JP5978186B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5978186B2
JP5978186B2 JP2013188287A JP2013188287A JP5978186B2 JP 5978186 B2 JP5978186 B2 JP 5978186B2 JP 2013188287 A JP2013188287 A JP 2013188287A JP 2013188287 A JP2013188287 A JP 2013188287A JP 5978186 B2 JP5978186 B2 JP 5978186B2
Authority
JP
Japan
Prior art keywords
imaging
temperature detection
unit
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013188287A
Other languages
Japanese (ja)
Other versions
JP2015055392A (en
Inventor
高穂 糸井川
高穂 糸井川
貴郎 上田
貴郎 上田
健一 矢萩
健一 矢萩
大舘 一夫
一夫 大舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2013188287A priority Critical patent/JP5978186B2/en
Priority to KR1020140005381A priority patent/KR101596899B1/en
Priority to CN201410040770.9A priority patent/CN104422084B/en
Publication of JP2015055392A publication Critical patent/JP2015055392A/en
Application granted granted Critical
Publication of JP5978186B2 publication Critical patent/JP5978186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/16Cabins, platforms, or the like, for drivers
    • E02F9/166Cabins, platforms, or the like, for drivers movable, tiltable or pivoting, e.g. movable seats, dampening arrangements of cabins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/16Cabins, platforms, or the like, for drivers
    • E02F9/163Structures to protect drivers, e.g. cabins, doors for cabins; Falling object protection structure [FOPS]; Roll over protection structure [ROPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、室内の温度や人物を検出して室温を制御する空気調和機に係り、室内の温度や人物を検出するセンサの制御技術するに関する。   The present invention relates to an air conditioner that detects a room temperature and a person to control the room temperature, and relates to a control technology for a sensor that detects the room temperature and a person.

近年、撮像素子や温度センサを搭載して室内の温度分布や在室中の人物の動作を検出し、吹き出し風の温度・方向・風量を制御し、空調の快適性向上や省エネを実現する空気調和機が実現されている。
上記の空気調和機は、例えば、特許文献1に開示されている。詳しくは、特許文献1の空気調和機は、室内空間の画像情報を取り込む画像センサを搭載し、取得した画像情報により動きを検出するとともに、室内機の上下方向の風向きを制御する上下フラップと左右方向の風向きを制御する左右フラップを、人の居場所によらず自由に気流を制御するフラップ機構として気流を振り分けられる構成とし、前記画像情報の動き量から、人の位置を特定して、人が存在する領域に向けて空気を吹出す方向及び距離を制御している。
さらに、特許文献1の空気調和機は、左右上下方向に数分割したエリアの床温度を検出する床温度センサを搭載し、前記画像センサで取得した人の位置の近傍の床温度に応じて、最適な設定温度の設定やファンの回転速度の制御をおこなう技術が開示されている。
In recent years, air sensors have been equipped with image sensors and temperature sensors to detect the temperature distribution in the room and the actions of people in the room, and control the temperature, direction, and volume of the blown air to improve air conditioning comfort and save energy A harmony machine has been realized.
Said air conditioner is disclosed by patent document 1, for example. Specifically, the air conditioner of Patent Document 1 is equipped with an image sensor that captures image information of the indoor space, detects movement based on the acquired image information, and controls the vertical flap and the left and right that control the vertical direction of the indoor unit. The left and right flaps that control the wind direction of the direction are configured to distribute the airflow as a flap mechanism that freely controls the airflow regardless of the location of the person, and the position of the person is identified from the amount of movement of the image information, The direction and distance of blowing air toward the existing area are controlled.
Furthermore, the air conditioner of Patent Document 1 is equipped with a floor temperature sensor that detects the floor temperature of an area that is divided into several parts in the left-right and up-down directions, and according to the floor temperature in the vicinity of the position of the person acquired by the image sensor, A technique for setting an optimal set temperature and controlling the rotation speed of a fan is disclosed.

また、特許文献2に開示される空気調和機は、8つの受光素子が縦に配設された赤外線センサを左右方向に回動走査して室内の熱画像を取得し、熱画像から床面や壁面の温度を検出するとともに、熱画像データの変化から人の位置検出をおこなって、空気調和機の空調制御をおこなっている。   In addition, the air conditioner disclosed in Patent Document 2 acquires an indoor thermal image by rotating and scanning an infrared sensor in which eight light receiving elements are vertically arranged in the left-right direction. While detecting the temperature of the wall surface, the position of a person is detected from the change in the thermal image data to control the air conditioning of the air conditioner.

特開2006−220405号公報JP 2006-220405 A 特開2010−276324号公報JP 2010-276324 A

上述のとおり、撮像素子や温度センサを搭載することで、室内状況の把握や人物の検出が容易となり、細かな空調管理をおこなえるようになってきた。しかし、特許文献2にも記載されているように、温度検出に使う赤外線センサは、一般に、応答速度がCCD等の撮像素子に比べて遅い。このため、撮像素子で検出した撮像画像の所定位置の実際の温度と、赤外線センサ等の温度センサで検出した温度との間にずれが生じることがある。
また、温度検出に使う赤外線センサは、CCD等の撮像素子のような2次元の高分解能のものが存在しない。このため、1次元センサを走査して使用するので、温度検出が複数回おこなわれ、検出領域を走査するのに時間がかかる。このため、ますます、所定位置の温度を正確に求めることができない問題ある。
さらに、人の出入りや活動量の検出等の時間変化が短い状態の把握と部屋の間取りや日差しのあるエリアの空調の最適化等の時間変化が比較的長い状態の把握を両立する撮像素子や温度センサの制御方法が必要となっている。
本発明の目的は、撮像素子や温度センサを連携動作させて、温度検出センサの応答速度による影響を低減した検出装置を搭載した空気調和機を提供することにある。
As described above, by mounting an image sensor and a temperature sensor, it becomes easy to grasp indoor conditions and detect people, and to perform fine air conditioning management. However, as described in Patent Document 2, an infrared sensor used for temperature detection generally has a slower response speed than an image sensor such as a CCD. For this reason, a deviation may occur between the actual temperature at a predetermined position of the captured image detected by the image sensor and the temperature detected by a temperature sensor such as an infrared sensor.
Further, there is no two-dimensional high resolution infrared sensor used for temperature detection like an image sensor such as a CCD. For this reason, since the one-dimensional sensor is scanned and used, temperature detection is performed a plurality of times, and it takes time to scan the detection region. For this reason, there is a problem that the temperature at a predetermined position cannot be obtained accurately.
In addition, an image sensor that can grasp both short-term changes such as people entering and exiting and detecting the amount of activity, and relatively long-term changes such as room layout and optimization of air conditioning in areas with sunlight. There is a need for a temperature sensor control method.
An object of the present invention is to provide an air conditioner equipped with a detection device in which an imaging device and a temperature sensor are operated in cooperation to reduce the influence of the response speed of the temperature detection sensor.

上記課題を解決するために、本発明の空気調和機は、左右方向に回動して室内を撮像する撮像部と、前記撮像部とは独立して左右方向に回動し室内の放射熱を検知する温度検出部と、前記撮像部の撮像領域と前記温度検出部の検出領域が一部重なっているときに前記撮像部の回動を開始するセンサ駆動部と、を備え、左右方向における前記温度検出部の検出領域は前記撮像部の撮像領域より狭く、前記撮像部は、前記温度検出手段の前記左右方向における検出領域が前記撮像部の前記左右方向における撮像領域内に位置するときに撮像を行うようにした。
さらに、別の観点では、本発明の空気調和機の前記撮像部は、2次元に配設された撮像素子のひとつの方向を中心に回動して、空調する室内を撮像前記温度検出部は、1次元に配設された受熱素子の配設方向を中心に回動して、前記室内の放射熱を検出し、前記撮像部の回動と前記温度検出部の回動が並行動作する第1の動作状態と、前記撮像部の回動動作と前記温度検出部の回動動作が順におこなわれる第2の動作状態を持つようにした。
In order to solve the above problems, an air conditioner of the present invention rotates in the left-right direction by rotating in the left-right direction, and rotates in the left-right direction independently of the imaging unit, thereby And a sensor driving unit that starts rotation of the imaging unit when the imaging region of the imaging unit and the detection region of the temperature detection unit partially overlap each other in the left-right direction. The detection region of the temperature detection unit is narrower than the imaging region of the imaging unit, and the imaging unit is configured such that the detection region in the left-right direction of the temperature detection unit is located within the imaging region in the left-right direction of the imaging unit. Image was taken.
Further, in another aspect, the imaging unit of the air conditioner of the present invention is to rotate about the one direction disposed an imaging element in two-dimensional images a room where the air conditioner, the temperature detecting parts are rotated about the arrangement direction disposed the heat receiving element in one dimension to detect the radiant heat of the indoor, rotation of the rotation and the temperature detecting portion of the front SL imaging unit parallel a first operating state of operating, rotating operation of the rotating operation and the temperature detecting portion of the imaging unit has to have a second operation state takes place sequentially.

本発明を適用した空気調和機は、温度検出センサの応答速度による悪影響を低減できるので、居住者の快適性の向上や、省エネ効果を増大することができる。   Since the air conditioner to which the present invention is applied can reduce adverse effects due to the response speed of the temperature detection sensor, the comfort of the occupant can be improved and the energy saving effect can be increased.

実施例の空気調和機の正面外観を示す図である。It is a figure which shows the front external appearance of the air conditioner of an Example. 実施例の室内機1の側断面図である。It is a sectional side view of the indoor unit 1 of an Example. 温度検出手段27のサーモパイル27bの水平走査を説明する図である。It is a figure explaining the horizontal scan of the thermopile 27b of the temperature detection means 27. FIG. 撮像手段26のCCDイメージセンサ26bの水平走査を説明する図である。It is a figure explaining the horizontal scanning of the CCD image sensor 26b of the imaging means 26. FIG. 撮像手段26のCCDイメージセンサ26bと温度検出手段27のサーモパイル27bの回動角度の関係を説明する図であるIt is a figure explaining the relationship of the rotation angle of CCD image sensor 26b of the imaging means 26, and the thermopile 27b of the temperature detection means 27. 温度検出手段27の撮像結果を示す図である。It is a figure which shows the imaging result of the temperature detection means 27. FIG. 撮像手段26の撮像結果を示す図である。It is a figure which shows the imaging result of the imaging means. 温度検出手段あるいは撮像手段の機構に係り、ギア接続の構成の一例を示す図である。It is a figure which shows an example of the structure of a gear connection in connection with the mechanism of a temperature detection means or an imaging means. 温度検出手段あるいは撮像手段の機構に係り、4節リンク接続の構成の一例を示す図である。It is a figure which shows an example of a structure of a 4 node link connection in connection with the mechanism of a temperature detection means or an imaging means. 温度検出手段27の鉛直断面の撮像状態を示す図であるIt is a figure which shows the imaging state of the vertical cross section of the temperature detection means 27. 実施例の空気調和機の制御ブロック図である。It is a control block diagram of the air conditioner of an Example. 部屋監視モード時の温度検出手段と撮像手段の動作を説明する図である。It is a figure explaining operation | movement of the temperature detection means at the time of room monitoring mode, and an imaging means. 人監視モード時の温度検出手段と撮像手段の動作を説明する図である。It is a figure explaining operation | movement of the temperature detection means at the time of person monitoring mode, and an imaging means. 時間ずれを低減する温度検出フロー図である。It is a temperature detection flowchart which reduces a time gap.

以下、本発明の実施例を、図面を参照しながら説明する。なお、各図および各実施例において、同一又は類似の構成要素には同じ符号を付し、重複説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing and each embodiment, the same or similar components are denoted by the same reference numerals, and redundant description is omitted.

図1は本実施例に係る空気調和機の外観を示す正面図である。空気調和機は、室内機1と、室外機2と、リモコン3と、から構成され、室内機1と室外機2とは図示していない冷媒配管で接続され、周知の冷媒サイクルによって、室内機1が設置されている室内を空調する。また、室内機1と室外機2とは、通信ケーブル(図示せず)を介して互いに情報を送受信するようになっている。   FIG. 1 is a front view showing the appearance of the air conditioner according to the present embodiment. The air conditioner is composed of an indoor unit 1, an outdoor unit 2, and a remote controller 3. The indoor unit 1 and the outdoor unit 2 are connected by a refrigerant pipe (not shown), and the indoor unit is connected by a known refrigerant cycle. Air-condition the room where 1 is installed. Moreover, the indoor unit 1 and the outdoor unit 2 mutually transmit / receive information via a communication cable (not shown).

リモコン3はユーザによって操作され、室内機1のリモコン3受信部に対して、ユーザの操作指示に対応する赤外線信号を送信する。当該信号の内容は、運転要求、設定温度の変更、タイマ、運転モードの変更、停止要求などの指令である。空気調和機は、これらの信号に基づいて、冷房モード、暖房モード、除湿モードなどの空調運転をおこなう。   The remote controller 3 is operated by the user, and transmits an infrared signal corresponding to the user's operation instruction to the remote controller 3 receiver of the indoor unit 1. The contents of the signal are commands such as an operation request, a change in set temperature, a timer, an operation mode change, and a stop request. Based on these signals, the air conditioner performs air conditioning operations such as a cooling mode, a heating mode, and a dehumidifying mode.

また、空気調和機の室内機1の正面には、詳細を後述する撮像手段26と温度検出手段27が設けられている。
また、室内機には、室内機1に取り込む空気の温度を測定する室温センサと、湿度センサと、照度センサとから成るセンサ部4がある。室外機2にも、同様に、外気温センサが設けられている。
11は電装品であり、当該空気調和機1の制御をおこなう制御部7が構成されている。詳細は、図8により説明する。
In addition, an imaging unit 26 and a temperature detection unit 27, which will be described in detail later, are provided in front of the indoor unit 1 of the air conditioner.
The indoor unit includes a sensor unit 4 including a room temperature sensor that measures the temperature of air taken into the indoor unit 1, a humidity sensor, and an illuminance sensor. The outdoor unit 2 is similarly provided with an outside air temperature sensor.
Reference numeral 11 denotes an electrical component, which includes a control unit 7 that controls the air conditioner 1. Details will be described with reference to FIG.

図2は、室内機1の側断面図である。筐体ベース8は、熱交換器9、送風ファン10、電装品11(図1参照)、センサ部4(図1参照)、撮像手段26、温度検出手段27などの内部構造体を収容している。
熱交換器9は、複数本の伝熱管を有し、送風ファン10により室内機1内に取り込まれた空気を、伝熱管を通流する冷媒と熱交換させ、前記空気を加熱又は冷却するように構成されている。なお、伝熱管は、前記した冷媒配管(図示せず)に連通し、周知の冷媒サイクル(図示せず)の一部を構成している。
FIG. 2 is a side sectional view of the indoor unit 1. The housing base 8 accommodates internal structures such as a heat exchanger 9, a blower fan 10, an electrical component 11 (see FIG. 1), a sensor unit 4 (see FIG. 1), an imaging unit 26, and a temperature detecting unit 27. Yes.
The heat exchanger 9 has a plurality of heat transfer tubes, heats the air taken into the indoor unit 1 by the blower fan 10 with a refrigerant flowing through the heat transfer tubes, and heats or cools the air. It is configured. The heat transfer tube communicates with the above-described refrigerant pipe (not shown) and constitutes a part of a known refrigerant cycle (not shown).

左右風向板13は、制御部7(図8参照)からの指示に従い、下部に設けた回動軸(図示せず)を支点にして左右風向板13用モータ(図示せず)により回動される。
上下風向板14は、制御部7(図8参照)からの指示に従い、両端部に設けた回動軸(図示せず)を支点にして上下風向板14用モータ(図示せず)により回動される。
前面パネル15は、室内機1の前面を覆うように設置されており、下端を軸として前面パネル15用モータ(図示せず)により回動可能な構成となっている。ちなみに、前面パネル15を、上端に固定されるものとして構成してもよく、回動できない構成であってもよい。
The left and right wind direction plates 13 are rotated by a motor (not shown) for the left and right wind direction plates 13 according to an instruction from the control unit 7 (see FIG. 8) with a rotation shaft (not shown) provided at the bottom as a fulcrum. The
The vertical wind direction plate 14 is rotated by a motor (not shown) for the vertical wind direction plate 14 with pivot shafts (not shown) provided at both ends as fulcrums according to instructions from the control unit 7 (see FIG. 8). Is done.
The front panel 15 is installed so as to cover the front surface of the indoor unit 1, and is configured to be rotatable by a motor (not shown) for the front panel 15 with the lower end as an axis. Incidentally, the front panel 15 may be configured to be fixed to the upper end or may not be able to rotate.

図2に示す送風ファン10が回転することによって、空気吸込み口17及びフィルタ16を介して、室内機1の前面から室内空気を取り込み、熱交換器9で熱交換された空気が吹出し風路18に導かれる。さらに、吹出し風路18に導かれた空気は、左右風向板13及び上下風向板14によって風向きを調整され、空気吹出し口19から外部に送り出されて室内を空調する。
つまり、送風ファン10の回転速度により吹き出し風量が制御され、左右風向板13の回動により左右の吹出し方向が制御され、上下風向板14の回動により上下の吹出し方向が制御される。
When the blower fan 10 shown in FIG. 2 rotates, the room air is taken in from the front surface of the indoor unit 1 through the air suction port 17 and the filter 16, and the air exchanged by the heat exchanger 9 is blown out. Led to. Further, the air guided to the blowout air passage 18 is adjusted in the wind direction by the left and right wind direction plates 13 and the up and down wind direction plates 14 and is sent to the outside from the air blowing port 19 to air-condition the room.
That is, the amount of blown air is controlled by the rotation speed of the blower fan 10, the left and right blowing directions are controlled by the rotation of the left and right wind direction plates 13, and the upper and lower blowing directions are controlled by the rotation of the upper and lower wind direction plates 14.

撮像手段26は、例えば、CCD(Charge Coupled Device)イメージセンサ26b(図3b参照)であり、前面パネル15の左右方向中央の下部に設置されている
また、温度検出手段27は、例えば横×縦が1×1画素、4×4画素、1×8画素で構成されるサーモパイル27b(図3a参照)であり、前面パネル15の左右方向中央の下部に設置されている。本実施例では、1×8画素で構成されるサーモパイル27bを使用した場合について述べる。これ以外にも、サーモグラフィーを使用してもよい。
The image pickup means 26 is, for example, a CCD (Charge Coupled Device) image sensor 26b (see FIG. 3B), and is installed at the lower center of the front panel 15 in the left-right direction .
Further, the temperature detection means 27 is a thermopile 27b (see FIG. 3a) composed of, for example, 1 × 1 pixel, 4 × 4 pixel, and 1 × 8 pixel in the horizontal and vertical directions, and is a lower portion of the front panel 15 at the center in the horizontal direction. Is installed. In this embodiment, a case where a thermopile 27b composed of 1 × 8 pixels is used will be described. In addition, thermography may be used.

撮像手段26と温度検出手段27は、レンズの光軸36が水平線37に対して所定角度だけ下方を向くように設置されており、室内機1が設置されている室内を適切に撮像できるようになっている。撮像手段26が下方を向く角度は、温度検出手段27が下方を向く角度と略同じである。
撮像手段26と温度検出手段27の鉛直方向の検出範囲が異なる場合、検出範囲の上端をそろえる。あるいは、下端をそろえてもよい。
The imaging means 26 and the temperature detection means 27 are installed such that the optical axis 36 of the lens faces downward with respect to the horizontal line 37 by a predetermined angle so that the room in which the indoor unit 1 is installed can be appropriately imaged. It has become. The angle at which the imaging unit 26 faces downward is substantially the same as the angle at which the temperature detection unit 27 faces downward.
When the detection ranges in the vertical direction of the imaging unit 26 and the temperature detection unit 27 are different, the upper ends of the detection ranges are aligned. Alternatively, the lower ends may be aligned.

撮像手段26と温度検出手段27の水平方向の画角は略同じ角度である。あるいは、一方が他方より大きく、回動することにより画角を変更することで略同等の画角を得てもよい。撮像手段26と温度検出手段27は互いに水平方向または鉛直方向に位置するように設けられる。
また、撮像手段26と温度検出手段27は室内機1の前面中央部や前面上部など空間の検出が可能な位置に近接して設けることが望ましい。これにより、撮像手段26の取得画像と温度検出手段27の取得画像のずれ量を小さくすることができる。
また、撮像手段26あるいは温度検出手段27は、同一の画角で部屋のより広い範囲を見られるよう、前面パネル15の上端にあってもよい。
The angle of view in the horizontal direction of the image pickup means 26 and the temperature detection means 27 is substantially the same angle. Alternatively, one may be larger than the other, and a substantially equivalent angle of view may be obtained by changing the angle of view by turning. The imaging means 26 and the temperature detection means 27 are provided so as to be positioned in the horizontal direction or the vertical direction.
In addition, it is desirable that the image pickup unit 26 and the temperature detection unit 27 be provided close to a position where space can be detected, such as the front central portion or the upper front portion of the indoor unit 1. Thereby, the deviation | shift amount of the acquired image of the imaging means 26 and the acquired image of the temperature detection means 27 can be made small.
Further, the imaging means 26 or the temperature detection means 27 may be at the upper end of the front panel 15 so that a wider range of the room can be seen with the same angle of view.

つぎに、図3aと図3bにより、撮像手段26と温度検出手段27による撮像について説明する。撮像手段26は、640×480画素のCCDイメージセンサ26bにより構成され、温度検出手段27は1×8画素のサーモパイル27bにより構成される。そして、CCDイメージセンサ26bやサーモパイル27bの前面にはレンズが設けられており、視野像がセンサに結像される。   Next, imaging by the imaging means 26 and the temperature detection means 27 will be described with reference to FIGS. 3a and 3b. The imaging means 26 is constituted by a CCD image sensor 26b having 640 × 480 pixels, and the temperature detecting means 27 is constituted by a thermopile 27b having 1 × 8 pixels. A lens is provided in front of the CCD image sensor 26b and the thermopile 27b, and a field image is formed on the sensor.

サーモパイル27bの検出素子は、1次元配置された受熱素子となっている。図3aにしめすように、検出素子の配列方向を回転軸にしてサーモパイル27bを回動することにより、検出素子の配列方向に垂直な方向に走査する。これにより、縦方向に8画素の2次元の放射熱像を取得することができる。取得画像の走査方向(水平方向)の画素数については後述する。   The detection element of the thermopile 27b is a heat receiving element arranged one-dimensionally. As shown in FIG. 3a, scanning is performed in a direction perpendicular to the arrangement direction of the detection elements by rotating the thermopile 27b with the arrangement direction of the detection elements as a rotation axis. Thereby, a two-dimensional radiant heat image of 8 pixels can be acquired in the vertical direction. The number of pixels in the scanning direction (horizontal direction) of the acquired image will be described later.

CCDイメージセンサ26bは2次元の撮像素子であるが、撮像手段26の取得画像範囲を広くするために、図3bにしめすように、CCDイメージセンサ26bの縦方向を回転軸にしてCCDイメージセンサ26bを回動し、水平方向の走査をおこなう。これにより、CCDイメージセンサ26bの水平方向の画素数より大きな撮像画像を得ることができる。   The CCD image sensor 26b is a two-dimensional image pickup device. In order to widen the acquired image range of the image pickup means 26, as shown in FIG. 3B, the CCD image sensor 26b has the vertical direction of the CCD image sensor 26b as the rotation axis. Rotate to scan in the horizontal direction. Thereby, a captured image larger than the number of pixels in the horizontal direction of the CCD image sensor 26b can be obtained.

図4は、撮像手段26のCCDイメージセンサ26bと温度検出手段27のサーモパイル27bの回転角度の関係を説明する図である。ここで、CCDイメージセンサ26bは、60°の画角をもち、サーモパイル27bは、5°の画角をもち、撮像手段26と温度検出手段27は、水平方向が150°の画角で、同じ視野の画像取得をおこなうものとする。   FIG. 4 is a diagram for explaining the relationship between the rotation angles of the CCD image sensor 26b of the image pickup means 26 and the thermopile 27b of the temperature detection means 27. Here, the CCD image sensor 26b has an angle of view of 60 °, the thermopile 27b has an angle of view of 5 °, and the imaging means 26 and the temperature detection means 27 have the same angle of view with a horizontal direction of 150 °. It is assumed that an image of the visual field is acquired.

図4の実線はCCDイメージセンサ26bの1回の撮像角度範囲を示し、点線はサーモパイル27bの1回の検出角度範囲を示している。図に示されるように150°の画角の取得画像を得るには、サーモパイル27bは、中央の左右75°の範囲を5°の回転角度ごとに、放射熱像を取得し、CCDイメージセンサ26bは、中央と左右45°の3つの回転角度で撮像をおこない画像取得をおこなえばよい。   A solid line in FIG. 4 indicates a single imaging angle range of the CCD image sensor 26b, and a dotted line indicates a single detection angle range of the thermopile 27b. As shown in the figure, in order to obtain an acquired image having an angle of view of 150 °, the thermopile 27b acquires a radiant heat image in the central left and right range of 75 ° for each rotation angle of 5 °, and the CCD image sensor 26b. The image acquisition may be performed by performing imaging at three rotation angles of 45 ° to the left and right of the center.

図5aと図5bは、上記の条件で撮像をおこなった撮像手段26と温度検出手段27の撮像結果をしめす図である。撮像手段26は、水平方向が150°の画角で、1600×480の画素数の画像取得がおこなえる。温度検出手段27は、水平方向が150°の画角で、30×8の画素数の熱画像取得がおこなえる。
このとき、撮像手段26による撮像画像には、重複する領域があるので、適宜削除あるいは平均化して、上記の画素数の画像取得をおこなう。
5a and 5b are diagrams showing the imaging results of the imaging means 26 and the temperature detection means 27 that have taken images under the above conditions. The imaging means 26 can acquire an image having a field angle of 150 ° in the horizontal direction and a number of pixels of 1600 × 480. The temperature detection unit 27 can acquire a thermal image having a field angle of 150 ° in the horizontal direction and a pixel number of 30 × 8.
At this time, since there are overlapping areas in the captured image by the imaging unit 26, the image acquisition with the above-described number of pixels is performed by appropriately deleting or averaging.

上記の取得画像の画素数は一例であって、取得する画角や、使用するCCDイメージセンサ26bやサーモパイル27bの種類によって種々選択可能であることは言うまでもない。
なお、一見、サーモパイル27bの分解能が低いように思えるが、実施例のように空気調和機の送風制御のために室内の温度分布を測定する用途であれば、上記の分解能であれば充分に制御をおこなうことができる。もちろん、高分解能であることが望ましいことは言うまでもない。
The number of pixels of the acquired image is an example, and it is needless to say that various selections can be made depending on the angle of view to be acquired and the type of the CCD image sensor 26b and the thermopile 27b to be used.
At first glance, it seems that the resolution of the thermopile 27b is low, but if it is an application for measuring the temperature distribution in the room for air blow control of the air conditioner as in the embodiment, the above resolution is sufficient. Can be done. Of course, it is needless to say that high resolution is desirable.

つぎに、サーモパイル27bあるいはCCDイメージセンサ26bを回動させる機構について説明する。図6aと図6bは機構概要をしめす図である。ここで、サーモパイル27bあるいはCCDイメージセンサ26bを回動する駆動源は、ステッピングモータ42を使用するものとする。図6aと図6bで、   Next, a mechanism for rotating the thermopile 27b or the CCD image sensor 26b will be described. 6a and 6b are diagrams showing an outline of the mechanism. Here, it is assumed that a stepping motor 42 is used as a drive source for rotating the thermopile 27b or the CCD image sensor 26b. 6a and 6b,

図6aに示す機構では、サーモパイル27bあるいはCCDイメージセンサ26bを回動する回転軸とステッピングモータ42の駆動軸を、ギアを介して接続するものである。ステップ数の小さなステッピングモータ42であっても、ギア比を選択することにより所望の回転角を得ることができる。
図6bに示す機構では、サーモパイル27bあるいはCCDイメージセンサ26bを回動する回転軸とステッピングモータ42の駆動軸を、4節リンクにより接続し、回転運動を揺動運動に変換することができる。
In the mechanism shown in FIG. 6a, the rotating shaft that rotates the thermopile 27b or the CCD image sensor 26b and the drive shaft of the stepping motor 42 are connected via a gear. Even a stepping motor 42 with a small number of steps can obtain a desired rotation angle by selecting a gear ratio.
In the mechanism shown in FIG. 6b, the rotary shaft that rotates the thermopile 27b or the CCD image sensor 26b and the drive shaft of the stepping motor 42 are connected by a four-bar link, and the rotary motion can be converted into a swing motion.

上述のギアやリンクにより駆動軸の接続をおこなった場合は、ギアのバックラッシュやリンクの“あそび”により、回動位置精度に誤差が生じることがある。このため、撮像時のサーモパイル27bあるいはCCDイメージセンサ26bの撮像時の回動方向を一方向にして“あそび”による回動角の誤差が生じないようにすることが望ましい。また、予め“あそび”を吸収する調整量を求めておき、回動方向が反転する際に調整をおこなうようにしてもよい。   When the drive shaft is connected by the above-described gear or link, an error may occur in the rotational position accuracy due to gear backlash or link “play”. For this reason, it is desirable that the rotation direction at the time of imaging of the thermopile 27b or the CCD image sensor 26b at the time of imaging is set to one direction so that an error of the rotation angle due to “play” does not occur. Further, an adjustment amount for absorbing “play” may be obtained in advance, and adjustment may be performed when the rotation direction is reversed.

図7は、温度検出手段27の鉛直断面の撮像状態を示す図である。上述のとおり、温度検出手段27のサーモパイル27bは、縦方向に8素子から構成されている。図7の1から8の領域の放射熱が受熱素子により検出される。図7から分かるように、撮像結果の上側と下側がそれぞれ室内の壁と床に対応している。   FIG. 7 is a diagram illustrating an imaging state of a vertical cross section of the temperature detection unit 27. As described above, the thermopile 27b of the temperature detecting means 27 is composed of eight elements in the vertical direction. The radiant heat in the region 1 to 8 in FIG. 7 is detected by the heat receiving element. As can be seen from FIG. 7, the upper and lower sides of the imaging result correspond to the indoor wall and floor, respectively.

図8は、実施例の空気調和機の制御回路の構成図である。
上述の撮像手段26のCCDイメージセンサ26bと温度検出手段27のサーモパイル27bは、それぞれ独立に、センサ回動制御部50により回動駆動される。CCDイメージセンサ26bとサーモパイル27bの出力信号は、温度分布生成・判定処理部5により、図5aや図5bに示す2次元の放射熱画像と撮像画像が生成される。
FIG. 8 is a configuration diagram of a control circuit of the air conditioner according to the embodiment.
The CCD image sensor 26b of the imaging unit 26 and the thermopile 27b of the temperature detection unit 27 are driven to rotate independently by the sensor rotation control unit 50, respectively. From the output signals of the CCD image sensor 26b and the thermopile 27b, the temperature distribution generation / determination processing unit 5 generates a two-dimensional radiant heat image and a captured image shown in FIGS. 5a and 5b.

温度分布生成・判定処理部5は、上記の2次元の撮像画像と放射熱画像を解析して、レイアウト状態、人物の有無やその人数やその活動率、温度分布を、算出する。
そして、空調温度・風向処理部6は、この算出結果と、外気温センサ制御部51、室温センサ制御部52、湿度センサ制御部53、照度センサ制御部54の入力値と、リモコン制御部55と通信するリモコン3による設定値を参照して、送風の温度・風量と方向等の制御量を決める。
機器制御部7は、空調温度・風向処理部6からの指示に基づいて、室外機2の圧縮機駆動部22bと室外機ファンモータ駆動部24と四方弁駆動部34と電動弁駆動部35を制御して、冷房・暖房をおこなう冷媒サイクルの制御をおこなうとともに、前記空調温度・風向処理部6の指示に基づいて、上下風向板駆動部14bと左右風向板駆動部13bと送風ファン駆動部10bを制御して冷却風や暖房風の吹き出し方向・風量を制御する。
また、空調温度・風向処理部6は、センサ回動制御部50の動作状態を設定する。
The temperature distribution generation / determination processing unit 5 analyzes the two-dimensional captured image and the radiant heat image, and calculates the layout state, the presence / absence of a person, the number of persons, the activity rate, and the temperature distribution.
Then, the air conditioning temperature / wind direction processing unit 6 calculates the calculation result, the input values of the outside air temperature sensor control unit 51, the room temperature sensor control unit 52, the humidity sensor control unit 53, the illuminance sensor control unit 54, the remote control control unit 55, With reference to the set values by the remote controller 3 that communicates, the control amount such as the temperature / air volume and direction of the air is determined.
Based on the instruction from the air conditioning temperature / wind direction processing unit 6, the device control unit 7 controls the compressor driving unit 22 b, the outdoor unit fan motor driving unit 24, the four-way valve driving unit 34, and the motorized valve driving unit 35 of the outdoor unit 2. In addition to controlling the refrigerant cycle for cooling and heating, based on the instructions of the air conditioning temperature / wind direction processing unit 6, the up / down air direction plate driving unit 14b, the left / right air direction plate driving unit 13b, and the blower fan driving unit 10b. To control the blowing direction and air volume of cooling air and heating air.
The air conditioning temperature / wind direction processing unit 6 sets the operation state of the sensor rotation control unit 50.

前記温度分布生成・判定処理部5と空調温度・風向処理部6と機器制御部7は、マイクロプロセッサによるプログラム処理で実現される。   The temperature distribution generation / determination processing unit 5, the air conditioning temperature / wind direction processing unit 6, and the device control unit 7 are realized by a program process by a microprocessor.

<実施例1>
上述のとおり、撮像手段26と温度検出手段27は、独立に撮像動作をおこなうことができる。このため、空気調和機の機能に合わせて、撮像手段26と温度検出手段27の動作を変えることとする。ここで、空気調和機の撮像機能を、人の出入りや人数や人の位置・動きを検出して温度や風向・風量をコントロールする機能モード(以下、人監視モードと称する)と、ドアの開閉等の間取りの変化や日が差し込んでいるエリアを検出して温度や風向・風量をコントロールする機能モード(以下、部屋監視モードと称する)とを設ける。
人監視モードでは、撮像手段26で識別した人の位置に対応する温度を検知するために、撮像手段26と温度検出手段27とを並行動作させる(第1の動作状態)。部屋監視モードでは、撮像手段26と温度検出手段27は個別に順に動作すればよい(第2の動作状態)。以下に、それぞれの動作の詳細を説明する。
<Example 1>
As described above, the imaging unit 26 and the temperature detection unit 27 can perform an imaging operation independently. For this reason, the operations of the image pickup means 26 and the temperature detection means 27 are changed in accordance with the function of the air conditioner. Here, the imaging function of the air conditioner includes a function mode (hereinafter referred to as a person monitoring mode) that controls the temperature, wind direction, and air volume by detecting the entry and exit of people, the number of people and the position and movement of people, and opening and closing of the door A function mode (hereinafter referred to as a room monitoring mode) is provided for detecting a change in the floor plan or an area in which the day is inserted and controlling the temperature, the wind direction, and the air volume.
In the person monitoring mode, in order to detect the temperature corresponding to the position of the person identified by the image pickup means 26, the image pickup means 26 and the temperature detection means 27 are operated in parallel (first operation state). In the room monitoring mode, the image pickup means 26 and the temperature detection means 27 may be operated individually in order (second operation state). Details of each operation will be described below.

部屋監視モードでの、撮像手段26と温度検出手段27と動作を図9aに示す。図9aの横軸は時間変化を示し、縦軸はCCDイメージセンサ26bとサーモパイル27bの回動角度をしめしている。ここで、縦軸の回動角度は、図4のサーモパイルの30点の回動角度に対応している。
空気調和機の部屋監視モードでは、室内の状況変化に伴う急激な温度変化を想定していないので、撮像手段26と温度検出手段27は個別に交互動作させればよい。まず、撮像手段26の撮像画像から壁位置やドアの開閉等の部屋の状況が画像認識され、これに基づいて温度や風向・風量がコントロールされる。つぎに、温度検出手段27により検出された温度分布の変化により、温度や風向・風量がフィードバック制御される。
ここで、CCDイメージセンサ26bとサーモパイル27bの撮像は適当なタイミングでおこなえばよい。
また、部屋監視モードでは、撮像手段26と温度検出手段27を低速あるいは低頻度で動作すればよいので、部品寿命の点では有利となる。
FIG. 9A shows the operation of the image pickup means 26, the temperature detection means 27, and the operation in the room monitoring mode. The horizontal axis of FIG. 9a shows the time change, and the vertical axis shows the rotation angle of the CCD image sensor 26b and the thermopile 27b. Here, the rotation angle of the vertical axis corresponds to 30 rotation angles of the thermopile of FIG.
In the room monitoring mode of the air conditioner, since the rapid temperature change accompanying the change in the indoor situation is not assumed, the image pickup means 26 and the temperature detection means 27 may be alternately operated individually. First, the image of the room such as the wall position and the opening / closing of the door is recognized from the captured image of the imaging means 26, and the temperature, wind direction, and air volume are controlled based on this. Next, the temperature, the wind direction, and the air volume are feedback-controlled by the change in the temperature distribution detected by the temperature detector 27.
Here, the CCD image sensor 26b and the thermopile 27b may be imaged at an appropriate timing.
In the room monitoring mode, the imaging means 26 and the temperature detecting means 27 need only be operated at low speed or with low frequency, which is advantageous in terms of component life.

人監視モードでは、撮像手段26の撮像画像から人物を画像認識し、人物の活動量や居場所に合わせて温度や風向・風量をコントロールする。このため、人物の認識と温度検出のタイミングずれを小さくするために、撮像手段26と温度検出手段27の回動を並行動作させる。図9bに、撮像手段26と温度検出手段27の動作をしめす。   In the person monitoring mode, a person is recognized from the captured image of the imaging means 26, and the temperature, wind direction, and air volume are controlled in accordance with the amount of activity and the location of the person. For this reason, in order to reduce the timing difference between the recognition of the person and the temperature detection, the imaging means 26 and the temperature detection means 27 are rotated in parallel. FIG. 9b shows the operation of the image pickup means 26 and the temperature detection means 27.

図9bにしめすように、温度検出手段27のサーモパイル27bは、30ポイントの検出点で一定の回動角速度で駆動され、かつ、一定間隔で撮像(信号検出)される。これに対して、撮像手段26のCCDイメージセンサ26bは、サーモパイル27bの10ポイントの検出点ごとに、回動動作をおこなうようにする。そして、CCDイメージセンサ26bの撮像(信号検出)のタイミングはサーモパイル27bの10ポイントの検出点の範囲の中央とする。これにより、人物の認識と温度検出のタイミングずれを小さくする。   As shown in FIG. 9b, the thermopile 27b of the temperature detecting means 27 is driven at a constant rotational angular velocity at 30 detection points, and is imaged (signal detection) at regular intervals. On the other hand, the CCD image sensor 26b of the image pickup means 26 performs a rotation operation for every 10 detection points of the thermopile 27b. The timing of imaging (signal detection) of the CCD image sensor 26b is set to the center of the range of 10 detection points of the thermopile 27b. This reduces the timing difference between the recognition of the person and the temperature detection.

より詳細には、サーモパイル27bが図4に示した1から9の回動角度に在るときには、CCDイメージセンサ26bは回度角度が1の位置にあり、サーモパイル27bの回動角度が5の位置になったときに、CCDイメージセンサ26bの撮像をおこなう。
つぎに、サーモパイル27bの回動角度が10の位置になったときに、CCDイメージセンサ26bを回度角度10の位置に駆動する。そして、サーモパイル27bの回動角度が15の位置になったときに、CCDイメージセンサ26bの撮像をおこなう。
さらに、サーモパイル27bの回動角度が19の位置になったときに、CCDイメージセンサ26bを回度角度19の位置に駆動する。そして、サーモパイル27bの回動角度が26の位置になったときに、CCDイメージセンサ26bの撮像をおこなう。
More specifically, when the thermopile 27b is at a rotation angle of 1 to 9 shown in FIG. 4, the CCD image sensor 26b is at a position where the rotation angle is 1, and the rotation angle of the thermopile 27b is a position where the rotation angle is 5. Then, the CCD image sensor 26b is imaged.
Next, when the rotation angle of the thermopile 27b reaches the position of 10, the CCD image sensor 26b is driven to the position of the rotation angle 10. Then, when the rotation angle of the thermopile 27b reaches the position 15, the CCD image sensor 26b is imaged.
Further, when the rotation angle of the thermopile 27b reaches the 19th position, the CCD image sensor 26b is driven to the rotation angle 19 position. Then, when the rotation angle of the thermopile 27b reaches the position 26, the CCD image sensor 26b is imaged.

<実施例2>
図10は、人物の認識と温度検出のタイミングをより小さくする制御フローを示したものである。上述の実施例では、撮像手段26と温度検出手段27を並行動作させ、所定のタイミングで撮像手段26の撮像をおこなうようにしていた。本実施例は、サーモパイル27bを認識した人物の位置に回動して撮像をおこない、人物の温度検出をおこなうものである。
詳しくは、撮像手段26により室内を撮像し(S101)、画像認識して人物の位置を特定し(S102)、前記の人物位置に対応するサーモパイル27bの回動角度を算出し(S103)、サーモパイル27bを前記回動角度に駆動して撮像して温度を検出する(S104)。
複数の人物が認識された場合には、識別された人物ごとに上記の処理を繰り返して温度検出をおこなう。
以上により、より正確な温度測定が可能となる。
<Example 2>
FIG. 10 shows a control flow for reducing the timing of person recognition and temperature detection. In the above-described embodiment, the image pickup unit 26 and the temperature detection unit 27 are operated in parallel, and the image pickup unit 26 is picked up at a predetermined timing. In the present embodiment, the temperature of the person is detected by rotating to the position of the person who recognized the thermopile 27b and performing imaging.
Specifically, the room is imaged by the imaging means 26 (S101), the position of the person is identified by image recognition (S102), the rotation angle of the thermopile 27b corresponding to the person position is calculated (S103), and the thermopile 27b is driven to the rotation angle and imaged to detect the temperature (S104).
When a plurality of persons are recognized, temperature detection is performed by repeating the above process for each identified person.
As described above, more accurate temperature measurement is possible.

尚、本発明は、上記実施形態の構成に限られるものではなく、特許請求の範囲で示した機能、または本実施形態の構成が持つ機能が達成できる構成であればどのようなものであっても適用可能である。   The present invention is not limited to the configuration of the above-described embodiment, and any configuration can be used as long as the functions shown in the claims or the functions of the configuration of the present embodiment can be achieved. Is also applicable.

5 温度分布生成・判定処理部
6 空調温度・風向処理部
7 機器制御部
10b 送風ファン駆動部
13b 左右風向板駆動部
14b 上下風向板駆動部
26b 撮像装置CCD
27b 温度検出手段サーモパイル
50 センサ回動制御部
5 Temperature distribution generation / determination processing unit 6 Air conditioning temperature / wind direction processing unit 7 Device control unit 10b Blower fan driving unit 13b Left / right air direction plate driving unit 14b Upper / lower air direction plate driving unit 26b Imaging device CCD
27b Temperature detection means thermopile 50 sensor rotation control unit

Claims (8)

左右方向に回動して室内を撮像する撮像部と、
前記撮像部とは独立して左右方向に回動し室内の放射熱を検知する温度検出部と、
前記撮像部の撮像領域と前記温度検出部の検出領域が一部重なっているときに前記撮像部の回動を開始するセンサ駆動部と、を備え
左右方向における前記温度検出部の検出領域は前記撮像部の撮像領域より狭く、
前記撮像部は、前記温度検出手段の前記左右方向における検出領域が前記撮像部の前記左右方向における撮像領域内に位置するときに撮像を行う
ことを特徴とする空気調和機。
An imaging unit that rotates in the left-right direction to image the room;
A temperature detection unit that rotates in the left-right direction independently of the imaging unit and detects radiant heat in the room;
A sensor driving unit that starts rotation of the imaging unit when the imaging region of the imaging unit and the detection region of the temperature detection unit partially overlap ,
The detection region of the temperature detection unit in the left-right direction is narrower than the imaging region of the imaging unit,
The air conditioner characterized in that the imaging unit performs imaging when a detection region in the left-right direction of the temperature detection unit is located within an imaging region in the left-right direction of the imaging unit.
請求項1に記載の空気調和機において、
前記撮像部は、2次元に配設された撮像素子のひとつの方向を中心に回動して、空調する室内を撮像
前記温度検出部は、1次元に配設された受熱素子の配設方向を中心に回動して、前記室内の放射熱を検出し、
前記撮像部の回動と前記温度検出部の回動が並行動作する第1の動作状態と、
前記撮像部の回動動作と前記温度検出部の回動動作が順におこなわれる第2の動作状態をもつ
ことを特徴とする空気調和機。
In the air conditioner according to claim 1,
The imaging unit is rotated about the one direction disposed an imaging element in two-dimensional images a room where the air conditioner,
The temperature detection unit rotates around the arrangement direction of the heat receiving elements arranged one-dimensionally to detect the radiant heat in the room ,
A first operating state in which rotation of the rotation and the temperature detecting portion of the imaging unit is operated in parallel,
An air conditioner characterized by having a second operating state in which rotation operation of the rotating operation and the temperature detecting portion of the imaging unit is performed in sequence.
請求項1あるいは2に記載の空気調和機において、
前記撮像部は、回動方向に複数撮像位置を有し、
前記温度検出部は、回動方向に前記撮像位置よりも多い点数の温度検出位置を有し、
前記撮像部と前記温度検出部の回動が並行動作する第1の動作状態場合には、
前記撮像部の撮像方向に略同一の回動角となる温度検出位置において、前記撮像部による撮像と前記温度検出部による温度検出がおこなわれる
ことを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
The imaging unit has a plurality of imaging positions in the rotation direction,
The temperature detection unit has a temperature detection position with more points than the imaging position in the rotation direction,
In the case of the first operating state in which rotation of said temperature detecting unit and the imaging unit is in parallel operation,
The air conditioner characterized in that imaging by the imaging unit and temperature detection by the temperature detection unit are performed at a temperature detection position having substantially the same rotation angle in the imaging direction of the imaging unit.
請求項3に記載の空気調和機において、
前記撮像部は、回動方向に左側点と中央点と右側点の3つの撮像位置を有し、
前記温度検出部は、回動方向に30点の検出位置を有し、
前記撮像部が前記中央点に在るとき、前記温度検出部は前記30点のうちの央部の10点の検出位置で温度検出をおこない、前記温度検出部が前記央部の10点の中央の点で温度検出がおこなった際に、前記撮像部はその位置にて撮像をおこない、
前記撮像部が前記左側点あるいは右側点に在るとき、前記温度検出部は前記30点のうちの央部の部あるいは部の10点の検出位置で温度検出をおこない、前記温度検出部が前記部あるいは部の10点の中央の点で温度検出がおこなった際に、前記撮像部はその位置にて撮像をおこなう
ことを特徴とする空気調和機。
In the air conditioner according to claim 3,
The imaging unit has three imaging positions of a left point, a center point, and a right point in the rotation direction,
The temperature detector has 30 detection positions in the rotation direction,
When the imaging unit is located at the center point, the temperature detection unit performs temperature detection at 10 detection positions at the center of the 30 points, and the temperature detection unit is at the center of the 10 points at the center. When temperature detection is performed at the point, the imaging unit performs imaging at that position,
When the imaging unit is at the left point or the right point, the temperature detection unit performs temperature detection at the detection position of the left part or the right part of the center of the 30 points, and the temperature detection part When the temperature is detected at the center of the left or right 10 points, the image pickup unit picks up an image at that position.
請求項1から4のいずれかの一項に記載の空気調和機において、
前記撮像部の撮像は、当該撮像部の回動の一方の回動方向でおこなわれ、
前記温度検出部の温度検出は、当該温度検出部の回動の一方の回動方向でおこなわれ、
かつ、前記撮像部が撮像をおこなう方向と同じ方向である
ことを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 4,
Imaging of the imaging unit is performed in one rotation direction of rotation of the imaging unit,
The temperature detection of the temperature detection unit is performed in one rotation direction of the rotation of the temperature detection unit,
And, an air conditioner, wherein the imaging unit is a better direction same as the direction for imaging.
請求項に記載の空気調和機において、
前記撮像部の回動動作と前記温度検出部の回動動作が順に行われる第2の動作状態は、
ドアの開閉等の間取り変化の検知や室内の温度変化の検知をおこなって温度や風向・風量をコントロールする部屋監視モードでおこなわれ、
前記撮像部と前記温度検出部の回動が並行動作する第1の動作状態は、室内の人の出入りや人数や人の位置・動きを検出して温度や風向・風量をコントロールする人監視モードでおこなわれる
ことを特徴とする空気調和機。
In the air conditioner according to claim 2 ,
The second operation state in which the rotation operation of the imaging unit and the rotation operation of the temperature detection unit are sequentially performed is:
It is performed in a room monitoring mode that controls the temperature, wind direction, and air volume by detecting changes in the layout of doors, etc., and detecting changes in indoor temperature.
The first operation state in which the rotation of the imaging unit and the temperature detection unit operates in parallel is a person monitoring mode in which the temperature, the wind direction, and the air volume are controlled by detecting the entry / exit of a person in the room, the number of persons, the position / movement of the person, and the like. An air conditioner characterized by
請求項6に記載の空気調和機において、
部屋監視モードで前記撮像部の画像情報から人物が検出された場合には、
前記検出された人物位置に対応する回動角度を算出して、
前記算出した人物位置に対応する回動角度を、前記温度検出部に設定し、
前記温度検出部を前記回動角度に駆動して温度を検出する
ことを特徴とする空気調和機。
The air conditioner according to claim 6,
When a person is detected from the image information of the imaging unit in the room monitoring mode,
Calculating a rotation angle corresponding to the detected person position;
A rotation angle corresponding to the calculated person position is set in the temperature detection unit,
An air conditioner that detects the temperature by driving the temperature detector at the rotation angle.
請求項1から7のいずれかの一項に記載の空気調和機において、
前記温度検出部はサーモパイルを含み、
前記撮像部はCCDイメージセンサを含む
ことを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 7,
The temperature detection unit includes a thermopile,
The air conditioner, wherein the imaging unit includes a CCD image sensor.
JP2013188287A 2013-09-11 2013-09-11 Air conditioner Active JP5978186B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013188287A JP5978186B2 (en) 2013-09-11 2013-09-11 Air conditioner
KR1020140005381A KR101596899B1 (en) 2013-09-11 2014-01-16 Air conditioner
CN201410040770.9A CN104422084B (en) 2013-09-11 2014-01-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188287A JP5978186B2 (en) 2013-09-11 2013-09-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015055392A JP2015055392A (en) 2015-03-23
JP5978186B2 true JP5978186B2 (en) 2016-08-24

Family

ID=52819921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188287A Active JP5978186B2 (en) 2013-09-11 2013-09-11 Air conditioner

Country Status (3)

Country Link
JP (1) JP5978186B2 (en)
KR (1) KR101596899B1 (en)
CN (1) CN104422084B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247558A (en) * 2016-08-25 2016-12-21 珠海格力电器股份有限公司 Control method and device of air conditioner
AU2018324642B2 (en) * 2017-08-29 2021-06-03 Daikin Industries, Ltd. Air conditioner
CN109556265A (en) * 2017-09-27 2019-04-02 珠海格力电器股份有限公司 air outlet structure, air conditioner and air outlet posture adjusting method
JP7357218B2 (en) * 2019-10-29 2023-10-06 パナソニックIpマネジメント株式会社 Image sensor device and equipment control system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101120B2 (en) * 1988-12-09 1995-11-01 松下電器産業株式会社 Air conditioner
JPH06147594A (en) * 1992-11-17 1994-05-27 Matsushita Electric Ind Co Ltd Automatic air conditioner
JP3309532B2 (en) * 1993-12-28 2002-07-29 松下電器産業株式会社 Thermal image / visible image detector
JPH10259942A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Control device of air conditioner
JP2002350555A (en) * 2001-05-28 2002-12-04 Yamaha Motor Co Ltd Human presence detector
JP4487809B2 (en) * 2005-01-12 2010-06-23 三菱電機株式会社 Air conditioner
JP4885017B2 (en) * 2007-03-12 2012-02-29 三菱電機株式会社 Air conditioner
KR20090085895A (en) * 2008-02-05 2009-08-10 엘지전자 주식회사 Air conditioner and controlling method thereof
TWI354754B (en) * 2008-10-21 2011-12-21 Pixart Imaging Inc Control apparatus and control method for air condi
JP5478075B2 (en) * 2009-01-06 2014-04-23 三菱電機株式会社 Air conditioner
JP5247595B2 (en) 2009-06-01 2013-07-24 三菱電機株式会社 Air conditioner
CN101737904A (en) * 2009-11-06 2010-06-16 南京航空航天大学 Infrared detection and image processing-based feedback control system
KR101246918B1 (en) * 2011-09-08 2013-03-25 유덕봉 Non-Contact Type Temperature Monitoring System

Also Published As

Publication number Publication date
KR101596899B1 (en) 2016-02-24
CN104422084A (en) 2015-03-18
JP2015055392A (en) 2015-03-23
KR20150030137A (en) 2015-03-19
CN104422084B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6238197B2 (en) Air conditioner
JP6473289B2 (en) Indoor unit of air conditioner and air conditioner using the same
US10024563B2 (en) Indoor unit of air-conditioning apparatus and air-conditioning apparatus
US9657743B2 (en) Air conditioner and control method thereof
JP5978186B2 (en) Air conditioner
CN107305035B (en) Air conditioner
JP5111417B2 (en) Air conditioner
JP5879221B2 (en) Air conditioner
JP5815490B2 (en) Air conditioner
JP6335425B2 (en) Air conditioner
KR20090085368A (en) Air conditioner and controlling method thereof
JP2010276324A (en) Air conditioner
JP2010014350A (en) Air conditioner
KR20090087366A (en) Air conditioner and controlling method thereof
JP5236093B2 (en) Air conditioner
JP2016173215A (en) Air conditioner
JP5389243B2 (en) Air conditioner
JPH0379942A (en) Air conditioner
JP2015052416A (en) Air conditioner
JP2016145650A (en) Air conditioner
JP2693328B2 (en) air conditioner
JP6017207B2 (en) Air conditioner
KR102398452B1 (en) Controlling system of air conditioner
KR20080114243A (en) Air conditioner
JP6100131B2 (en) Indoor unit of air conditioner and air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250