JP6008989B2 - 回転電機の固定子及びこの固定子を用いた回転電機 - Google Patents

回転電機の固定子及びこの固定子を用いた回転電機 Download PDF

Info

Publication number
JP6008989B2
JP6008989B2 JP2014554647A JP2014554647A JP6008989B2 JP 6008989 B2 JP6008989 B2 JP 6008989B2 JP 2014554647 A JP2014554647 A JP 2014554647A JP 2014554647 A JP2014554647 A JP 2014554647A JP 6008989 B2 JP6008989 B2 JP 6008989B2
Authority
JP
Japan
Prior art keywords
coil
conductor wire
slot
stator core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014554647A
Other languages
English (en)
Other versions
JPWO2015162643A1 (ja
Inventor
雅哉 原川
雅哉 原川
健太 尾崎
健太 尾崎
信一 山口
信一 山口
健太郎 堀坂
健太郎 堀坂
和秋 安藤
和秋 安藤
興起 仲
興起 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6008989B2 publication Critical patent/JP6008989B2/ja
Publication of JPWO2015162643A1 publication Critical patent/JPWO2015162643A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Description

この発明は、電動機または発電機などの回転電機に使用される固定子及びこの固定子を用いた回転電機に関するものである。
従来の回転電機において、固定子は、固定子鉄心と、固定子巻線とで構成される。固定子鉄心は、複数のスロットを内周側に持つ環状である。固定子巻線は、固定子鉄心のスロット内に巻回されている。
図44は、従来の回転電機において、固定子鉄心2005の内側からコイルエンド部2017cを見た図である。従来の回転電機において、固定子巻線は、図44に示すように、複数個のコイル2017を備える。図44において、コイル2017X、コイル2017Y、及びコイル2017Zは、それぞれコイル2017である。コイル2017は、下コイル部2017aと上コイル部2017bを有する。下コイル部2017aと上コイル部2017bは、固定子鉄心2005のスロットに挿入される。また、コイル2017は、コイルエンド部2017cと、コイルエンド部2017dを有する。コイルエンド部2017cは、上コイル部2017bの一方の端部と下コイル部2017aの一方の端部を連結している部分である。コイルエンド部2017dは、上コイル部2017bの他方の端部と下コイル部2017aの他方の端部を連結している部分である。コイルエンド部2017c及びコイルエンド部2017dは、コイル2017が固定子鉄心2005のスロットに挿入されたとき、固定子鉄心2005の軸方向の外側に露出する部分である。
コイル2017の下コイル部2017aは、固定子鉄心2005のスロットの奥の方に挿入配置される部分である。また、上コイル部2017bは、固定子鉄心2005のスロットの入口側に配置される部分である。従って、組み上がった固定子の内側からコイルエンド部2017cを見ると、図44に示すようになっている。
また、図44において、部分2017caは、コイルエンド部2017cの下コイル部2017aに近い部分を表わす。部分2017cbは、コイルエンド部2017cの上コイル部2017bに近い部分を表わす(例えば、特許文献1参照)。
特開平9−261904号公報(段落0004、0029乃至0031、0033、0043、図1乃至図3)
特許文献1の技術において、図44に示すとおり、コイル2017Xのコイルエンド部2017cの部分2017caは、部分Aの位置において、コイル2017Yのコイルエンド部2017cの部分2017cbに対し、軸方向の外側に位置する。コイル2017Xのコイルエンド部2017cの部分2017caは、部分Bの位置において、コイル2017Zのコイルエンド部2017cの部分2017cbに対し、軸方向の外側に位置する。
つまり、特許文献1の技術では、コイルエンド部2017cの軸方向の高さを低減しようとした場合、コイル2017Xのコイルエンド部2017cの部分2017caは、部分Aの位置において、コイル2017Yのコイルエンド部2017cの部分2017cbと干渉してしまう。なお、干渉とは、コイルの巻線位置が別のコイルの巻線位置と重なってしまうことをいう。同様に、コイル2017Xのコイルエンド部2017cの部分2017caは、部分Bの位置において、コイル2017Zのコイルエンド部2017cの部分2017cbと干渉してしまう。
本発明は、上記の従来技術の課題を解決し、コイル同士の干渉を発生させることなく、従来よりもコイルエンド部の高さを低減した回転電機の固定子、及びこの固定子を用いた回転電機を提供することを目的とする。
この発明にかかる回転電機の固定子は、円環状に形成されたコアバックと、コアバックの周方向に沿って設けられた複数のティースと、複数のティースの間に設けられた複数のスロットと、複数の円環形状の導体線で構成され、スロットの内部において、複数の導体線がコアバックの径方向にm段(mは2以上の整数)に配置され、スロットの外部において、複数の導体線がコアバックの径方向にn段(nは1以上の整数、かつ、mの1/2以下)に配置され、多角形形状に折り曲げられたコイルとを備え、コイルを構成する複数の導体線は、スロットの内部とスロットの外部との間において第1の外側折り曲げ部を有し、スロットの外部において、第1の折り曲げ部と第2の折り曲げ部を有し、コイルは第1の折り曲げ部において、コアバックの径方向における段数がm段からn段に配列変更し、多角形形状のコイルの内角は、第1の外側折り曲げ部において180°より大きく、第1の折り曲げ部と第2の折り曲げ部において180°より小さいものである。
本発明によれば、コイル同士の干渉を発生させることなく、従来よりもコイルエンド部の高さを低減した回転電機の固定子、及びこの固定子を用いた回転電機を提供できる。
実施の形態1に関わる回転電機の固定子の構成図である。 実施の形態1に関わる固定子巻線を成すコイルの構成図である。 実施の形態1による回転電機の断面図を示す図である。 実施の形態1に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態1に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態1に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態1に関わるコイルを形成する導体線の折り曲げ角度について説明した図である。 実施の形態1における固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。 実施の形態2に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態2に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態2に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態2に関わるコイルを形成する導体線の折り曲げ角度について説明した図である。 実施の形態2における固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。 実施の形態3に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態3に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態3に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態3に関わるコイルを形成する導体線の折り曲げ角度について説明した図である。 実施の形態3に関わる回転電機の固定子巻線を構成するために固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。 実施の形態4に関わる固定子巻線を成すコイルの構成図である。 実施の形態4に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態4に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態4に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態4に関わるコイルを形成する導体線の折り曲げ角度および寸法について説明した図である。 実施の形態4に関わる回転電機の固定子巻線を構成するために固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。 実施の形態5に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態5に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態5に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態6に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態6に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。 実施の形態6に関わる固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。 実施の形態1〜6の変形例における固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態1〜6の変形例における固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態1〜6の変形例における固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。 実施の形態1〜6の変形例における固定子巻線を成すコイル束の構成図である。 実施の形態1〜6の変形例における固定子鉄心にコイル束を挿入した状態を固定子鉄心の上面から見た図である。 実施の形態1〜6の変形例における固定子巻線を成すコイル群の構成図である。 実施の形態7における固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。 実施の形態7における固定子鉄心にコイルを挿入した状態において、固定子鉄心の内側からコイルエンド部を見た図である。 実施の形態7における固定子鉄心にコイルを挿入した状態において、固定子鉄心の内側からコイルエンド部を見た図である。 実施の形態7における回転電機の固定子巻線を構成するコイルについて示す図である。 実施の形態7に関わる固定子鉄心にコイルを挿入した状態において、固定子鉄心の内側からコイルエンド部を見た図である。 実施の形態8における回転電機の固定子巻線を構成するコイルについて示す図である。 実施の形態8に関わる固定子鉄心にコイルを挿入した状態において、固定子鉄心の内側からコイルエンド部を見た図である。 従来技術に関わる固定子鉄心にコイルを挿入した状態において、固定子鉄心の内側からコイルエンド部を見た図である。
以下に、実施の形態にかかる回転電機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。回転電機は、電動機または発電機の場合があり、電動機と発電機のどちらであっても良い。
実施の形態1.
実施の形態1にかかる回転電機について説明する。
回転電機は、固定子及び回転子を有し、固定子に対して回転子が回転し、回転子に固定されたシャフト(図示せず)を介して回転動力を機械装置(図示せず)に伝達し、機械装置を稼働する。回転電機は、例えば、永久磁石型回転電機又は誘導型回転電機である。回転電機では、例えば、固定子における巻線構造に工夫が施されている。
具体的には、回転電機は、図1〜図3に示す構成を有している。図1は、回転電機における固定子鉄心及び固定子巻線の構成を示す斜視図である。図2は、固定子巻線におけるコイルの構成を示す斜視図である。図3は、回転子及び固定子鉄心を回転軸RA方向から見た場合の構成を示す図である。図1〜3には、例えば、回転電機1として、極数が4、スロット数が24、相数が3、毎極毎相のスロット数qが2の回転電機について例示的に示されている。また、図3では、図示の簡略化のため、固定子巻線の図示を省略している。
回転電機1は、図1及び図3に示すように、回転子2及び固定子3を有する。回転子2は、回転子鉄心2a及び複数の永久磁石2bを有する。回転子鉄心2aは、シャフトと同心になるように構成されており、例えば、シャフトに沿った回転軸RAを有する円柱形状を有している。複数の永久磁石2bは、例えば、回転子鉄心2aの周面に沿って配置されている。なお、図3では、回転子2が永久磁石型ロータである場合について例示しているが、回転子2は、銅などの導体でかご形に形成されたかご型ロータであってもよい。
固定子3は、回転子2に離間しながら、回転子2を収容するように構成されている。例えば、固定子3は、固定子鉄心5及び固定子巻線6を有する。
固定子鉄心5は、シャフトと同心になるように構成されており、例えば、シャフトに沿った回転軸RAを有する円筒形状を有している。固定子鉄心5は、例えば、積層された電磁鋼板等により形成されている。
例えば、固定子鉄心5は、図3に示すように、コアバック7、複数のティース8、及び複数のスロット9を有する。コアバック7は、環状であり、例えば、円筒形状を有している。複数のティース8のそれぞれは、コアバック7から径方向に沿って回転軸RA側に延在している。複数のティース8は、コアバック7の回転軸RA側において、コアバック7の周面7aに沿った方向(すなわち、周方向)に配列されている。周方向に隣り合うティース8間には、それぞれ、スロット9が形成されている。
固定子巻線6は、固定子鉄心5に対して、同相のコイルが2スロットごとに組み込まれている。固定子巻線6は、例えば、絶縁紙などで周囲を保護してスロット9に挿入されている。固定子巻線6では、導体線11の束としてコイル17が形成されており、そのコイル17がスロット9内部に1以上配置される。そして、コイル17の端末が溶接などの方法で接続されることによって、固定子巻線6が形成されている。
固定子巻線6では、各相毎に、同様な形状を有するコイル17で形成されており、例えば図2に示すコイル17が形成されている。コイル17は、近接する同相にコイルを挿入する重ね巻きとして、固定子鉄心5のスロット9に挿入される。コイル17は導体線11の束として形成される。
具体的には、コイル17は、第1の導体線群17a、第2の導体線群17b、第1の折り曲げ部17d、第3の導体線群17c、第2の折り曲げ部17e、第4の導体線群17f、及び第3の折り曲げ部17gを有する。
第1の導体線群17aでは、スロット内部SIにおいて固定子鉄心5の径方向に導体線11がm段(mは2以上の整数)に配置されている。
第2の導体線群17bは、コイルエンド部CE1において第1の導体線群17aが固定子鉄心5の径方向にn段(nは1以上の整数)に配置変換されたものである。第2の導体線群17bでは、例えば、コイルエンド部CE1において導体線11が固定子鉄心5の径方向の1段目からn段目までに配置されている。
第1の折り曲げ部17dでは、スロット内部SI及びコイルエンド部CE1の境界において第1の導体線群17aと第2の導体線群17bとが角度θ(90°<θ<180°)をなすように折り曲げられている。すなわち、第1の折り曲げ部17dを含む配列変更部10dは、スロット内部SIの第1の導体線群17aの配列からコイルエンド部CE1の第2の導体線群17bの配列への変更を行っている。
第3の導体線群17cは、コイルエンド部CE1において第2の導体線群17bが固定子鉄心5の径方向の(m−n+1)段目からm段目までに配置変換されたものである。第3の導体線群17cでは、コイルエンド部CE1において導体線11が固定子鉄心5の径方向の(m−n+1)段目からm段目までに配置されている。
第2の折り曲げ部17eでは、コイルエンド部CE1において第2の導体線群17bと第3の導体線群17cとが角度θ’(=360°−(θ+θ”))をなすように折り曲げられている。すなわち、第2の折り曲げ部17eを含む通過領域変更部13aは、コイルエンド部CE1の第2の導体線群17bの配列(径方向の通過領域)からコイルエンド部CE1の第3の導体線群17cの配列(径方向の通過領域)への変更を行っている。
第4の導体線群17fでは、スロット内部SIにおいて固定子鉄心5の径方向に導体線11がm段(mは2以上の整数)に配置されている。
第3の折り曲げ部17gでは、コイルエンド部CE1及びスロット内部SIの境界において第3の導体線群17cと第4の導体線群17fとが角度θ”(90°<θ”<180°)をなすように折り曲げられている。すなわち、第3の折り曲げ部17gを含む配列変更部10aは、コイルエンド部CE1の第3の導体線群17cの配列からスロット内部SIの第4の導体線群17fの配列への変更を行っている。
ここで、段数m,nは、次の数式1を満たす。
n/m ≦ 1/2・・・数式1
例えば図2では、コイル17が、スロット内部SIで2段(固定子鉄心5の径方向)×8本(固定子鉄心5の周方向)の導体線11から構成されている。例えば、径方向の数および周方向の数は、次のように決定することができる。
例えば、図2に示す場合、コイル17は、スロット内部SIからコイルエンド部CE1で、巻線配列の変更を行っている(第1の折り曲げ部17dを含む配列変更部10d)。これにより、スロット内部SIで2段(固定子鉄心5の径方向)×8本分(固定子鉄心5の周方向)であった導体線11の束は、コイルエンド部CE1で1段(固定子鉄心5の径方向)×16本分(固定子鉄心5の周方向)に整列される。またこのときに、第1の折り曲げ部17dにおいて、角度θ(例えば、図2では120°)で折り曲げられている。
次に、コイルエンド部CE1において、例えば、固定子鉄心5の径方向の1段目に整列された導体線11は、他の相の巻線(他の相のコイル17)と干渉しないように、例えば、固定子鉄心5の径方向の2段目に配置変換される(第2の折り曲げ部17eを含む通過領域変更部13a)。またこのときも、配置変換する前と後とで、すなわち第2の折り曲げ部17eにおいて、角度θ’(例えば、図2では120°)で折り曲げられている。
その後、再びコイルエンド部CE1からスロット内部SIに戻るときに、巻線配列の変更が行なわれている(第3の折り曲げ部17gを含む配列変更部10a)。これにより、コイルエンド部CE1で1段(固定子鉄心5の径方向)×16本分(固定子鉄心5の周方向)であった導体線11の束は、スロット内部SIで2段(固定子鉄心5の径方向)×8本分(固定子鉄心5の周方向)に整列される。またこのときにも、角度θ”(例えば、図2では120°)で折り曲げられている。
このようにコイル17を構成することで、コイルエンド部CE1のコイル形状が3角形状になっている。また、説明は省略するが、コイル17の下半分も同じように導体線11の配列変更が行われており、全体として、コイルエンド部CE1の3角形状とスロット内部SIの4角形状とコイルエンド部CE2の3角形状とを含む6角形状となっている。
図4は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面(回転軸RAの方向)から見た図である。図5は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。図6は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面(回転軸RAを向く面)から見た図である。図7は、コイルを形成する導体線の折り曲げ角度について説明した図である。次に、図4から図7を用いて、コイル17の巻線配列の変更の部分をより詳細に説明する。
図4から図6は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル11を1個挿入した状態を例示しているが、このとき導体線11がどのように巻かれてコイル17を形成しているかを、位置12aから位置12rを使って例示的に説明する。
コイル17は、2つのスロット9a,9bの中間から導体線11を巻き始め(位置12a)、コイルエンド部CE1におけるスロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部10a)、スロット内部SIの2段目の位置12b(図4参照)に入るようにする。この部分を側面から見ると、導体線11は角度θ”で折り曲げられている(図6、図7参照)。
スロット内部SIを通り位置12c(図5参照)から出てきた導体線11は、配列変更されて(配列変更部10b)、コイルエンド部CE2(図2参照)におけるスロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線11は角度θで折り曲げられている(図6、図7参照)。
導体線11は反対側のスロット9bに向かうが、スロット9aとスロット9bとの中間に来たら、今度はコイルエンド部CE2(図2参照)におけるスロット内部SIの2段目に相当する領域CE2bを通るように、配列変更される(通過領域変更部13b)。この部分を側面から見ると、導体線11は角度θ’で折り曲げられている(図6、図7参照)。
スロット9bに近づいたら配列変更されて(配列変更部10c)、スロット内部SIの1段目の位置12dに入るようにする。この部分を側面から見ると、導体線11は角度θ”で折り曲げられている(図6、図7参照)。
スロット内部SIを通り位置12eから出てきた導体線は、配列変更されて(配列変更部10d)、コイルエンド部CE1(図2参照)におけるスロット内部SIの2段目に相当する領域CE1bに出る。この部分を側面から見ると、導体線11は角度θで折り曲げられている。
導体線11は反対側のスロット9aに向かうが、スロット9aとスロット9bとの中間に来たら、再び、コイルエンド部CE1(図2参照)におけるスロット内部SIの1段目に相当する領域CE1aを通るように、配列変更される(通過領域変更部13a)。この部分を側面から見ると、導体線11は角度θ’で折り曲げられている。
以上がコイル17を形成する導体線11の1巻回分であるが、引き続き同じように、位置12f→位置12g→位置12h→・・・→位置12p→位置12qの順で導体線が巻かれていく。なお側面から見た図では、コイルエンド部CE1,CE2において、導体線11は4本が横並びに整列することになるが、例えば、図6に示すように導体線11の2周目、3周目となるにつれ、内側に配置されていく。
また、配列変更部10a〜10dは、導体線11の1周目、3周目のときは、スロット内部SIに入るときおよび出るときに配列変更を行っているが、導体線の2周目、4周目のときは、実際に配列変更は行われていない。2周目、4周目のときは、例えば、コイルエンド部CE1におけるスロット内部SIの1段目に相当する領域CE1aから来た導体線11が、スロット内部SIの1段目の位置12f,12nにそのまま入る場合がある。あるいは、例えば、スロット内部SIの1段目の位置12o,12gから来た導体線11が、コイルエンド部CE2におけるスロット内部SIの1段目に相当する領域CE2aに出る場合がある。あるいは、例えば、コイルエンド部CE2におけるスロット内部SIの2段目に相当する領域CE2bから来た導体線11が、スロット内部SIの2段目の位置12h,12pにそのまま入る場合がある。あるいは、例えば、スロット内部SIの2段目の位置12q,12iから来た導体線11が、コイルエンド部CE1におけるスロット内部SIの2段目に相当する領域CE1bに出る場合がある。
最後に、導体線11は、2つのスロット9aと9bの中間で巻き終わる(位置12r)。このようにして、スロット内部SIとコイルエンド部CE1,CE2とで導体線11の配列が異なるコイル17を形成することが可能になる。
なお、スロット内部SIとコイルエンド部CE1,CE2とで導体線11の配列が異なるコイル17を実現するには、上述した方法は1つの例示であり、必ずしもこの手順でコイル17を形成する必要はない。また本説明では、コイル17を2つのスロット9aとスロット9bの中間から巻き始め(位置12a)、同じような位置で巻き終わる(位置12r)方法を述べたが、必ずしもこの位置から巻き始めたり巻き終わる必要はない。ただし後述するが、スロット9aとスロット9bとの中間は側面から見た図で、三角形状になったコイルエンド部CE1,CE2の頂点になるため、コイル17を複数連結するときに、コイル17を結線する線が他の相の巻線と容易に干渉しにくいという効果がある。
また、通過領域変更部13a,13bは、図4,5中では導体線11の配列が変わるときに直角のクランク形状として示しているが、コイルエンド部CE1の導体線11が通過する領域CE1a,CE1bを変更するという目的が達せられれば、必ずしも直角のクランク形状である必要はない。例えば、クランクが付いていない直線状として、緩やかに領域が変更するようにしても良い。同様に、配列変更部10a〜10dは、スロット内部SIとコイルエンド部CE1,CE2とで導体線11の配列が変わるときに直角のクランク形状としているが、導体線11の配列を変更するという目的が達せられれば、必ずしも直角のクランク形状である必要はない。
図7を参照して、コイル17を形成する導体線11の折り曲げ角度について説明する。
例えば、配列変更部10aでの折り曲げ角度θ”は、第3の導体線群17cの延在方向DR17cと第4の導体線群17fの延在方向DR17fとのなす角度であってコイル17の内側を向く角度である。コイル17は側面から見たときに6角形状となっているため、この角度θ”は、例えば、次の数式2の条件を満たす。
90°<θ”<180°・・・数式2
数式2を満たす角度θ”は、例えば、120°である。
例えば、配列変更部10dでの折り曲げ角度θは、第1の導体線群17aの延在方向DR17aと第2の導体線群17bの延在方向DR17bとのなす角度であってコイル17の内側を向く角度である。この角度θは、次の数式3の条件を満たす。
90°<θ<180°・・・数式3
数式3を満たす角度θは、例えば、120°である。
例えば、通過領域変更部13aでの折り曲げ角度θ’は、第2の導体線群17bの延在方向DR17bと第3の導体線群17cの延在方向DR17cとのなす角度であってコイル17の内側を向く角度である。この角度θ’は、次の数式4の条件を満たす。
θ’=360°−(θ+θ”)・・・数式4
例えば、コイル17が図6、図7に示すように左右対称な形状である場合、次の数式5が成り立つ。
θ=θ”・・・数式5
数式5を数式4に代入すると、次の数式6が得られる。
θ’=360°−2θ・・・数式6
例えば、角度θ=θ”=120°である場合、角度θ’は120°である。
図8は、回転電機の固定子巻線を構成するために、固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図を示している。図8は、毎極毎相のスロット数=2(8極48スロット)において、同相のコイルが2スロットごとに組み込まれている場合を示しており、コイル17は、近接する同相にコイル17を挿入する重ね巻きとして、固定子鉄心5の4スロットずつ離れた間隔でスロット9に組み込まれている。なお図8の固定子鉄心5は、説明しやすいように直線形状で図示しており、また途中の部分を一部省略している。
例えば、V相の巻線V8は、U相の巻線U8のコイル17を、周方向に沿って図8の右方向に2スロット分シフトさせたコイル17を有している。例えば、W相の巻線W8は、V相の巻線V8のコイル17を、周方向に沿って図8の右方向に2スロット分シフトさせたコイル17を有している。すなわち、図8中のコイル17の右端で見た場合、2スロットピッチで分布させたU相、V相、W相のコイル17の配置パターンが、6スロット周期で繰り返されている。各コイル17は、コイルエンド部CE1において、6スロットに跨っており、左の3スロットで1段目の領域を通過し、右の3スロットで2段目の領域を通過している。
上述したような方法で固定子巻線6を形成する理由は、スロット9間の距離を短く(例えば、最短に)できるので、コイル17の周長を短くできるからである。周長の短いコイル17を使って固定子巻線6を形成すると、固定子巻線6全体の周長も短くでき、巻線抵抗値の低減によるモータ損失低減およびモータ運転効率の向上につながるという大きなメリットがある。
仮に、コイルエンド部CE1,CE2においてスロット9間を周方向に平行に直線的に接続するコイルを上記のように周期的に配置して巻線回路を作ろうとすると、U相・V相・W相の各相の巻線が干渉する箇所が多くなる。これを回避するために固定子巻線を迂回させたりすると、結果的に固定子巻線全体の周長が長くなったり、コイルエンド部の高さが高くなってしまう。すなわち、コイルエンド部の高さが高くなりやすいため、導線長さが長くなり、巻線抵抗の増大、すなわち銅損増大および効率低下が発生する可能性がある。
それに対して、本実施の形態では、上記のコイル17を使うことにより、コイルエンド部CE1の左半分の導体線11は、スロット内部SIの1段目に相当する領域CE1a(図4参照)に集めることができ、コイルエンド部CE1の右半分の導体線11は、スロット内部SIの2段目に相当する領域CE1b(図4参照)に集めることができる。これにより、U相・V相・W相の巻線が干渉しにくい。図8を見る限りでは、U相・V相・W相に挿入されるコイル17が重複する領域があるように見えるが、実際のコイルエンド部CE1,CE2におけるコイル17は三角形状になっており、コイル17の中心(通過領域変更部13a,13bでクランク形状になっている部分)は、三角形状の頂点である。このため、U相・V相・W相の巻線が機械的に干渉しにくくなっている。このようにして、コイルエンド部CE1,CE2の高さを低減でき、周長の短いコイル17を使った固定子巻線6を形成することが可能になる。
次に、実施の形態1による作用効果について例示的に説明する。
例えば、第1の効果として、例えば、導体線11はスロット内部SIとコイルエンド部CE1,CE2とで配列変更され(配列変更部10a〜10d)、導体線11はコイルエンド部CE1,CE2で固定子鉄心5の径方向に配置変換される(通過領域変更部13a,13b)ようにしている。これにより、コイルエンド部CE1,CE2において1つの相の巻線が他の相の巻線と干渉しにくくなり、コイルエンド部CE1,CE2の高さを低くすることができる。
なお、図2に例示するようにスロット内部SIで2段(固定子鉄心5の径方向)であった導体線11の束を、コイルエンド部CE1,CE2で1段(固定子鉄心5の径方向)に配列変更し、コイル17全体が6角形状になるように折り曲げ部が付いている場合は、コイルエンド部CE1,CE2において導体線11が配置されない無駄な空間を(例えば、実質的に存在しない程度に)低減でき、導体線11の配置密度(占積率)を効果的に(例えば、最も密に導体線11が配置されるように)向上できる。これにより、コイルエンド部CE1,CE2全体を小型化できる。
また、第2の効果として、例えば、固定子巻線5において、U相、V相、W相のすべてに対して同じ形状のコイル17を用いることができる。そのために、巻線の形成作業の効率を向上できるとともに、各相ごとの巻線長さを均等に(例えば、同じに)できるため、各相ごとで巻線抵抗値のアンバランスを許容範囲内に抑制できる。したがって、トルクリプルを低減でき、振動を低減できる。
以上のように、実施の形態1では、回転電機1において、固定子巻線6の各相の巻線を1以上のコイル17により形成する。各コイル17では、第1の導体線群17aが、スロット内部SIにおいて固定子鉄心5の径方向にm段(mは2以上の整数)に配置されている。第2の導体線群17bは、コイルエンド部CE1において第1の導体線群17aが固定子鉄心5の径方向にn段(nは1以上の整数)に配置変換されている。第1の折り曲げ部17dは、スロット内部SI及びコイルエンド部CE1の境界において第1の導体線群17aと第2の導体線群17bとが180°より小さい角度θをなすように折り曲げられている。第3の導体線群17cは、コイルエンド部CE1において固定子鉄心5の径方向の1段目からn段目までに配置された第2の導体線群17bが、固定子鉄心5の径方向の(m−n+1)段目からm段目までに配置変換されている。第2の折り曲げ部13aは、コイルエンド部CE1において第2の導体線群17bと第3の導体線群17cとが180°より小さい角度θ’をなすように折り曲げられている。そして、段数mおよびnは、
n/m ≦ 1/2
を満たす。これにより、各相の巻線を形成する各コイル17において、例えば、導体線11をスロット内部SIとコイルエンド部CE1,CE2とで配列変更でき(配列変更部10a〜10d)、導体線11をコイルエンド部CE1,CE2の途中で固定子鉄心5の径方向に配置変換できる(通過領域変更部13a,13b)。例えば、コイルエンド部CE1の左半分の導体線11を、スロット内部SIの1段目に相当する領域CE1a(図4参照)に集めることができ、コイルエンド部CE1の右半分の導体線11を、スロット内部SIの2段目に相当する領域CE1b(図4参照)に集めることができる。これにより、各相の巻線に同様の形状のコイル17を用いた場合に、コイルエンド部CE1,CE2において1つの相の巻線が他の相の巻線と干渉しにくくなるようにすることができ、コイルエンド部CE1,CE2の高さを低くすることができる。すなわち、コイルエンド部CE1,CE2における各相の巻線の機械的な干渉を低減でき、各相ごとの巻線長さを均等に(例えば、同じに)できる。この結果、コイルエンド部の外径を小さくでき、各相の巻線抵抗値のアンバランスを許容範囲内に抑制できる。
また、実施の形態1では、各相の巻線に同様の形状のコイル17を用いることができるので、結線作業を簡素化でき、回転電機1の製造コストを低減できる。
また、実施の形態1では、第2の折り曲げ部17eは、例えば、回転軸RAの方向から見た場合に、第2の導体線群17bと第3の導体線群17cとの間で径方向における配置を変更するクランク形状を有する。これにより、例えば、コイルエンド部CE1の左半分の導体線11を、スロット内部SIの1段目に相当する領域CE1a(図4参照)に集めることができ、コイルエンド部CE1の右半分の導体線11を、スロット内部SIの2段目に相当する領域CE1b(図4参照)に集めることができる。この結果、各相の巻線に同様の形状のコイル17を用いた場合に、コイルエンド部CE1,CE2において1つの相の巻線が他の相の巻線と干渉しにくくなるようにすることができる。
また、実施の形態1では、各相の巻線を形成する各コイル17において、第4の導体線群17fが、スロット内部SIにおいて固定子鉄心5の径方向にm段(mは2以上の整数)に配置されている。第3の折り曲げ部17gは、コイルエンド部CE1及びスロット内部SIの境界において第3の導体線群17cと第4の導体線群17fとが180°より小さい角度θをなすように折り曲げられている。そして、角度θ”は、
90°<θ”<180°
を満たし、
角度θは、
90°<θ<180°
を満たし、
角度θ’は、
θ’=360°−(θ+θ”)
を満たす。これにより、各相の巻線を形成する各コイル17を例えば6角形状にすることができる。この結果、各相の巻線に同様の形状のコイル17を用いながらコイルエンド部CE1,CE2における各相の巻線の機械的な干渉を低減できるようにコイル17を構成することが容易である。
また、実施の形態1では、例えば、角度θと角度θ”とは、互いに均等であり、角度θ’は、
θ’=360°−2θ
を満たす。これにより、各相の巻線を形成する各コイル17を例えばティース8の側面に垂直な方向から見た場合に左右対称な6角形状にすることができる(図6参照)。この結果、各相の巻線抵抗値のアンバランスをさらに抑制できる。
実施の形態2.
次に、実施の形態2にかかる回転電機について説明する。図9は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。図10は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。図11は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面(回転軸RAを向く面)から見た図である。図12は、コイルを形成する導体線の折り曲げ角度について説明した図である。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、スロット内部SIで径方向に2段であった導体線11をコイルエンド部CE1,CE2において径方向に1段に配列変更するコイルについて例示的に説明を行っている。実施の形態2では、スロット内部SIで径方向に3段であった導体線21をコイルエンド部CE1,CE2において径方向に1段に配列変更するコイルについて例示的に説明を行う。
具体的には、回転電機200の固定子203の固定子巻線206において、各相の巻線を形成する各コイル217の構成が、図9〜図12に示すように、次の点で実施の形態1と異なる。
図9から図11は、スロット内部SIで3段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル217を1個挿入した状態を示しているが、このとき導体線がどのように巻かれてコイル217を形成しているかを、位置22aから位置22zの符号を使って例示的に説明する。
コイル217は、2つのスロット9a,9bの中間から導体線21を巻き始め(位置22a)、コイルエンド部CE1(図2参照)におけるスロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部20a)、スロット内部SIの3段目の位置22b(図9参照)に入るようにする。この部分を側面から見ると、導体線21は角度θ”で折り曲げられている(図11、図12参照)。
スロット内部SIを通り位置22c(図10参照)から出てきた導体線21は、配列変更されて(配列変更部20b)、コイルエンド部CE2(図2参照)におけるスロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線21は角度θで折り曲げられている(図11、図12参照)。
導体線21は反対側のスロット9bに向かうが、スロット9aとスロット9bとの中間に来たら、今度はコイルエンド部CE2(図2参照)におけるスロット内部SIの3段目に相当する領域CE2cを通るように、配列変更される(通過領域変更部23b)。この部分を側面から見ると、導体線21は角度θ’で折り曲げられている(図11、図12参照)。
スロット9bに近づいたら配列変更されて(配列変更部20c)、スロット内部SIの1段目の位置22d(図10参照)に入るようにする。この部分を側面から見ると、導体線21は角度θ”で折り曲げられている(図11、図12参照)。
スロット内部SIを通り位置22e(図9参照)から出てきた導体線21は、配列変更されて(配列変更部20d)、コイルエンド部CE1(図2参照)におけるスロット内部3段目に相当する領域CE1cに出る。この部分を側面から見ると、導体線21は角度θで折り曲げられている(図11、図12参照)。
導体線21は反対側のスロット9aに向かうが、スロット9aとスロット9bとの中間に来たら、再び、コイルエンド部CE1(図2参照)におけるスロット内部SIの1段目に相当する領域CE1aを通るように、配列変更される(通過領域変更部23a)。この部分を側面から見ると、導体線21は角度θ’で折り曲げられている。
以上がコイル217を形成する導体線21の1巻回分であるが、引き続き同じように、位置22f→位置22g→位置22h→・・・→位置22x→位置22yの順で導体線21が巻かれていく。なお側面から見た図では、コイルエンド部CE1,CE2において、導体線21は6本が横並びに整列することになるが、図11に示すように導体線21の2周目、3周目となるにつれ、内側に配置されていく。
また、配列変更部20a〜20dは、導体線21の1周目、2周目、4周目、5周目のときは、スロット内部SIに入るときおよび出るときに配列変更を行っているが、導体線21の3周目、6周目のときは、実際に配列変更は行われていない。例えば、コイルエンド部CE1におけるスロット内部SIの1段目に相当する領域CE1aから来た導体線21が、スロット内部SIの1段目の位置22j,22vにそのまま入る場合がある。あるいは、例えば、スロット内部SIの1段目の位置22w,22kから来た導体線21が、コイルエンド部CE2におけるスロット内部SIの1段目に相当する領域CE2aに出る場合がある。あるいは、例えば、コイルエンド部CE2におけるスロット内部SIの3段目に相当する領域CE2cから来た導体線21が、スロット内部SIの3段目の位置22l,22xにそのまま入る場合がある。あるいは、例えば、スロット内部SIの3段目の位置22y,22mから来た導体線21が、コイルエンド部CE1におけるスロット内部SIの3段目に相当する領域CE1cに出る場合がある。
最後に、導体線21は、2つのスロット9aとスロット9bとの中間で巻き終わる(位置22z)。このようにして、スロット内部SIとコイルエンド部CE1,CE2とで導体線21の配列が異なるコイル217を形成することが可能になる。
図12を参照して、コイル217を形成する導体線21の折り曲げ角度について説明する。
例えば、配列変更部20aでの折り曲げ角度θ”は、第3の導体線群17cの延在方向DR17cと第4の導体線群17fの延在方向DR17fとのなす角度であってコイル217の内側を向く角度である。コイル217は側面から見たときに6角形状となっているため、この角度θ”は、例えば、上記の数式2の条件を満たす。
数式2を満たす角度θ”は、例えば、120°である。
例えば、配列変更部20dでの折り曲げ角度θは、第1の導体線群17aの延在方向DR17aと第2の導体線群17bの延在方向DR17bとのなす角度であってコイル217の内側を向く角度である。この角度θは、上記の数式3の条件を満たす。
数式3を満たす角度θは、例えば、120°である。
例えば、通過領域変更部23aでの折り曲げ角度θ’は、第2の導体線群17bの延在方向DR17bと第3の導体線群17cの延在方向DR17cとのなす角度であってコイル217の内側を向く角度である。この角度θ’は、上記の数式4の条件を満たす。
例えば、コイル217が図11、図12に示すように左右対称な形状である場合、上記の数式5が成り立つ。上記の数式5を数式4に代入すると、上記の数式6が得られる。
図13は、回転電機の固定子巻線を構成するために、固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図を示している。図13は、毎極毎相のスロット数=2(8極48スロット)において、同相のコイル217が2スロットごとに組み込まれている場合を示しており、コイル217は、近接する同相にコイル217を挿入する重ね巻きとして、固定子鉄心5の4スロットずつ離れた間隔でスロット9に組み込まれている。なお図13の固定子鉄心5は、説明しやすいように直線形状で図示しており、また途中の部分を一部省略している。
例えば、V相の巻線V8は、U相の巻線U8のコイル217を、周方向に沿って図13の右方向に2スロット分シフトさせたコイル217を有している。例えば、W相の巻線W8は、V相の巻線V8のコイル217を、周方向に沿って図13の右方向に2スロット分シフトさせたコイル217を有している。すなわち、図13中のコイル217の右端で見た場合、2スロットピッチで分布させたU相、V相、W相のコイル217の配置パターンが、6スロット周期で繰り返されている。各コイル217は、コイルエンド部において、6スロットに跨っており、左の3スロットで1段目の領域を通過し、右の3スロットで3段目の領域を通過している。
以上のように、実施の形態2では、スロット内部SIで径方向に3段であった導体線21をコイルエンド部CE1,CE2において径方向に1段に配列変更する。例えば、導体線21をコイルエンド部CE1,CE2の途中でクランク形状にすれば、コイルエンド部CE1の左半分の導体線21を、スロット内部SIの1段目に相当する領域CE1a(図9参照)に集めることができ、コイルエンド部CE1の右半分の導体線21を、スロット内部SIの3段目に相当する領域CE1c(図9参照)に集めることができる。これにより、各相の巻線に同様の形状のコイル217を用いた場合に、コイルエンド部CE1,CE2において1つの相の巻線が他の相の巻線と干渉しにくくなるようにすることができ、コイルエンド部CE1,CE2の高さを低くすることができる。すなわち、コイルエンド部CE1,CE2における各相の巻線の機械的な干渉を低減でき、各相ごとの巻線長さを均等に(例えば、同じに)できる。この結果、スロット内部SIで径方向に3段に導体線21が配置されている場合に、コイルエンド部の外径を小さくでき、各相の巻線抵抗値のアンバランスを許容範囲内に抑制できる。
実施の形態3.
次に、実施の形態3にかかる回転電機について説明する。図14は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。図15は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。図16は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面(回転軸RAを向く面)から見た図である。図17は、コイルを形成する導体線の折り曲げ角度について説明した図である。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、スロット内部SIで径方向に2段であった導体線をコイルエンド部CE1,CE2で1段に配列変更するコイルについて例示的に説明を行っている。実施の形態3では、スロット内部SIで径方向に5段であった導体線をコイルエンド部CE1,CE2で2段に配列変更するコイルについて例示的に説明を行う。
具体的には、回転電機400の固定子403の固定子巻線406において、各相の巻線を形成する各コイル417の構成が、図14〜図17に示すように、次の点で実施の形態1と異なる。
図14から図16は、スロット内部SIで5段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル417を1個挿入した状態を示しているが、このとき導体線31がどのように巻かれてコイル417を形成しているかを、位置32aから位置32zおよび位置33aから位置33pの符号を使って例示的に説明する。
コイル417は、2つのスロット9a,9bの中間から巻き始め(位置32a)、コイルエンド部CE1(図2参照)におけるスロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部30a)、スロット内部SIの5段目の位置32bに入るようにする。この部分を側面から見ると、導体線は角度θ”で折り曲げられている(図16、図17参照)。
スロット内部SIを通り位置32c(図15参照)から出てきた導体線31は、配列変更されて(配列変更部30b)、コイルエンド部CE2(図2参照)におけるスロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線は角度θで折り曲げられている(図16、図17参照)。
導体線31は反対側のスロット9bに向かうが、スロット9aとスロット9bとの中間に来たら、今度はコイルエンド部CE2(図2参照)におけるスロット内部SIの4段目に相当する領域CE2dを通るように、配列変更される(通過領域変更部34b)。この部分を側面から見ると、導体線は角度θ’で折り曲げられている(図16、図17参照)。
スロット9bに近づいたら配列変更されて(配列変更部30c)、スロット内部SIの1段目の位置32dに入るようにする。この部分を側面から見ると、導体線は角度θ”で折り曲げられている(図16、図17参照)。
スロット内部SIを通り位置32e(図14参照)から出てきた導体線31は、配列変更されて(配列変更部30d)、スロット内部SIの4段目に相当する領域CE1dに出る。この部分を側面から見ると、導体線31は角度θで折り曲げられている(図16、図17参照)。
導体線31は反対側のスロット9aに向かうが、スロット9aとスロット9bとの中間に来たら、再びスロット内部SIの1段目に相当する領域CE1aを通るように、配列変更される(通過領域変更部34a)。この部分を側面から見ると、導体線31は角度θ’で折り曲げられている(図16、図17参照)。
このようにコイル417を形成する導体線の1巻回分を巻く。引き続き同じように、位置32f→位置32g→位置32h→・・・→位置32t→位置32uの順で導体線31が巻かれていく。ここまでのコイルエンド部CE1,CE2の導体線31は、スロット内部SIの1段目に相当する領域CE1a,CE2aとスロット内部SIの4段目に相当する領域CE1d,CE2dを通ることになり、側面から見た図では、コイルエンド部CE1,CE2において、導体線は5本が横並びに整列することになるが、図16に示すように導体線の2周目、3周目となるにつれ、内側に配置されていく。
また、配列変更部30aから30dは、導体線31の1周目、2周目、3周目、4周目のときは、スロット内部SIに入るときおよび出るときに配列変更を行っているが、導体線31の5周目のときは、実際に配列変更は行われていない。
さらに引き続き、位置32u(図14参照)から出た導体線31はスロット内部SIの4段目に相当する領域CE1dを通って、反対側のスロット9aに向かうが、スロット9aとスロット9bの中間に来たら、スロット内部SIの2段目に相当する領域CE1bを通るように、配列変更される(通過領域変更部34a)。この部分を側面から見ると、導体線31は角度θ’で折り曲げられている(図16、図17参照)。
スロット9aに近づいたら配列変更されて(配列変更部30a)、スロット内部SIの5段目の位置32vに入るようにする。この部分を側面から見ると、導体線31は角度θ”で折り曲げられている(図16、図17参照)。
スロット内部SIを通り位置32w(図15参照)から出てきた導体線31は、配列変更されて(配列変更部30b)、スロット内部SIの2段目に相当する領域CE2bに出る。この部分を側面から見ると、導体線31は角度θで折り曲げられている(図16、図17参照)。
導体線31は反対側のスロット9bに向かうが、スロット9aとスロット9bの中間に来たら、今度はスロット内部SIの5段目に相当する領域CE2eを通るように、配列変更される(通過領域変更部34b)。この部分を側面から見ると、導体線31は角度θ’で折り曲げられている(図16、図17参照)。
スロット9bに近づいたら配列変更されて(配列変更部30c)、スロット内部SIの1段目の位置32xに入るようにする。この部分を側面から見ると、導体線31は角度θ”で折り曲げられている(図16、図17参照)。
スロット内部SIを通り位置32y(図14参照)から出てきた導体線は、配列変更されて(配列変更部30d)、スロット内部SIの5段目に相当する領域CE1eに出る。この部分を側面から見ると、導体線31は角度θで折り曲げられている(図16、図17参照)。
導体線31は反対側のスロット9aに向かうが、スロット9aとスロット9bの中間に来たら、再びスロット内部SIの2段目に相当する領域CE1bを通るように、配列変更される(通過領域変更部34a)。この部分を側面から見ると、導体線31は角度θ’で折り曲げられている(図16、図17参照)。
このようにコイル417を形成する導体線31の1巻回分を巻く。引き続き同じように、位置32z→位置33a→位置33b→位置33c→・・・→位置33n→位置33oの順で導体線31が巻かれていく。ここまでのコイルエンド部CE1,CE2の導体線31は、スロット内部SIの2段目に相当する領域CE1b,CE2bとスロット内部SIの5段目に相当する領域CE1e,CE2eを通ることになり、側面から見た図では、コイルエンド部において、導体線31は5本が横並びに整列することになるが、図16に示すように導体線の2周目、3周目となるにつれ、内側に配置されていく。
また、配列変更部30aから30dは、導体線の1周目、2周目、3周目、4周目のときは、スロット内部に入るときおよび出るときに配列変更を行っているが、導体線の5周目のときは、実際に配列変更は行われていない。
図17を参照して、コイル417を形成する導体線31の折り曲げ角度について説明する。
例えば、配列変更部30aでの折り曲げ角度θ”は、第3の導体線群17cの延在方向DR17cと第4の導体線群17fの延在方向DR17fとのなす角度であってコイル217の内側を向く角度である。コイル417は側面から見たときに6角形状となっているため、この角度θ”は、例えば、上記の数式2の条件を満たす。
数式2を満たす角度θ”は、例えば、120°である。
例えば、配列変更部30dでの折り曲げ角度θは、第1の導体線群17aの延在方向DR17aと第2の導体線群17bの延在方向DR17bとのなす角度であってコイル417の内側を向く角度である。この角度θは、上記の数式3の条件を満たす。
数式3を満たす角度θは、例えば、120°である。
例えば、通過領域変更部34aでの折り曲げ角度θ’は、第2の導体線群17bの延在方向DR17bと第3の導体線群17cの延在方向DR17cとのなす角度であってコイル417の内側を向く角度である。この角度θ’は、上記の数式4の条件を満たす。
例えば、コイル417が図16、図17に示すように左右対称な形状である場合、上記の数式5が成り立つ。上記の数式5を数式4に代入すると、上記の数式6が得られる。
図18は、回転電機の固定子巻線を構成するために、固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図を示している。図18は、毎極毎相のスロット数=2(8極48スロット)において、同相のコイルが2スロットごとに組み込まれている場合を示しており、コイル417は、近接する同相にコイルを挿入する重ね巻きとして、固定子鉄心5の4スロットずつ離れた間隔でスロットに組み込まれている。なお図18の固定子鉄心5は、説明しやすいように直線形状で図示しており、また途中の部分を一部省略している。
例えば、V相の巻線V8は、U相の巻線U8のコイル417を、周方向に沿って図18の右方向に2スロット分シフトさせたコイル417を有している。例えば、W相の巻線W8は、V相の巻線V8のコイル417を、周方向に沿って図18の右方向に2スロット分シフトさせたコイル417を有している。すなわち、図18中のコイル417の右端で見た場合、2スロットピッチで分布させたU相、V相、W相のコイル417の配置パターンが、6スロット周期で繰り返されている。各コイル417は、コイルエンド部において、6スロットに跨っており、左の3スロットで1段目と2段目の領域を通過し、右の3スロットで4段目と5段目の領域を通過している。
以上のように、実施の形態3では、コイル417を使うことにより、コイルエンド部CE1,CE2の左半分の導体線31を、スロット内部SIの1段目と2段目に相当する領域CE1a,CE1b,CE2a,CE2b(図14、図15参照)に集めることができ、コイルエンド部CE1,CE2の右半分の導体線31を、スロット内部SIの4段目と5段目に相当する領域CE1d,CE1e,CE2d,CE2eに集めることができる。これにより、U相・V相・W相の巻線が互いに干渉しにくい。図18を見る限りでは、U相・V相・W相に挿入されるコイル417が重複する領域があるように見えるが、実際のコイルエンド部CE1,CE2のコイル417は三角形状になっており、コイル417の中心(通過領域変更部でクランク形状になっている部分)は、三角形状の頂点であるため、U相・V相・W相の巻線が互いに干渉しにくい。このようにして、コイルエンド部の高さを高くすることなく、周長の短いコイルを使った固定子巻線を形成することが可能になる。
すなわち、導体線31はスロット内部SIとコイルエンド部CE1,CE2とで配列変更され(配列変更部30a〜30d)、導体線31はコイルエンド部CE1,CE2で固定子鉄心5の径方向に配置変換される(通過領域変更部34a,34b)ようにしている。これにより、コイルエンド部CE1,CE2において1つの相の巻線が他の相の巻線と干渉しにくくなり、コイルエンド部の高さを低くすることができる。
また、実施の形態3では、U相、V相、W相すべてに対して同じ形状のコイルを用いることができる。そのために、巻線の形成作業の効率を向上できるとともに、各相ごとの巻線長さが同じであるため、各相ごとの巻線抵抗値のアンバランスを許容範囲内に抑制できる。したがって、トルクリプルまたは振動などを低減できる。
実施の形態4.
次に、実施の形態4にかかる回転電機について説明する。図19は、固定子巻線を成すコイルの構成図である。以下では、実施の形態1〜3と異なる部分を中心に説明する。
実施の形態1〜3では、スロット内部とコイルエンド部で配列変更するコイルのうち、コイルエンド部のコイル形状が三角形状であるものについて説明を行っている。実施の形態4では、コイルエンド部において導体線の1巻回ごとに、通過領域変更部を固定子鉄心の周方向に対し後述の距離Xでずらして配置し、コイルエンド部の三角形状の頂点が導体線の1巻回ごとに距離Xでずれるようにする方法について説明を行う。
具体的には、回転電機500の固定子503の固定子巻線506において、各相の巻線を形成するコイル517は、例えば図19に示す構成を有する。
コイル517は、近接する同相にコイルを挿入する重ね巻きとして、固定子鉄心5のスロットに挿入される。コイル517は導体線41の束として形成される。
具体的には、コイル517は、図19に示すように、第2の折り曲げ部17e(図2参照)に代えて、第2の折り曲げ部517eを有する。
第2の折り曲げ部517eでは、導体線41の1巻回ごとに固定子鉄心5の周方向に対して距離Xでずらしながら各導体線41を配置している。すなわち、第2の折り曲げ部517eを含む通過領域変更部43aは、導体線41の1巻回ごとに固定子鉄心5の周方向に対して距離Xでずらしながら、コイルエンド部CE1の第2の導体線群17bの配列(径方向の通過領域)からコイルエンド部CE1の第3の導体線群17cの配列(径方向の通過領域)への変更を行う。この距離Xは、例えば角度θと角度θ”とが互いに均等であり、導体線の幅をWとすると、上記の数式5が成り立つとき、次の数式7で得られる。
X = W/(−cosθ)・・・数式7
例えば、図19では、コイル517が、スロット内部SIで2段(固定子鉄心5の径方向)×8本(固定子鉄心5の周方向)の導体線41から構成されている。例えば、径方向の数および周方向の数は、次のように決定することができる。
例えば、図19に示す場合、コイル517は、スロット内部SIからコイルエンド部CE1にかけて、巻線配列の変更を行っている(配列変更部40d)。これにより、スロット内部SIで2段(固定子鉄心5の径方向)×8本分(固定子鉄心5の周方向)であった導体線41の束は、コイルエンド部CE1で1段(固定子鉄心5の径方向)×16本分(固定子鉄心5の周方向)に整列される。またこのときに、角度θ(例えば、図19では135°)で折り曲げられている。
次に、コイルエンド部CE1において、例えば、固定子鉄心5の径方向の1段目に整列された導体線41は、他の相の巻線(他の相のコイル517)と干渉しないように、例えば、固定子鉄心5の径方向の2段目に配置変換される(第2の折り曲げ部517eを含む通過領域変更部43a)。またこのときも、配置変換する前と後とで、すなわち第2の折り曲げ部517eにおいて、角度θ’(例えば、図19では90°)で折り曲げられている。
その後、再びコイルエンド部CE1からスロット内部SIに戻るときに、巻線配列の変更が行なわれている(配列変更部40a)。これにより、コイルエンド部CE1で1段(固定子鉄心5の径方向)×16本分(固定子鉄心5の周方向)であった導体線41の束は、スロット内部SIで2段(固定子鉄心5の径方向)×8本分(固定子鉄心5の周方向)に整列される。またこのときに、角度θ”(例えば、図19では135°)で折り曲げられている。
このようにコイル517を構成することで、コイルエンド部CE1のコイル形状が三角形状になっている。また、説明は省略するが、コイル517の下半分も同じように導体線41の配列変更が行われており、全体として6角形状となっている。
なお、今回の実施の形態である図19が、すでに説明した実施の形態1の図2と違う点は、コイルエンド部において導体線の1巻回ごとに、導体線通過領域変更部49を固定子鉄心の周方向に対し距離Xでずらして配置している点である。このようにすることで、コイルエンド部の三角形状の頂点が導体線の1巻回ごとに距離Xでずれるようになり、頂点の位置が周方向に揃っている図2に比較して、さらにコイルエンド部の高さを低くすることができる。
図20は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。図21は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。図22は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面(回転軸RAを向く面)から見た図である。図23は、コイルを形成する導体線の折り曲げ角度および寸法について説明した図である。図20から図23を用いて、コイル517の巻線配列の変更の部分をより詳細に説明する。
図20から図22は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル517を1個挿入した状態を示しているが、このとき導体線がどのように巻かれてコイル517を形成しているかを、位置42aから位置42rを使って例示的に説明する。
コイル517は、2つのスロット9a,9bの中間から巻き始め(位置42a)、スロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部40a)、スロット内部SIの2段目の位置42bに入るようにする。この部分を側面から見ると、導体線41は角度θ”で折り曲げられている(図22、図23参照)。
スロット内部SIを通り位置42c(図21参照)から出てきた導体線41は、配列変更されて(配列変更部40b)、スロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線41は角度θで折り曲げられている(図22、図23参照)。
導体線41は反対側のスロット9bに向かうが、スロット9aとスロット9bとの中間に来たら、今度はスロット内部SIの2段目に相当する領域CE2bを通るように、配列変更される(通過領域変更部43b)。この部分を側面から見ると、導体線41は角度θ’で折り曲げられている(図22、図23参照)。
スロット9bに近づいたら配列変更されて(配列変更部40c)、スロット内部SIの1段目の位置42dに入るようにする。この部分を側面から見ると、導体線41は角度θ”で折り曲げられている(図22、図23参照)。
スロット内部SIを通り位置42e(図20参照)から出てきた導体線41は、配列変更されて(配列変更部40d)、スロット内部SIの2段目に相当する領域CE1bに出る。この部分を側面から見ると、導体線41は角度θで折り曲げられている(図22、図23参照)。
導体線41は反対側のスロット9aに向かうが、スロット9aとスロット9bの中間に来たら、再びスロット内部1段目に相当する領域を通るように、配列変更される(通過領域変更部43a)。この部分を側面から見ると、導体線は所定の角度で折り曲げられている。
以上がコイルを形成する導体線41の1巻回分であるが、引き続き同じように、位置42f→位置42g→位置42h→・・・→位置42p→位置42qの順で導体線41が巻かれていく。ただし導体線41の2周目以降は、通過領域変更部43a、43bの位置が導体線41の1巻回ごとに固定子鉄心5の周方向に対して距離Xでずらして配置される。通過領域変更部43a、43bは、側面から見た図で、三角形状になったコイルエンド部CE1,CE2の頂点であり、言い換えると三角形状になったコイルエンド部CE1,CE2における導体線41の頂点が導体線41の1巻回ごとに固定子鉄心5の周方向に対して距離Xでずらして配置されているとも言える。
なお側面から見た図では、コイルエンド部CE1,CE2において、導体線41は例えば4本が横並びに整列することになるが、図22に示すように導体線41の1周目が4本のうち常に一番左側に来るように配置され、2周目、3周目となるにつれ、1本ずつ右側に配置されていく(実施の形態1で説明した図6とは、巻き方が異なる)。
また、配列変更部40aから40dは、導体線の1周目、3周目のときは、スロット内部に入るときおよび出るときに配列変更を行っているが、導体線の2周目、4周目のときは、実際に配列変更は行われていない。
最後にコイル517は、2つのスロット9a,9bの中間で導体線41を巻き終わる(位置42r)。
図23を参照して、コイルを形成する導体線の折り曲げ角度および寸法について説明する。
例えば、配列変更部40aでの折り曲げ角度θ”は、第3の導体線群17cの延在方向DR17cと第4の導体線群17fの延在方向DR17fとのなす角度であってコイル517の内側を向く角度である。コイル517は側面から見たときに6角形状となっているため、この角度θ”は、例えば、上記の数式2の条件を満たす。
数式2を満たす角度θ”は、例えば、135°である。
例えば、配列変更部40dでの折り曲げ角度θは、第1の導体線群17aの延在方向DR17aと第2の導体線群17bの延在方向DR17bとのなす角度であってコイル517の内側を向く角度である。この角度θは、上記の数式3の条件を満たす。
数式3を満たす角度θは、例えば、135°である。
例えば、通過領域変更部43aでの折り曲げ角度θ’は、第2の導体線群17bの延在方向DR17bと第3の導体線群17cの延在方向DR17cとのなす角度であってコイル517の内側を向く角度である。この角度θ’は、上記の数式4の条件を満たす。
例えば、コイル517が図22、図23に示すように左右対称な形状である場合、上記の数式5が成り立つ。上記の数式5を数式4に代入すると、上記の数式6が得られる。
また、通過領域変更部43aの位置は、導体線41の1巻回ごとに固定子鉄心5の周方向に対しての距離Xでずらして配置されている。その距離Xは、導体線の幅をW、(上記の数式5が成り立つ場合)配列変更部での折り曲げ角度をθとすると、上記の数式7で与えられる。
図24は、回転電機の固定子巻線を構成するために、固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図を示している。図24は、毎極毎相のスロット数=2(8極48スロット)において、同相のコイル517が2スロットごとに組み込まれている場合を示している。コイル517は、近接する同相にコイルを挿入する重ね巻きとして、固定子鉄心5の4スロットずつ離れた間隔でスロットに組み込まれている。なお図24の固定子鉄心5は、説明しやすいように直線形状で図示しており、また途中の部分を一部省略している。
例えば、V相の巻線V8は、U相の巻線U8のコイル517を、周方向に沿って図24の右方向に2スロット分シフトさせたコイル517を有している。例えば、W相の巻線W8は、V相の巻線V8のコイル517を、周方向に沿って図24の右方向に2スロット分シフトさせたコイル517を有している。すなわち、図24中のコイル517の右端で見た場合、2スロットピッチで分布させたU相、V相、W相のコイル517の配置パターンが、6スロット周期で繰り返されている。各コイル517は、コイルエンド部において、6スロットに跨っており、左の3スロットで1段目の領域を通過し、右の3スロットで2段目の領域を通過している。
以上のように、実施の形態4では、導体線41をコイルエンド部CE1,CE2で固定子鉄心5の径方向に配置変換する通過領域変更部43aを、導体線41の1巻回ごとに固定子鉄心5の周方向に対して距離Xでずらして配置させる。具体的には、導体線の幅をW、(上記の数式5が成り立つ場合)配列変更部での折り曲げ角度をθとすると、上記の数式7で与えられる距離Xでずらして導体線41の通過領域変更部を配置させる(図20、図21参照)。これにより、コイルエンド部CE1,CE2におけるコイル517の高さをさらに低くすることができる。
実施の形態5.
次に、実施の形態5にかかる回転電機について説明する。図25は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。図26は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図、図27は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面(回転軸RAを向く面)から見た図である。以下では、実施の形態1〜4と異なる部分を中心に説明する。
実施の形態1〜4において、スロット内部とコイルエンド部とで導体線の配列が異なるコイルを実現するには、記載した方法は1つの事例であり、必ずしもこの手順でコイルを形成する必要はないものとされている。
そこで、実施の形態5では、これまでと異なるコイルの形成手順について例示的に説明を行う。
具体的には、回転電機600の固定子603の固定子巻線606において、各相の巻線を形成する各コイル617の構成が、図25〜図27に示すように、次の点で実施の形態1〜4と異なる。
図25から図27は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル617を1個挿入した状態を示しているが、このとき導体線がどのように巻かれてコイル617を形成しているかを、位置82aから位置82rを使って例示的に説明する。
コイル617は、2つのスロット9a,9bの中間から巻き始め(位置82a)、スロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部80a)、スロット内部SIの2段目の位置82bに入るようにする。この部分を側面から見ると、導体線81は角度θ”で折り曲げられている(図27参照)。
スロット内部SIを通り位置82c(図26参照)から出てきた導体線81は、配列変更されて(配列変更部80b)、スロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線81は角度θで折り曲げられている(図27参照)。
導体線81は反対側のスロット9bに向かうが、スロット9aとスロット9bの中間に来たら、今度はスロット内部SIの2段目に相当する領域CE2bを通るように、配列変更される(通過領域変更部83b)。この部分を側面から見ると、導体線81は角度θ’で折り曲げられている(図27参照)。
スロット9bに近づいたら配列変更されて(配列変更部80c)、スロット内部SIの1段目の位置82dに入るようにする。この部分を側面から見ると、導体線81は角度θ”で折り曲げられている(図27参照)。
スロット内部SIを通り位置82e(図25参照)から出てきた導体線81は、配列変更されて(配列変更部80d)、スロット内部SIの2段目に相当する領域CE1bに出る。この部分を側面から見ると、導体線81は角度θで折り曲げられている(図27参照)。
導体線81は反対側のスロット9aに向かうが、スロット9aとスロット9bとの中間に来たら、再びスロット内部SIの1段目に相当する領域CE1aを通るように、配列変更される(通過領域変更部83a)。この部分を側面から見ると、導体線81は角度θ’で折り曲げられている(図27参照)。
以上がコイル617を形成する導体線81の1巻回分であるが、引き続き同じように、位置82f→位置82g→位置82h→・・・→位置82p→位置82qの順で導体線81が巻かれていく。なお側面から見た図では、コイルエンド部CE1,CE2において、導体線81は4本が横並びに整列することになるが、図27に示すように導体線の2周目、3周目となるにつれ、内側に配置されていく。
実施の形態1におけるコイルの形成手順では、配列変更部10aから10dは、導体線の1周目、3周目のときは、スロット内部SIに入るときおよび出るときに配列変更を行っているが、導体線11の2周目、4周目のときは、実際には配列変更が行われていない(図4〜図6参照)。
それに対して、本実施の形態5では、コイル617の形成手順において、配列変更部80aから80dは、導体線の1周目、2周目のときは、スロット内部に入るときおよび出るときに配列変更を行っているが、導体線の3周目、4周目のときは、実際に配列変更が行われない(スロット内部1段目に相当する領域から来た導体線が、スロット内部1段目にそのまま入る場合など)。本実施の形態のほうが、導体線81の巻回ごとに実際に配列変更する、しないということが続くので、配列変更のための折れ曲がり(直角クランク形状)が揃うようになり、コイルエンド部の配列変更部をよりコンパクトにできる。
以上のように、実施の形態5では、導体線の巻回ごとに実際に配列変更する、しないということが続くようにしたので、配列変更のための折れ曲がり(直角クランク形状)が揃うようになり、コイルエンド部の配列変更部をよりコンパクトにできる。
なお、この実施の形態5は、実施の形態1と対比する形で記載をしたが、実施の形態2〜4に対しても、同じ技術を適用することは可能である。また、この実施の形態5の技術は、後述の実施の形態6に対しても適用可能である。
実施の形態6.
次に、実施の形態6にかかる回転電機について説明する。図28は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。図29は、固定子鉄心にコイルを挿入した状態を固定子鉄心の下面から見た図である。図30は、固定子鉄心にコイルを挿入した状態を固定子鉄心の側面から見た図である。以下では、実施の形態1〜5と異なる部分を中心に説明する。
実施の形態1〜5において、スロット内部とコイルエンド部とで導体線の配列が異なるコイルを実現するには、記載した方法は1つの事例であり、必ずしもこの手順でコイルを形成する必要はないものとされている。
そこで、実施の形態6では、実施の形態1〜5と異なるコイルの形成手順について例示的に説明を行う。
具体的には、回転電機700の固定子703の固定子巻線706において、各相の巻線を形成する各コイル717の構成が、図28〜図30に示すように、次の点で実施の形態1と異なる。
図28から図30は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であるコイル717を1個挿入した状態を示しているが、このとき導体線がどのように巻かれてコイル717を形成しているかを、位置92aから位置92rを使って例示的に説明する。
コイル717は、2つのスロット9a,9bの中間から導体線91を巻き始め(位置92a)、スロット内部SIの1段目に相当する領域CE1aを通ってスロット9aに近づく。その後、配列変更されて(配列変更部90a)、スロット内部SIの2段目の位置92bに入るようにする。この部分を側面から見ると、導体線91は角度θ”で折り曲げられている(図30参照)。
スロット内部SIを通り位置92c(図29参照)から出てきた導体線91は、配列変更されて(配列変更部90b)、スロット内部SIの1段目に相当する領域CE2aに出る。この部分を側面から見ると、導体線91は角度θで折り曲げられている(図30参照)。
導体線91は反対側のスロット9bに向かうが、スロット9aとスロット9bとの中間に来たら、今度はスロット内部SIの2段目に相当する領域CE2bを通るように、配列変更される(通過領域変更部93b)。この部分を側面から見ると、導体線91は角度θ’で折り曲げられている(図30参照)。
スロット9bに近づいたら配列変更されて(配列変更部90c)、スロット内部SIの1段目の位置92dに入るようにする。この部分を側面から見ると、導体線91は角度θ”で折り曲げられている(図30参照)。
スロット内部SIを通り位置92e(図28参照)から出てきた導体線91は、配列変更されて(配列変更部90d)、スロット内部SIの2段目に相当する領域CE1bに出る。この部分を側面から見ると、導体線91は角度θで折り曲げられている(図30参照)。
導体線91は反対側のスロット9aに向かうが、スロット9aとスロット9bとの中間に来たら、再びスロット内部SIの1段目に相当する領域CE1aを通るように、配列変更される(通過領域変更部93a)。この部分を側面から見ると、導体線91は角度θ’で折り曲げられている。
以上がコイル717を形成する導体線91の1巻回分であるが、引き続き同じように、位置92f→位置92g→位置92h→・・・→位置92p→位置92qの順で導体線が巻かれていく。側面から見た図では、コイルエンド部CE1,CE2において、導体線91は4本が横並びに整列することになる。
実施の形態1では、図6に示すように導体線11の2周目、3周目となるにつれ、導体線11は内側に配置されていく。したがって、コイル17において、導体線11の巻き始めが上部に、導体線11の巻き終わりが下部に存在する。
それに対して、本実施の形態では、図30に示すように導体線91の2周目、3周目となるにつれ、導体線91は外側に配置されていく。したがって、コイル717において、導体線91の巻き始めが下部に、導体線91の巻き終わりが上部に存在する。
詳しい方法は後述するが、固定子巻線706は、スロット内部SIにコイル717を複数配置して、それらの端末を溶接などの方法で接続することで形成されることになる。コイル717は同じ形状のものを複数使って良い。
実施の形態1では、例えば図6のコイル17を連結しようとすると、導体線11の巻き始めが上部に、導体線11の巻き終わりが下部に存在するために、その連結線が少し長く必要になる。
一方、本実施の形態では、例えば、図6のコイル17と図30のコイル717との2種類を用意しておき、それらを交互に使えば、図6のコイル17は導体線11の巻き始めが上部、導体線11の巻き終わりが下部にあり、図30のコイル717は導体線91の巻き始めが下部、導体線91の巻き終わりが上部に存在するために、両者を短い距離(例えば、最短距離)の連結線でつなぐことが可能になる。
以上のように、実施の形態6では、コイルを複数連結するときに、巻回方法が違う2種類のコイルを併用することにより、両者を短い距離(例えば、最短距離)の連結線でつなぐことが可能になる。
なお、この実施の形態6は、実施の形態1と対比する形で記載をしたが、実施の形態2〜5に対しても、同じ技術を適用することは可能である。
なお、実施の形態1〜3では、コイルは側面から見たときに6角形状となっている場合について説明している。このコイルが成立するための導体線の段数および折り曲げ角度に関する条件は、
・ mは2以上の整数
・ nは1以上の整数
・ 折り曲げ角度θ,θ”が数式2,3を満たす
・ 段数m,nが数式1を満たす
ことである。
補足しておくと、数式1で得られるn/mの最大値(1/2)のときに、コイルエンド部において導体線が配置されない無駄な空間が実質的に存在しない程度に効率的に(例えば、最も密に)導体線を配置できる。例えば、実施の形態1で説明したスロット内部SIで固定子鉄心5の径方向に2段に配置された導体線が、コイルエンド部CE1,CE2では固定子鉄心5の径方向に1段に配置変換される場合が、これに相当する。
一方、n/mの値が1/2よりも小さい場合である実施の形態2(スロット内部SIで固定子鉄心5の径方向に3段に配置された導体線が、コイルエンド部CE1,CE2では固定子鉄心5の径方向に1段に配置変換される場合)または実施の形態3(スロット内部SIで固定子鉄心5の径方向に5段に配置された導体線が、コイルエンド部CE1,CE2では固定子鉄心5の径方向に2段に配置変換される場合)では、コイルエンド部CE1,CE2で導体線がまったく通らない無駄な空間が存在する。回転電機の固定子巻線を構成する場合、理想的には前者(1/2)の条件でコイルを作るのが良いが、現実的にはスロット内部の幅、スロット内部の高さ、および導体線の線径によって段数の制約が起きるため、後者(1/2よりも小さい)を混ぜながら作ることもある。
以上、実施の形態1〜6の説明を行っているが、このすべての事例に対して、以下のようにすることも可能である。
例えば、図31は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図である。導体線51に丸線を使用する場合、図31に示すようにスロット内部SIのコイル817を形成している導体線51を俵積みすることも可能である。これは、巻線の線占率を向上させる目的で行われる。ただし、導体線51を俵積みすることによって、スロット内部SIのコイルの高さが等価的に低くなる。
もし、コイルエンド部CE1,CE2の導体線51も俵積みで構成するのであれば、スロット内部SIとコイルエンド部CE1,CE2でコイル817に必要な高さが変わらないので、上記の数式1の条件のままコイル817を成形することが可能である。
しかし、コイルエンド部CE1,CE2の導体線51を俵積みしない場合は、スロット内部SIのコイル817の高さだけが等価的に低くなり、スロット内部SIとコイルエンド部CE1,CE2でコイル817に必要な高さが違うため、数式1の条件が成立しなくなる。この場合、スロット内部SIで固定子鉄心5の径方向に俵積みでm段に配置された導体線51の高さが、普通の積み方でm’段に配置された導体線の高さと同じになるとした場合、mとm’との関係は次の数式8で表現される。
m’ = 1+√3/2・(m−1) (mは2以上の整数)・・・数式8
このように、スロット内部SIで固定子鉄心5の径方向にm段に配置された導体線51が、コイルエンド部CE1,CE2では固定子鉄心の径方向にn段に配置変換され、かつ導体線51はスロット内部SIとコイルエンド部CE1,CE2とで角度θ,θ”で折り曲げられ、コイルエンド部で固定子鉄心の径方向の1段目からn段目までに配置された導体線が、固定子鉄心の径方向の(m−n+1)段目からm段目までに配置変換され、かつ配置変換する前と後とで角度θ’(=360−(θ+θ”))で折り曲げられているコイル817において、スロット内部SIの導体線51を俵積みできる条件は、
・ mは2以上の整数
・ nは1以上の整数
・ 折り曲げ角度θ,θ”が数式2,3を満たす
・ 段数m,nが数式9を満たす
ことである。
n/{1+√3/2・(m−1)} ≦ 1/2・・・数式9
これにより、スロット内部SIの導体線51の占積率を向上できる。
あるいは、例えば、図32は、固定子鉄心にコイルを挿入した状態を固定子鉄心の上面から見た図を示している。ここまでの説明では、固定子鉄心5のスロット内部SIにコイルを1つだけ入れた例を説明しているが、回転電機の固定子巻線は、スロット内部に複数のコイルを配置し、これらを連結することで構成されることが多い。図32は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であった導体線53が、コイルエンド部CE1,CE2で1段(固定子鉄心5の径方向)×4本分(固定子鉄心5の周方向)に整列されているコイルを2個(コイル917−1および917−2)挿入した状態を示している。このような場合、1つ目のコイル917−1における導体線52の巻き終わり522と2つ目のコイル917−2における導体線53の巻き始め531とを連結することで、固定子巻線を形成していく。もちろん挿入するコイルの数がさらに増えた場合でも、コイルにおける導体線の巻き終わりと次のコイルにおける導体線の巻き始めとを結線(連結)することで、スロット内部で固定子鉄心の径方向に対して段数が多い固定子巻線を構成することが可能になる。
あるいは、例えば、図33は、固定子鉄心にコイルを挿入した状態を上面から見た図を示している。図1に示すような丸形状の固定子鉄心5の場合、スロット形状は長方形ではなく台形になることが多い。これは、ティース幅を一定にするために、固定子鉄心5の内周ほどスロット幅を狭く、固定子鉄心5の外周ほどスロット幅を広くすることが多いためである。図33は、固定子鉄心5のスロット内部SIに3個のコイル1017−1〜1017−3を挿入した状態を示している。
これらのコイル1017−1〜1017−3は、スロット内部SIの幅または高さに合わせてコイル1017−1〜1017−3における導体線54,55,56の巻数を変えている。このようにスロット9a,9bの形状が長方形でない場合でも、その形状に合わせて導体線54,55,56の巻数が違うコイル1017−1〜1017−3を何種類か用意しておき、それらを連結することで、どんなスロット形状にも対応することが可能になる。なお、これらのコイル1017−1〜1017−3は、前述したように1つ目のコイル1017−1における導体線54の巻き終わり542と2つ目のコイル1017−2における導体線55の巻き始め551とを連結し、2つ目のコイル1017−2における導体線55の巻き終わり552と3つ目のコイル1017−3における導体線56の巻き始め561とを連結することで、固定子巻線を形成する。
なお、図32または図33において、固定子鉄心5のスロット内部SIにコイルを複数入れておき、これらの巻きはじめと巻き終わりを連結する方法について説明したが、このような場合、あらかじめコイルを連結線によってつなげておいても良い。
あるいは、例えば、図34は、固定子巻線を成すコイル束の構成図である。これは、図2に示した固定子巻線を成すコイルを、あらかじめ連結線によってつなげたものである。コイル束61は、近接する同相にコイルを挿入する重ね巻きとして、固定子鉄心のスロットに挿入される。コイル束61は、コイル63a、コイル63b、コイル63cの3個が連結したものであり、それぞれが連結線62によってつながっている。図34において、コイル63a、コイル63b、コイル63cは、スロット内部SIで2段(固定子鉄心5の径方向)×8本(固定子鉄心5の周方向)の導体線から構成されているが、径方向の数および周方向の数は、任意に決定することができる。
あるいは、例えば、図35は、固定子鉄心にコイルを挿入した状態を上面から見た図を示している。図35は、スロット内部SIで2段(固定子鉄心5の径方向)×2本分(固定子鉄心5の周方向)であった導体線64が、コイルエンド部CE1,CE2で1段(固定子鉄心5の径方向)×4本分(固定子鉄心5の周方向)に整列されているコイル1117−1〜1117−3を3個連結したコイル束1161が、挿入された状態を示している。図32と比べると、あらかじめコイル1117−1〜1117−3が連結されているので、挿入したコイルごとに結線作業をする必要がなくなり、作業工数の削減につながる。
実施の形態1〜6の中でも説明したが、コイルの巻き始めと巻き終わりの位置は、任意である。ただし、コイルの巻き始めと固定子鉄心の中心とを結んだ線上にコイルの巻き終わりを配置する(固定子鉄心の周方向に対して、巻き始めと巻き終わりの位置を揃えておく)ことで、複数のコイルを結線したり、あらかじめ連結しておくときに、結線作業を楽にしたり、連結線を短くできるといった効果が生まれる。
特に、側面から見たときに6角形状であるコイルの場合、コイルの巻き始めと固定子鉄心の中心とを結んだ線上にコイルの巻き終わりを配置し、その位置が三角形状になったコイルエンド部の頂点にしておく(固定子鉄心の周方向に対して、巻き始めと巻き終わりの位置をコイルエンド部の頂点で揃えておく)と良い。こうすることで、複数のコイルを結線したり、あらかじめ連結しておくときに、コイルを結線する線が他の相の固定子巻線と干渉しないという効果が生まれる。
図34では、スロット内部に挿入される固定子巻線を成すコイル束について説明したが、回転電機の固定子巻線を構成するためには、最終的にはすべてのスロットに挿入されているコイル束を、さらに結線していく必要がある。したがって、コイル束をさらに連結線によってつなげ、各相ごとの固定子巻線に相当する大きなコイル群にしても良い。
例えば、図36は、固定子巻線を成すコイル群の構成図である。これは、図34に示した固定子巻線を成すコイル束を、あらかじめ連結線によってつなげたものである。図36のコイル群71は、コイル束72a〜72hが連結線73によって直列につながれた状態を示している。回転電機の固定子巻線では、各スロットの巻線を全部直列につなげたり、半分ずつに分けて並列につなぐなど、様々なパターンが存在し、図36では各スロットの巻線を全部直列につないだ場合を示しているが、例えばコイル束72a〜72dとコイル束72e〜72hをそれぞれ連結線でつないでおき、この2つを並列につなげるようにしておけば、2並列の固定子巻線にすることができる。以上のように、あらかじめコイル束を連結したコイル群を用意しておくことで、結線作業の回数を大幅に減らすことができ、作業工数の削減につながる。
また、実施の形態1〜6の中では、毎極毎相のスロット数=2(8極48スロット)の場合を中心に説明してきた。しかし、極数・スロット数には特に制約がなく、他の組み合わせにおいても本発明を適用することは可能である。
また、実施の形態1〜6の中で、導体線は丸線として説明を行っている。しかし本発明において、導体線の断面形状に対する制約はないので、丸線以外にも四角線などを使っても良い。なお、四角線はスロット内部で巻線の占積率が上げられる反面、加工性が悪く、逆に丸線は加工性が良い代わりに、スロット内部で巻線の占積率が上げられないという特徴がある。両者の良いところを生かすため、加工性の良い丸線でコイルを作っておき、スロット内部に相当する導体線だけを加圧形成し、断面形状を正方形状にすることで、占積率を上げるという方法もある。
ただし、スロット内部に相当する導体線の断面形状だけを正方形状にすることによって、スロット内部のコイルの高さが等価的に低くなる。もし、コイルエンド部の導体線の断面形状も正方形状にするのであれば、スロット内部とコイルエンド部でコイルに必要な高さが変わらないので、上記の数式1の条件のままコイルを成形することが可能である。しかし、コイルエンド部の導体線の断面形状を正方形状にしない場合は、スロット内部のコイルの高さだけが等価的に低くなり、スロット内部とコイルエンド部でコイルに必要な高さが違うため、数式1の条件が成立しなくなる。
スロット内部で固定子鉄心の径方向にm段に配置された断面形状を正方形状にした導体線の高さが、丸線の導体線を使ってm’段に配置された導体線の高さと同じになるとした場合、mとm’との関係は次の数式10で表現される。
m’ = √(π/4)・m (mは2以上の整数)・・・数式10
このように、スロット内部SIで固定子鉄心5の径方向にm段に配置された導体線51が、コイルエンド部CE1,CE2では固定子鉄心の径方向にn段に配置変換され、かつ導体線51はスロット内部SIとコイルエンド部CE1,CE2とで角度θ,θ”で折り曲げられ、コイルエンド部で固定子鉄心の径方向の1段目からn段目までに配置された導体線が、固定子鉄心の径方向の(m−n+1)段目からm段目までに配置変換され、かつ配置変換する前と後とで角度θ’(=360−(θ+θ”))で折り曲げられているコイルにおいて、スロット内部に相当する導体線の断面形状だけを正方形状にできる条件は、
・ mは2以上の整数
・ nは1以上の整数
・ 折り曲げ角度θ,θ”が数式2,3を満たす
・ 段数m,nが、数式11を満たす
ことである。
n/{√(π/4)・m} ≦ 1/2・・・数式11
これにより、スロット内部SIの導体線の占積率を向上できる。
以上が、実施の形態1〜6及びこれらの変形例にかかる回転電機1、200、400、500、600、700についての説明である。
実施の形態7.
次に、実施の形態7にかかる回転電機について説明する。なお、実施の形態7にかかる回転電機について説明するために、まず、実施の形態1〜6の回転電機1、200、400、500、600、及び700の問題点について説明する。
実施の形態1〜6及びこれらの変形例にかかる回転電機1、200、400、500、600、700のいずれかに相当するものとして、回転電機1200を想定する。回転電機1200は、固定子1203の固定子鉄心5が有するスロット9に、固定子巻線1206を挿入して、形成する。固定子巻線1206は、コイル1217の複数個により、構成される。コイル1217は、以上において説明した実施の形態1〜6及びこれらの変形例にかかるコイル17、63a、63b、63c、217、417、517、617、717、817、917、1017、及び1117のうち、いずれかである。
次に、回転電機1200における、コイルエンド部の高さの低減とコイル1217同士の干渉の関係について、説明する。実施の形態1〜6及びこれらの変形例にかかる回転電機1200は、コイル1217のコイルエンド部の高さを低減した場合、コイル1217同士の干渉が発生する。
図37は、実施の形態7において、固定子鉄心にコイルを挿入した固定子の各相ごとの巻線構成図である。図37の固定子鉄心5は、説明しやすいように直線形状で図示しており、また途中の部分を一部省略している。なお、図37においては、コイル1217について、実施の形態1のコイル17と同様のものとして記載している。しかし、コイル1217は、コイル63a、63b、63c、217、417、517、617、717、817、917、1017、及び1117であっても良い。
図38は、実施の形態1〜6及びこれらの変形例にかかるコイルをスロットに挿入した後において、固定子鉄心の内側からコイルエンド部CEを見た図である。図38において、コイル1217X、コイル1217Y、及びコイル1217Zは、コイル1217である。
実施の形態1〜6及びこれらの変形例において、図37に示すコイル1217Xの部分Cは、図38において、コイル1217Zの部分Dに対し、固定子鉄心5の軸方向の外側に位置する。また、図37に示すコイル1217Zの部分Eは、図38において、コイル1217Xの部分Fに対し、固定子鉄心5の軸方向の外側に位置する。また、図38の場合、各スロット9に挿入されるコイル1217X、コイル1217Y、及びコイル1217Zは、干渉を発生していない。このときのコイルエンド部CEの高さは、高さGである。
図39は、実施の形態1〜6及びこれらの変形例にかかるコイルをスロットに挿入した後において、固定子鉄心の内側からコイルエンド部CEを見た図であり、図38よりもコイルエンド部CEの高さが低い場合を示す図である。図39において、コイル1217X、コイル1217Y、及びコイル1217Zは、コイル1217である。また、図39において、コイルエンド部CEの高さHは、図38に示す場合のコイルエンドCEの高さGよりも低い。すなわち、図39は、コイル1217X、コイル1217Y、及びコイル1217ZのコイルエンドCEの高さについて、図38よりも低くした場合を示している。
図39において、コイル1217Xとコイル1217Zとは、部分Iと部分Jとで干渉が発生している。部分Iでは、図37に示すコイル1217Xの部分Cとコイル1217Zの部分Dとが干渉を発生している。また、部分Jでは、図37に示すコイル1217Zの部分Eとコイル1217Xの部分Fとが干渉を発生している。
なお、干渉を回避するためには、干渉している部分の導体線を迂回させる必要がある。この場合、コイル1217は、干渉している部分だけ巻線が厚くなる。このため、コイルエンド部CEは、固定子鉄心5の径方向に膨らんでしまう。その結果、固定子巻線1206は、周長が全体として長くなる。これにより、固定子巻線1206の抵抗値が増大して回転電機1の銅損、すなわち回転電機1におけるエネルギー損失が増大する。よって、回転電機1の運転効率が低下してしまう。
そこで、実施の形態7では、コイルエンド部CEの高さを低減した場合において、コイル同士の干渉を発生させないために、上記の実施の形態1〜6及びこれらの変形例にかかるコイルについて、さらに追加の折り曲げ部を設ける。
次に、実施の形態7にかかる回転電機1300について説明する。実施の形態7にかかる回転電機1300は、上記までにおいて説明した実施の形態1〜6にかかる回転電機1、200、400、500、600、700に対し、コイル1317の構成が異なる。また、実施の形態7にかかる回転電機1300は、コイル1317以外の構成について、上記の実施の形態1〜6及びこれらの変形例にかかる回転電機1、200、400、500、600、700と同様である。
実施の形態7にかかる回転電機1300の固定子1303は、固定子鉄心5と、固定子巻線1306とで構成される。図40−(a)は、実施の形態7にかかる回転電機の固定子巻線を構成するコイルについて示す図である。固定子巻線1306は、図40−(a)に示す複数のコイル1317により構成されている。コイル1317は、図40−(a)に示すように、実施の形態1〜6において説明したコイル17、63a、63b、63c、217、417、517、617、717、817、917、1017、及び1117のいずれかについて、さらに外側折り曲げ部1314a及び外側折り曲げ部1314bを設けたものである。
図40−(b)は、実施の形態7にかかるコイルの外側折り曲げ部を拡大した図である。コイル21は、スロット内部SIから先のコイルエンド部CE1において、図40−(a)及び図40−(b)に示すように、外側折り曲げ部1314aを有する。外側折り曲げ部1314aにおいて、コイル1317を形成するすべての導体線1311は、図40−(b)に示すとおり、固定子鉄心5の周方向に角度θ1で折り曲げる。
このとき、コイル1317は、外側折り曲げ部1314aにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1313と逆の方向に折り曲げる。また、コイル1317を形成するすべての導体線1311は、スロット内部SIの幅よりも外側に折り曲げる。このため、角度θ1は、次の数式12を満たす角度とする。なお、角度θ1は、実施の形態7において、200°である。
θ1>180° ・・・数式12
また、コイル1317は、外側折り曲げ部1314aから先のコイルエンド部CE1において、図40−(a)及び図40−(b)に示すように、配列変更部1310aを有する。コイル1317は、実施の形態1〜6の場合と同様に、配列変更部1310aにおいて、巻線配列の変更を行っている。
このため、コイル1317は、コイルエンド部CE1における径方向の厚さが、スロット内部SIでの径方向の厚さに比べて薄くなる。よって、コイル1317は、他相の固定子巻線1306のコイル1317との間で、巻線位置が径方向において干渉することを防止できる。またこのとき、コイル1317は、配列変更部1310aにおいて、図40−(b)に示すように、角度θ”で折り曲げる。角度θ”は、実施の形態7において、100°である。
また、コイル1317は、コイルエンド部CE1の頂点1313においても、図40−(a)に示すように、角度θ’で折り曲げる。角度θ’は、実施の形態7において、120°である。
それから、コイル1317は、コイルエンド部CE1の頂点1313から先に、配列変更部1310bを有する。コイル1317は、配列変更部1310bにおいて、実施の形態1〜6の場合と同様に巻線配列の変更を行っている。またこのときにも、コイル1317は、配列変更部1310bにおいて、図40−(a)に示すように、角度θで折り曲げる。角度θは、実施の形態7において、100°である。
さらに、コイル1317は、コイルエンド部CE1から再びスロット内部SIに戻る部分において、外側折り曲げ部1314bを有する。外側折り曲げ部1314bにおいて、コイル1317を形成するすべての導体線1311は、固定子鉄心5の周方向に角度θ1で折り曲げる。
コイル1317は、外側折り曲げ部1314bにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1313と逆の方向に折り曲げる。このとき、コイル1317を形成するすべての導体線1311は、スロット内部SIの幅よりも外側に折り曲げる。このときの角度θ1も、上記の数式12を満たす角度とする。なお、角度θ1は、実施の形態7において、200°である。
このように構成されているため、コイル1317の形状は、実施の形態1〜6及びこれらの変形例にかかる回転電機1、200、400、500、600、700のコイル1217に対して、折れ曲がり部が多い形状となる。また、説明は省略するが、コイル1317は、コイルエンド部CE2側もコイルエンド部CE1側と同様に構成されている。このため、コイル1317は、全体として十角形形状となっている。
図41は、実施の形態7にかかるコイルをスロットに挿入した後において、固定子鉄心の内側からコイルエンド部CEを見た図である。実施の形態7にかかる回転電機1300は、上記のような構成のコイル1317が複数個、固定子鉄心5のスロット9に挿入される。図41において、コイル1317X、コイル1317Y、及びコイル1317Zは、コイル1317である。また、図41において、実施の形態7にかかるコイル1317のコイルエンド部CE1の高さKは、図38に示す場合のコイルエンド部CEの高さGよりも低い。
コイル1317は、上記のように、外側折り曲げ部1314a及び外側折り曲げ部1314bにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1313と逆の方向に折り曲げている。このため、図41に示すとおり、コイル1317のコイルエンド部CE1の高さKを、図38に示す場合のコイルエンド部CE1の高さGより低くしても、各スロット9に挿入されているコイル1317X、コイル1317Y、及びコイル1317Zが、互いに干渉することがない。
以上説明したとおり、実施の形態7にかかるコイル1317は、外側折り曲げ部1314a及び外側折り曲げ部1314bにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1313と逆の方向に折り曲げる。外側折り曲げ部1314aにおける折り曲げ方向は、配列変更部1310aにおける角度θ”の折り曲げ方向に対しても、逆の方向である。また、外側折り曲げ部1314bにおける折り曲げ方向は、配列変更部1310bにおける角度θの折り曲げ方向に対しても、逆の方向である。
このとき、外側折り曲げ部1314a及び外側折り曲げ部1314bにおいて、コイル1317を形成するすべての導体線1311は、スロット内部SIの幅よりも外側に折り曲げる。また、コイルエンド部CE2の形状も、コイルエンド部CE1の形状と同様に形成する。つまり、コイル1317は、コイルエンド部CE1及びコイルエンド部CE2がスロット内部SIよりも外側に広がった、全体として十角形形状となっている。このような構成とすることで、実施の形態7にかかる回転電機1300の固定子巻線1306は、他相の巻線と干渉する部分が発生することを防ぐことができる。これにより、固定子巻線1306全体の周長を短くできるため、固定子巻線1306の抵抗値が減少し、回転電機1300の損失を低減できる。よって、回転電機1300の運転効率を向上させることができる。
また、コイル1317は、折れ曲がりの各箇所において、コイル1317を形成するすべての導体線1311が同じ角度で曲げられている。このため、実施の形態7にかかる回転電機1300の固定子巻線1306は、コイルエンド部CE1及びコイルエンド部CE2に余計な隙間が生じることがない。また、実施の形態7にかかる回転電機1300の固定子巻線1306は、コイル1317の長さ及び角度が、明確に指定される。このため、コイル1317の寸法精度を向上させることができ、隣接する他相の固定子巻線1306のコイル1317との干渉を、より確実に防ぐことができる。
実施の形態8.
実施の形態8にかかる回転電機1400の固定子1403について説明する。実施の形態8にかかる回転電機1400は、実施の形態7にかかる回転電機1300に対し、コイル1417の構成が異なる。また、実施の形態8にかかる回転電機1400は、コイル1417以外の構成については実施の形態7にかかる回転電機1300と同様である。このため、コイル1417の構成についてのみ説明し、コイル1417以外の構成についての説明は省略する。
図42−(a)は、実施の形態8にかかる回転電機の固定子巻線を構成するコイルについて示す図である。コイル1417は、図42−(a)に示すように、実施の形態7にかかるコイル1317について、さらに内側折り曲げ部1415a及び内側折り曲げ部1415bを設けたものである。
図42−(b)は、実施の形態8にかかるコイルの外側折り曲げ部を拡大した図である。コイル1417は、スロット内部SIから先のコイルエンド部CE1において、図42−(a)及び図42−(b)に示すように、外側折り曲げ部1414aを有する。外側折り曲げ部1414aにおいて、コイル1417を形成するすべての導体線1411は、図42−(b)に示すとおり、固定子鉄心5の周方向に角度θ1で折り曲げる。
このとき、コイル1417は、外側折り曲げ部1414aにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1413と逆の方向に折り曲げる。また、コイル1417を形成するすべての導体線1411は、スロット内部SIの幅よりも外側に折り曲げる。このときの角度θ1は、上記の数式12を満たす角度とする。なお、角度θ1は、実施の形態8において、205°である。
また、コイル1417は、外側折り曲げ部1414aから先のコイルエンド部CE1において、図42−(a)及び図42−(b)に示すように、実施の形態7の配列変更部1310aと同様の配列変更部1410aを有する。コイル1417は、配列変更部1410aにおいて、巻線配列の変更を行っている。
このため、コイル1417は、コイルエンド部CE1における径方向の厚さが、スロット内部SIでの径方向の厚さに比べて薄くなる。よって、コイル1417は、他相の固定子巻線1406のコイル1417との間で、巻線位置が径方向において重複することを防止できる。またこのとき、コイル1417は、配列変更部1410aにおいて、図42−(b)に示すように、角度θ”で折り曲げる。角度θ”は、実施の形態8において、110°である。
図42−(c)は、実施の形態8にかかるコイルの内側折り曲げ部を拡大した図である。実施の形態8において、コイル1417は、配列変更部1410aとコイルエンド部CE1の頂点1413との間に、図42−(c)に示す内側折り曲げ部1415aを設ける。内側折り曲げ部1415aにおいて、コイル1417を形成するすべての導体線1411は、図42−(c)に示すとおり、固定子鉄心5の周方向に角度θ2で折り曲げる。
また、このときの角度θ2は、次の数式13を満たす角度とする。なお、角度θ2は、実施の形態8において、160°である。
θ2<180° ・・・数式13
また、コイル1417は、コイルエンド部CE1の頂点1413においても、図42−(a)に示すように、角度θ’で折り曲げる。角度θ’は、実施の形態8において、130°である。
実施の形態8において、コイル1417は、コイルエンド部CE1の頂点1413と配列変更部1410bとの間にも、内側折り曲げ部1415bを設ける。内側折り曲げ部1415bにおいて、コイル1417を形成するすべての導体線1411は、固定子鉄心5の周方向に角度θ2で折り曲げる。このときの角度θ2も、上記の数式13を満たす角度とする。なお、角度θ2は、実施の形態8において、160°である。
それから、コイル1417は、配列変更部1410bにおいて、実施の形態7の場合と同様に、巻線配列の変更を行っている。またこのときにも、コイル1417は、配列変更部1410bにおいて、図42−(a)に示すように、角度θで折り曲げる。角度θは、実施の形態8において、110°である。
さらに、コイル1417は、コイルエンド部CE1から再びスロット内部SIに戻る部分において、外側折り曲げ部1414bを有する。外側折り曲げ部1414bにおいて、コイル1417を形成するすべての導体線1411は、固定子鉄心5の周方向に角度θ1で折り曲げる。このときの角度θ1も、上記の数式12を満たす角度とする。なお、角度θ1は、実施の形態8において、205°である。
このように構成されているため、コイル1417の形状は、実施の形態7にかかる回転電機1300のコイル1317よりもさらに折れ曲がり部が多い形状となる。また、説明は省略するが、コイル1417は、コイルエンド部CE2側もコイルエンド部CE1側と同様に構成されている。このため、コイル1417は、全体として十四角形形状となっている。
図43は、実施の形態8にかかるコイルをスロットに挿入した後において、固定子鉄心の内側からコイルエンド部CEを見た図である。実施の形態8にかかる回転電機1400は、上記のような構成のコイル1417が複数個、固定子鉄心5のスロット9に挿入される。図43において、コイル1417X、コイル1417Y、及びコイル1417Zは、コイル1417である。また、図43において、実施の形態8にかかるコイル1417のコイルエンド部CE1の高さLは、図38に示す場合のコイルエンド部CE1の高さGよりも低い。また、実施の形態8にかかるコイル1417のコイルエンド部CE1の高さLは、図41に示す実施の形態7にかかるコイル1317のコイルエンド部CE1の高さKよりも低い。
コイル1417は、上記のように、外側折り曲げ部1414a及び外側折り曲げ部1414bにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1413と逆の方向に折り曲げている。また、コイル1417は、コイルエンド部CE1において、さらに内側折り曲げ部1415a及び内側折り曲げ部1415bを追加している。このため、図43に示すとおり、コイル1417のコイルエンド部CE1の高さLを、図38に示す場合のコイルエンド部CE1の高さGより低くしても、各スロット9に挿入されているコイル1417X、コイル1417Y、及びコイル1417Zが、互いに干渉することがない。また、コイル1417のコイルエンド部CE1の高さLを、実施の形態7にかかるコイル1317のコイルエンド部CE1の高さKより低くしても、各スロット9に挿入されているコイル1417X、コイル1417Y、及びコイル1417Zが、互いに干渉することがない。
以上説明したとおり、実施の形態8にかかるコイル1417は、外側折り曲げ部1414a及び外側折り曲げ部1414bにおいて、固定子鉄心5の周方向であって、かつ、コイルエンド部CE1の頂点1413と逆の方向に折り曲げる。外側折り曲げ部1414aにおける折り曲げ方向は、配列変更部1410aにおける角度θ”の折り曲げ方向に対しても、逆の方向である。また、外側折り曲げ部1414bにおける折り曲げ方向は、配列変更部1410bにおける角度θの折り曲げ方向に対しても、逆の方向である。
このとき、外側折り曲げ部1414a及び外側折り曲げ部1414bにおいて、コイル1417を形成するすべての導体線1411は、スロット内部SIの幅よりも外側に折り曲げる。また、実施の形態8にかかるコイル1417は、コイルエンド部CE1において、追加の折り曲げ部である内側折り曲げ部1415a及び内側折り曲げ部1415bを設ける。コイルエンド部CE2の形状も、コイルエンド部CE1の形状と同様に形成する。つまり、コイル1417は、コイルエンド部CE1及びコイルエンド部CE2がスロット内部SIよりも外側に広がった、全体として十四角形形状となっている。このような構成とすることで、実施の形態8にかかる回転電機1400の固定子巻線1406は、他相の巻線と干渉する部分が発生することを防ぐことができる。また、実施の形態8にかかる回転電機1400の固定子巻線1406は、コイルエンド部CE1における折り曲げ部を追加したため、コイルエンドCE1の高さを、実施の形態7よりもさらに低減できる。これにより、固定子巻線1406全体の周長を短くできるため、固定子巻線1406の抵抗値が減少し、回転電機1400の損失を低減できる。よって、回転電機1400の運転効率を向上させることができる。
また、コイル1417は、折れ曲がりの各箇所において、コイル1417を形成するすべての導体線1411が同じ角度で曲げられている。このため、実施の形態8にかかる回転電機1400の固定子巻線1406は、コイルエンド部CE1及びコイルエンド部CE2に余計な隙間が生じることがない。また、実施の形態8にかかる回転電機1400の固定子巻線1406は、コイル1417の長さ及び角度が、明確に指定される。このため、コイル1417の寸法精度を向上させることができ、隣接する他相の固定子巻線1406のコイル1417との干渉を、より確実に防ぐことができる。
なお、実施の形態8において、コイル1417は、内側折り曲げ部1415a及び内側折り曲げ部1415bを設け、全体として十四角形形状としたが、これに限られるものではない。例えば、コイルエンド部CE1において、角度θ3(θ3<180°)を有する新たな折り曲げ部分を追加して、多角形の辺の数をさらに増やしてもよい。このようにすることで、コイルエンド部CE1の高さをさらに低減することができる。
なお、実施の形態7においては、コイル1317の形状を十角形形状とし、実施の形態8においては、コイル1417の形状を十四角形形状とすることを説明したが、これらに限られるものではない。コイル1317またはコイル1417の形状は、スロット内部SIからコイルエンド部CE1に出た先で、すべての導体線1311または導体線1411をスロット内部SIの幅よりも外側に折り曲げ、さらに追加で折り曲げ部分を増やすような形状とすれば、他の多角形形状であっても良い。
また、コイルエンド部CE1において、折り曲げ部分を増やして多角形形状にするのではなく、曲線形状にすることにより、コイルエンド部CE1の高さを低減しても良い。つまり、コイル1317またはコイル1417は、スロット内部SIの幅より外側に折り曲げた後、曲線形状に形成しても良い。これにより、コイルエンド部CE1の形状を、全体として扇型のように形成しても良い。
また、各スロット9に挿入されるコイル1317またはコイル1417をすべて同一の形状にした場合、スロット内部SIの幅より外側に折り曲げて広げられる量には、上限が存在する。すなわち、隣り合うコイル同士の干渉を発生させないためには、外側に広げられる量は、スロット9間の距離の半分以下にする必要がある。
しかし、実施の形態7または実施の形態8において、各スロット9に挿入されるコイル1317またはコイル1417の形状は、すべて同一の形状にしなくても良い。この場合、導体線1311または導体線1411を外側に折り曲げる部分を、隣り合うコイル同士でコイルエンドCE1の高さ方向にずらすなどの工夫を行うことができる。これにより、実施の形態7にかかる回転電機1300の固定子巻線1306及び実施の形態8にかかる回転電機1400の固定子巻線1406は、外側に広げられる量を、スロット9間の距離の半分よりも多くすることができる。
実施の形態7または実施の形態8において、コイルエンド部CE2の構成は、コイルエンド部CE1の構成と同様である。このため、上記までにおいてコイルエンド部CE1について説明したことは、コイルエンド部CE2に対しても同様である。
これまで、コイル1317またはコイル1417を形成するすべての導体線1311または導体線1411は、スロット内部SIの幅よりも外側に折り曲げることとして説明した。しかし、実施の形態7にかかる回転電機1300の固定子巻線1306及び実施の形態8にかかる回転電機1400の固定子巻線1406は、これに限るものではない。実施の形態7または実施の形態8において、コイル1317またはコイル1417の最内周に位置する導体線1311または導体線1411だけは、必ずしも外側に折り曲げなくても良い。
なお、実施の形態7及び実施の形態8において、極数・スロット数は、特に制約がなく、種々の組み合わせにおいて実施の形態7及び実施の形態8にかかる効果を奏することができる。
また、これまで述べてきたすべての事例において、スロット内部とコイルエンド部とで導体線の配列を変更するようなコイルをあらかじめ作っておき、それらをスロット内部に挿入するような手順で説明を行っている。しかし、固定子鉄心に導体線を巻回しながら、スロット内部とコイルエンド部とで固定子巻線の配列が変更するようなコイルを形成し、固定子巻線を完成させる手順でも良い。
なお、以上において、固定子鉄心5の周方向とは、コアバック7の周方向と同じである。固定子鉄心5の径方向とは、コアバック7の径方向と同じである。
なお、本明細書では回転電機として説明を行ったため、固定子鉄心は丸形状としてきたが、直線形状の固定子鉄心にも本発明を適用することができる。したがって回転電機だけでなく、リニアモータなどの直動機にも、適用することが可能である。
1,200,400,500,600,700,1200,1300,1400 回転電機、2 回転子、2a 回転子鉄心、2b 永久磁石、3,203,403,503,603,703,1203,1303,1403 固定子、5 固定子鉄心、6,206,406,506,606,706,1206,1306,1406 固定子巻線、7 コアバック、8 ティース、9 スロット、11,21,31,41,81,91,1311,1411 導体線、1314a,1314b,1414a,1414b 外側折り曲げ部、1415a,1415b 内側折り曲げ部、17,63a,63b,63c,217,417,517,617,717,817,917,1017,1117,1217,1217X,1217Y,1217Z,1317,1317X,1317Y,1317Z,1417,1417X,1417Y,1417Z,2017,2017X,2017Y,2017Z コイル

Claims (4)

  1. 円環状に形成されたコアバックと、
    前記コアバックの周方向に沿って設けられた複数のティースと、
    前記複数のティースの間に設けられた複数のスロットと、
    複数の円環形状の導体線で構成され、
    前記スロットの内部において、前記複数の導体線が前記コアバックの径方向にm段(mは2以上の整数)に配置され、
    前記スロットの外部において、前記複数の導体線が前記コアバックの径方向にn段(nは1以上の整数、かつ、mの1/2以下)に配置され、多角形形状に折り曲げられたコイルと
    を備え、
    前記コイルを構成する前記複数の導体線は、
    前記スロットの内部と前記スロットの外部との間において、第1の外側折り曲げ部を有し、
    前記スロットの外部において、第1の折り曲げ部と第2の折り曲げ部を有し、
    前記コイルは、前記第1の折り曲げ部において、前記コアバックの径方向における段数がm段からn段に配列変更し、
    多角形形状の前記コイルの内角は、
    前記第1の外側折り曲げ部において180°より大きく、
    前記第1の折り曲げ部と前記第2の折り曲げ部において180°より小さいことを特徴とする回転電機の固定子。
  2. 前記コイルは、十角形形状である
    ことを特徴とする請求項1に記載の回転電機の固定子。
  3. 前記コイルは、十四角形形状である
    ことを特徴とする請求項1に記載の回転電機の固定子。
  4. 請求項1から請求項のいずれか1項に記載の固定子を用いたことを特徴とする回転電機。
JP2014554647A 2014-04-24 2014-04-24 回転電機の固定子及びこの固定子を用いた回転電機 Expired - Fee Related JP6008989B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/002301 WO2015162643A1 (ja) 2014-04-24 2014-04-24 回転電機の固定子及びこの固定子を用いた回転電機

Publications (2)

Publication Number Publication Date
JP6008989B2 true JP6008989B2 (ja) 2016-10-19
JPWO2015162643A1 JPWO2015162643A1 (ja) 2017-04-13

Family

ID=54331843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554647A Expired - Fee Related JP6008989B2 (ja) 2014-04-24 2014-04-24 回転電機の固定子及びこの固定子を用いた回転電機

Country Status (6)

Country Link
US (1) US20170054339A1 (ja)
JP (1) JP6008989B2 (ja)
KR (1) KR20160135291A (ja)
CN (1) CN106256071A (ja)
TW (1) TWI538353B (ja)
WO (1) WO2015162643A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778049B2 (en) 2016-06-07 2020-09-15 Sapphire Motors Stator assembly with stack of coated conductors
WO2017217271A1 (ja) * 2016-06-16 2017-12-21 三菱電機株式会社 回転電機の固定子
TWI589096B (zh) * 2016-08-17 2017-06-21 建準電機工業股份有限公司 微型馬達定子
JP2018068058A (ja) * 2016-10-20 2018-04-26 住友重機械工業株式会社 モータ
WO2018110542A1 (ja) * 2016-12-14 2018-06-21 アイシン・エィ・ダブリュ株式会社 ステータ
FR3061815B1 (fr) * 2017-01-06 2021-01-01 Valeo Equip Electr Moteur Stator bobine pour machine electrique tournante
DE102017128827A1 (de) * 2017-12-05 2019-06-06 Ebm-Papst Mulfingen Gmbh & Co. Kg Multi-Zahnspulenwicklung für eine 2-strängige Drehfeldmaschine
JP6508318B1 (ja) * 2017-12-25 2019-05-08 株式会社明電舎 回転機の固定子
US20220407371A1 (en) * 2019-11-15 2022-12-22 Nippon Steel Corporation Stator core, rotary electric machine, and design method for stator core
WO2022070408A1 (ja) * 2020-10-02 2022-04-07 三菱電機株式会社 電動機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040897A (ja) * 2002-07-03 2004-02-05 Matsushita Electric Ind Co Ltd 無刷子電動機およびそれを具備した密閉型圧縮機
JP2011072052A (ja) * 2009-09-22 2011-04-07 Toyota Motor Corp ステータ及びステータ製造方法
JP2013172515A (ja) * 2012-02-20 2013-09-02 Denso Corp コイル線材、および、これを用いたコイル線材束

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791148B2 (ja) * 1997-09-25 2006-06-28 株式会社デンソー 回転電機のステータ及びコイルの製造方法
JP2004194435A (ja) * 2002-12-11 2004-07-08 Toyota Motor Corp ステータ鉄心の巻線装置、ステータの製造方法、ステータ、モータ
JP4431116B2 (ja) * 2005-01-28 2010-03-10 株式会社モステック コイル、コイルユニット、ステーター、及びローター、コイル及びコイルユニット製造治具、並びに、コイル及びコイルユニット製造方法
JP4688003B2 (ja) * 2007-03-05 2011-05-25 株式会社デンソー 回転電機の固定子およびそれを用いた回転電機
KR101224688B1 (ko) * 2009-12-18 2013-01-21 도요타지도샤가부시키가이샤 스테이터
JP5573327B2 (ja) * 2010-04-21 2014-08-20 株式会社デンソー 回転電機の固定子及びその製造方法
JP5516562B2 (ja) * 2011-02-09 2014-06-11 株式会社豊田自動織機 コイル、ステータ、コイルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040897A (ja) * 2002-07-03 2004-02-05 Matsushita Electric Ind Co Ltd 無刷子電動機およびそれを具備した密閉型圧縮機
JP2011072052A (ja) * 2009-09-22 2011-04-07 Toyota Motor Corp ステータ及びステータ製造方法
JP2013172515A (ja) * 2012-02-20 2013-09-02 Denso Corp コイル線材、および、これを用いたコイル線材束

Also Published As

Publication number Publication date
WO2015162643A1 (ja) 2015-10-29
JPWO2015162643A1 (ja) 2017-04-13
US20170054339A1 (en) 2017-02-23
KR20160135291A (ko) 2016-11-25
CN106256071A (zh) 2016-12-21
TW201541810A (zh) 2015-11-01
TWI538353B (zh) 2016-06-11

Similar Documents

Publication Publication Date Title
JP6008989B2 (ja) 回転電機の固定子及びこの固定子を用いた回転電機
JP6094149B2 (ja) 3相回転電機の波巻き巻線
JP5948850B2 (ja) 回転電機の波巻き巻線
JP6058146B2 (ja) 回転電機
WO2016072481A1 (ja) 回転電機の固定子
JP5566541B1 (ja) 回転電機
WO2016072480A1 (ja) 回転電機の固定子
JP6707860B2 (ja) 回転電機およびその製造方法
JP5915149B2 (ja) 3相回転電機の波巻き巻線
JP7070075B2 (ja) 回転電機
CN114762217A (zh) 具有交替的绕组节距的定子绕组
WO2021220940A1 (ja) 波巻のコイル構造を有する固定子、これを備える三相交流電動機及び固定子の製造方法
CN111725929A (zh) 用于电机的绕组结构及电机
KR20060105619A (ko) 유도전동기 및 그 제조방법
JPWO2018167853A1 (ja) 回転電機用固定子
JPWO2018185902A1 (ja) 回転電機
JP6089593B2 (ja) 3相回転電機の波巻き巻線
JP2013070522A (ja) 回転電機用電機子及びその製造方法
JP6048160B2 (ja) 回転電機の波巻き巻線
JP7320583B2 (ja) ステータ用コイル
JP2019176589A (ja) 巻きコイル、回転電機用のコイル、回転電機、巻きコイルの製造方法及び装置
US20240039378A1 (en) Cascaded Winding with Multiple Weaves
JP6847030B2 (ja) 固定子および電動機
CN112953068A (zh) 旋转电机
JP2011097793A (ja) コイル及びコイルセット

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees