JP5958934B2 - ナノファイバーフォトニック結晶 - Google Patents

ナノファイバーフォトニック結晶 Download PDF

Info

Publication number
JP5958934B2
JP5958934B2 JP2012153479A JP2012153479A JP5958934B2 JP 5958934 B2 JP5958934 B2 JP 5958934B2 JP 2012153479 A JP2012153479 A JP 2012153479A JP 2012153479 A JP2012153479 A JP 2012153479A JP 5958934 B2 JP5958934 B2 JP 5958934B2
Authority
JP
Japan
Prior art keywords
optical fiber
nanofiber
photonic crystal
optical
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012153479A
Other languages
English (en)
Other versions
JP2014016458A (ja
Inventor
耕藏 白田
耕藏 白田
カリ プラサンナ ナヤク
カリ プラサンナ ナヤク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2012153479A priority Critical patent/JP5958934B2/ja
Publication of JP2014016458A publication Critical patent/JP2014016458A/ja
Application granted granted Critical
Publication of JP5958934B2 publication Critical patent/JP5958934B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、数ミクロンオーダーからサブミクロンオーダーの範囲の径を有する光ファイバー(以下、ナノ光ファイバーという)を用いて構成されたフォトニック結晶に関する。
従来、屈折率が周期的に変化するナノサイズの構造体(以下、ナノ構造体という)を設けて所定の機能を発現させるフォトニック結晶が種々提案されている(例えば、非特許文献1、非特許文献2参照)。
非特許文献1には、シリコン基板に、微小穴を形成して構成されたシリコン系フォトニック結晶が記載されている。具体的には、非特許文献1には、シリコン基板に、複数の微小な円孔を一次元に配列して構成したフォトニック結晶ナノビーム共振器が開示されている。
また、非特許文献2には、石英等の誘電体からなるナノ光ファイバーを用いたフォトニック結晶(以下、ナノファイバーフォトニック結晶という)が提案されている。非特許文献2に記載のナノファイバーフォトニック結晶では、その表面にFIB加工法を用いて、ファイバーブラッググーティング(FBG)が形成されている。
P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar:"High quality factor photonic crystal nanobeam cavities", Applied Physics Letters, Vol.94, 121106, 2009 K. P. Nayak, Fam Le Kien, Y.Kawai, K.Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto:"Cavity formation on an optical nanofiber using focused ion beam milling technique", OPTICS EXPRESS, Vol.19, pp.14040-14050, 2011
上述のように、従来、種々のフォトニック結晶が提案されているが、特に、ナノファイバーフォトニック結晶においては、その製造の容易性及び設計自由度の向上が求められている。本発明は、この要求に応えるためになされたものであり、本発明の目的は、より容易に製造可能であり、かつ、設計自由度も向上させることができるナノファイバーフォトニック結晶を提供することである。
上記課題を解決するために、本発明のナノファイバーフォトニック結晶は、搬光の波長以下の径を有し、伝搬光が近接場光として伝搬する光導波路部を有する光ファイバーと、光ファイバーとは別個に独立して設けられた、光透過性を有する光学的機能部材とを備える。そして、光学的機能部材の表面には、表面の形成材料と同じ材料で形成され且つ表面と一体的に形成された複数の凸部により構成され、隣り合う凸部間に画成される凹部が自由空間となる凹凸構造体が設けられ、光ファイバーは、凹凸構造体上に配置され、かつ、光導波路部に光が伝搬した際に生成される近接場と凹凸構造体の一部とが重なるような位置に配置される。
本発明のナノファイバーフォトニック結晶では、ナノ光ファイバーと、それに所定の光学的機能を付与する光学的機能部材とを互いに別個の部材で構成する。それゆえ、本発明のナノファイバーフォトニック結晶によれば、より容易に製造することができ、かつ、設計自由度も向上させることができる。
本発明の一実施形態に係るナノファイバーフォトニック結晶の概略構成図である。 本発明の一実施形態に係るナノファイバーフォトニック結晶で用いるナノ光ファイバーの概略外観図である。 本発明の一実施形態に係るナノファイバーフォトニック結晶で用いる光学的機能部材の概略外観斜視図である。
以下に、本発明の一実施形態に係るナノファイバーフォトニック結晶の一例を、図面を参照しながら説明する。しかしながら、本発明は、以下に示す例に限定されない。
[ナノファイバーフォトニック結晶の構成]
本発明の一実施形態に係るナノファイバーフォトニック結晶の構成を、図1を参照しながら説明する。図1は、本実施形態のナノファイバーフォトニック結晶の概略構成図である。なお、図1には、後述するナノ光ファイバー10の極細部11付近の構成のみを示す。
ナノファイバーフォトニック結晶1は、ナノ光ファイバー10と、光学的機能部材20と、基板30とを備える。なお、本実施形態では、ナノファイバーフォトニック結晶1が、ナノファイバー光反射器として作用する例を説明する。以下に、各部の構成及び機能、並びに、各部間の配置関係について説明する。
(1)ナノ光ファイバー
まず、図2を参照しながら、ナノ光ファイバー10の構成を説明する。なお、図2は、本実施形態で用いたナノ光ファイバー10の概略外観図である。
ナノ光ファイバー10は、コア部14と、コア部14の周囲に形成されたクラッド部15とを備える。ナノ光ファイバー10は、光導波特性の優れた(光子吸収の少ない)、例えば石英等の材料で形成される。なお、図2では、ナノ光ファイバー10の構成を明確にするために、クラッド部15(クラッド)の径に対するコア部14(コア)の径の比率を実際の比率より大きくして図示するが、実際の比率は、コア部14の径:クラッド部15の径=1:10程度である。
また、ナノ光ファイバー10は、図2に示すように、極細部11(光導波路部)と、その両端にそれぞれ設けられた接続部12と、各接続部12の極細部11側とは反対側の端部に設けられた光ファイバー部13とを備える。このような構成のナノ光ファイバー10は、従来の通信システムで用いられるコア及びクラッドを有する通信用光ファイバーの一部(極細部11に対応する領域)を加熱延伸して作製することができる。
なお、ナノ光ファイバー10において、接続部12内のコアカットオフの径以下になる領域では、伝搬光に対して光ファイバーのコア部14とクラッド部15との区別は実質無くなり、コア部14のみの状態と同等になる。すなわち、本実施形態のナノ光ファイバー10の極細部11は、実質、コア部14のみの状態となり、極細部11の周囲の領域(自由空間)がクラッド部の役割を果たす。
極細部11は、その径が伝搬光の波長程度以下のサイズに設定された光導波路である。それゆえ、極細部11では、伝搬光は、近接場光として伝搬し、該伝搬光の一部が周囲の領域(自由空間)にしみ出した状態で伝搬する。すなわち、極細部11に光が伝搬した際には、極細部11及びその周囲の表面付近には、近接場nf(図1中の破線)が生成される。
接続部12は、極細部11から光ファイバー部13に向かって延在した光導波路であり、その径は極細部11から光ファイバー部13に向かって連続的に大きくなる。すなわち、接続部12は、その径が極細部11から光ファイバー部13に向かってテーパー状に広がる光導波路である。
光ファイバー部13は、従来の通信用光ファイバーと同様に、コア部14と、その周囲に設けられたクラッド部15とで構成される。また、光ファイバー部13の径も、従来の通信用光ファイバーの径と同様のサイズにすることができる。この場合、光ファイバー部13は、外部の光ファイバー網(情報通信網)に、直接、接続することができる。それゆえ、本実施形態で作製されたナノファイバーフォトニック結晶1では、極細部11を伝搬する光を、光ファイバーの伝搬モード(ファイバーモード)で、直接、外部の光ファイバー網(情報通信網)に射出することができる。
なお、ナノ光ファイバー10の構成は、図2に示す構成に限定されず、例えば、クラッド部15の周囲に、加工性に優れた例えばポリマー等の材料からなるコーティング層を形成してもよい。この場合には、例えば、ナノ光ファイバー10に微小な凹凸パターン(例えばFBGや微小凹部等)を形成することが容易になる。
(2)光学的機能部材20
次に、図3を参照しながら、光学的機能部材20の構成を説明する。なお、図3は、本実施形態で用いた光学的機能部材20の概略外観斜視図である。
光学的機能部材20は、例えば、石英、ポリマー等の光透過性材料で形成された板状部材である。光学的機能部材20は、略板状の本体部21と、該本体部21の一方の表面上に形成された、第1グレーティング部22及び第2グレーティング部23(凹凸構造体)とを備える。
なお、本実施形態では、第1グレーティング部22及び第2グレーティング部23間の対向方向(光Lの伝搬方向:図3中の太実線矢印)に沿って、第1グレーティング部22及び第2グレーティング部23を1次元的に配置し、かつ、両者を所定距離、離して配置する。また、この際、各グレーティング部(グレーティング)を構成する複数の凸部の周期方向(凸部の延在方向と直交する方向)が、光Lの伝搬方向と一致するように、各グレーティング部を配置する。
さらに、本実施形態では、第1グレーティング部22の構成は、第2グレーティング部23の構成と同じとする。また、各グレーティング部は、第1グレーティング部22及び第2グレーティング部23間の対向方向と直交する方向に延在した複数の凸部を、例えば、数十nm〜数百nm程度のピッチで等間隔に配置することにより構成される。
なお、各グレーティング部の構成(例えば、グレーティングの幅、深さ、ピッチ等)は、例えば、極細部11を伝搬する光の波長や反射すべき波長帯域などに応じて適宜設定される。例えば、本実施形態のように、ナノファイバーフォトニック結晶1を、ナノファイバー光反射器として動作させる場合には、各グレーティング部の構成は、伝搬光に対してブラッグの反射条件が満たされるように設定することができる。
また、本実施形態では、本体部21と、第1グレーティング部22及び第2グレーティング部23とを同じ材料(光透過性材料)で一体的に形成する。この場合、通常、第1グレーティング部22及び第2グレーティング部23は、本体部21の一方の表面を加工して作製されるので、光学的機能部材20の形成材料としては、例えば、ポリマー等の加工性に優れた光透過性材料を用いることが好ましい。また、この場合、各グレーティング部の形成手法としては、例えば、FIB加工法、フォトエッチング法、ナノインプリント法等の従来の半導体加工技術で用いられる手法を用いることができる。
なお、光学的機能部材20の構成は、本実施形態の構成(図1〜3の構成)に限定されず、例えば用途等に応じて、適宜変更することができる。例えば、本実施形態では、光学的機能部材20にグレーティング構造の凹凸パターンを形成する例を説明したが、本発明はこれに限定されず、例えば用途等に応じて、任意の凹凸パターンのナノ構造体を形成してもよい。この場合、光学的機能部材20に形成されるナノ構造体の凹凸パターンに応じて、ナノ光ファイバー10の延在方向の配置方向も適宜変更する。
また、例えば、本実施形態では、グレーティング部を2個設ける例を説明したが、本発明はこれに限定されず、例えば用途等に応じて、グレーティング部の個数を任意に変更することができる。また、例えば、上記実施形態では、本体部21の一方の面内において、複数のグレーティング部(凹凸パターン部)を光Lの伝搬方向に沿って1次元的に配置する例を説明したが、用途等に応じて、本体部21の一方の面内において、光Lの伝搬方向に直交する方向に沿って、複数のグレーティング部を配置してもよい。さらに、本実施形態では、例えば用途等に応じて、複数のグレーティング部を、光Lの伝搬方向、及び、その直交方向の両方に沿って配置してもよい。すなわち、本体部21の一方の面内において、複数のグレーティング部(凹凸パターン部)を、2次元的に配置してもよい。
さらに、本実施形態では、第1グレーティング部22の構成(形状、寸法等)を、第2グレーティング部23の構成と同じとしたが、両者の構成を互いに異ならせてもよい。また、光学的機能部材20の本体部21の形成材料が、第1グレーティング部22及び第2グレーティング部23の形成材料と異なっていてもよい。
(3)基板30
基板30は、光学的機能部材20を保持する部材であり、十分な剛性を有する基板であれば、任意の基板で構成することができる。また、基板30の形成材料は、光透過性材料であってもよいし、不透明材料であってもよい。
例えば、本実施形態において、基板30を熱伝導性の良い材料で構成すれば、基板30に温調装置を取り付けることにより、各グレーティング部(光学的機能部材20)の熱膨張特性を利用して、各グレーティング部の凸部のピッチ(グレーティングピッチ)を、常に、最適なピッチに制御することができる。この場合、グレーティング部(光学的機能部材20)の形成材料としては、例えば、熱膨張率の大きなポリマー材料を用いることが好適である。
なお、基板30の主な機能は、上述のように、光学的機能部材20を保持することであるので、光学的機能部材20が十分な剛性を有する場合には、基板30を設けなくてもよい。
(4)各部の配置
本実施形態のナノファイバーフォトニック結晶1では、図1に示すように、光学的機能部材20が基板30上に設けられる。この際、光学的機能部材20は、第1グレーティング部22及び第2グレーティング部23が形成された面と反対側の面が、基板30と接するように配置される。
ナノ光ファイバー10は、光学的機能部材20の第1グレーティング部22及び第2グレーティング部23が形成された面上に配置される。この際、ナノ光ファイバー10の延在方向(光Lの伝搬方向)と、各グレーティング部の凸部の延在方向とが、互いに直交するように、ナノ光ファイバー10が配置される。
また、本実施形態では、ナノ光ファイバー10の極細部11は、第1グレーティング部22及び第2グレーティング部23の形成領域上に配置される。この際、極細部11に光を伝搬させたときに極細部11及びその周囲に生成される近接場nfが、第1グレーティング部22及び第2グレーティング部23の凸部の上端を含む一部と重なるように、ナノ光ファイバー10及び光学的機能部材20間の距離が設定される。なお、ナノ光ファイバー10の極細部11は、第1グレーティング部22及び第2グレーティング部23に接触していてもよいし、離れていてもよい。
[ナノファイバーフォトニック結晶の動作]
次に、本実施形態のナノファイバーフォトニック結晶1の動作を、図1を参照しながら説明する。まず、図1に示すように、ナノファイバーフォトニック結晶1の一方の端部から光Lを入射する。これにより、ナノ光ファイバー10の極細部11には、伝搬光(近接場光)の一部が周囲の領域(自由空間)にしみ出した状態で、光が伝搬する(近接場nfが生成される)。
しかしながら、本実施形態のナノファイバーフォトニック結晶1では、上述のように、極細部11の領域に生成される近接場nfが、第1グレーティング部22及び第2グレーティング部23の凸部の一部と重なるように、ナノ光ファイバー10の極細部11が第1グレーティング部22及び第2グレーティング部23の形成領域上に配置されている。それゆえ、極細部11を伝搬する光(近接場光)は、各グレーティング部の形成領域において、周期的に変化する屈折率の影響を受け、光の一部が各グレーティング部で反射する(図1中の反射光L1及びL2)。本実施形態では、このようにして、ナノファイバーフォトニック結晶1がナノファイバー光共振器として動作する。
[各種効果]
上述のように、本実施形態のナノファイバーフォトニック結晶1では、ナノ光ファイバー10に対して所定の光学的機能(本実施形態では光の反射機能)を付加するための光学的機能部材20を、ナノ光ファイバー10とは別部材として作製する。この場合、上述のように、光学的機能部材20の作製手法として、従来の半導体加工技術で確立されている凹凸パターン形成手法を用いることができる。それゆえ、本実施形態では、ナノ光ファイバーに直接、凹凸構造体(ナノ構造体)を形成してナノファイバーフォトニック結晶を作製する従来の手法(例えば非特許文献2の手法)に比べて、容易にナノファイバーフォトニック結晶1を作製することができる。
また、本実施形態では、ナノ光ファイバー10と光学的機能部材20とを別個に独立して設計することができるので、設計の自由度が向上する。さらに、本実施形態では、ナノ光ファイバー10と光学的機能部材20とを別個に作製するので、ナノ光ファイバー10及び光学的機能部材20間の相対的な位置制御や、一つのナノファイバーフォトニック結晶1において種々の凹凸構造体(ナノ構造体)を設けることなどが可能になり、機能面での設計自由度も向上する。
以上のことから明らかなように、本実施形態では、ナノファイバーフォトニック結晶1をより容易に製造することができ、かつ、ナノファイバーフォトニック結晶1の設計自由度も向上させることができる。
なお、本実施形態では、光学的機能部材20にのみ屈折率が所定パターンで変化するナノ構造体を設ける例を説明したが、本発明はこれに限定されず、光学的機能部材20だけでなく、ナノ光ファイバー10にもナノ構造体を設けてもよい。例えば、ナノ光ファイバー10の極細部11に、微小凹部、又は、複数の微小凹部からなる一次元の微小凹部列を設けてもよい。この場合には、例えば量子発光体(量子ドット)を含む物質、バイオ関連物質、非線形光学物質等の所定の物質を微小凹部に充填することができ、後述のように様々な用途への応用が可能になる。
[応用例]
ここで、本発明のナノファイバーフォトニック結晶の各種応用例について説明する。上記実施形態のナノファイバーフォトニック結晶1(図1参照)において、第1グレーティング部22及び第2グレーティング部23間のナノ光ファイバー10の極細部11の領域に、量子発光体(量子ドット)を含む物質を添加した場合には、ファイバーモード(ファイバーインライン)単一光子発生素子(ナノ光ファイバー共振器)を実現することができる。この場合、ナノファイバーフォトニック結晶から高効率で単一光子を光ファイバーの導波モードで取り出すことができる。なお、「量子発光体」とは、エネルギー準位が離散的な状態となり、単一励起が可能となる状態に置かれた(すなわち、量子的な特性を有する)、例えば、原子、分子、量子ドット(人工原子)等のナノメートルサイズの発光体のことである。
また、上記実施形態のナノファイバーフォトニック結晶1において、ナノ光ファイバー10の極細部11上に、バイオ関連物質を塗布した(付着させた)場合には、バイオセンサーを実現することができる。この場合、バイオ関連物質における光学的な変化(例えば、光増強変化や屈折率変化など)を高感度(分子単位)で検出することができる。
さらに、上記実施形態のナノファイバーフォトニック結晶1において、各グレーティング部でFBGを構成した場合には、ナノファイバーフォトニック結晶1を高感度の温度センサとして用いることができる。また、上記実施形態のナノファイバーフォトニック結晶1において、第1グレーティング部22の構成(グレーティングパターン)を第2グレーティング部23のそれと異なるようにすることにより、ナノ光ファイバー回路の実現も可能になる。
なお、上述のように、ナノ光ファイバー10の極細部11に、複数の微小凹部からなる微小凹部列を設けて、複数の微小凹部の少なくとも一つに量子発光体(量子ドット)を含む物質を充填(添加)した場合にも、ファイバーモード単一光子発生素子を実現することができる。また、複数の微小凹部の少なくとも一つにバイオ関連物質を充填した場合にも、バイオセンサーを実現することができる。
さらに、複数の微小凹部の少なくとも一つに非線形光学物質を充填した場合には、ファイバーインライン非線形光子素子を実現することができる。この場合、ナノファイバーフォトニック結晶は、伝搬光に対して例えば変調作用、位相調整作用、光のスイッチング作用等の各種非線形作用(効果)を発現させることができる。
なお、このような伝搬光に対する非線形効果は、光導波路の断面の面積が小さくなるほど大きくなる。例えば、ナノ光ファイバーの極細部の径は、従来の光通信用ファイバーのそれの数十分の1程度であるので、ナノ光ファイバーの極細部における非線形効果は、従来の光通信用ファイバーのそれの数百倍になる。それゆえ、ナノ光ファイバー10の極細部11に設けられた複数の微小凹部の少なくとも一つに非線形光学物質を充填した場合には、非常に高い非線形効果を有するファイバーインライン非線形光子素子を実現することができる。
1…ナノファイバーフォトニック結晶、10…ナノ光ファイバー、11…極細部、12…接続部、13…光ファイバー部、20…光学的機能部材、21…本体部、22…第1グレーティング部、23…第2グレーティング部、30…基板

Claims (6)

  1. 搬光の波長以下の径を有し、伝搬光が近接場光として伝搬する光導波路部を有する光ファイバーと、
    前記光ファイバーとは別個に独立して設けられた、光透過性を有する光学的機能部材と、を備え、
    前記光学的機能部材の表面には、該表面の形成材料と同じ材料で形成され且つ該表面と一体的に形成された複数の凸部により構成され、隣り合う凸部間に画成される凹部が自由空間となる凹凸構造体が設けられ、
    前記光ファイバーは、前記凹凸構造体上に配置され、かつ、前記光導波路部に光が伝搬した際に生成される近接場と前記凹凸構造体の一部とが重なるような位置に配置され
    ナノファイバーフォトニック結晶。
  2. 前記凹凸構造体が、所定周期のグレーティングであり、
    前記グレーティングを構成する凸部の延在方向が、前記光導波路部の延在方向と直交する
    請求項1に記載のナノファイバーフォトニック結晶。
  3. 前記凹凸構造体が、石英又はポリマーで形成されている
    請求項1又は2に記載のナノファイバーフォトニック結晶。
  4. 前記光ファイバーが、コア及びクラッドを含む光ファイバー部と、前記光導波路部及び前記光ファイバー部間を接続し、径が前記光導波路部から前記光ファイバー部に向かって連続的に大きくなる接続部とを有する
    請求項1〜3のいずれか一項に記載のナノファイバーフォトニック結晶。
  5. 前記光ファイバーが、前記光導波路部の表面にポリマーで形成されたコーティング層を有する
    請求項1〜4のいずれか一項に記載のナノファイバーフォトニック結晶。
  6. 前記凹凸構造体の凸部のピッチを制御する温調装置を更に備える
    請求項1〜5のいずれか一項に記載のナノファイバーフォトニック結晶。
JP2012153479A 2012-07-09 2012-07-09 ナノファイバーフォトニック結晶 Expired - Fee Related JP5958934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153479A JP5958934B2 (ja) 2012-07-09 2012-07-09 ナノファイバーフォトニック結晶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153479A JP5958934B2 (ja) 2012-07-09 2012-07-09 ナノファイバーフォトニック結晶

Publications (2)

Publication Number Publication Date
JP2014016458A JP2014016458A (ja) 2014-01-30
JP5958934B2 true JP5958934B2 (ja) 2016-08-02

Family

ID=50111207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153479A Expired - Fee Related JP5958934B2 (ja) 2012-07-09 2012-07-09 ナノファイバーフォトニック結晶

Country Status (1)

Country Link
JP (1) JP5958934B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2023516B1 (en) * 2019-05-28 2020-12-08 Illumina Inc Manufacturing a flowcell with a planar waveguide
US11556045B2 (en) * 2019-09-20 2023-01-17 Humboldt-Universitaet Zu Berlin Device for generating individual photons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912363A (en) * 1974-01-29 1975-10-14 Rca Corp Optical fiber to planar waveguide coupler
US4955028A (en) * 1988-03-25 1990-09-04 At&T Bell Laboratories Wavelength tunable composite cavity laser
JPH03263010A (ja) * 1990-03-14 1991-11-22 Fujitsu Ltd ファイバ型ブラッグ反射器
AU2002239549A1 (en) * 2000-11-09 2002-06-03 California Institute Of Technology Dual-wavelength hybrid waveguide coupler
JP5354605B2 (ja) * 2009-02-10 2013-11-27 国立大学法人北海道大学 テーパ光ファイバ
US8385696B2 (en) * 2010-11-12 2013-02-26 The University Of Electro-Communications Optical nanofiber resonator

Also Published As

Publication number Publication date
JP2014016458A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6879561B2 (ja) 光偏向デバイスおよびライダー装置
Halir et al. Waveguide sub‐wavelength structures: a review of principles and applications
Ohana et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides
US7903909B2 (en) Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays
CA2728879A1 (en) Composite subwavelength-structured waveguide in optical systems
US20160202414A1 (en) Systems And Methods For Suspended Polymer Photonic Crystal Cavities And Waveguides
JP4769658B2 (ja) 共振器
US8587856B2 (en) Nonlinear and gain optical devices formed in metal gratings
JP6003069B2 (ja) グレーティング素子及び光素子
WO2003081305A1 (fr) Resonateur optique interferenciel a cristal photonique bidimensionnel a defauts ponctuels, et reflecteur optique
WO2015133093A1 (ja) 光導波路、それを用いた光部品および波長可変レーザ
JP5958933B2 (ja) ナノファイバーフォトニック結晶の製造方法、及び、ナノファイバーフォトニック結晶の製造装置
JP5958934B2 (ja) ナノファイバーフォトニック結晶
JP2007133331A (ja) 導波路及びそれを有するデバイス
JP6618664B2 (ja) レーザ装置
US7805826B1 (en) Fabrication of slot waveguide
Hattori et al. In-plane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides
US11796740B2 (en) Optical device
JP6901087B2 (ja) 光デバイス及びその製造方法
JP5336534B2 (ja) 光共振器
US20170242188A1 (en) Integrated photonic nanowires-based waveguide
Tsarev et al. Highly directive and broadband radiation from photonic crystals with partially disordered cavities arrays
Viktorovitch et al. Surface addressable photonic crystal membrane resonators: generic enablers for 3D harnessing of light
JP5309297B2 (ja) 光導波路デバイス及びその製造方法
JP6601662B2 (ja) 単一光子発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160614

R150 Certificate of patent or registration of utility model

Ref document number: 5958934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees