JP5990808B2 - Surface stress measurement system using Kerr effect - Google Patents

Surface stress measurement system using Kerr effect Download PDF

Info

Publication number
JP5990808B2
JP5990808B2 JP2012133624A JP2012133624A JP5990808B2 JP 5990808 B2 JP5990808 B2 JP 5990808B2 JP 2012133624 A JP2012133624 A JP 2012133624A JP 2012133624 A JP2012133624 A JP 2012133624A JP 5990808 B2 JP5990808 B2 JP 5990808B2
Authority
JP
Japan
Prior art keywords
stress
measured
light irradiation
magnetic field
polarization plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012133624A
Other languages
Japanese (ja)
Other versions
JP2013257224A (en
Inventor
森 和美
和美 森
森 仁
仁 森
阿部 利彦
利彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFG Corp
Original Assignee
IFG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFG Corp filed Critical IFG Corp
Priority to JP2012133624A priority Critical patent/JP5990808B2/en
Publication of JP2013257224A publication Critical patent/JP2013257224A/en
Application granted granted Critical
Publication of JP5990808B2 publication Critical patent/JP5990808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、表面応力測定装置に関する。   The present invention relates to a surface stress measuring apparatus.

各種金属加工品は、その製造工程において、機械加工、鋳造、溶接、熱処理など、種々の加工を施される。その際、加工に伴って引張や圧縮の残留応力が生じ、加工品の強度や形状精度に悪影響を及ぼすことが多い。そのため、大きな力が作用すると思われる箇所や変形が生じては困る箇所については、残留応力の大きさを測り、不具合が生じないように対策を講じておく必要がある。   Various metal processed products are subjected to various processes such as machining, casting, welding, and heat treatment in the manufacturing process. At that time, residual stress such as tension or compression is generated with the processing, which often adversely affects the strength and shape accuracy of the processed product. For this reason, it is necessary to measure the magnitude of the residual stress and take measures so as not to cause a defect in a place where a large force seems to act or a place where it is difficult to cause deformation.

また、工具や伝動部品などの製品開発過程において、その製品の使用時にどのような応力が発生しているかについて詳細に調べることは、その性能を改良して新たな製品の開発する際に非常に有用である。また同様に、各種製品の開発段階における試作において外力に対する製品の表面応力の変化を測定することにより、その試作品の強度、耐久性等を評価することが可能となる。   In addition, in the process of developing products such as tools and power transmission parts, it is very important to investigate in detail what kind of stress is generated during use of the product when developing new products with improved performance. Useful. Similarly, it is possible to evaluate the strength, durability, and the like of the prototype by measuring changes in the surface stress of the product with respect to external forces in trial production at the development stage of various products.

このように、製品の応力測定は、製品の管理や新製品の開発等に必要不可欠な工程といえる。   Thus, the stress measurement of a product can be said to be an indispensable process for product management, new product development, and the like.

現在、この応力測定の方法としては、歪ゲージを用いる方法が最も広く採用されている。歪ゲージを被測定対象物の表面に貼り付け、歪ゲージにて測定された歪量と被測定対象物のヤング率の値から応力を算出し、貼付部分の応力変化を読み取ることができる。特許文献1ではこの歪ゲージを用いた応力測定方法の一例が開示されている。しかし、この方法では、測定する箇所すべてに歪ゲージを貼りつける必要があり、測定に大きな労力が必要となる問題がある。加えて貼り付けに使用する接着剤や歪ゲージ自体の応力がバイアスとして加わってしまう問題もある。また歪の変化から応力を測定する方式であるため残留応力は測定できないという問題がある。   At present, as a method for measuring the stress, a method using a strain gauge is most widely adopted. A strain gauge is affixed to the surface of the object to be measured, stress can be calculated from the amount of strain measured by the strain gauge and the Young's modulus value of the object to be measured, and the stress change at the affixed portion can be read. Patent Document 1 discloses an example of a stress measurement method using this strain gauge. However, in this method, it is necessary to attach strain gauges to all the parts to be measured, and there is a problem that a great effort is required for the measurement. In addition, there is a problem that the adhesive used for pasting or the stress of the strain gauge itself is applied as a bias. Further, there is a problem that the residual stress cannot be measured because the stress is measured from the change in strain.

また、その他の応力測定方法として、赤外線による応力測定方法の一例が特許文献2に開示されている。この方法は、被測定対象物に繰り返し外力を与えた際の熱弾性効果に基づく被測定対象物表面の温度変化を測定することで、応力を測定する方法である。この方法では、応力分布を簡易的に測定することが可能ではあるが、被測定対象物の変形を前提とする測定方法であり、非破壊検査を要する用途では使えないという問題がある。また、残留応力の測定も原理上不可能である。   In addition, as another stress measurement method, Patent Document 2 discloses an example of a stress measurement method using infrared rays. This method is a method of measuring stress by measuring a temperature change of the surface of the object to be measured based on a thermoelastic effect when an external force is repeatedly applied to the object to be measured. Although this method can easily measure the stress distribution, it is a measurement method that presupposes deformation of the object to be measured, and has a problem that it cannot be used in applications requiring nondestructive inspection. Also, residual stress cannot be measured in principle.

また、その他の応力測定方法として、X線解析による応力測定方法の一例が特許文献3に開示されている。この方法は、多結晶体材料において、その内部結晶の格子間距離が応力によって変化することを利用し、X線解析により被測定部材上X線照射表面の結晶格子面間距離の変化を読み取り、その変化からX線照射表面の表面応力の大きさを測定する方法である。この方法では、非破壊的かつ微小な領域の測定が可能であるが、高角度で回析する適切な結晶面が表面に存在していないと測定が難しいという問題がある。また、非晶質の測定は行うことができない。加えて、X線を使用する機器であるため、使用にある程度の法的制限があるとともに、装置の価格が高価になってしまう問題がある。   In addition, as another stress measurement method, Patent Document 3 discloses an example of a stress measurement method based on X-ray analysis. This method uses the fact that the interstitial distance of the internal crystal changes due to stress in the polycrystalline material, and reads the change in the intercrystalline lattice distance of the X-ray irradiated surface on the member to be measured by X-ray analysis, This is a method of measuring the magnitude of the surface stress on the X-ray irradiated surface from the change. Although this method can measure a nondestructive and minute region, there is a problem that measurement is difficult unless an appropriate crystal plane that diffracts at a high angle exists on the surface. Also, amorphous measurement cannot be performed. In addition, since it is a device that uses X-rays, there are some legal restrictions on its use, and there is a problem that the price of the apparatus becomes expensive.

特許公開2002−22579Patent Publication 2002-22579 特許公開2001−91371Patent Publication 2001-91371 特許公開2012−13423Patent Publication 2012-13423

本発明は上記のごとき状況に鑑みてなされたものであり、非接触かつ安全に被測定対象物表面の応力を測定することが可能な表面応力測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface stress measurement device capable of measuring the stress on the surface of the object to be measured in a non-contact and safe manner.

上記の課題を解決する請求項1に係る発明は、被測定対象物の表面における応力を測定する応力測定装置であって、
被測定対象物に変動磁界を印加する磁界印可手段と、
被測定対象物表面に光を照射する光照射手段と、
被測定対象物表面からの反射光の偏光面角度を検出するための偏光面角度検出手段と、
前記偏光面角度検出手段により検出された偏光面角度より被測定対象物表面の応力を演算する表面応力演算手段と、
を具備し、前記表面応力演算手段にて、数式1に基づいて演算することにより、被測定対象物表面の応力を演算することを特徴とする表面応力測定装置である。
The invention according to claim 1 for solving the above-mentioned problem is a stress measuring device for measuring stress on the surface of an object to be measured,
Magnetic field applying means for applying a varying magnetic field to the object to be measured;
A light irradiation means for irradiating light on the surface of the object to be measured;
A polarization plane angle detecting means for detecting the polarization plane angle of the reflected light from the surface of the object to be measured;
Surface stress calculation means for calculating the stress of the surface of the object to be measured from the polarization plane angle detected by the polarization plane angle detection means;
And the surface stress calculation means calculates the stress on the surface of the object to be measured by calculating based on the mathematical formula 1.

また、請求項に係る発明は、請求項に記載の実施形態において、前記被測定対象物表面における光照射位置を移動させる光照射位置移動手段を備え、光照射位置を移動させながら前記被測定対象物表面の応力を測定することにより、被測定対象物表面の応力分布をマッピングすることを特徴とする表面応力測定装置である。 The invention according to claim 2 is the embodiment according to claim 1 , further comprising light irradiation position moving means for moving the light irradiation position on the surface of the object to be measured, wherein the object to be measured is moved while moving the light irradiation position. A surface stress measurement apparatus that maps stress distribution on the surface of a measurement object by measuring stress on the surface of the measurement object.

本発明によれば、非接触かつ非破壊な手段により、安全かつ簡便に被測定対象物表面の応力を測定することができる。また、被測定対象物表面の微小領域の応力測定を行うことが可能であり、測定領域を移動させながら応力測定を行うことにより被測定部材表の応力分布のマッピングを行うこともできる。   According to the present invention, the stress on the surface of the object to be measured can be measured safely and simply by non-contact and non-destructive means. In addition, it is possible to perform stress measurement of a minute region on the surface of the object to be measured, and it is also possible to perform mapping of the stress distribution of the measured member table by performing stress measurement while moving the measurement region.

本発明の第一の実施形態First embodiment of the present invention 本発明の第二の実施形態Second embodiment of the present invention 応力による異方性磁界の変化Changes in anisotropic magnetic field due to stress

本発明を実施するための第1の形態について、図1を使用して説明する。本発明は被測定対象物の表面における応力を測定する応力測定装置であって、被測定対象物1に変動磁界を印加する磁界印可手段2と、被測定対象物1表面に光を照射する光照射手段3と、被測定対象物1表面からの反射光9の偏光面角度を検出するための偏光面角度検出手段4と、前記偏光面角度検出手段4により検出された偏光面角度より被測定対象物1表面の応力を演算する表面応力演算手段5とから構成される。必要に応じて、既知である複数の材料の磁歪定数、無応力時異方性磁界の値を格納したデータ格納手段6が構成要素として加わる。また、多くの場合、光照射手段3から照射された入射光8の経路上に入射光8を偏光するための偏光フィルター10が設置される。   A first embodiment for carrying out the present invention will be described with reference to FIG. The present invention is a stress measuring device for measuring the stress on the surface of the object to be measured, the magnetic field applying means 2 for applying a variable magnetic field to the object 1 to be measured, and the light for irradiating the surface of the object 1 to be measured. The measurement is performed from the irradiation means 3, the polarization plane angle detection means 4 for detecting the polarization plane angle of the reflected light 9 from the surface of the object 1 to be measured, and the polarization plane angle detected by the polarization plane angle detection means 4. It is comprised from the surface stress calculating means 5 which calculates the stress of the target object 1 surface. If necessary, data storage means 6 storing magnetostriction constants and stress-free anisotropic magnetic field values of a plurality of known materials is added as a constituent element. In many cases, a polarizing filter 10 for polarizing the incident light 8 is installed on the path of the incident light 8 irradiated from the light irradiation means 3.

本発明は被測定部材1が磁性体であることを前提としている。磁界印可手段2は、ソレノイドコイル、ヘルムホルツコイルまたは電磁石と、それらを駆動する励磁電源とから構成される。その形状は、被測定部材全体もしくは被測定対象物1表面の被測定領域に磁界を印加できるように設計されている必要がある。光照射手段3としては、レーザー発振器、単色光ランプを使用することができる。また、偏光面角度検出手段4としては、フォトダイオード、光電子増倍管などの光センサと回転偏光子とを組み合わせたものを使用することができる。より精度が必要な場合は、この構成にロックインアンプを加えるとよい。また、表面応力演算手段5としては、パーソナルコンピューター、組み込みマイコン、アナログ演算器などを使用する。また、データ格納手段6として、ハードディスク、光ディスク、半導体メモリなどの記憶媒体を使用する。   The present invention is based on the premise that the member 1 to be measured is a magnetic material. The magnetic field applying means 2 includes a solenoid coil, a Helmholtz coil or an electromagnet, and an excitation power source for driving them. The shape needs to be designed so that a magnetic field can be applied to the entire measured member or the measured region of the surface of the measured object 1. As the light irradiation means 3, a laser oscillator or a monochromatic lamp can be used. Further, as the polarization plane angle detection means 4, a combination of an optical sensor such as a photodiode or a photomultiplier tube and a rotating polarizer can be used. If more accuracy is required, a lock-in amplifier may be added to this configuration. Further, as the surface stress calculation means 5, a personal computer, a built-in microcomputer, an analog calculator or the like is used. As the data storage means 6, a storage medium such as a hard disk, an optical disk, or a semiconductor memory is used.

磁界印可手段2より、被測定対象物1に変動磁界を与えると、被測定対象物1表面の磁化が、この変動磁界により変化する。このとき、変動磁界は正弦波状もしくは三角波状であることが好ましい。この磁界中にある被測定対象物1に、光照射手段3より光を照射すると、その反射光9の偏光面は、被測定対象物1の磁化の大きさに比例して回転する。この偏光面の回転は「カー効果」として知られる現象である。この反射光9を、回転する偏光子を通して、光センサに入光させると、回転偏光子の角度と反射光の偏光面角度が一致する場合に、光センサへの入光量が最大となる。すなわち、この入光量が最大となる回転偏光子の角度を求めることにより、反射光9の偏光面角度を求めることができる。この偏光面角度の変化は磁化の変化に比例するため、測定された偏光面角度を表面応力演算手段5に入力することで被測定対象物1表面の磁化の大きさを算出することができる。   When a varying magnetic field is applied to the object 1 to be measured from the magnetic field applying means 2, the magnetization of the surface of the object 1 to be measured is changed by this varying magnetic field. At this time, the variable magnetic field is preferably sinusoidal or triangular. When the measurement object 1 in this magnetic field is irradiated with light from the light irradiation means 3, the polarization plane of the reflected light 9 rotates in proportion to the magnitude of the magnetization of the measurement object 1. This rotation of the plane of polarization is a phenomenon known as the “Kerr effect”. When the reflected light 9 enters the optical sensor through the rotating polarizer, the amount of incident light to the optical sensor is maximized when the angle of the rotating polarizer and the polarization plane angle of the reflected light match. That is, the angle of the polarization plane of the reflected light 9 can be obtained by obtaining the angle of the rotating polarizer that maximizes the amount of incident light. Since the change in the polarization plane angle is proportional to the change in magnetization, the magnitude of the magnetization on the surface of the measurement object 1 can be calculated by inputting the measured polarization plane angle to the surface stress calculation means 5.

磁性体である被測定対象物1に応力が生じた場合、被測定対象物1内部の磁気異方性エネルギーが変化する。この応力によって変化する異方性エネルギーを磁歪異方性エネルギーといい、その大きさは数式3で表される。このエネルギー変化は、異方性磁界Hkの変化として読み取ることができ、数式4の関係があることが知られている。これを変形することにより数式5が得られる。すなわち、被測定対象物1の磁歪定数と無応力時の異方性磁界の大きさが既知であれば、応力の変化を異方性磁界の変化として読み取ることが可能となる。   When stress is generated in the measurement object 1 that is a magnetic body, the magnetic anisotropy energy inside the measurement object 1 changes. The anisotropic energy that changes due to this stress is called magnetostrictive anisotropic energy, and its magnitude is expressed by Equation 3. This energy change can be read as a change in the anisotropic magnetic field Hk, and it is known that there is a relationship of Formula 4. By transforming this, Equation 5 is obtained. That is, if the magnetostriction constant of the object 1 to be measured and the magnitude of the anisotropic magnetic field when no stress is known, the change in stress can be read as the change in the anisotropic magnetic field.

Figure 0005990808
Figure 0005990808

Figure 0005990808
Figure 0005990808

Figure 0005990808
Figure 0005990808

異方性磁界Hkの大きさは図3のように定義される。ここで磁化Iの大きさは反射光の偏光面角度の変化に比例することを考慮すると、Hkの値は数式6にて求めることができる。この数式6を数式5に代入すると、数式7が得られる。すなわち、変動磁界に対する偏光面の回転角度の変化と2つの定数α、βを表面応力演算手段5に入力することにより、数式1によって被測定対象物表面の応力を算出することができる。実際にはこの2つの定数α、βは、被測定対象物1の特性(飽和磁化、無応力時異方性磁界、磁歪定数)や磁界角度、光の入射角度、被測定対象物1の形状、磁界印可手段2の形状等の様々な因子によって変化する。事前に各測定条件を合わせた状態で、既知の応力を被測定材料に加えながら、測定を行っておけば、各測定条件における2定数α、βを定めることができる。   The magnitude of the anisotropic magnetic field Hk is defined as shown in FIG. Here, considering that the magnitude of the magnetization I is proportional to the change in the polarization plane angle of the reflected light, the value of Hk can be obtained by Equation 6. Substituting Equation 6 into Equation 5 yields Equation 7. That is, by inputting the change of the rotation angle of the polarization plane with respect to the varying magnetic field and the two constants α and β to the surface stress calculation means 5, the stress on the surface of the object to be measured can be calculated by Equation 1. Actually, these two constants α and β are the characteristics (saturation magnetization, no-stress anisotropic magnetic field, magnetostriction constant), magnetic field angle, incident angle of light, and shape of the object 1 to be measured. It varies depending on various factors such as the shape of the magnetic field applying means 2. If the measurement is performed while applying the known stress to the material to be measured in a state where the measurement conditions are combined in advance, the two constants α and β in each measurement condition can be determined.

Figure 0005990808
Figure 0005990808

Figure 0005990808
Figure 0005990808

本発明を実施するための第2の形態について、図2を使用して説明する。基本的な構成は第1の形態と同様である。第2の形態では、第1の形態における構成要素に加えて、被測定対象物1表面における光照射位置を移動させる光照射位置移動手段7を備えている。光照射位置移動手段7としては、被測定対象物を取り付けることを可能としたXYステージ、XYZステージ、XYθステージ、XYZθステージを想定している。または、光照射手段3の照射方向を変化させる照射角度調節機構を光照射位置移動手段7として用いてもよい。これら光照射位置移動手段7は、自動制御で光照射位置を移動させることが可能であることが望ましい。光照射手段3の照射方向を変化させて光照射位置を移動させる場合は、その反射光9をトラッキングする必要があるため、偏光面角度検出手段4に自動トラッキング可能な位置制御装置を組み合わせる必要がある。   A second embodiment for carrying out the present invention will be described with reference to FIG. The basic configuration is the same as in the first embodiment. In the second embodiment, in addition to the constituent elements in the first embodiment, a light irradiation position moving means 7 for moving the light irradiation position on the surface of the measurement object 1 is provided. As the light irradiation position moving means 7, an XY stage, an XYZ stage, an XYθ stage, and an XYZθ stage that can attach an object to be measured are assumed. Alternatively, an irradiation angle adjusting mechanism that changes the irradiation direction of the light irradiation unit 3 may be used as the light irradiation position moving unit 7. These light irradiation position moving means 7 are preferably capable of moving the light irradiation position by automatic control. When moving the light irradiation position by changing the irradiation direction of the light irradiation means 3, it is necessary to track the reflected light 9. Therefore, it is necessary to combine the polarization plane angle detection means 4 with a position controller capable of automatic tracking. is there.

第2の形態における応力測定のプロセスは、第1の形態と同様であるが、光照射位置を移動させながら前記被測定対象物表面の応力を測定することにより、被測定対象物表面の応力分布をマッピングすることが可能である。   The stress measurement process in the second embodiment is the same as that in the first embodiment, but the stress distribution on the surface of the object to be measured is measured by measuring the stress on the surface of the object to be measured while moving the light irradiation position. Can be mapped.

本発明によれば、非接触かつ非破壊な手段により、安全かつ簡便に工業製品の表面応力を測定することができ、耐久性試験や新製品の開発に有用である。また、オンサイト型の機器とすることにより、すでに建造済の建築物の構造材や配管などの疲労試験や補強が必要な個所の発見等に役立てることができると考えられる。   According to the present invention, the surface stress of an industrial product can be measured safely and simply by a non-contact and non-destructive means, which is useful for durability tests and development of new products. In addition, it is considered that by using an on-site type device, it can be used for finding a place where a fatigue test or reinforcement of a structural material or piping of an already constructed building is necessary.

1 被測定対象物
2 磁界印可手段
3 光照射手段
4 偏光面角度検出手段
5 表面応力演算手段
6 データ格納手段
7 光照射位置移動手段
8 入射光
9 反射光
10 偏光子
DESCRIPTION OF SYMBOLS 1 Object to be measured 2 Magnetic field application means 3 Light irradiation means 4 Polarization surface angle detection means 5 Surface stress calculation means 6 Data storage means 7 Light irradiation position moving means 8 Incident light 9 Reflected light 10 Polarizer

Claims (2)

被測定対象物の表面における応力を測定する応力測定装置であって、
被測定対象物に変動磁界を印加する磁界印可手段と、
被測定対象物表面に光を照射する光照射手段と、
被測定対象物表面からの反射光の偏光面角度を検出するための偏光面角度検出手段と、
前記偏光面角度検出手段により検出された偏光面角度より被測定対象物表面の応力を演算する表面応力演算手段と、
を具備し、前記表面応力演算手段にて、下記数式1に基づいて演算することにより、被測定対象物表面の応力を演算することを特徴とする表面応力測定装置。
Figure 0005990808
A stress measuring device for measuring stress on the surface of an object to be measured,
Magnetic field applying means for applying a varying magnetic field to the object to be measured;
A light irradiation means for irradiating light on the surface of the object to be measured;
A polarization plane angle detecting means for detecting the polarization plane angle of the reflected light from the surface of the object to be measured;
Surface stress calculation means for calculating the stress of the surface of the object to be measured from the polarization plane angle detected by the polarization plane angle detection means;
The surface stress measuring device calculates the stress on the surface of the object to be measured by calculating based on the following formula 1 by the surface stress calculating means.
Figure 0005990808
前記被測定対象物表面における光照射位置を移動させる光照射位置移動手段を備え、光照射位置を移動させながら前記被測定対象物表面の応力を測定することにより、被測定対象物表面の応力分布をマッピングすることを特徴とする請求項1に記載の表面応力測定装置。 A light irradiation position moving means for moving the light irradiation position on the surface of the object to be measured, and measuring the stress on the surface of the object to be measured while moving the light irradiation position; The surface stress measuring device according to claim 1, wherein the surface stress measuring device is mapped.
JP2012133624A 2012-06-13 2012-06-13 Surface stress measurement system using Kerr effect Expired - Fee Related JP5990808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133624A JP5990808B2 (en) 2012-06-13 2012-06-13 Surface stress measurement system using Kerr effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133624A JP5990808B2 (en) 2012-06-13 2012-06-13 Surface stress measurement system using Kerr effect

Publications (2)

Publication Number Publication Date
JP2013257224A JP2013257224A (en) 2013-12-26
JP5990808B2 true JP5990808B2 (en) 2016-09-14

Family

ID=49953776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133624A Expired - Fee Related JP5990808B2 (en) 2012-06-13 2012-06-13 Surface stress measurement system using Kerr effect

Country Status (1)

Country Link
JP (1) JP5990808B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103783A (en) * 1977-02-22 1978-09-09 Toshiba Corp Stress distribution measurment of magnetic body
JPH0477687A (en) * 1990-07-20 1992-03-11 Hitachi Ltd Magnetization state estimation method of magnetization head polefilm
JP2636561B2 (en) * 1991-06-07 1997-07-30 株式会社村田製作所 Magnetostatic wave device
US5493220A (en) * 1993-03-05 1996-02-20 Northeastern University Magneto-optic Kerr effect stress sensing system
JPH07104045A (en) * 1993-10-05 1995-04-21 Sony Corp Magnetic domain observing device
JP2007095750A (en) * 2005-09-27 2007-04-12 Canon Anelva Corp Magnetoresistive element

Also Published As

Publication number Publication date
JP2013257224A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
Blanche et al. Dissipation assessments during dynamic very high cycle fatigue tests
Arena et al. Strain state detection in composite structures: Review and new challenges
Zhang et al. Stress field analysis in orthogonal cutting process using digital image correlation technique
Na et al. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities
Yoshino et al. Machining of hard-brittle materials by a single point tool under external hydrostatic pressure
Huan et al. Mechanical strength evaluation of elastic materials by multiphysical nondestructive methods: A review
Robinson et al. The potential for assessing residual stress using thermoelastic stress analysis: a study of cold expanded holes
Matveenko et al. Damage detection in materials based on strain measurements
JP5990808B2 (en) Surface stress measurement system using Kerr effect
Zare et al. Face turning of single crystal (111) Ge: cutting mechanics and surface/subsurface characteristics
Glazov et al. Photoacoustic microscopy of vickers indentations in metals with piezoelectric detection
Wang et al. Nondestructive evaluation of residual stress via digital holographic photoelasticity
Zhang et al. Raman thermometry based thermal conductivity measurement of bovine cortical bone as a function of compressive stress
Schönbauer et al. Very high cycle fatigue data acquisition using high-accuracy ultrasonic fatigue testing equipment
Fernandes et al. Fiber orientation assessment on surface and beneath surface of carbon fiber reinforced composites using active infrared thermography
Zhang et al. Experimental study of the effective BRDF of a copper foam sheet
Glazov et al. Theoretical and experimental investigation of a laser-induced photoacoustic effect near a hole in internally stressed metal plates
Barile et al. Overview of the effects of process parameters on the accuracy in residual stress measurements by using HD and ESPI
Nassar et al. Optical monitoring of bolt tightening using 3D electronic speckle pattern interferometry
Frolova et al. Identification of zones of local hydrogen embrittlement of metals by the acoustoelastic effect
JP2013257250A (en) Magnetostriction measuring apparatus utilizing kerr effect
Pei et al. A new ultrasonic testing method for residual strain measurement with laser grating
Hua Hybrid photothermal technique for microscale thermal conductivity measurement
Matveenko et al. Registration of local damage based on the use of fiber-optic strain sensors and numerical simulation results
Cseh et al. Innovative Residual Stress Measurements by X-Ray Diffraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5990808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees