)から一定速度(例えば、80m/分)で巻き出される。
図11に示されるように、セパレータ製造装置(フィルム製造装置)は、スリット装置6を備えている。スリット装置6には、スリット部77、搬送部76b、読み取り部73、および目印付与装置74が設けられている。スリット部77は、複数の切断装置7を備えている。各切断装置7の刃72は、カッター位置を規定している。スリット工程では、長手方向に沿って搬送されるセパレータ原反12bを、カッター位置を通り搬送方向(MD)に沿うスリットラインでスリットすることによって、複数の耐熱セパレータ12aを得る。
<セパレータ原反の幅方向の寸法又は位置の測定>
読み取り部73は、セパレータ原反12bの幅方向の両端をそれぞれ撮影する位置に配置された検出カメラ75a・75b(測定部、欠陥コード読み取り部)を有している。検出カメラ75a・75bは、スリット装置6に向けて搬送されている最中のセパレータ原反12bの幅方向の寸法又は幅方向の位置を光学的に測定する(測定工程)。セパレータ原反12bに対する上記測定とスリットとは、同じ搬送部76bで搬送されている耐熱セパレータ12aに対して行われる。
図12は、セパレータ原反12bの幅方向の寸法又は幅方向の位置を測定する測定工程を説明するための模式図である。検出カメラ75a・75bは、セパレータ原反12bの幅方向の位置ずれ又は幅方向の伸縮を測定する。
セパレータ原反12bの幅方向の位置ずれとは、搬送部76bで搬送されているセパレータ原反12bの本来の配置位置に対するセパレータ原反12bの幅方向の位置ずれ、又は、図4で前述した欠陥検出工程において搬送されているセパレータ原反12bの幅方向の位置に対するセパレータ原反12bの幅方向の位置ずれである。
また、セパレータ原反12bの幅方向の伸縮とは、搬送部76bで搬送されているセパレータ原反12bの本来の寸法に対するセパレータ原反12bの幅方向の伸縮、又は、図4で前述した欠陥検出工程において搬送されているセパレータ原反12bの幅方向の寸法に対するセパレータ原反12bの幅方向の伸縮である。
具体的には、まず、検出カメラ75aは、搬送部76bにより搬送されているセパレータ原反12bの幅方向の一端と検出カメラ75aの基準位置(例えば撮影範囲の外側の端)との間の距離X1を測定する。そして、検出カメラ75bはセパレータ原反12bの幅方向の他端と検出カメラ75bの基準位置(例えば撮影範囲の外側の端)との間の距離X2を測定する。
次に、読み取り部73(測定部、特定部)は、検出カメラ75aにより測定された距離X1と検出カメラ75bにより測定された距離X2とに基づいて、セパレータ原反12bの幅方向の寸法Lcを算出する。読み取り部73は、搬送部76bで搬送されているセパレータ原反12bの幅方向における寸法の、欠陥検出工程における寸法に対する伸縮を算出する。また、読み取り部73は、距離X1と距離X2とに基づいて、セパレータ原反12bの幅方向の位置を算出する。その後、読み取り部73は、搬送部76bで搬送されているセパレータ原反12bの幅方向における位置の、本来の位置からの位置ずれを算出する。
このように、本実施形態のセパレータ製造方法によれば、スリット工程において、搬送部76bにより搬送されているセパレータ原反12bの幅方向の寸法又は幅方向の位置を測定することにより、セパレータ原反12bの幅方向の寸法又は幅方向の位置のばらつきを考慮してセパレータ原反をスリットすることができる。例えば、スリット工程において搬送されているセパレータ原反12bの幅方向の寸法又は幅方向の位置の情報を正確に得ることにより、セパレータ原反12bのある位置と、複数のスリットされたセパレータのうちの1つとを正確に対応付けることができる。
<欠陥が存在するセパレータの特定>
図13は、セパレータ原反12bの幅方向の位置ずれ及び幅方向の伸縮を説明するための模式図である。図13の(a)のセパレータ原反12bの幅方向の位置は、搬送部76bにおけるセパレータ原反12bの本来の位置を示している。本来の位置とは、セパレータ原反12bが位置することが期待される所定の位置である。図13の(b)のセパレータ原反12bの幅方向の位置は、図11及び図12に示す測定工程において搬送部76bで搬送されているセパレータ原反12bの位置の一例を示している。
図13の(a)(b)に示すように、測定工程におけるセパレータ原反12bの幅方向の位置が、搬送されているセパレータ原反12bの蛇行、変形により、本来の位置からずれると、セパレータ原反12bのスリットラインSL1・SL2・SL3・SL4もセパレータ原反12bに対して幅方向にずれるので、欠陥Dが含まれる耐熱セパレータ12aも変わるおそれがある。例えば、セパレータ原反12bの位置が幅方向にずれなければ、本来、図13の(a)に示すように、2番目の耐熱セパレータ12aに欠陥Dが含まれる。一方、図13の(b)に示すように、セパレータ原反12bの位置が幅方向にずれると、1番目の耐熱セパレータ12aに欠陥Dが含まれるようにセパレータ原反12bがスリットされてしまう。
そこで、読み取り部73は、欠陥検出工程において検出されたセパレータ原反12bに存在する欠陥Dの幅方向の位置と、測定工程において測定されたセパレータ原反12bの幅方向の位置とに基づいて、スリットされた複数の耐熱セパレータ12aのうち欠陥Dが存在する耐熱セパレータ12aを特定する(特定工程)。
また、図4に示す欠陥検出工程においてセパレータ原反12bに作用する張力の大きさと図11及び図12に示す測定工程においてセパレータ原反12bに作用する張力の大きさとが異なることにより、測定工程におけるセパレータ原反12bが幅方向に伸縮する。
例えば、測定工程において搬送部76bによってセパレータ原反12bに作用する張力が、欠陥検出工程において搬送機構76aによってセパレータ原反12bに作用する張力よりも大きいと、図13の(c)に示すように、測定工程においてセパレータ原反12bは幅方向に収縮する。逆に、搬送部76bによる張力が搬送機構76aによる張力よりも小さいと、測定工程においてセパレータ原反12bは幅方向に伸長する。
このように、セパレータ原反12bが幅方向に伸縮すると、セパレータ原反12bのスリットラインSL1・SL2・SL3・SL4のセパレータ原反12bに対する位置が、本来のスリットラインから変化する。そのため、欠陥Dが含まれる耐熱セパレータ12aも変化するおそれがある。
そこで、読み取り部73は、欠陥検出工程において検出されたセパレータ原反12bに存在する欠陥Dの幅方向の位置と、測定工程において測定されたセパレータ原反12bの幅方向の寸法とに基づいて、スリットされた複数の耐熱セパレータ12aのうち欠陥Dが存在する耐熱セパレータ12aを特定する(特定工程)。
読み取り部73に設けられた検出カメラ75aは、セパレータ原反12bの幅方向の端の位置を検出すると共に、セパレータ原反12bの幅方向の端部に記録された欠陥コードDCを読み取る(欠陥コード読み取り工程)。そして、スリット装置6に設けられた複数の切断装置7は、セパレータ原反12bを長手方向に沿ってスリットして複数個の耐熱セパレータ12aを形成する(スリット工程)。
前述した実施形態では、欠陥コードDCを読み取る上記読み取り工程と、セパレータ原反12bの幅方向の端の位置を検出する工程との双方を共通の検出カメラ75aにより実施する例を示した。しかしながら、本発明はこれに限定されない。欠陥コードDCを読み取る上記読み取り工程と、セパレータ原反12bの幅方向の端の位置を検出する工程とは互いに独立して実施されてもよい。例えば、検出カメラ75a・75bにより上記幅方向の端の位置を検出し、欠陥コードDCは他の検出カメラにより読み取っても良い。
このように、検出カメラ75aが、測定工程におけるセパレータ原反12bの幅方向の寸法又は幅方向の位置の測定と、読み取り工程における欠陥コードの読み取りとを兼ねることによって、製造工程に必要な設備を簡略化することができる。
本実施形態のセパレータ製造方法によれば、スリット工程において搬送されるセパレータ原反12bに作用する張力が欠陥検出工程における張力とは異なってしまい、又は、スリット工程において搬送されるセパレータ原反12bの蛇行、変形により、切断装置7に対するセパレータ原反12bの位置が本来の位置とは異なってしまい、セパレータ原反12bのスリットラインが予め設定されたスリットラインからずれた場合であっても、欠陥が存在する耐熱セパレータ12aを正確に特定することができる。
なお、図13の(a)及び(b)に示されるように、セパレータ原反12bにおいて検出された欠陥の位置が、本来のセパレータ原反12bをスリットする位置に近い程、欠陥が存在する耐熱セパレータ12aが誤って特定される可能性は高まる。そこで、特定工程では、セパレータ原反12bをスリットする位置も考慮して、複数の耐熱セパレータ12aのうち欠陥が存在する耐熱セパレータ12aを特定することが好ましい。
<欠陥除去工程>
次に、目印付与装置74は、上記特定した一つの耐熱セパレータ12aの欠陥Dに対応する位置に目印Lを付与する(目印付与工程)。なお、欠陥Dが複数個存在するときは、読み取り部73は、複数個の耐熱セパレータ12aを特定する。ここで、好ましい目印Lとしては、ラベルが挙げられ、好ましい目印付与装置74としては、ラベラが挙げられる。
目印Lは、ラベルに替えて、ペンにより描画されたマークでもよく、インジェクタにより塗布されたマークでもよい。また、目印Lは、樹脂から構成される耐熱セパレータ12aを加熱することにより印字するサーモラベルでもよく、また、耐熱セパレータ12aにレーザで穴を開けることにより目印Lを形成してもよい。
切断装置7によりスリットされた複数個の耐熱セパレータ12aは、複数個のコア81にそれぞれ巻き取られる(巻き取り工程)。
そして、目印付与装置74は、欠陥コードDCにより表される欠陥Dのセパレータ原反12bの長さ方向の位置情報を欠陥コードDC2として、上記特定した一つの耐熱セパレータ12aを巻き取った最外周部86及び/又はコア81に記録する。
図14は、耐熱セパレータ12aの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図であり、図14の(a)は目印検知工程を説明するための模式図であり、図14の(b)は欠陥除去工程を説明するための模式図である。まず、目印検知装置83が最外周部86及び/又はコア81に記録された欠陥コードDC2を読み出す。そして、目印検知装置83が読み出した情報を受けて、目印付与装置74により目印Lを貼りつけられた耐熱セパレータ12aのコア81から、コア82への巻き替え動作を開始する。次に、目印検知装置83は、読み出した欠陥コードDC2により表される欠陥Dのセパレータ原反12bの長さ方向の位置情報に基づいて、欠陥Dの位置が近付くと、耐熱セパレータ12aの上記巻き替え動作の速度を減速する。
そして、耐熱セパレータ12aの欠陥Dに対応する位置に張り付けられた目印Lが、目印検知装置83により検知される(目印検知工程)。目印検知装置83により目印Lが検知されると、目印検知装置83が耐熱セパレータ12aの巻き替え動作を停止する。その後、欠陥除去装置84は、目印Lに対応する欠陥Dの上流側及び下流側の耐熱セパレータ12aの箇所を幅方向に沿って切断して欠陥Dを耐熱セパレータ12aから除去する(欠陥除去工程)。かかる欠陥除去工程は、欠陥除去装置84に代えて作業者が手作業で実施してもよい。そして、繋ぎ合わせ装置85は、切断した耐熱セパレータ12aを繋ぎ合わせる(繋ぎ合わせ工程)。かかる繋ぎ合わせ工程は、繋ぎ合わせ装置85に代えて作業者が手作業で実施してもよい。次に、繋ぎ合わせ装置85は、耐熱セパレータ12aの巻き替え動作を再開する。そして、耐熱セパレータ12aのコア81からコア82への巻き替えが完了する。ここで、2つに分割された耐熱セパレータ12aは繋ぎ合わせずに、それぞれ別のコアに巻き替えてもよい。つまり、切断される前の部分をコア82に巻き替え、切断された後の部分をコア82以外のコアに巻き替えればよい。
〔実施形態2〕
実施形態1では、セパレータ原反12bに存在する欠陥Dの位置情報をセパレータ原反12bの端部に記録する例を示した。しかしながら、本発明はこれに限定されない。欠陥Dの位置情報は、情報記憶装置に記録するように構成してもよい。
図15は、実施形態2に係るセパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。図16は、耐熱セパレータ12aの欠陥位置特定方法の測定工程、読み取り工程、スリット工程、特定工程、目印貼り工程、及び巻き取り工程を説明するための模式図である。実施形態1で前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は繰り返さない。
欠陥情報記録装置56aは、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出されたセパレータ原反12c・12bに存在する欠陥Dの長手方向及び幅方向における位置を表す位置情報を情報記憶装置91に記録する。そして、読み取り部73aは、欠陥Dの長手方向及び幅方向における位置情報を情報記憶装置91から読みとる。
〔実施形態3〕
実施形態1では、検出カメラ75a・75bが、セパレータ原反12bの幅方向の寸法又は幅方向の位置を測定し、読み取り部73が、セパレータ原反12bに存在する欠陥Dの幅方向の位置と、セパレータ原反12bの幅方向の位置又は寸法とに基づいて、スリットされる複数の耐熱セパレータ12aのうち欠陥Dが存在する耐熱セパレータ12aを特定するセパレータ製造方法及びセパレータ製造装置について説明した。しかしながら、本実施形態のセパレータ製造方法及びセパレータ製造装置の態様はこれに限られない。
<カッター調整工程>
本実施形態では、セパレータ原反12bの幅方向の寸法又は幅方向の位置を測定し、スリット工程において、セパレータ原反12bの幅方向の位置又は寸法に基づいて、スリット装置6が切断装置7の位置(切断装置7の刃72の位置)を調整する(カッター調整工程)。
具体的には、セパレータ原反12bが本来の適切なスリットラインでスリットされるように、切断装置7の位置を、搬送方向に直交する方向に沿って移動させる。なお、全ての切断装置7を同じ幅で同じ方向に移動させてもよいし、各切断装置7の間隔を変化させるように移動させてもよい。
これにより、スリット工程において、セパレータ原反12bを本来のスリット位置でスリットすることができ、製品幅となるように適切な寸法にスリットされた耐熱セパレータ12aを製造することができる。また、セパレータ原反12bを本来のスリット位置でスリットすることができるため、複数の耐熱セパレータ12aのうち欠陥が存在する耐熱セパレータ12aを特定することが容易になる。
<搬送調整工程>
また、本実施形態では、セパレータ原反12bの幅方向の寸法又は幅方向の位置を測定し、スリット工程において、搬送部76bが、搬送されるセパレータ原反12bの幅方向の位置又は搬送張力を調整してもよい(搬送調整工程)。
具体的には、セパレータ原反12bが本来のスリット位置でスリットされるように、セパレータ原反12bの幅方向の位置を搬送方向に直交する方向(TD)に沿って移動させ、又は、セパレータ原反12bの搬送張力を増減する。
これにより、スリット工程において、セパレータ原反12bを本来のスリット位置でスリットすることができ、製品幅となるように適切な寸法にスリットされた耐熱セパレータ12aを製造することができる。また、セパレータ原反12bを本来のスリット位置でスリットすることができるため、複数の耐熱セパレータ12aのうち欠陥が存在する耐熱セパレータ12aを特定することが容易になる。
〔ソフトウェアによる実現例〕
読み取り部73、欠陥情報記録装置56、56a、および情報記憶装置91は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
後者の場合、読み取り部73、欠陥情報記録装置56、56a、および情報記憶装置91は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明の実施形態について、セパレータを例に挙げて説明したが、本発明はセパレータの製造に限定されず、他のフィルムおよびフィルム原反の製造にも適用することができる。多孔質であるセパレータは柔軟であるため、搬送機構における蛇行または張力による伸縮が起こりやすい。それゆえ、本発明は特にセパレータの製造方法に好適に適用することができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
4 耐熱層
6 スリット装置
7 切断装置(切断部)
12 セパレータ
12a 耐熱セパレータ(セパレータ、フィルム)
12b 耐熱セパレータ原反(セパレータ原反、フィルム原反)
12c セパレータ原反
54 塗工部
55 基材欠陥検査装置(欠陥検出部、セパレータ製造装置)
57 塗工欠陥検査装置(欠陥検出部、セパレータ製造装置)
58 ピンホール欠陥検査装置(欠陥検出部、セパレータ製造装置)
56、56a 欠陥情報記録装置
73、73a 読み取り部(特定部、測定部)
74 目印付与装置
75a、75b 検出カメラ(測定部、欠陥コード読み取り部)
76a 搬送機構(第1搬送機構)
76b 搬送部(第2搬送機構)
77 スリット部
81、82 コア
83 目印検知装置
84 欠陥除去装置
85 繋ぎ合わせ装置
86 最外周部
91 情報記憶装置
D 欠陥
DC、DC2 欠陥コード(位置情報)
L 目印

Claims (13)

  1. 長手方向に沿って搬送されているフィルム原反に存在する欠陥の位置を特定する欠陥検出工程と、
    前記欠陥検出工程により欠陥の位置を検出されたフィルム原反の幅方向の寸法又は幅方向の位置を測定する測定工程と、
    前記測定工程により幅方向の寸法又は幅方向の位置を測定されたフィルム原反を、長手方向に沿ってスリットすることにより複数のフィルムを形成するスリット工程と、
    前記欠陥検出工程で検出された前記欠陥の位置と、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する特定工程とを包含し、
    前記欠陥検出工程では、第1搬送機構により搬送されている前記フィルム原反に存在する欠陥の位置を特定し、
    前記測定工程では、前記第1搬送機構とは異なる第2搬送機構により搬送されている前記フィルム原反の幅方向の寸法又は幅方向の位置を測定することを特徴とするフィルム製造方法。
  2. 前記特定工程では、前記フィルム原反をスリットする位置に基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定することを特徴とする請求項1に記載のフィルム製造方法。
  3. 前記測定工程では、前記欠陥検出工程におけるフィルム原反の幅方向の位置に対する前記フィルム原反の幅方向の位置ずれを測定することを特徴とする請求項1又は2に記載のフィルム製造方法。
  4. 前記測定工程では、前記欠陥検出工程におけるフィルム原反の幅方向の寸法に対する前記フィルム原反の幅方向の伸縮を測定することを特徴とする請求項1〜3の何れか1項に記載のフィルム製造方法。
  5. 前記スリット工程では、カッター位置を通り搬送方向に沿うスリットラインで前記フィルム原反をスリットし、
    前記スリット工程は、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置に基づいて、前記カッター位置を調整するカッター調整工程を含むことを特徴とする請求項1に記載のフィルム製造方法。
  6. 前記スリット工程では、カッター位置を通り搬送方向に沿うスリットラインで前記フィルム原反をスリットし、
    前記スリット工程は、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置に基づいて、搬送される前記フィルム原反の幅方向の位置又は搬送張力を調整する搬送調整工程を含むことを特徴とする請求項1に記載のフィルム製造方法。
  7. 前記欠陥検出工程が、前記検出された欠陥の位置情報を含む欠陥コードを前記フィルム原反に付与し、
    前記スリット工程が、前記欠陥検出工程において付与された欠陥コードを読み取る欠陥コード読み取り工程を含み、
    前記特定工程が、前記欠陥コード読み取り工程により読み取られた欠陥コードにより表される前記欠陥の位置と、前記測定工程で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを
    特定する請求項2〜4の何れか1項に記載のフィルム製造方法。
  8. 前記測定工程では、前記フィルム原反の幅方向の端の位置を検出するとともに、前記フィルム原反に形成された、前記フィルム原反に存在する欠陥の位置の情報を含んだ欠陥コードを読み取ることを特徴とする請求項1〜7の何れか1項に記載のフィルム製造方法。
  9. 長手方向に沿って搬送されているフィルム原反に存在する欠陥の位置を特定する欠陥検出部と、
    前記欠陥検出部により欠陥の位置を検出されたフィルム原反の幅方向の寸法又は幅方向の位置を測定する測定部と、
    前記測定部により幅方向の寸法又は幅方向の位置を測定されたフィルム原反を、長手方向に沿ってスリットすることにより複数のフィルムを形成する切断部と、
    前記欠陥検出部で検出された前記欠陥の位置と、前記測定部で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する特定部とを備え、
    前記欠陥検出部では、第1搬送機構により搬送されている前記フィルム原反に存在する欠陥の位置を特定し、
    前記測定部では、前記第1搬送機構とは異なる第2搬送機構により搬送されている前記フィルム原反の幅方向の寸法又は幅方向の位置を測定することを特徴とするフィルム製造装置。
  10. 前記欠陥検出部が、前記検出された欠陥の位置情報を含む欠陥コードを前記フィルム原反に付与し、
    前記切断部が、前記欠陥検出部において付与された欠陥コードを読み取る欠陥コード読み取り部を含み、
    前記特定部が、前記欠陥コード読み取り部により読み取られた欠陥コードにより表される前記欠陥の位置と、前記測定部で測定された前記フィルム原反の幅方向の寸法又は幅方向の位置とに基づいて、前記複数のフィルムのうち前記欠陥が存在するフィルムを特定する請求項9に記載のフィルム製造装置。
  11. 前記測定部は、前記フィルム原反の幅方向の端の位置を検出すると共に、前記フィルム原反に形成された、前記フィルム原反に存在する欠陥の位置の情報を含んだ欠陥コードを読み取ることを特徴とする請求項9に記載のフィルム製造装置。
  12. 前記フィルム原反が非水電解液二次電池用セパレータ原反であり、
    前記フィルムが非水電解液二次電池用セパレータである請求項1〜8の何れか1項に記載のフィルム製造方法。
  13. 前記フィルム原反が非水電解液二次電池用セパレータ原反であり、
    前記フィルムが非水電解液二次電池用セパレータである請求項9〜11の何れか1項に記載のフィルム製造装置。
JP2015185646A 2015-09-18 2015-09-18 フィルム製造方法及びフィルム製造装置 Active JP6010674B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185646A JP6010674B1 (ja) 2015-09-18 2015-09-18 フィルム製造方法及びフィルム製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015185646A JP6010674B1 (ja) 2015-09-18 2015-09-18 フィルム製造方法及びフィルム製造装置
KR1020160116146A KR101931414B1 (ko) 2015-09-18 2016-09-09 필름 제조 방법 및 필름 제조 장치
CN201610825911.7A CN107097278B (zh) 2015-09-18 2016-09-14 膜制造方法以及膜制造装置
US15/264,676 US20170084895A1 (en) 2015-09-18 2016-09-14 Film producing method and film producing apparatus

Publications (2)

Publication Number Publication Date
JP6010674B1 true JP6010674B1 (ja) 2016-10-19
JP2017058336A JP2017058336A (ja) 2017-03-23

Family

ID=57140150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185646A Active JP6010674B1 (ja) 2015-09-18 2015-09-18 フィルム製造方法及びフィルム製造装置

Country Status (4)

Country Link
US (1) US20170084895A1 (ja)
JP (1) JP6010674B1 (ja)
KR (1) KR101931414B1 (ja)
CN (1) CN107097278B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563469B2 (ja) * 2017-12-15 2019-08-21 本田技研工業株式会社 電極接合方法及び電極接合装置
EP3767284A4 (en) * 2018-03-15 2021-12-01 Toray Industries, Inc. FOREIGN BODY INSPECTION METHOD, INSPECTION DEVICE, ROLL OF FILM AND METHOD FOR MANUFACTURING A ROLL OF FILM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322797A (ja) * 1992-03-19 1993-12-07 Omron Corp 欠陥検査装置
JP2004077213A (ja) * 2002-08-13 2004-03-11 Fuji Photo Film Co Ltd 透光性シート体の検出方法及び検出装置
JP2006292503A (ja) * 2005-04-08 2006-10-26 Sumitomo Electric Ind Ltd 欠陥検査方法および欠陥検査装置
JP2008116437A (ja) * 2006-10-11 2008-05-22 Nitto Denko Corp 光学フィルムを有するシート状製品の欠点検査装置、その検査データ処理装置、その切断装置及びその製造システム
JP2011257343A (ja) * 2010-06-11 2011-12-22 Asahi Kasei E-Materials Corp フィルム用欠陥マーキング装置及び欠陥マーキング方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI366706B (en) 2006-07-03 2012-06-21 Olympus Corp Semiconductor substrate defects detection device and method of detection of defects
AT445872T (de) * 2007-02-01 2009-10-15 Abb Oy Verfahren zur erstellung eines optimierten schnittplans für ein streifenförmiges material
JP2009244064A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 偏光フィルムの検査方法
JP2009294645A (ja) * 2008-05-07 2009-12-17 Nitto Denko Corp 光学表示装置製造システムに適用される製造管理システム及び製造管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322797A (ja) * 1992-03-19 1993-12-07 Omron Corp 欠陥検査装置
JP2004077213A (ja) * 2002-08-13 2004-03-11 Fuji Photo Film Co Ltd 透光性シート体の検出方法及び検出装置
JP2006292503A (ja) * 2005-04-08 2006-10-26 Sumitomo Electric Ind Ltd 欠陥検査方法および欠陥検査装置
JP2008116437A (ja) * 2006-10-11 2008-05-22 Nitto Denko Corp 光学フィルムを有するシート状製品の欠点検査装置、その検査データ処理装置、その切断装置及びその製造システム
JP2011257343A (ja) * 2010-06-11 2011-12-22 Asahi Kasei E-Materials Corp フィルム用欠陥マーキング装置及び欠陥マーキング方法

Also Published As

Publication number Publication date
US20170084895A1 (en) 2017-03-23
KR101931414B1 (ko) 2018-12-20
KR20170034329A (ko) 2017-03-28
CN107097278A (zh) 2017-08-29
JP2017058336A (ja) 2017-03-23
CN107097278B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
JP5815909B1 (ja) セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
JP6010674B1 (ja) フィルム製造方法及びフィルム製造装置
US9859539B2 (en) Method for producing separator and device for producing separator
TW201611387A (zh) 電池隔板用微多孔膜捲繞物及其製造方法
CN106910857B (zh) 锂离子二次电池用隔膜的制造方法以及制造装置
KR20180105152A (ko) 세퍼레이터의 컬량 측정 방법, 슬릿 장치 및 컬량 측정 장치

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150